xref: /openbmc/linux/drivers/nvme/target/tcp.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvmet.h"
20 
21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
22 
23 static int param_store_val(const char *str, int *val, int min, int max)
24 {
25 	int ret, new_val;
26 
27 	ret = kstrtoint(str, 10, &new_val);
28 	if (ret)
29 		return -EINVAL;
30 
31 	if (new_val < min || new_val > max)
32 		return -EINVAL;
33 
34 	*val = new_val;
35 	return 0;
36 }
37 
38 static int set_params(const char *str, const struct kernel_param *kp)
39 {
40 	return param_store_val(str, kp->arg, 0, INT_MAX);
41 }
42 
43 static const struct kernel_param_ops set_param_ops = {
44 	.set	= set_params,
45 	.get	= param_get_int,
46 };
47 
48 /* Define the socket priority to use for connections were it is desirable
49  * that the NIC consider performing optimized packet processing or filtering.
50  * A non-zero value being sufficient to indicate general consideration of any
51  * possible optimization.  Making it a module param allows for alternative
52  * values that may be unique for some NIC implementations.
53  */
54 static int so_priority;
55 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
56 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
57 
58 /* Define a time period (in usecs) that io_work() shall sample an activated
59  * queue before determining it to be idle.  This optional module behavior
60  * can enable NIC solutions that support socket optimized packet processing
61  * using advanced interrupt moderation techniques.
62  */
63 static int idle_poll_period_usecs;
64 device_param_cb(idle_poll_period_usecs, &set_param_ops,
65 		&idle_poll_period_usecs, 0644);
66 MODULE_PARM_DESC(idle_poll_period_usecs,
67 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
68 
69 #define NVMET_TCP_RECV_BUDGET		8
70 #define NVMET_TCP_SEND_BUDGET		8
71 #define NVMET_TCP_IO_WORK_BUDGET	64
72 
73 enum nvmet_tcp_send_state {
74 	NVMET_TCP_SEND_DATA_PDU,
75 	NVMET_TCP_SEND_DATA,
76 	NVMET_TCP_SEND_R2T,
77 	NVMET_TCP_SEND_DDGST,
78 	NVMET_TCP_SEND_RESPONSE
79 };
80 
81 enum nvmet_tcp_recv_state {
82 	NVMET_TCP_RECV_PDU,
83 	NVMET_TCP_RECV_DATA,
84 	NVMET_TCP_RECV_DDGST,
85 	NVMET_TCP_RECV_ERR,
86 };
87 
88 enum {
89 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
90 };
91 
92 struct nvmet_tcp_cmd {
93 	struct nvmet_tcp_queue		*queue;
94 	struct nvmet_req		req;
95 
96 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
97 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
98 	struct nvme_tcp_data_pdu	*data_pdu;
99 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
100 
101 	u32				rbytes_done;
102 	u32				wbytes_done;
103 
104 	u32				pdu_len;
105 	u32				pdu_recv;
106 	int				sg_idx;
107 	struct msghdr			recv_msg;
108 	struct bio_vec			*iov;
109 	u32				flags;
110 
111 	struct list_head		entry;
112 	struct llist_node		lentry;
113 
114 	/* send state */
115 	u32				offset;
116 	struct scatterlist		*cur_sg;
117 	enum nvmet_tcp_send_state	state;
118 
119 	__le32				exp_ddgst;
120 	__le32				recv_ddgst;
121 };
122 
123 enum nvmet_tcp_queue_state {
124 	NVMET_TCP_Q_CONNECTING,
125 	NVMET_TCP_Q_LIVE,
126 	NVMET_TCP_Q_DISCONNECTING,
127 };
128 
129 struct nvmet_tcp_queue {
130 	struct socket		*sock;
131 	struct nvmet_tcp_port	*port;
132 	struct work_struct	io_work;
133 	struct nvmet_cq		nvme_cq;
134 	struct nvmet_sq		nvme_sq;
135 
136 	/* send state */
137 	struct nvmet_tcp_cmd	*cmds;
138 	unsigned int		nr_cmds;
139 	struct list_head	free_list;
140 	struct llist_head	resp_list;
141 	struct list_head	resp_send_list;
142 	int			send_list_len;
143 	struct nvmet_tcp_cmd	*snd_cmd;
144 
145 	/* recv state */
146 	int			offset;
147 	int			left;
148 	enum nvmet_tcp_recv_state rcv_state;
149 	struct nvmet_tcp_cmd	*cmd;
150 	union nvme_tcp_pdu	pdu;
151 
152 	/* digest state */
153 	bool			hdr_digest;
154 	bool			data_digest;
155 	struct ahash_request	*snd_hash;
156 	struct ahash_request	*rcv_hash;
157 
158 	unsigned long           poll_end;
159 
160 	spinlock_t		state_lock;
161 	enum nvmet_tcp_queue_state state;
162 
163 	struct sockaddr_storage	sockaddr;
164 	struct sockaddr_storage	sockaddr_peer;
165 	struct work_struct	release_work;
166 
167 	int			idx;
168 	struct list_head	queue_list;
169 
170 	struct nvmet_tcp_cmd	connect;
171 
172 	struct page_frag_cache	pf_cache;
173 
174 	void (*data_ready)(struct sock *);
175 	void (*state_change)(struct sock *);
176 	void (*write_space)(struct sock *);
177 };
178 
179 struct nvmet_tcp_port {
180 	struct socket		*sock;
181 	struct work_struct	accept_work;
182 	struct nvmet_port	*nport;
183 	struct sockaddr_storage addr;
184 	void (*data_ready)(struct sock *);
185 };
186 
187 static DEFINE_IDA(nvmet_tcp_queue_ida);
188 static LIST_HEAD(nvmet_tcp_queue_list);
189 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
190 
191 static struct workqueue_struct *nvmet_tcp_wq;
192 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
193 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
194 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
195 
196 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
197 		struct nvmet_tcp_cmd *cmd)
198 {
199 	if (unlikely(!queue->nr_cmds)) {
200 		/* We didn't allocate cmds yet, send 0xffff */
201 		return USHRT_MAX;
202 	}
203 
204 	return cmd - queue->cmds;
205 }
206 
207 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
208 {
209 	return nvme_is_write(cmd->req.cmd) &&
210 		cmd->rbytes_done < cmd->req.transfer_len;
211 }
212 
213 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
214 {
215 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
216 }
217 
218 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
219 {
220 	return !nvme_is_write(cmd->req.cmd) &&
221 		cmd->req.transfer_len > 0 &&
222 		!cmd->req.cqe->status;
223 }
224 
225 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
226 {
227 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
228 		!cmd->rbytes_done;
229 }
230 
231 static inline struct nvmet_tcp_cmd *
232 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
233 {
234 	struct nvmet_tcp_cmd *cmd;
235 
236 	cmd = list_first_entry_or_null(&queue->free_list,
237 				struct nvmet_tcp_cmd, entry);
238 	if (!cmd)
239 		return NULL;
240 	list_del_init(&cmd->entry);
241 
242 	cmd->rbytes_done = cmd->wbytes_done = 0;
243 	cmd->pdu_len = 0;
244 	cmd->pdu_recv = 0;
245 	cmd->iov = NULL;
246 	cmd->flags = 0;
247 	return cmd;
248 }
249 
250 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
251 {
252 	if (unlikely(cmd == &cmd->queue->connect))
253 		return;
254 
255 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
256 }
257 
258 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
259 {
260 	return queue->sock->sk->sk_incoming_cpu;
261 }
262 
263 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
264 {
265 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267 
268 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
269 {
270 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272 
273 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
274 		void *pdu, size_t len)
275 {
276 	struct scatterlist sg;
277 
278 	sg_init_one(&sg, pdu, len);
279 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
280 	crypto_ahash_digest(hash);
281 }
282 
283 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
284 	void *pdu, size_t len)
285 {
286 	struct nvme_tcp_hdr *hdr = pdu;
287 	__le32 recv_digest;
288 	__le32 exp_digest;
289 
290 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
291 		pr_err("queue %d: header digest enabled but no header digest\n",
292 			queue->idx);
293 		return -EPROTO;
294 	}
295 
296 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
297 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
298 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
299 	if (recv_digest != exp_digest) {
300 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
301 			queue->idx, le32_to_cpu(recv_digest),
302 			le32_to_cpu(exp_digest));
303 		return -EPROTO;
304 	}
305 
306 	return 0;
307 }
308 
309 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
313 	u32 len;
314 
315 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
316 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
317 
318 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
319 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
320 		return -EPROTO;
321 	}
322 
323 	return 0;
324 }
325 
326 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
327 {
328 	kfree(cmd->iov);
329 	sgl_free(cmd->req.sg);
330 	cmd->iov = NULL;
331 	cmd->req.sg = NULL;
332 }
333 
334 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
335 {
336 	struct bio_vec *iov = cmd->iov;
337 	struct scatterlist *sg;
338 	u32 length, offset, sg_offset;
339 	int nr_pages;
340 
341 	length = cmd->pdu_len;
342 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
343 	offset = cmd->rbytes_done;
344 	cmd->sg_idx = offset / PAGE_SIZE;
345 	sg_offset = offset % PAGE_SIZE;
346 	sg = &cmd->req.sg[cmd->sg_idx];
347 
348 	while (length) {
349 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
350 
351 		bvec_set_page(iov, sg_page(sg), iov_len,
352 				sg->offset + sg_offset);
353 
354 		length -= iov_len;
355 		sg = sg_next(sg);
356 		iov++;
357 		sg_offset = 0;
358 	}
359 
360 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
361 		      nr_pages, cmd->pdu_len);
362 }
363 
364 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
365 {
366 	queue->rcv_state = NVMET_TCP_RECV_ERR;
367 	if (queue->nvme_sq.ctrl)
368 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
369 	else
370 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
371 }
372 
373 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
374 {
375 	queue->rcv_state = NVMET_TCP_RECV_ERR;
376 	if (status == -EPIPE || status == -ECONNRESET)
377 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
378 	else
379 		nvmet_tcp_fatal_error(queue);
380 }
381 
382 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
383 {
384 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
385 	u32 len = le32_to_cpu(sgl->length);
386 
387 	if (!len)
388 		return 0;
389 
390 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
391 			  NVME_SGL_FMT_OFFSET)) {
392 		if (!nvme_is_write(cmd->req.cmd))
393 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
394 
395 		if (len > cmd->req.port->inline_data_size)
396 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
397 		cmd->pdu_len = len;
398 	}
399 	cmd->req.transfer_len += len;
400 
401 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
402 	if (!cmd->req.sg)
403 		return NVME_SC_INTERNAL;
404 	cmd->cur_sg = cmd->req.sg;
405 
406 	if (nvmet_tcp_has_data_in(cmd)) {
407 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
408 				sizeof(*cmd->iov), GFP_KERNEL);
409 		if (!cmd->iov)
410 			goto err;
411 	}
412 
413 	return 0;
414 err:
415 	nvmet_tcp_free_cmd_buffers(cmd);
416 	return NVME_SC_INTERNAL;
417 }
418 
419 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
420 		struct nvmet_tcp_cmd *cmd)
421 {
422 	ahash_request_set_crypt(hash, cmd->req.sg,
423 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
424 	crypto_ahash_digest(hash);
425 }
426 
427 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
428 {
429 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
430 	struct nvmet_tcp_queue *queue = cmd->queue;
431 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
432 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
433 
434 	cmd->offset = 0;
435 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
436 
437 	pdu->hdr.type = nvme_tcp_c2h_data;
438 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
439 						NVME_TCP_F_DATA_SUCCESS : 0);
440 	pdu->hdr.hlen = sizeof(*pdu);
441 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
442 	pdu->hdr.plen =
443 		cpu_to_le32(pdu->hdr.hlen + hdgst +
444 				cmd->req.transfer_len + ddgst);
445 	pdu->command_id = cmd->req.cqe->command_id;
446 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
447 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
448 
449 	if (queue->data_digest) {
450 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
451 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
452 	}
453 
454 	if (cmd->queue->hdr_digest) {
455 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
456 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
457 	}
458 }
459 
460 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
461 {
462 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
463 	struct nvmet_tcp_queue *queue = cmd->queue;
464 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
465 
466 	cmd->offset = 0;
467 	cmd->state = NVMET_TCP_SEND_R2T;
468 
469 	pdu->hdr.type = nvme_tcp_r2t;
470 	pdu->hdr.flags = 0;
471 	pdu->hdr.hlen = sizeof(*pdu);
472 	pdu->hdr.pdo = 0;
473 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
474 
475 	pdu->command_id = cmd->req.cmd->common.command_id;
476 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
477 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
478 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
479 	if (cmd->queue->hdr_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
481 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
482 	}
483 }
484 
485 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
486 {
487 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
488 	struct nvmet_tcp_queue *queue = cmd->queue;
489 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
490 
491 	cmd->offset = 0;
492 	cmd->state = NVMET_TCP_SEND_RESPONSE;
493 
494 	pdu->hdr.type = nvme_tcp_rsp;
495 	pdu->hdr.flags = 0;
496 	pdu->hdr.hlen = sizeof(*pdu);
497 	pdu->hdr.pdo = 0;
498 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
499 	if (cmd->queue->hdr_digest) {
500 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
501 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
502 	}
503 }
504 
505 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
506 {
507 	struct llist_node *node;
508 	struct nvmet_tcp_cmd *cmd;
509 
510 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
511 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
512 		list_add(&cmd->entry, &queue->resp_send_list);
513 		queue->send_list_len++;
514 	}
515 }
516 
517 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
518 {
519 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
520 				struct nvmet_tcp_cmd, entry);
521 	if (!queue->snd_cmd) {
522 		nvmet_tcp_process_resp_list(queue);
523 		queue->snd_cmd =
524 			list_first_entry_or_null(&queue->resp_send_list,
525 					struct nvmet_tcp_cmd, entry);
526 		if (unlikely(!queue->snd_cmd))
527 			return NULL;
528 	}
529 
530 	list_del_init(&queue->snd_cmd->entry);
531 	queue->send_list_len--;
532 
533 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
534 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
535 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
536 		nvmet_setup_r2t_pdu(queue->snd_cmd);
537 	else
538 		nvmet_setup_response_pdu(queue->snd_cmd);
539 
540 	return queue->snd_cmd;
541 }
542 
543 static void nvmet_tcp_queue_response(struct nvmet_req *req)
544 {
545 	struct nvmet_tcp_cmd *cmd =
546 		container_of(req, struct nvmet_tcp_cmd, req);
547 	struct nvmet_tcp_queue	*queue = cmd->queue;
548 	struct nvme_sgl_desc *sgl;
549 	u32 len;
550 
551 	if (unlikely(cmd == queue->cmd)) {
552 		sgl = &cmd->req.cmd->common.dptr.sgl;
553 		len = le32_to_cpu(sgl->length);
554 
555 		/*
556 		 * Wait for inline data before processing the response.
557 		 * Avoid using helpers, this might happen before
558 		 * nvmet_req_init is completed.
559 		 */
560 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
561 		    len && len <= cmd->req.port->inline_data_size &&
562 		    nvme_is_write(cmd->req.cmd))
563 			return;
564 	}
565 
566 	llist_add(&cmd->lentry, &queue->resp_list);
567 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
568 }
569 
570 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
571 {
572 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
573 		nvmet_tcp_queue_response(&cmd->req);
574 	else
575 		cmd->req.execute(&cmd->req);
576 }
577 
578 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
579 {
580 	struct msghdr msg = {
581 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
582 	};
583 	struct bio_vec bvec;
584 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
585 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
586 	int ret;
587 
588 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
589 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
590 	ret = sock_sendmsg(cmd->queue->sock, &msg);
591 	if (ret <= 0)
592 		return ret;
593 
594 	cmd->offset += ret;
595 	left -= ret;
596 
597 	if (left)
598 		return -EAGAIN;
599 
600 	cmd->state = NVMET_TCP_SEND_DATA;
601 	cmd->offset  = 0;
602 	return 1;
603 }
604 
605 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
606 {
607 	struct nvmet_tcp_queue *queue = cmd->queue;
608 	int ret;
609 
610 	while (cmd->cur_sg) {
611 		struct msghdr msg = {
612 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
613 		};
614 		struct page *page = sg_page(cmd->cur_sg);
615 		struct bio_vec bvec;
616 		u32 left = cmd->cur_sg->length - cmd->offset;
617 
618 		if ((!last_in_batch && cmd->queue->send_list_len) ||
619 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
620 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
621 			msg.msg_flags |= MSG_MORE;
622 
623 		bvec_set_page(&bvec, page, left, cmd->offset);
624 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
625 		ret = sock_sendmsg(cmd->queue->sock, &msg);
626 		if (ret <= 0)
627 			return ret;
628 
629 		cmd->offset += ret;
630 		cmd->wbytes_done += ret;
631 
632 		/* Done with sg?*/
633 		if (cmd->offset == cmd->cur_sg->length) {
634 			cmd->cur_sg = sg_next(cmd->cur_sg);
635 			cmd->offset = 0;
636 		}
637 	}
638 
639 	if (queue->data_digest) {
640 		cmd->state = NVMET_TCP_SEND_DDGST;
641 		cmd->offset = 0;
642 	} else {
643 		if (queue->nvme_sq.sqhd_disabled) {
644 			cmd->queue->snd_cmd = NULL;
645 			nvmet_tcp_put_cmd(cmd);
646 		} else {
647 			nvmet_setup_response_pdu(cmd);
648 		}
649 	}
650 
651 	if (queue->nvme_sq.sqhd_disabled)
652 		nvmet_tcp_free_cmd_buffers(cmd);
653 
654 	return 1;
655 
656 }
657 
658 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
659 		bool last_in_batch)
660 {
661 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
662 	struct bio_vec bvec;
663 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
664 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
665 	int ret;
666 
667 	if (!last_in_batch && cmd->queue->send_list_len)
668 		msg.msg_flags |= MSG_MORE;
669 	else
670 		msg.msg_flags |= MSG_EOR;
671 
672 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
673 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
674 	ret = sock_sendmsg(cmd->queue->sock, &msg);
675 	if (ret <= 0)
676 		return ret;
677 	cmd->offset += ret;
678 	left -= ret;
679 
680 	if (left)
681 		return -EAGAIN;
682 
683 	nvmet_tcp_free_cmd_buffers(cmd);
684 	cmd->queue->snd_cmd = NULL;
685 	nvmet_tcp_put_cmd(cmd);
686 	return 1;
687 }
688 
689 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
690 {
691 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
692 	struct bio_vec bvec;
693 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
694 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
695 	int ret;
696 
697 	if (!last_in_batch && cmd->queue->send_list_len)
698 		msg.msg_flags |= MSG_MORE;
699 	else
700 		msg.msg_flags |= MSG_EOR;
701 
702 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
703 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
704 	ret = sock_sendmsg(cmd->queue->sock, &msg);
705 	if (ret <= 0)
706 		return ret;
707 	cmd->offset += ret;
708 	left -= ret;
709 
710 	if (left)
711 		return -EAGAIN;
712 
713 	cmd->queue->snd_cmd = NULL;
714 	return 1;
715 }
716 
717 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
718 {
719 	struct nvmet_tcp_queue *queue = cmd->queue;
720 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
721 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
722 	struct kvec iov = {
723 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
724 		.iov_len = left
725 	};
726 	int ret;
727 
728 	if (!last_in_batch && cmd->queue->send_list_len)
729 		msg.msg_flags |= MSG_MORE;
730 	else
731 		msg.msg_flags |= MSG_EOR;
732 
733 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
734 	if (unlikely(ret <= 0))
735 		return ret;
736 
737 	cmd->offset += ret;
738 	left -= ret;
739 
740 	if (left)
741 		return -EAGAIN;
742 
743 	if (queue->nvme_sq.sqhd_disabled) {
744 		cmd->queue->snd_cmd = NULL;
745 		nvmet_tcp_put_cmd(cmd);
746 	} else {
747 		nvmet_setup_response_pdu(cmd);
748 	}
749 	return 1;
750 }
751 
752 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
753 		bool last_in_batch)
754 {
755 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
756 	int ret = 0;
757 
758 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
759 		cmd = nvmet_tcp_fetch_cmd(queue);
760 		if (unlikely(!cmd))
761 			return 0;
762 	}
763 
764 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
765 		ret = nvmet_try_send_data_pdu(cmd);
766 		if (ret <= 0)
767 			goto done_send;
768 	}
769 
770 	if (cmd->state == NVMET_TCP_SEND_DATA) {
771 		ret = nvmet_try_send_data(cmd, last_in_batch);
772 		if (ret <= 0)
773 			goto done_send;
774 	}
775 
776 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
777 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
778 		if (ret <= 0)
779 			goto done_send;
780 	}
781 
782 	if (cmd->state == NVMET_TCP_SEND_R2T) {
783 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
784 		if (ret <= 0)
785 			goto done_send;
786 	}
787 
788 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
789 		ret = nvmet_try_send_response(cmd, last_in_batch);
790 
791 done_send:
792 	if (ret < 0) {
793 		if (ret == -EAGAIN)
794 			return 0;
795 		return ret;
796 	}
797 
798 	return 1;
799 }
800 
801 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
802 		int budget, int *sends)
803 {
804 	int i, ret = 0;
805 
806 	for (i = 0; i < budget; i++) {
807 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
808 		if (unlikely(ret < 0)) {
809 			nvmet_tcp_socket_error(queue, ret);
810 			goto done;
811 		} else if (ret == 0) {
812 			break;
813 		}
814 		(*sends)++;
815 	}
816 done:
817 	return ret;
818 }
819 
820 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
821 {
822 	queue->offset = 0;
823 	queue->left = sizeof(struct nvme_tcp_hdr);
824 	queue->cmd = NULL;
825 	queue->rcv_state = NVMET_TCP_RECV_PDU;
826 }
827 
828 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
829 {
830 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
831 
832 	ahash_request_free(queue->rcv_hash);
833 	ahash_request_free(queue->snd_hash);
834 	crypto_free_ahash(tfm);
835 }
836 
837 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
838 {
839 	struct crypto_ahash *tfm;
840 
841 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
842 	if (IS_ERR(tfm))
843 		return PTR_ERR(tfm);
844 
845 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
846 	if (!queue->snd_hash)
847 		goto free_tfm;
848 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
849 
850 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
851 	if (!queue->rcv_hash)
852 		goto free_snd_hash;
853 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
854 
855 	return 0;
856 free_snd_hash:
857 	ahash_request_free(queue->snd_hash);
858 free_tfm:
859 	crypto_free_ahash(tfm);
860 	return -ENOMEM;
861 }
862 
863 
864 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
865 {
866 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
867 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
868 	struct msghdr msg = {};
869 	struct kvec iov;
870 	int ret;
871 
872 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
873 		pr_err("bad nvme-tcp pdu length (%d)\n",
874 			le32_to_cpu(icreq->hdr.plen));
875 		nvmet_tcp_fatal_error(queue);
876 	}
877 
878 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
879 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
880 		return -EPROTO;
881 	}
882 
883 	if (icreq->hpda != 0) {
884 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
885 			icreq->hpda);
886 		return -EPROTO;
887 	}
888 
889 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
890 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
891 	if (queue->hdr_digest || queue->data_digest) {
892 		ret = nvmet_tcp_alloc_crypto(queue);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	memset(icresp, 0, sizeof(*icresp));
898 	icresp->hdr.type = nvme_tcp_icresp;
899 	icresp->hdr.hlen = sizeof(*icresp);
900 	icresp->hdr.pdo = 0;
901 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
902 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
903 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
904 	icresp->cpda = 0;
905 	if (queue->hdr_digest)
906 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
907 	if (queue->data_digest)
908 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
909 
910 	iov.iov_base = icresp;
911 	iov.iov_len = sizeof(*icresp);
912 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
913 	if (ret < 0)
914 		return ret; /* queue removal will cleanup */
915 
916 	queue->state = NVMET_TCP_Q_LIVE;
917 	nvmet_prepare_receive_pdu(queue);
918 	return 0;
919 }
920 
921 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
922 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
923 {
924 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
925 	int ret;
926 
927 	/*
928 	 * This command has not been processed yet, hence we are trying to
929 	 * figure out if there is still pending data left to receive. If
930 	 * we don't, we can simply prepare for the next pdu and bail out,
931 	 * otherwise we will need to prepare a buffer and receive the
932 	 * stale data before continuing forward.
933 	 */
934 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
935 	    data_len > cmd->req.port->inline_data_size) {
936 		nvmet_prepare_receive_pdu(queue);
937 		return;
938 	}
939 
940 	ret = nvmet_tcp_map_data(cmd);
941 	if (unlikely(ret)) {
942 		pr_err("queue %d: failed to map data\n", queue->idx);
943 		nvmet_tcp_fatal_error(queue);
944 		return;
945 	}
946 
947 	queue->rcv_state = NVMET_TCP_RECV_DATA;
948 	nvmet_tcp_build_pdu_iovec(cmd);
949 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
950 }
951 
952 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
953 {
954 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
955 	struct nvmet_tcp_cmd *cmd;
956 
957 	if (likely(queue->nr_cmds)) {
958 		if (unlikely(data->ttag >= queue->nr_cmds)) {
959 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
960 				queue->idx, data->ttag, queue->nr_cmds);
961 			nvmet_tcp_fatal_error(queue);
962 			return -EPROTO;
963 		}
964 		cmd = &queue->cmds[data->ttag];
965 	} else {
966 		cmd = &queue->connect;
967 	}
968 
969 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
970 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
971 			data->ttag, le32_to_cpu(data->data_offset),
972 			cmd->rbytes_done);
973 		/* FIXME: use path and transport errors */
974 		nvmet_req_complete(&cmd->req,
975 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
976 		return -EPROTO;
977 	}
978 
979 	cmd->pdu_len = le32_to_cpu(data->data_length);
980 	cmd->pdu_recv = 0;
981 	nvmet_tcp_build_pdu_iovec(cmd);
982 	queue->cmd = cmd;
983 	queue->rcv_state = NVMET_TCP_RECV_DATA;
984 
985 	return 0;
986 }
987 
988 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
989 {
990 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
991 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
992 	struct nvmet_req *req;
993 	int ret;
994 
995 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
996 		if (hdr->type != nvme_tcp_icreq) {
997 			pr_err("unexpected pdu type (%d) before icreq\n",
998 				hdr->type);
999 			nvmet_tcp_fatal_error(queue);
1000 			return -EPROTO;
1001 		}
1002 		return nvmet_tcp_handle_icreq(queue);
1003 	}
1004 
1005 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1006 		pr_err("queue %d: received icreq pdu in state %d\n",
1007 			queue->idx, queue->state);
1008 		nvmet_tcp_fatal_error(queue);
1009 		return -EPROTO;
1010 	}
1011 
1012 	if (hdr->type == nvme_tcp_h2c_data) {
1013 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1014 		if (unlikely(ret))
1015 			return ret;
1016 		return 0;
1017 	}
1018 
1019 	queue->cmd = nvmet_tcp_get_cmd(queue);
1020 	if (unlikely(!queue->cmd)) {
1021 		/* This should never happen */
1022 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1023 			queue->idx, queue->nr_cmds, queue->send_list_len,
1024 			nvme_cmd->common.opcode);
1025 		nvmet_tcp_fatal_error(queue);
1026 		return -ENOMEM;
1027 	}
1028 
1029 	req = &queue->cmd->req;
1030 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1031 
1032 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1033 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1034 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1035 			req->cmd, req->cmd->common.command_id,
1036 			req->cmd->common.opcode,
1037 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1038 
1039 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1040 		return 0;
1041 	}
1042 
1043 	ret = nvmet_tcp_map_data(queue->cmd);
1044 	if (unlikely(ret)) {
1045 		pr_err("queue %d: failed to map data\n", queue->idx);
1046 		if (nvmet_tcp_has_inline_data(queue->cmd))
1047 			nvmet_tcp_fatal_error(queue);
1048 		else
1049 			nvmet_req_complete(req, ret);
1050 		ret = -EAGAIN;
1051 		goto out;
1052 	}
1053 
1054 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1055 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1056 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1057 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1058 			return 0;
1059 		}
1060 		/* send back R2T */
1061 		nvmet_tcp_queue_response(&queue->cmd->req);
1062 		goto out;
1063 	}
1064 
1065 	queue->cmd->req.execute(&queue->cmd->req);
1066 out:
1067 	nvmet_prepare_receive_pdu(queue);
1068 	return ret;
1069 }
1070 
1071 static const u8 nvme_tcp_pdu_sizes[] = {
1072 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1073 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1074 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1075 };
1076 
1077 static inline u8 nvmet_tcp_pdu_size(u8 type)
1078 {
1079 	size_t idx = type;
1080 
1081 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1082 		nvme_tcp_pdu_sizes[idx]) ?
1083 			nvme_tcp_pdu_sizes[idx] : 0;
1084 }
1085 
1086 static inline bool nvmet_tcp_pdu_valid(u8 type)
1087 {
1088 	switch (type) {
1089 	case nvme_tcp_icreq:
1090 	case nvme_tcp_cmd:
1091 	case nvme_tcp_h2c_data:
1092 		/* fallthru */
1093 		return true;
1094 	}
1095 
1096 	return false;
1097 }
1098 
1099 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1100 {
1101 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1102 	int len;
1103 	struct kvec iov;
1104 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1105 
1106 recv:
1107 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1108 	iov.iov_len = queue->left;
1109 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1110 			iov.iov_len, msg.msg_flags);
1111 	if (unlikely(len < 0))
1112 		return len;
1113 
1114 	queue->offset += len;
1115 	queue->left -= len;
1116 	if (queue->left)
1117 		return -EAGAIN;
1118 
1119 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1120 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1121 
1122 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1123 			pr_err("unexpected pdu type %d\n", hdr->type);
1124 			nvmet_tcp_fatal_error(queue);
1125 			return -EIO;
1126 		}
1127 
1128 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1129 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1130 			return -EIO;
1131 		}
1132 
1133 		queue->left = hdr->hlen - queue->offset + hdgst;
1134 		goto recv;
1135 	}
1136 
1137 	if (queue->hdr_digest &&
1138 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1139 		nvmet_tcp_fatal_error(queue); /* fatal */
1140 		return -EPROTO;
1141 	}
1142 
1143 	if (queue->data_digest &&
1144 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1145 		nvmet_tcp_fatal_error(queue); /* fatal */
1146 		return -EPROTO;
1147 	}
1148 
1149 	return nvmet_tcp_done_recv_pdu(queue);
1150 }
1151 
1152 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1153 {
1154 	struct nvmet_tcp_queue *queue = cmd->queue;
1155 
1156 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1157 	queue->offset = 0;
1158 	queue->left = NVME_TCP_DIGEST_LENGTH;
1159 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1160 }
1161 
1162 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1163 {
1164 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1165 	int ret;
1166 
1167 	while (msg_data_left(&cmd->recv_msg)) {
1168 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1169 			cmd->recv_msg.msg_flags);
1170 		if (ret <= 0)
1171 			return ret;
1172 
1173 		cmd->pdu_recv += ret;
1174 		cmd->rbytes_done += ret;
1175 	}
1176 
1177 	if (queue->data_digest) {
1178 		nvmet_tcp_prep_recv_ddgst(cmd);
1179 		return 0;
1180 	}
1181 
1182 	if (cmd->rbytes_done == cmd->req.transfer_len)
1183 		nvmet_tcp_execute_request(cmd);
1184 
1185 	nvmet_prepare_receive_pdu(queue);
1186 	return 0;
1187 }
1188 
1189 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1190 {
1191 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1192 	int ret;
1193 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1194 	struct kvec iov = {
1195 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1196 		.iov_len = queue->left
1197 	};
1198 
1199 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1200 			iov.iov_len, msg.msg_flags);
1201 	if (unlikely(ret < 0))
1202 		return ret;
1203 
1204 	queue->offset += ret;
1205 	queue->left -= ret;
1206 	if (queue->left)
1207 		return -EAGAIN;
1208 
1209 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1210 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1211 			queue->idx, cmd->req.cmd->common.command_id,
1212 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1213 			le32_to_cpu(cmd->exp_ddgst));
1214 		nvmet_req_uninit(&cmd->req);
1215 		nvmet_tcp_free_cmd_buffers(cmd);
1216 		nvmet_tcp_fatal_error(queue);
1217 		ret = -EPROTO;
1218 		goto out;
1219 	}
1220 
1221 	if (cmd->rbytes_done == cmd->req.transfer_len)
1222 		nvmet_tcp_execute_request(cmd);
1223 
1224 	ret = 0;
1225 out:
1226 	nvmet_prepare_receive_pdu(queue);
1227 	return ret;
1228 }
1229 
1230 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1231 {
1232 	int result = 0;
1233 
1234 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1235 		return 0;
1236 
1237 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1238 		result = nvmet_tcp_try_recv_pdu(queue);
1239 		if (result != 0)
1240 			goto done_recv;
1241 	}
1242 
1243 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1244 		result = nvmet_tcp_try_recv_data(queue);
1245 		if (result != 0)
1246 			goto done_recv;
1247 	}
1248 
1249 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1250 		result = nvmet_tcp_try_recv_ddgst(queue);
1251 		if (result != 0)
1252 			goto done_recv;
1253 	}
1254 
1255 done_recv:
1256 	if (result < 0) {
1257 		if (result == -EAGAIN)
1258 			return 0;
1259 		return result;
1260 	}
1261 	return 1;
1262 }
1263 
1264 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1265 		int budget, int *recvs)
1266 {
1267 	int i, ret = 0;
1268 
1269 	for (i = 0; i < budget; i++) {
1270 		ret = nvmet_tcp_try_recv_one(queue);
1271 		if (unlikely(ret < 0)) {
1272 			nvmet_tcp_socket_error(queue, ret);
1273 			goto done;
1274 		} else if (ret == 0) {
1275 			break;
1276 		}
1277 		(*recvs)++;
1278 	}
1279 done:
1280 	return ret;
1281 }
1282 
1283 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1284 {
1285 	spin_lock(&queue->state_lock);
1286 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1287 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1288 		queue_work(nvmet_wq, &queue->release_work);
1289 	}
1290 	spin_unlock(&queue->state_lock);
1291 }
1292 
1293 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1294 {
1295 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1296 }
1297 
1298 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1299 		int ops)
1300 {
1301 	if (!idle_poll_period_usecs)
1302 		return false;
1303 
1304 	if (ops)
1305 		nvmet_tcp_arm_queue_deadline(queue);
1306 
1307 	return !time_after(jiffies, queue->poll_end);
1308 }
1309 
1310 static void nvmet_tcp_io_work(struct work_struct *w)
1311 {
1312 	struct nvmet_tcp_queue *queue =
1313 		container_of(w, struct nvmet_tcp_queue, io_work);
1314 	bool pending;
1315 	int ret, ops = 0;
1316 
1317 	do {
1318 		pending = false;
1319 
1320 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1321 		if (ret > 0)
1322 			pending = true;
1323 		else if (ret < 0)
1324 			return;
1325 
1326 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1327 		if (ret > 0)
1328 			pending = true;
1329 		else if (ret < 0)
1330 			return;
1331 
1332 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1333 
1334 	/*
1335 	 * Requeue the worker if idle deadline period is in progress or any
1336 	 * ops activity was recorded during the do-while loop above.
1337 	 */
1338 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1339 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1340 }
1341 
1342 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1343 		struct nvmet_tcp_cmd *c)
1344 {
1345 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1346 
1347 	c->queue = queue;
1348 	c->req.port = queue->port->nport;
1349 
1350 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1351 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1352 	if (!c->cmd_pdu)
1353 		return -ENOMEM;
1354 	c->req.cmd = &c->cmd_pdu->cmd;
1355 
1356 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1357 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1358 	if (!c->rsp_pdu)
1359 		goto out_free_cmd;
1360 	c->req.cqe = &c->rsp_pdu->cqe;
1361 
1362 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1363 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1364 	if (!c->data_pdu)
1365 		goto out_free_rsp;
1366 
1367 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1368 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1369 	if (!c->r2t_pdu)
1370 		goto out_free_data;
1371 
1372 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1373 
1374 	list_add_tail(&c->entry, &queue->free_list);
1375 
1376 	return 0;
1377 out_free_data:
1378 	page_frag_free(c->data_pdu);
1379 out_free_rsp:
1380 	page_frag_free(c->rsp_pdu);
1381 out_free_cmd:
1382 	page_frag_free(c->cmd_pdu);
1383 	return -ENOMEM;
1384 }
1385 
1386 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1387 {
1388 	page_frag_free(c->r2t_pdu);
1389 	page_frag_free(c->data_pdu);
1390 	page_frag_free(c->rsp_pdu);
1391 	page_frag_free(c->cmd_pdu);
1392 }
1393 
1394 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1395 {
1396 	struct nvmet_tcp_cmd *cmds;
1397 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1398 
1399 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1400 	if (!cmds)
1401 		goto out;
1402 
1403 	for (i = 0; i < nr_cmds; i++) {
1404 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1405 		if (ret)
1406 			goto out_free;
1407 	}
1408 
1409 	queue->cmds = cmds;
1410 
1411 	return 0;
1412 out_free:
1413 	while (--i >= 0)
1414 		nvmet_tcp_free_cmd(cmds + i);
1415 	kfree(cmds);
1416 out:
1417 	return ret;
1418 }
1419 
1420 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1421 {
1422 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1423 	int i;
1424 
1425 	for (i = 0; i < queue->nr_cmds; i++)
1426 		nvmet_tcp_free_cmd(cmds + i);
1427 
1428 	nvmet_tcp_free_cmd(&queue->connect);
1429 	kfree(cmds);
1430 }
1431 
1432 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1433 {
1434 	struct socket *sock = queue->sock;
1435 
1436 	write_lock_bh(&sock->sk->sk_callback_lock);
1437 	sock->sk->sk_data_ready =  queue->data_ready;
1438 	sock->sk->sk_state_change = queue->state_change;
1439 	sock->sk->sk_write_space = queue->write_space;
1440 	sock->sk->sk_user_data = NULL;
1441 	write_unlock_bh(&sock->sk->sk_callback_lock);
1442 }
1443 
1444 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1445 {
1446 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1447 	int i;
1448 
1449 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1450 		if (nvmet_tcp_need_data_in(cmd))
1451 			nvmet_req_uninit(&cmd->req);
1452 	}
1453 
1454 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1455 		/* failed in connect */
1456 		nvmet_req_uninit(&queue->connect.req);
1457 	}
1458 }
1459 
1460 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1461 {
1462 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1463 	int i;
1464 
1465 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1466 		if (nvmet_tcp_need_data_in(cmd))
1467 			nvmet_tcp_free_cmd_buffers(cmd);
1468 	}
1469 
1470 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1471 		nvmet_tcp_free_cmd_buffers(&queue->connect);
1472 }
1473 
1474 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1475 {
1476 	struct page *page;
1477 	struct nvmet_tcp_queue *queue =
1478 		container_of(w, struct nvmet_tcp_queue, release_work);
1479 
1480 	mutex_lock(&nvmet_tcp_queue_mutex);
1481 	list_del_init(&queue->queue_list);
1482 	mutex_unlock(&nvmet_tcp_queue_mutex);
1483 
1484 	nvmet_tcp_restore_socket_callbacks(queue);
1485 	cancel_work_sync(&queue->io_work);
1486 	/* stop accepting incoming data */
1487 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1488 
1489 	nvmet_tcp_uninit_data_in_cmds(queue);
1490 	nvmet_sq_destroy(&queue->nvme_sq);
1491 	cancel_work_sync(&queue->io_work);
1492 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1493 	sock_release(queue->sock);
1494 	nvmet_tcp_free_cmds(queue);
1495 	if (queue->hdr_digest || queue->data_digest)
1496 		nvmet_tcp_free_crypto(queue);
1497 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1498 
1499 	page = virt_to_head_page(queue->pf_cache.va);
1500 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1501 	kfree(queue);
1502 }
1503 
1504 static void nvmet_tcp_data_ready(struct sock *sk)
1505 {
1506 	struct nvmet_tcp_queue *queue;
1507 
1508 	trace_sk_data_ready(sk);
1509 
1510 	read_lock_bh(&sk->sk_callback_lock);
1511 	queue = sk->sk_user_data;
1512 	if (likely(queue))
1513 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1514 	read_unlock_bh(&sk->sk_callback_lock);
1515 }
1516 
1517 static void nvmet_tcp_write_space(struct sock *sk)
1518 {
1519 	struct nvmet_tcp_queue *queue;
1520 
1521 	read_lock_bh(&sk->sk_callback_lock);
1522 	queue = sk->sk_user_data;
1523 	if (unlikely(!queue))
1524 		goto out;
1525 
1526 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1527 		queue->write_space(sk);
1528 		goto out;
1529 	}
1530 
1531 	if (sk_stream_is_writeable(sk)) {
1532 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1533 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1534 	}
1535 out:
1536 	read_unlock_bh(&sk->sk_callback_lock);
1537 }
1538 
1539 static void nvmet_tcp_state_change(struct sock *sk)
1540 {
1541 	struct nvmet_tcp_queue *queue;
1542 
1543 	read_lock_bh(&sk->sk_callback_lock);
1544 	queue = sk->sk_user_data;
1545 	if (!queue)
1546 		goto done;
1547 
1548 	switch (sk->sk_state) {
1549 	case TCP_FIN_WAIT2:
1550 	case TCP_LAST_ACK:
1551 		break;
1552 	case TCP_FIN_WAIT1:
1553 	case TCP_CLOSE_WAIT:
1554 	case TCP_CLOSE:
1555 		/* FALLTHRU */
1556 		nvmet_tcp_schedule_release_queue(queue);
1557 		break;
1558 	default:
1559 		pr_warn("queue %d unhandled state %d\n",
1560 			queue->idx, sk->sk_state);
1561 	}
1562 done:
1563 	read_unlock_bh(&sk->sk_callback_lock);
1564 }
1565 
1566 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1567 {
1568 	struct socket *sock = queue->sock;
1569 	struct inet_sock *inet = inet_sk(sock->sk);
1570 	int ret;
1571 
1572 	ret = kernel_getsockname(sock,
1573 		(struct sockaddr *)&queue->sockaddr);
1574 	if (ret < 0)
1575 		return ret;
1576 
1577 	ret = kernel_getpeername(sock,
1578 		(struct sockaddr *)&queue->sockaddr_peer);
1579 	if (ret < 0)
1580 		return ret;
1581 
1582 	/*
1583 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1584 	 * close. This is done to prevent stale data from being sent should
1585 	 * the network connection be restored before TCP times out.
1586 	 */
1587 	sock_no_linger(sock->sk);
1588 
1589 	if (so_priority > 0)
1590 		sock_set_priority(sock->sk, so_priority);
1591 
1592 	/* Set socket type of service */
1593 	if (inet->rcv_tos > 0)
1594 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1595 
1596 	ret = 0;
1597 	write_lock_bh(&sock->sk->sk_callback_lock);
1598 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1599 		/*
1600 		 * If the socket is already closing, don't even start
1601 		 * consuming it
1602 		 */
1603 		ret = -ENOTCONN;
1604 	} else {
1605 		sock->sk->sk_user_data = queue;
1606 		queue->data_ready = sock->sk->sk_data_ready;
1607 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1608 		queue->state_change = sock->sk->sk_state_change;
1609 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1610 		queue->write_space = sock->sk->sk_write_space;
1611 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1612 		if (idle_poll_period_usecs)
1613 			nvmet_tcp_arm_queue_deadline(queue);
1614 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1615 	}
1616 	write_unlock_bh(&sock->sk->sk_callback_lock);
1617 
1618 	return ret;
1619 }
1620 
1621 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1622 		struct socket *newsock)
1623 {
1624 	struct nvmet_tcp_queue *queue;
1625 	int ret;
1626 
1627 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1628 	if (!queue)
1629 		return -ENOMEM;
1630 
1631 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1632 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1633 	queue->sock = newsock;
1634 	queue->port = port;
1635 	queue->nr_cmds = 0;
1636 	spin_lock_init(&queue->state_lock);
1637 	queue->state = NVMET_TCP_Q_CONNECTING;
1638 	INIT_LIST_HEAD(&queue->free_list);
1639 	init_llist_head(&queue->resp_list);
1640 	INIT_LIST_HEAD(&queue->resp_send_list);
1641 
1642 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1643 	if (queue->idx < 0) {
1644 		ret = queue->idx;
1645 		goto out_free_queue;
1646 	}
1647 
1648 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1649 	if (ret)
1650 		goto out_ida_remove;
1651 
1652 	ret = nvmet_sq_init(&queue->nvme_sq);
1653 	if (ret)
1654 		goto out_free_connect;
1655 
1656 	nvmet_prepare_receive_pdu(queue);
1657 
1658 	mutex_lock(&nvmet_tcp_queue_mutex);
1659 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1660 	mutex_unlock(&nvmet_tcp_queue_mutex);
1661 
1662 	ret = nvmet_tcp_set_queue_sock(queue);
1663 	if (ret)
1664 		goto out_destroy_sq;
1665 
1666 	return 0;
1667 out_destroy_sq:
1668 	mutex_lock(&nvmet_tcp_queue_mutex);
1669 	list_del_init(&queue->queue_list);
1670 	mutex_unlock(&nvmet_tcp_queue_mutex);
1671 	nvmet_sq_destroy(&queue->nvme_sq);
1672 out_free_connect:
1673 	nvmet_tcp_free_cmd(&queue->connect);
1674 out_ida_remove:
1675 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1676 out_free_queue:
1677 	kfree(queue);
1678 	return ret;
1679 }
1680 
1681 static void nvmet_tcp_accept_work(struct work_struct *w)
1682 {
1683 	struct nvmet_tcp_port *port =
1684 		container_of(w, struct nvmet_tcp_port, accept_work);
1685 	struct socket *newsock;
1686 	int ret;
1687 
1688 	while (true) {
1689 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1690 		if (ret < 0) {
1691 			if (ret != -EAGAIN)
1692 				pr_warn("failed to accept err=%d\n", ret);
1693 			return;
1694 		}
1695 		ret = nvmet_tcp_alloc_queue(port, newsock);
1696 		if (ret) {
1697 			pr_err("failed to allocate queue\n");
1698 			sock_release(newsock);
1699 		}
1700 	}
1701 }
1702 
1703 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1704 {
1705 	struct nvmet_tcp_port *port;
1706 
1707 	trace_sk_data_ready(sk);
1708 
1709 	read_lock_bh(&sk->sk_callback_lock);
1710 	port = sk->sk_user_data;
1711 	if (!port)
1712 		goto out;
1713 
1714 	if (sk->sk_state == TCP_LISTEN)
1715 		queue_work(nvmet_wq, &port->accept_work);
1716 out:
1717 	read_unlock_bh(&sk->sk_callback_lock);
1718 }
1719 
1720 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1721 {
1722 	struct nvmet_tcp_port *port;
1723 	__kernel_sa_family_t af;
1724 	int ret;
1725 
1726 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1727 	if (!port)
1728 		return -ENOMEM;
1729 
1730 	switch (nport->disc_addr.adrfam) {
1731 	case NVMF_ADDR_FAMILY_IP4:
1732 		af = AF_INET;
1733 		break;
1734 	case NVMF_ADDR_FAMILY_IP6:
1735 		af = AF_INET6;
1736 		break;
1737 	default:
1738 		pr_err("address family %d not supported\n",
1739 				nport->disc_addr.adrfam);
1740 		ret = -EINVAL;
1741 		goto err_port;
1742 	}
1743 
1744 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1745 			nport->disc_addr.trsvcid, &port->addr);
1746 	if (ret) {
1747 		pr_err("malformed ip/port passed: %s:%s\n",
1748 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1749 		goto err_port;
1750 	}
1751 
1752 	port->nport = nport;
1753 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1754 	if (port->nport->inline_data_size < 0)
1755 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1756 
1757 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1758 				IPPROTO_TCP, &port->sock);
1759 	if (ret) {
1760 		pr_err("failed to create a socket\n");
1761 		goto err_port;
1762 	}
1763 
1764 	port->sock->sk->sk_user_data = port;
1765 	port->data_ready = port->sock->sk->sk_data_ready;
1766 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1767 	sock_set_reuseaddr(port->sock->sk);
1768 	tcp_sock_set_nodelay(port->sock->sk);
1769 	if (so_priority > 0)
1770 		sock_set_priority(port->sock->sk, so_priority);
1771 
1772 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1773 			sizeof(port->addr));
1774 	if (ret) {
1775 		pr_err("failed to bind port socket %d\n", ret);
1776 		goto err_sock;
1777 	}
1778 
1779 	ret = kernel_listen(port->sock, 128);
1780 	if (ret) {
1781 		pr_err("failed to listen %d on port sock\n", ret);
1782 		goto err_sock;
1783 	}
1784 
1785 	nport->priv = port;
1786 	pr_info("enabling port %d (%pISpc)\n",
1787 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1788 
1789 	return 0;
1790 
1791 err_sock:
1792 	sock_release(port->sock);
1793 err_port:
1794 	kfree(port);
1795 	return ret;
1796 }
1797 
1798 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1799 {
1800 	struct nvmet_tcp_queue *queue;
1801 
1802 	mutex_lock(&nvmet_tcp_queue_mutex);
1803 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1804 		if (queue->port == port)
1805 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1806 	mutex_unlock(&nvmet_tcp_queue_mutex);
1807 }
1808 
1809 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1810 {
1811 	struct nvmet_tcp_port *port = nport->priv;
1812 
1813 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1814 	port->sock->sk->sk_data_ready = port->data_ready;
1815 	port->sock->sk->sk_user_data = NULL;
1816 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1817 	cancel_work_sync(&port->accept_work);
1818 	/*
1819 	 * Destroy the remaining queues, which are not belong to any
1820 	 * controller yet.
1821 	 */
1822 	nvmet_tcp_destroy_port_queues(port);
1823 
1824 	sock_release(port->sock);
1825 	kfree(port);
1826 }
1827 
1828 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1829 {
1830 	struct nvmet_tcp_queue *queue;
1831 
1832 	mutex_lock(&nvmet_tcp_queue_mutex);
1833 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1834 		if (queue->nvme_sq.ctrl == ctrl)
1835 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1836 	mutex_unlock(&nvmet_tcp_queue_mutex);
1837 }
1838 
1839 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1840 {
1841 	struct nvmet_tcp_queue *queue =
1842 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1843 
1844 	if (sq->qid == 0) {
1845 		/* Let inflight controller teardown complete */
1846 		flush_workqueue(nvmet_wq);
1847 	}
1848 
1849 	queue->nr_cmds = sq->size * 2;
1850 	if (nvmet_tcp_alloc_cmds(queue))
1851 		return NVME_SC_INTERNAL;
1852 	return 0;
1853 }
1854 
1855 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1856 		struct nvmet_port *nport, char *traddr)
1857 {
1858 	struct nvmet_tcp_port *port = nport->priv;
1859 
1860 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1861 		struct nvmet_tcp_cmd *cmd =
1862 			container_of(req, struct nvmet_tcp_cmd, req);
1863 		struct nvmet_tcp_queue *queue = cmd->queue;
1864 
1865 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1866 	} else {
1867 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1868 	}
1869 }
1870 
1871 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1872 	.owner			= THIS_MODULE,
1873 	.type			= NVMF_TRTYPE_TCP,
1874 	.msdbd			= 1,
1875 	.add_port		= nvmet_tcp_add_port,
1876 	.remove_port		= nvmet_tcp_remove_port,
1877 	.queue_response		= nvmet_tcp_queue_response,
1878 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1879 	.install_queue		= nvmet_tcp_install_queue,
1880 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1881 };
1882 
1883 static int __init nvmet_tcp_init(void)
1884 {
1885 	int ret;
1886 
1887 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1888 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1889 	if (!nvmet_tcp_wq)
1890 		return -ENOMEM;
1891 
1892 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1893 	if (ret)
1894 		goto err;
1895 
1896 	return 0;
1897 err:
1898 	destroy_workqueue(nvmet_tcp_wq);
1899 	return ret;
1900 }
1901 
1902 static void __exit nvmet_tcp_exit(void)
1903 {
1904 	struct nvmet_tcp_queue *queue;
1905 
1906 	nvmet_unregister_transport(&nvmet_tcp_ops);
1907 
1908 	flush_workqueue(nvmet_wq);
1909 	mutex_lock(&nvmet_tcp_queue_mutex);
1910 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1911 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1912 	mutex_unlock(&nvmet_tcp_queue_mutex);
1913 	flush_workqueue(nvmet_wq);
1914 
1915 	destroy_workqueue(nvmet_tcp_wq);
1916 }
1917 
1918 module_init(nvmet_tcp_init);
1919 module_exit(nvmet_tcp_exit);
1920 
1921 MODULE_LICENSE("GPL v2");
1922 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1923