1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 18 #include "nvmet.h" 19 20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 21 22 #define NVMET_TCP_RECV_BUDGET 8 23 #define NVMET_TCP_SEND_BUDGET 8 24 #define NVMET_TCP_IO_WORK_BUDGET 64 25 26 enum nvmet_tcp_send_state { 27 NVMET_TCP_SEND_DATA_PDU, 28 NVMET_TCP_SEND_DATA, 29 NVMET_TCP_SEND_R2T, 30 NVMET_TCP_SEND_DDGST, 31 NVMET_TCP_SEND_RESPONSE 32 }; 33 34 enum nvmet_tcp_recv_state { 35 NVMET_TCP_RECV_PDU, 36 NVMET_TCP_RECV_DATA, 37 NVMET_TCP_RECV_DDGST, 38 NVMET_TCP_RECV_ERR, 39 }; 40 41 enum { 42 NVMET_TCP_F_INIT_FAILED = (1 << 0), 43 }; 44 45 struct nvmet_tcp_cmd { 46 struct nvmet_tcp_queue *queue; 47 struct nvmet_req req; 48 49 struct nvme_tcp_cmd_pdu *cmd_pdu; 50 struct nvme_tcp_rsp_pdu *rsp_pdu; 51 struct nvme_tcp_data_pdu *data_pdu; 52 struct nvme_tcp_r2t_pdu *r2t_pdu; 53 54 u32 rbytes_done; 55 u32 wbytes_done; 56 57 u32 pdu_len; 58 u32 pdu_recv; 59 int sg_idx; 60 int nr_mapped; 61 struct msghdr recv_msg; 62 struct kvec *iov; 63 u32 flags; 64 65 struct list_head entry; 66 struct llist_node lentry; 67 68 /* send state */ 69 u32 offset; 70 struct scatterlist *cur_sg; 71 enum nvmet_tcp_send_state state; 72 73 __le32 exp_ddgst; 74 __le32 recv_ddgst; 75 }; 76 77 enum nvmet_tcp_queue_state { 78 NVMET_TCP_Q_CONNECTING, 79 NVMET_TCP_Q_LIVE, 80 NVMET_TCP_Q_DISCONNECTING, 81 }; 82 83 struct nvmet_tcp_queue { 84 struct socket *sock; 85 struct nvmet_tcp_port *port; 86 struct work_struct io_work; 87 int cpu; 88 struct nvmet_cq nvme_cq; 89 struct nvmet_sq nvme_sq; 90 91 /* send state */ 92 struct nvmet_tcp_cmd *cmds; 93 unsigned int nr_cmds; 94 struct list_head free_list; 95 struct llist_head resp_list; 96 struct list_head resp_send_list; 97 int send_list_len; 98 struct nvmet_tcp_cmd *snd_cmd; 99 100 /* recv state */ 101 int offset; 102 int left; 103 enum nvmet_tcp_recv_state rcv_state; 104 struct nvmet_tcp_cmd *cmd; 105 union nvme_tcp_pdu pdu; 106 107 /* digest state */ 108 bool hdr_digest; 109 bool data_digest; 110 struct ahash_request *snd_hash; 111 struct ahash_request *rcv_hash; 112 113 spinlock_t state_lock; 114 enum nvmet_tcp_queue_state state; 115 116 struct sockaddr_storage sockaddr; 117 struct sockaddr_storage sockaddr_peer; 118 struct work_struct release_work; 119 120 int idx; 121 struct list_head queue_list; 122 123 struct nvmet_tcp_cmd connect; 124 125 struct page_frag_cache pf_cache; 126 127 void (*data_ready)(struct sock *); 128 void (*state_change)(struct sock *); 129 void (*write_space)(struct sock *); 130 }; 131 132 struct nvmet_tcp_port { 133 struct socket *sock; 134 struct work_struct accept_work; 135 struct nvmet_port *nport; 136 struct sockaddr_storage addr; 137 int last_cpu; 138 void (*data_ready)(struct sock *); 139 }; 140 141 static DEFINE_IDA(nvmet_tcp_queue_ida); 142 static LIST_HEAD(nvmet_tcp_queue_list); 143 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 144 145 static struct workqueue_struct *nvmet_tcp_wq; 146 static struct nvmet_fabrics_ops nvmet_tcp_ops; 147 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 148 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd); 149 150 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 151 struct nvmet_tcp_cmd *cmd) 152 { 153 return cmd - queue->cmds; 154 } 155 156 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 157 { 158 return nvme_is_write(cmd->req.cmd) && 159 cmd->rbytes_done < cmd->req.transfer_len; 160 } 161 162 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 163 { 164 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 165 } 166 167 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 168 { 169 return !nvme_is_write(cmd->req.cmd) && 170 cmd->req.transfer_len > 0 && 171 !cmd->req.cqe->status; 172 } 173 174 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 175 { 176 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 177 !cmd->rbytes_done; 178 } 179 180 static inline struct nvmet_tcp_cmd * 181 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 182 { 183 struct nvmet_tcp_cmd *cmd; 184 185 cmd = list_first_entry_or_null(&queue->free_list, 186 struct nvmet_tcp_cmd, entry); 187 if (!cmd) 188 return NULL; 189 list_del_init(&cmd->entry); 190 191 cmd->rbytes_done = cmd->wbytes_done = 0; 192 cmd->pdu_len = 0; 193 cmd->pdu_recv = 0; 194 cmd->iov = NULL; 195 cmd->flags = 0; 196 return cmd; 197 } 198 199 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 200 { 201 if (unlikely(cmd == &cmd->queue->connect)) 202 return; 203 204 list_add_tail(&cmd->entry, &cmd->queue->free_list); 205 } 206 207 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 208 { 209 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 210 } 211 212 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 213 { 214 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 215 } 216 217 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 218 void *pdu, size_t len) 219 { 220 struct scatterlist sg; 221 222 sg_init_one(&sg, pdu, len); 223 ahash_request_set_crypt(hash, &sg, pdu + len, len); 224 crypto_ahash_digest(hash); 225 } 226 227 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 228 void *pdu, size_t len) 229 { 230 struct nvme_tcp_hdr *hdr = pdu; 231 __le32 recv_digest; 232 __le32 exp_digest; 233 234 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 235 pr_err("queue %d: header digest enabled but no header digest\n", 236 queue->idx); 237 return -EPROTO; 238 } 239 240 recv_digest = *(__le32 *)(pdu + hdr->hlen); 241 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 242 exp_digest = *(__le32 *)(pdu + hdr->hlen); 243 if (recv_digest != exp_digest) { 244 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 245 queue->idx, le32_to_cpu(recv_digest), 246 le32_to_cpu(exp_digest)); 247 return -EPROTO; 248 } 249 250 return 0; 251 } 252 253 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 254 { 255 struct nvme_tcp_hdr *hdr = pdu; 256 u8 digest_len = nvmet_tcp_hdgst_len(queue); 257 u32 len; 258 259 len = le32_to_cpu(hdr->plen) - hdr->hlen - 260 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 261 262 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 263 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 264 return -EPROTO; 265 } 266 267 return 0; 268 } 269 270 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd) 271 { 272 struct scatterlist *sg; 273 int i; 274 275 sg = &cmd->req.sg[cmd->sg_idx]; 276 277 for (i = 0; i < cmd->nr_mapped; i++) 278 kunmap(sg_page(&sg[i])); 279 } 280 281 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd) 282 { 283 struct kvec *iov = cmd->iov; 284 struct scatterlist *sg; 285 u32 length, offset, sg_offset; 286 287 length = cmd->pdu_len; 288 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE); 289 offset = cmd->rbytes_done; 290 cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE); 291 sg_offset = offset % PAGE_SIZE; 292 sg = &cmd->req.sg[cmd->sg_idx]; 293 294 while (length) { 295 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 296 297 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset; 298 iov->iov_len = iov_len; 299 300 length -= iov_len; 301 sg = sg_next(sg); 302 iov++; 303 } 304 305 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov, 306 cmd->nr_mapped, cmd->pdu_len); 307 } 308 309 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 310 { 311 queue->rcv_state = NVMET_TCP_RECV_ERR; 312 if (queue->nvme_sq.ctrl) 313 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 314 else 315 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 316 } 317 318 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 319 { 320 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 321 u32 len = le32_to_cpu(sgl->length); 322 323 if (!cmd->req.data_len) 324 return 0; 325 326 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 327 NVME_SGL_FMT_OFFSET)) { 328 if (!nvme_is_write(cmd->req.cmd)) 329 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 330 331 if (len > cmd->req.port->inline_data_size) 332 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 333 cmd->pdu_len = len; 334 } 335 cmd->req.transfer_len += len; 336 337 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 338 if (!cmd->req.sg) 339 return NVME_SC_INTERNAL; 340 cmd->cur_sg = cmd->req.sg; 341 342 if (nvmet_tcp_has_data_in(cmd)) { 343 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 344 sizeof(*cmd->iov), GFP_KERNEL); 345 if (!cmd->iov) 346 goto err; 347 } 348 349 return 0; 350 err: 351 if (cmd->req.sg_cnt) 352 sgl_free(cmd->req.sg); 353 return NVME_SC_INTERNAL; 354 } 355 356 static void nvmet_tcp_ddgst(struct ahash_request *hash, 357 struct nvmet_tcp_cmd *cmd) 358 { 359 ahash_request_set_crypt(hash, cmd->req.sg, 360 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 361 crypto_ahash_digest(hash); 362 } 363 364 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 365 { 366 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 367 struct nvmet_tcp_queue *queue = cmd->queue; 368 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 369 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 370 371 cmd->offset = 0; 372 cmd->state = NVMET_TCP_SEND_DATA_PDU; 373 374 pdu->hdr.type = nvme_tcp_c2h_data; 375 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 376 NVME_TCP_F_DATA_SUCCESS : 0); 377 pdu->hdr.hlen = sizeof(*pdu); 378 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 379 pdu->hdr.plen = 380 cpu_to_le32(pdu->hdr.hlen + hdgst + 381 cmd->req.transfer_len + ddgst); 382 pdu->command_id = cmd->req.cqe->command_id; 383 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 384 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 385 386 if (queue->data_digest) { 387 pdu->hdr.flags |= NVME_TCP_F_DDGST; 388 nvmet_tcp_ddgst(queue->snd_hash, cmd); 389 } 390 391 if (cmd->queue->hdr_digest) { 392 pdu->hdr.flags |= NVME_TCP_F_HDGST; 393 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 394 } 395 } 396 397 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 398 { 399 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 400 struct nvmet_tcp_queue *queue = cmd->queue; 401 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 402 403 cmd->offset = 0; 404 cmd->state = NVMET_TCP_SEND_R2T; 405 406 pdu->hdr.type = nvme_tcp_r2t; 407 pdu->hdr.flags = 0; 408 pdu->hdr.hlen = sizeof(*pdu); 409 pdu->hdr.pdo = 0; 410 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 411 412 pdu->command_id = cmd->req.cmd->common.command_id; 413 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 414 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 415 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 416 if (cmd->queue->hdr_digest) { 417 pdu->hdr.flags |= NVME_TCP_F_HDGST; 418 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 419 } 420 } 421 422 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 423 { 424 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 425 struct nvmet_tcp_queue *queue = cmd->queue; 426 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 427 428 cmd->offset = 0; 429 cmd->state = NVMET_TCP_SEND_RESPONSE; 430 431 pdu->hdr.type = nvme_tcp_rsp; 432 pdu->hdr.flags = 0; 433 pdu->hdr.hlen = sizeof(*pdu); 434 pdu->hdr.pdo = 0; 435 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 436 if (cmd->queue->hdr_digest) { 437 pdu->hdr.flags |= NVME_TCP_F_HDGST; 438 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 439 } 440 } 441 442 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 443 { 444 struct llist_node *node; 445 446 node = llist_del_all(&queue->resp_list); 447 if (!node) 448 return; 449 450 while (node) { 451 struct nvmet_tcp_cmd *cmd = llist_entry(node, 452 struct nvmet_tcp_cmd, lentry); 453 454 list_add(&cmd->entry, &queue->resp_send_list); 455 node = node->next; 456 queue->send_list_len++; 457 } 458 } 459 460 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 461 { 462 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 463 struct nvmet_tcp_cmd, entry); 464 if (!queue->snd_cmd) { 465 nvmet_tcp_process_resp_list(queue); 466 queue->snd_cmd = 467 list_first_entry_or_null(&queue->resp_send_list, 468 struct nvmet_tcp_cmd, entry); 469 if (unlikely(!queue->snd_cmd)) 470 return NULL; 471 } 472 473 list_del_init(&queue->snd_cmd->entry); 474 queue->send_list_len--; 475 476 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 477 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 478 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 479 nvmet_setup_r2t_pdu(queue->snd_cmd); 480 else 481 nvmet_setup_response_pdu(queue->snd_cmd); 482 483 return queue->snd_cmd; 484 } 485 486 static void nvmet_tcp_queue_response(struct nvmet_req *req) 487 { 488 struct nvmet_tcp_cmd *cmd = 489 container_of(req, struct nvmet_tcp_cmd, req); 490 struct nvmet_tcp_queue *queue = cmd->queue; 491 492 llist_add(&cmd->lentry, &queue->resp_list); 493 queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work); 494 } 495 496 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 497 { 498 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 499 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 500 int ret; 501 502 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu), 503 offset_in_page(cmd->data_pdu) + cmd->offset, 504 left, MSG_DONTWAIT | MSG_MORE); 505 if (ret <= 0) 506 return ret; 507 508 cmd->offset += ret; 509 left -= ret; 510 511 if (left) 512 return -EAGAIN; 513 514 cmd->state = NVMET_TCP_SEND_DATA; 515 cmd->offset = 0; 516 return 1; 517 } 518 519 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd) 520 { 521 struct nvmet_tcp_queue *queue = cmd->queue; 522 int ret; 523 524 while (cmd->cur_sg) { 525 struct page *page = sg_page(cmd->cur_sg); 526 u32 left = cmd->cur_sg->length - cmd->offset; 527 528 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset, 529 left, MSG_DONTWAIT | MSG_MORE); 530 if (ret <= 0) 531 return ret; 532 533 cmd->offset += ret; 534 cmd->wbytes_done += ret; 535 536 /* Done with sg?*/ 537 if (cmd->offset == cmd->cur_sg->length) { 538 cmd->cur_sg = sg_next(cmd->cur_sg); 539 cmd->offset = 0; 540 } 541 } 542 543 if (queue->data_digest) { 544 cmd->state = NVMET_TCP_SEND_DDGST; 545 cmd->offset = 0; 546 } else { 547 if (queue->nvme_sq.sqhd_disabled) { 548 cmd->queue->snd_cmd = NULL; 549 nvmet_tcp_put_cmd(cmd); 550 } else { 551 nvmet_setup_response_pdu(cmd); 552 } 553 } 554 555 if (queue->nvme_sq.sqhd_disabled) { 556 kfree(cmd->iov); 557 if (cmd->req.sg_cnt) 558 sgl_free(cmd->req.sg); 559 } 560 561 return 1; 562 563 } 564 565 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 566 bool last_in_batch) 567 { 568 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 569 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 570 int flags = MSG_DONTWAIT; 571 int ret; 572 573 if (!last_in_batch && cmd->queue->send_list_len) 574 flags |= MSG_MORE; 575 else 576 flags |= MSG_EOR; 577 578 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu), 579 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags); 580 if (ret <= 0) 581 return ret; 582 cmd->offset += ret; 583 left -= ret; 584 585 if (left) 586 return -EAGAIN; 587 588 kfree(cmd->iov); 589 if (cmd->req.sg_cnt) 590 sgl_free(cmd->req.sg); 591 cmd->queue->snd_cmd = NULL; 592 nvmet_tcp_put_cmd(cmd); 593 return 1; 594 } 595 596 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 597 { 598 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 599 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 600 int flags = MSG_DONTWAIT; 601 int ret; 602 603 if (!last_in_batch && cmd->queue->send_list_len) 604 flags |= MSG_MORE; 605 else 606 flags |= MSG_EOR; 607 608 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu), 609 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags); 610 if (ret <= 0) 611 return ret; 612 cmd->offset += ret; 613 left -= ret; 614 615 if (left) 616 return -EAGAIN; 617 618 cmd->queue->snd_cmd = NULL; 619 return 1; 620 } 621 622 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd) 623 { 624 struct nvmet_tcp_queue *queue = cmd->queue; 625 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 626 struct kvec iov = { 627 .iov_base = &cmd->exp_ddgst + cmd->offset, 628 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset 629 }; 630 int ret; 631 632 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 633 if (unlikely(ret <= 0)) 634 return ret; 635 636 cmd->offset += ret; 637 638 if (queue->nvme_sq.sqhd_disabled) { 639 cmd->queue->snd_cmd = NULL; 640 nvmet_tcp_put_cmd(cmd); 641 } else { 642 nvmet_setup_response_pdu(cmd); 643 } 644 return 1; 645 } 646 647 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 648 bool last_in_batch) 649 { 650 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 651 int ret = 0; 652 653 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 654 cmd = nvmet_tcp_fetch_cmd(queue); 655 if (unlikely(!cmd)) 656 return 0; 657 } 658 659 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 660 ret = nvmet_try_send_data_pdu(cmd); 661 if (ret <= 0) 662 goto done_send; 663 } 664 665 if (cmd->state == NVMET_TCP_SEND_DATA) { 666 ret = nvmet_try_send_data(cmd); 667 if (ret <= 0) 668 goto done_send; 669 } 670 671 if (cmd->state == NVMET_TCP_SEND_DDGST) { 672 ret = nvmet_try_send_ddgst(cmd); 673 if (ret <= 0) 674 goto done_send; 675 } 676 677 if (cmd->state == NVMET_TCP_SEND_R2T) { 678 ret = nvmet_try_send_r2t(cmd, last_in_batch); 679 if (ret <= 0) 680 goto done_send; 681 } 682 683 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 684 ret = nvmet_try_send_response(cmd, last_in_batch); 685 686 done_send: 687 if (ret < 0) { 688 if (ret == -EAGAIN) 689 return 0; 690 return ret; 691 } 692 693 return 1; 694 } 695 696 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 697 int budget, int *sends) 698 { 699 int i, ret = 0; 700 701 for (i = 0; i < budget; i++) { 702 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 703 if (ret <= 0) 704 break; 705 (*sends)++; 706 } 707 708 return ret; 709 } 710 711 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 712 { 713 queue->offset = 0; 714 queue->left = sizeof(struct nvme_tcp_hdr); 715 queue->cmd = NULL; 716 queue->rcv_state = NVMET_TCP_RECV_PDU; 717 } 718 719 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 720 { 721 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 722 723 ahash_request_free(queue->rcv_hash); 724 ahash_request_free(queue->snd_hash); 725 crypto_free_ahash(tfm); 726 } 727 728 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 729 { 730 struct crypto_ahash *tfm; 731 732 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 733 if (IS_ERR(tfm)) 734 return PTR_ERR(tfm); 735 736 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 737 if (!queue->snd_hash) 738 goto free_tfm; 739 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 740 741 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 742 if (!queue->rcv_hash) 743 goto free_snd_hash; 744 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 745 746 return 0; 747 free_snd_hash: 748 ahash_request_free(queue->snd_hash); 749 free_tfm: 750 crypto_free_ahash(tfm); 751 return -ENOMEM; 752 } 753 754 755 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 756 { 757 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 758 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 759 struct msghdr msg = {}; 760 struct kvec iov; 761 int ret; 762 763 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 764 pr_err("bad nvme-tcp pdu length (%d)\n", 765 le32_to_cpu(icreq->hdr.plen)); 766 nvmet_tcp_fatal_error(queue); 767 } 768 769 if (icreq->pfv != NVME_TCP_PFV_1_0) { 770 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 771 return -EPROTO; 772 } 773 774 if (icreq->hpda != 0) { 775 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 776 icreq->hpda); 777 return -EPROTO; 778 } 779 780 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 781 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 782 if (queue->hdr_digest || queue->data_digest) { 783 ret = nvmet_tcp_alloc_crypto(queue); 784 if (ret) 785 return ret; 786 } 787 788 memset(icresp, 0, sizeof(*icresp)); 789 icresp->hdr.type = nvme_tcp_icresp; 790 icresp->hdr.hlen = sizeof(*icresp); 791 icresp->hdr.pdo = 0; 792 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 793 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 794 icresp->maxdata = cpu_to_le32(0xffff); /* FIXME: support r2t */ 795 icresp->cpda = 0; 796 if (queue->hdr_digest) 797 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 798 if (queue->data_digest) 799 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 800 801 iov.iov_base = icresp; 802 iov.iov_len = sizeof(*icresp); 803 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 804 if (ret < 0) 805 goto free_crypto; 806 807 queue->state = NVMET_TCP_Q_LIVE; 808 nvmet_prepare_receive_pdu(queue); 809 return 0; 810 free_crypto: 811 if (queue->hdr_digest || queue->data_digest) 812 nvmet_tcp_free_crypto(queue); 813 return ret; 814 } 815 816 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 817 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 818 { 819 int ret; 820 821 /* recover the expected data transfer length */ 822 req->data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 823 824 if (!nvme_is_write(cmd->req.cmd) || 825 req->data_len > cmd->req.port->inline_data_size) { 826 nvmet_prepare_receive_pdu(queue); 827 return; 828 } 829 830 ret = nvmet_tcp_map_data(cmd); 831 if (unlikely(ret)) { 832 pr_err("queue %d: failed to map data\n", queue->idx); 833 nvmet_tcp_fatal_error(queue); 834 return; 835 } 836 837 queue->rcv_state = NVMET_TCP_RECV_DATA; 838 nvmet_tcp_map_pdu_iovec(cmd); 839 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 840 } 841 842 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 843 { 844 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 845 struct nvmet_tcp_cmd *cmd; 846 847 cmd = &queue->cmds[data->ttag]; 848 849 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 850 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 851 data->ttag, le32_to_cpu(data->data_offset), 852 cmd->rbytes_done); 853 /* FIXME: use path and transport errors */ 854 nvmet_req_complete(&cmd->req, 855 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 856 return -EPROTO; 857 } 858 859 cmd->pdu_len = le32_to_cpu(data->data_length); 860 cmd->pdu_recv = 0; 861 nvmet_tcp_map_pdu_iovec(cmd); 862 queue->cmd = cmd; 863 queue->rcv_state = NVMET_TCP_RECV_DATA; 864 865 return 0; 866 } 867 868 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 869 { 870 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 871 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 872 struct nvmet_req *req; 873 int ret; 874 875 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 876 if (hdr->type != nvme_tcp_icreq) { 877 pr_err("unexpected pdu type (%d) before icreq\n", 878 hdr->type); 879 nvmet_tcp_fatal_error(queue); 880 return -EPROTO; 881 } 882 return nvmet_tcp_handle_icreq(queue); 883 } 884 885 if (hdr->type == nvme_tcp_h2c_data) { 886 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 887 if (unlikely(ret)) 888 return ret; 889 return 0; 890 } 891 892 queue->cmd = nvmet_tcp_get_cmd(queue); 893 if (unlikely(!queue->cmd)) { 894 /* This should never happen */ 895 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 896 queue->idx, queue->nr_cmds, queue->send_list_len, 897 nvme_cmd->common.opcode); 898 nvmet_tcp_fatal_error(queue); 899 return -ENOMEM; 900 } 901 902 req = &queue->cmd->req; 903 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 904 905 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 906 &queue->nvme_sq, &nvmet_tcp_ops))) { 907 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 908 req->cmd, req->cmd->common.command_id, 909 req->cmd->common.opcode, 910 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 911 912 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 913 return -EAGAIN; 914 } 915 916 ret = nvmet_tcp_map_data(queue->cmd); 917 if (unlikely(ret)) { 918 pr_err("queue %d: failed to map data\n", queue->idx); 919 if (nvmet_tcp_has_inline_data(queue->cmd)) 920 nvmet_tcp_fatal_error(queue); 921 else 922 nvmet_req_complete(req, ret); 923 ret = -EAGAIN; 924 goto out; 925 } 926 927 if (nvmet_tcp_need_data_in(queue->cmd)) { 928 if (nvmet_tcp_has_inline_data(queue->cmd)) { 929 queue->rcv_state = NVMET_TCP_RECV_DATA; 930 nvmet_tcp_map_pdu_iovec(queue->cmd); 931 return 0; 932 } 933 /* send back R2T */ 934 nvmet_tcp_queue_response(&queue->cmd->req); 935 goto out; 936 } 937 938 nvmet_req_execute(&queue->cmd->req); 939 out: 940 nvmet_prepare_receive_pdu(queue); 941 return ret; 942 } 943 944 static const u8 nvme_tcp_pdu_sizes[] = { 945 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 946 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 947 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 948 }; 949 950 static inline u8 nvmet_tcp_pdu_size(u8 type) 951 { 952 size_t idx = type; 953 954 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 955 nvme_tcp_pdu_sizes[idx]) ? 956 nvme_tcp_pdu_sizes[idx] : 0; 957 } 958 959 static inline bool nvmet_tcp_pdu_valid(u8 type) 960 { 961 switch (type) { 962 case nvme_tcp_icreq: 963 case nvme_tcp_cmd: 964 case nvme_tcp_h2c_data: 965 /* fallthru */ 966 return true; 967 } 968 969 return false; 970 } 971 972 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 973 { 974 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 975 int len; 976 struct kvec iov; 977 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 978 979 recv: 980 iov.iov_base = (void *)&queue->pdu + queue->offset; 981 iov.iov_len = queue->left; 982 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 983 iov.iov_len, msg.msg_flags); 984 if (unlikely(len < 0)) 985 return len; 986 987 queue->offset += len; 988 queue->left -= len; 989 if (queue->left) 990 return -EAGAIN; 991 992 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 993 u8 hdgst = nvmet_tcp_hdgst_len(queue); 994 995 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 996 pr_err("unexpected pdu type %d\n", hdr->type); 997 nvmet_tcp_fatal_error(queue); 998 return -EIO; 999 } 1000 1001 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1002 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1003 return -EIO; 1004 } 1005 1006 queue->left = hdr->hlen - queue->offset + hdgst; 1007 goto recv; 1008 } 1009 1010 if (queue->hdr_digest && 1011 nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) { 1012 nvmet_tcp_fatal_error(queue); /* fatal */ 1013 return -EPROTO; 1014 } 1015 1016 if (queue->data_digest && 1017 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1018 nvmet_tcp_fatal_error(queue); /* fatal */ 1019 return -EPROTO; 1020 } 1021 1022 return nvmet_tcp_done_recv_pdu(queue); 1023 } 1024 1025 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1026 { 1027 struct nvmet_tcp_queue *queue = cmd->queue; 1028 1029 nvmet_tcp_ddgst(queue->rcv_hash, cmd); 1030 queue->offset = 0; 1031 queue->left = NVME_TCP_DIGEST_LENGTH; 1032 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1033 } 1034 1035 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1036 { 1037 struct nvmet_tcp_cmd *cmd = queue->cmd; 1038 int ret; 1039 1040 while (msg_data_left(&cmd->recv_msg)) { 1041 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1042 cmd->recv_msg.msg_flags); 1043 if (ret <= 0) 1044 return ret; 1045 1046 cmd->pdu_recv += ret; 1047 cmd->rbytes_done += ret; 1048 } 1049 1050 nvmet_tcp_unmap_pdu_iovec(cmd); 1051 1052 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1053 cmd->rbytes_done == cmd->req.transfer_len) { 1054 if (queue->data_digest) { 1055 nvmet_tcp_prep_recv_ddgst(cmd); 1056 return 0; 1057 } 1058 nvmet_req_execute(&cmd->req); 1059 } 1060 1061 nvmet_prepare_receive_pdu(queue); 1062 return 0; 1063 } 1064 1065 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1066 { 1067 struct nvmet_tcp_cmd *cmd = queue->cmd; 1068 int ret; 1069 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1070 struct kvec iov = { 1071 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1072 .iov_len = queue->left 1073 }; 1074 1075 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1076 iov.iov_len, msg.msg_flags); 1077 if (unlikely(ret < 0)) 1078 return ret; 1079 1080 queue->offset += ret; 1081 queue->left -= ret; 1082 if (queue->left) 1083 return -EAGAIN; 1084 1085 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1086 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1087 queue->idx, cmd->req.cmd->common.command_id, 1088 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1089 le32_to_cpu(cmd->exp_ddgst)); 1090 nvmet_tcp_finish_cmd(cmd); 1091 nvmet_tcp_fatal_error(queue); 1092 ret = -EPROTO; 1093 goto out; 1094 } 1095 1096 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1097 cmd->rbytes_done == cmd->req.transfer_len) 1098 nvmet_req_execute(&cmd->req); 1099 ret = 0; 1100 out: 1101 nvmet_prepare_receive_pdu(queue); 1102 return ret; 1103 } 1104 1105 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1106 { 1107 int result = 0; 1108 1109 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1110 return 0; 1111 1112 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1113 result = nvmet_tcp_try_recv_pdu(queue); 1114 if (result != 0) 1115 goto done_recv; 1116 } 1117 1118 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1119 result = nvmet_tcp_try_recv_data(queue); 1120 if (result != 0) 1121 goto done_recv; 1122 } 1123 1124 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1125 result = nvmet_tcp_try_recv_ddgst(queue); 1126 if (result != 0) 1127 goto done_recv; 1128 } 1129 1130 done_recv: 1131 if (result < 0) { 1132 if (result == -EAGAIN) 1133 return 0; 1134 return result; 1135 } 1136 return 1; 1137 } 1138 1139 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1140 int budget, int *recvs) 1141 { 1142 int i, ret = 0; 1143 1144 for (i = 0; i < budget; i++) { 1145 ret = nvmet_tcp_try_recv_one(queue); 1146 if (ret <= 0) 1147 break; 1148 (*recvs)++; 1149 } 1150 1151 return ret; 1152 } 1153 1154 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1155 { 1156 spin_lock(&queue->state_lock); 1157 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1158 queue->state = NVMET_TCP_Q_DISCONNECTING; 1159 schedule_work(&queue->release_work); 1160 } 1161 spin_unlock(&queue->state_lock); 1162 } 1163 1164 static void nvmet_tcp_io_work(struct work_struct *w) 1165 { 1166 struct nvmet_tcp_queue *queue = 1167 container_of(w, struct nvmet_tcp_queue, io_work); 1168 bool pending; 1169 int ret, ops = 0; 1170 1171 do { 1172 pending = false; 1173 1174 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1175 if (ret > 0) { 1176 pending = true; 1177 } else if (ret < 0) { 1178 if (ret == -EPIPE || ret == -ECONNRESET) 1179 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1180 else 1181 nvmet_tcp_fatal_error(queue); 1182 return; 1183 } 1184 1185 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1186 if (ret > 0) { 1187 /* transmitted message/data */ 1188 pending = true; 1189 } else if (ret < 0) { 1190 if (ret == -EPIPE || ret == -ECONNRESET) 1191 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1192 else 1193 nvmet_tcp_fatal_error(queue); 1194 return; 1195 } 1196 1197 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1198 1199 /* 1200 * We exahusted our budget, requeue our selves 1201 */ 1202 if (pending) 1203 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1204 } 1205 1206 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1207 struct nvmet_tcp_cmd *c) 1208 { 1209 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1210 1211 c->queue = queue; 1212 c->req.port = queue->port->nport; 1213 1214 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1215 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1216 if (!c->cmd_pdu) 1217 return -ENOMEM; 1218 c->req.cmd = &c->cmd_pdu->cmd; 1219 1220 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1221 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1222 if (!c->rsp_pdu) 1223 goto out_free_cmd; 1224 c->req.cqe = &c->rsp_pdu->cqe; 1225 1226 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1227 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1228 if (!c->data_pdu) 1229 goto out_free_rsp; 1230 1231 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1232 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1233 if (!c->r2t_pdu) 1234 goto out_free_data; 1235 1236 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1237 1238 list_add_tail(&c->entry, &queue->free_list); 1239 1240 return 0; 1241 out_free_data: 1242 page_frag_free(c->data_pdu); 1243 out_free_rsp: 1244 page_frag_free(c->rsp_pdu); 1245 out_free_cmd: 1246 page_frag_free(c->cmd_pdu); 1247 return -ENOMEM; 1248 } 1249 1250 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1251 { 1252 page_frag_free(c->r2t_pdu); 1253 page_frag_free(c->data_pdu); 1254 page_frag_free(c->rsp_pdu); 1255 page_frag_free(c->cmd_pdu); 1256 } 1257 1258 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1259 { 1260 struct nvmet_tcp_cmd *cmds; 1261 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1262 1263 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1264 if (!cmds) 1265 goto out; 1266 1267 for (i = 0; i < nr_cmds; i++) { 1268 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1269 if (ret) 1270 goto out_free; 1271 } 1272 1273 queue->cmds = cmds; 1274 1275 return 0; 1276 out_free: 1277 while (--i >= 0) 1278 nvmet_tcp_free_cmd(cmds + i); 1279 kfree(cmds); 1280 out: 1281 return ret; 1282 } 1283 1284 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1285 { 1286 struct nvmet_tcp_cmd *cmds = queue->cmds; 1287 int i; 1288 1289 for (i = 0; i < queue->nr_cmds; i++) 1290 nvmet_tcp_free_cmd(cmds + i); 1291 1292 nvmet_tcp_free_cmd(&queue->connect); 1293 kfree(cmds); 1294 } 1295 1296 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1297 { 1298 struct socket *sock = queue->sock; 1299 1300 write_lock_bh(&sock->sk->sk_callback_lock); 1301 sock->sk->sk_data_ready = queue->data_ready; 1302 sock->sk->sk_state_change = queue->state_change; 1303 sock->sk->sk_write_space = queue->write_space; 1304 sock->sk->sk_user_data = NULL; 1305 write_unlock_bh(&sock->sk->sk_callback_lock); 1306 } 1307 1308 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd) 1309 { 1310 nvmet_req_uninit(&cmd->req); 1311 nvmet_tcp_unmap_pdu_iovec(cmd); 1312 kfree(cmd->iov); 1313 if (cmd->req.sg_cnt) 1314 sgl_free(cmd->req.sg); 1315 } 1316 1317 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1318 { 1319 struct nvmet_tcp_cmd *cmd = queue->cmds; 1320 int i; 1321 1322 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1323 if (nvmet_tcp_need_data_in(cmd)) 1324 nvmet_tcp_finish_cmd(cmd); 1325 } 1326 1327 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1328 /* failed in connect */ 1329 nvmet_tcp_finish_cmd(&queue->connect); 1330 } 1331 } 1332 1333 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1334 { 1335 struct nvmet_tcp_queue *queue = 1336 container_of(w, struct nvmet_tcp_queue, release_work); 1337 1338 mutex_lock(&nvmet_tcp_queue_mutex); 1339 list_del_init(&queue->queue_list); 1340 mutex_unlock(&nvmet_tcp_queue_mutex); 1341 1342 nvmet_tcp_restore_socket_callbacks(queue); 1343 flush_work(&queue->io_work); 1344 1345 nvmet_tcp_uninit_data_in_cmds(queue); 1346 nvmet_sq_destroy(&queue->nvme_sq); 1347 cancel_work_sync(&queue->io_work); 1348 sock_release(queue->sock); 1349 nvmet_tcp_free_cmds(queue); 1350 if (queue->hdr_digest || queue->data_digest) 1351 nvmet_tcp_free_crypto(queue); 1352 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1353 1354 kfree(queue); 1355 } 1356 1357 static void nvmet_tcp_data_ready(struct sock *sk) 1358 { 1359 struct nvmet_tcp_queue *queue; 1360 1361 read_lock_bh(&sk->sk_callback_lock); 1362 queue = sk->sk_user_data; 1363 if (likely(queue)) 1364 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1365 read_unlock_bh(&sk->sk_callback_lock); 1366 } 1367 1368 static void nvmet_tcp_write_space(struct sock *sk) 1369 { 1370 struct nvmet_tcp_queue *queue; 1371 1372 read_lock_bh(&sk->sk_callback_lock); 1373 queue = sk->sk_user_data; 1374 if (unlikely(!queue)) 1375 goto out; 1376 1377 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1378 queue->write_space(sk); 1379 goto out; 1380 } 1381 1382 if (sk_stream_is_writeable(sk)) { 1383 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1384 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1385 } 1386 out: 1387 read_unlock_bh(&sk->sk_callback_lock); 1388 } 1389 1390 static void nvmet_tcp_state_change(struct sock *sk) 1391 { 1392 struct nvmet_tcp_queue *queue; 1393 1394 write_lock_bh(&sk->sk_callback_lock); 1395 queue = sk->sk_user_data; 1396 if (!queue) 1397 goto done; 1398 1399 switch (sk->sk_state) { 1400 case TCP_FIN_WAIT1: 1401 case TCP_CLOSE_WAIT: 1402 case TCP_CLOSE: 1403 /* FALLTHRU */ 1404 sk->sk_user_data = NULL; 1405 nvmet_tcp_schedule_release_queue(queue); 1406 break; 1407 default: 1408 pr_warn("queue %d unhandled state %d\n", 1409 queue->idx, sk->sk_state); 1410 } 1411 done: 1412 write_unlock_bh(&sk->sk_callback_lock); 1413 } 1414 1415 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1416 { 1417 struct socket *sock = queue->sock; 1418 struct inet_sock *inet = inet_sk(sock->sk); 1419 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1420 int ret; 1421 1422 ret = kernel_getsockname(sock, 1423 (struct sockaddr *)&queue->sockaddr); 1424 if (ret < 0) 1425 return ret; 1426 1427 ret = kernel_getpeername(sock, 1428 (struct sockaddr *)&queue->sockaddr_peer); 1429 if (ret < 0) 1430 return ret; 1431 1432 /* 1433 * Cleanup whatever is sitting in the TCP transmit queue on socket 1434 * close. This is done to prevent stale data from being sent should 1435 * the network connection be restored before TCP times out. 1436 */ 1437 ret = kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER, 1438 (char *)&sol, sizeof(sol)); 1439 if (ret) 1440 return ret; 1441 1442 /* Set socket type of service */ 1443 if (inet->rcv_tos > 0) { 1444 int tos = inet->rcv_tos; 1445 1446 ret = kernel_setsockopt(sock, SOL_IP, IP_TOS, 1447 (char *)&tos, sizeof(tos)); 1448 if (ret) 1449 return ret; 1450 } 1451 1452 write_lock_bh(&sock->sk->sk_callback_lock); 1453 sock->sk->sk_user_data = queue; 1454 queue->data_ready = sock->sk->sk_data_ready; 1455 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1456 queue->state_change = sock->sk->sk_state_change; 1457 sock->sk->sk_state_change = nvmet_tcp_state_change; 1458 queue->write_space = sock->sk->sk_write_space; 1459 sock->sk->sk_write_space = nvmet_tcp_write_space; 1460 write_unlock_bh(&sock->sk->sk_callback_lock); 1461 1462 return 0; 1463 } 1464 1465 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1466 struct socket *newsock) 1467 { 1468 struct nvmet_tcp_queue *queue; 1469 int ret; 1470 1471 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1472 if (!queue) 1473 return -ENOMEM; 1474 1475 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1476 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1477 queue->sock = newsock; 1478 queue->port = port; 1479 queue->nr_cmds = 0; 1480 spin_lock_init(&queue->state_lock); 1481 queue->state = NVMET_TCP_Q_CONNECTING; 1482 INIT_LIST_HEAD(&queue->free_list); 1483 init_llist_head(&queue->resp_list); 1484 INIT_LIST_HEAD(&queue->resp_send_list); 1485 1486 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL); 1487 if (queue->idx < 0) { 1488 ret = queue->idx; 1489 goto out_free_queue; 1490 } 1491 1492 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1493 if (ret) 1494 goto out_ida_remove; 1495 1496 ret = nvmet_sq_init(&queue->nvme_sq); 1497 if (ret) 1498 goto out_free_connect; 1499 1500 port->last_cpu = cpumask_next_wrap(port->last_cpu, 1501 cpu_online_mask, -1, false); 1502 queue->cpu = port->last_cpu; 1503 nvmet_prepare_receive_pdu(queue); 1504 1505 mutex_lock(&nvmet_tcp_queue_mutex); 1506 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1507 mutex_unlock(&nvmet_tcp_queue_mutex); 1508 1509 ret = nvmet_tcp_set_queue_sock(queue); 1510 if (ret) 1511 goto out_destroy_sq; 1512 1513 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1514 1515 return 0; 1516 out_destroy_sq: 1517 mutex_lock(&nvmet_tcp_queue_mutex); 1518 list_del_init(&queue->queue_list); 1519 mutex_unlock(&nvmet_tcp_queue_mutex); 1520 nvmet_sq_destroy(&queue->nvme_sq); 1521 out_free_connect: 1522 nvmet_tcp_free_cmd(&queue->connect); 1523 out_ida_remove: 1524 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1525 out_free_queue: 1526 kfree(queue); 1527 return ret; 1528 } 1529 1530 static void nvmet_tcp_accept_work(struct work_struct *w) 1531 { 1532 struct nvmet_tcp_port *port = 1533 container_of(w, struct nvmet_tcp_port, accept_work); 1534 struct socket *newsock; 1535 int ret; 1536 1537 while (true) { 1538 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1539 if (ret < 0) { 1540 if (ret != -EAGAIN) 1541 pr_warn("failed to accept err=%d\n", ret); 1542 return; 1543 } 1544 ret = nvmet_tcp_alloc_queue(port, newsock); 1545 if (ret) { 1546 pr_err("failed to allocate queue\n"); 1547 sock_release(newsock); 1548 } 1549 } 1550 } 1551 1552 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1553 { 1554 struct nvmet_tcp_port *port; 1555 1556 read_lock_bh(&sk->sk_callback_lock); 1557 port = sk->sk_user_data; 1558 if (!port) 1559 goto out; 1560 1561 if (sk->sk_state == TCP_LISTEN) 1562 schedule_work(&port->accept_work); 1563 out: 1564 read_unlock_bh(&sk->sk_callback_lock); 1565 } 1566 1567 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1568 { 1569 struct nvmet_tcp_port *port; 1570 __kernel_sa_family_t af; 1571 int opt, ret; 1572 1573 port = kzalloc(sizeof(*port), GFP_KERNEL); 1574 if (!port) 1575 return -ENOMEM; 1576 1577 switch (nport->disc_addr.adrfam) { 1578 case NVMF_ADDR_FAMILY_IP4: 1579 af = AF_INET; 1580 break; 1581 case NVMF_ADDR_FAMILY_IP6: 1582 af = AF_INET6; 1583 break; 1584 default: 1585 pr_err("address family %d not supported\n", 1586 nport->disc_addr.adrfam); 1587 ret = -EINVAL; 1588 goto err_port; 1589 } 1590 1591 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1592 nport->disc_addr.trsvcid, &port->addr); 1593 if (ret) { 1594 pr_err("malformed ip/port passed: %s:%s\n", 1595 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1596 goto err_port; 1597 } 1598 1599 port->nport = nport; 1600 port->last_cpu = -1; 1601 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1602 if (port->nport->inline_data_size < 0) 1603 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1604 1605 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1606 IPPROTO_TCP, &port->sock); 1607 if (ret) { 1608 pr_err("failed to create a socket\n"); 1609 goto err_port; 1610 } 1611 1612 port->sock->sk->sk_user_data = port; 1613 port->data_ready = port->sock->sk->sk_data_ready; 1614 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1615 1616 opt = 1; 1617 ret = kernel_setsockopt(port->sock, IPPROTO_TCP, 1618 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1619 if (ret) { 1620 pr_err("failed to set TCP_NODELAY sock opt %d\n", ret); 1621 goto err_sock; 1622 } 1623 1624 ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_REUSEADDR, 1625 (char *)&opt, sizeof(opt)); 1626 if (ret) { 1627 pr_err("failed to set SO_REUSEADDR sock opt %d\n", ret); 1628 goto err_sock; 1629 } 1630 1631 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1632 sizeof(port->addr)); 1633 if (ret) { 1634 pr_err("failed to bind port socket %d\n", ret); 1635 goto err_sock; 1636 } 1637 1638 ret = kernel_listen(port->sock, 128); 1639 if (ret) { 1640 pr_err("failed to listen %d on port sock\n", ret); 1641 goto err_sock; 1642 } 1643 1644 nport->priv = port; 1645 pr_info("enabling port %d (%pISpc)\n", 1646 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1647 1648 return 0; 1649 1650 err_sock: 1651 sock_release(port->sock); 1652 err_port: 1653 kfree(port); 1654 return ret; 1655 } 1656 1657 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1658 { 1659 struct nvmet_tcp_port *port = nport->priv; 1660 1661 write_lock_bh(&port->sock->sk->sk_callback_lock); 1662 port->sock->sk->sk_data_ready = port->data_ready; 1663 port->sock->sk->sk_user_data = NULL; 1664 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1665 cancel_work_sync(&port->accept_work); 1666 1667 sock_release(port->sock); 1668 kfree(port); 1669 } 1670 1671 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1672 { 1673 struct nvmet_tcp_queue *queue; 1674 1675 mutex_lock(&nvmet_tcp_queue_mutex); 1676 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1677 if (queue->nvme_sq.ctrl == ctrl) 1678 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1679 mutex_unlock(&nvmet_tcp_queue_mutex); 1680 } 1681 1682 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1683 { 1684 struct nvmet_tcp_queue *queue = 1685 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1686 1687 if (sq->qid == 0) { 1688 /* Let inflight controller teardown complete */ 1689 flush_scheduled_work(); 1690 } 1691 1692 queue->nr_cmds = sq->size * 2; 1693 if (nvmet_tcp_alloc_cmds(queue)) 1694 return NVME_SC_INTERNAL; 1695 return 0; 1696 } 1697 1698 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1699 struct nvmet_port *nport, char *traddr) 1700 { 1701 struct nvmet_tcp_port *port = nport->priv; 1702 1703 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1704 struct nvmet_tcp_cmd *cmd = 1705 container_of(req, struct nvmet_tcp_cmd, req); 1706 struct nvmet_tcp_queue *queue = cmd->queue; 1707 1708 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1709 } else { 1710 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1711 } 1712 } 1713 1714 static struct nvmet_fabrics_ops nvmet_tcp_ops = { 1715 .owner = THIS_MODULE, 1716 .type = NVMF_TRTYPE_TCP, 1717 .msdbd = 1, 1718 .has_keyed_sgls = 0, 1719 .add_port = nvmet_tcp_add_port, 1720 .remove_port = nvmet_tcp_remove_port, 1721 .queue_response = nvmet_tcp_queue_response, 1722 .delete_ctrl = nvmet_tcp_delete_ctrl, 1723 .install_queue = nvmet_tcp_install_queue, 1724 .disc_traddr = nvmet_tcp_disc_port_addr, 1725 }; 1726 1727 static int __init nvmet_tcp_init(void) 1728 { 1729 int ret; 1730 1731 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0); 1732 if (!nvmet_tcp_wq) 1733 return -ENOMEM; 1734 1735 ret = nvmet_register_transport(&nvmet_tcp_ops); 1736 if (ret) 1737 goto err; 1738 1739 return 0; 1740 err: 1741 destroy_workqueue(nvmet_tcp_wq); 1742 return ret; 1743 } 1744 1745 static void __exit nvmet_tcp_exit(void) 1746 { 1747 struct nvmet_tcp_queue *queue; 1748 1749 nvmet_unregister_transport(&nvmet_tcp_ops); 1750 1751 flush_scheduled_work(); 1752 mutex_lock(&nvmet_tcp_queue_mutex); 1753 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1754 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1755 mutex_unlock(&nvmet_tcp_queue_mutex); 1756 flush_scheduled_work(); 1757 1758 destroy_workqueue(nvmet_tcp_wq); 1759 } 1760 1761 module_init(nvmet_tcp_init); 1762 module_exit(nvmet_tcp_exit); 1763 1764 MODULE_LICENSE("GPL v2"); 1765 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1766