1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 #include <trace/events/sock.h> 18 19 #include "nvmet.h" 20 21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 22 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ 23 24 static int param_store_val(const char *str, int *val, int min, int max) 25 { 26 int ret, new_val; 27 28 ret = kstrtoint(str, 10, &new_val); 29 if (ret) 30 return -EINVAL; 31 32 if (new_val < min || new_val > max) 33 return -EINVAL; 34 35 *val = new_val; 36 return 0; 37 } 38 39 static int set_params(const char *str, const struct kernel_param *kp) 40 { 41 return param_store_val(str, kp->arg, 0, INT_MAX); 42 } 43 44 static const struct kernel_param_ops set_param_ops = { 45 .set = set_params, 46 .get = param_get_int, 47 }; 48 49 /* Define the socket priority to use for connections were it is desirable 50 * that the NIC consider performing optimized packet processing or filtering. 51 * A non-zero value being sufficient to indicate general consideration of any 52 * possible optimization. Making it a module param allows for alternative 53 * values that may be unique for some NIC implementations. 54 */ 55 static int so_priority; 56 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 57 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 58 59 /* Define a time period (in usecs) that io_work() shall sample an activated 60 * queue before determining it to be idle. This optional module behavior 61 * can enable NIC solutions that support socket optimized packet processing 62 * using advanced interrupt moderation techniques. 63 */ 64 static int idle_poll_period_usecs; 65 device_param_cb(idle_poll_period_usecs, &set_param_ops, 66 &idle_poll_period_usecs, 0644); 67 MODULE_PARM_DESC(idle_poll_period_usecs, 68 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 69 70 #define NVMET_TCP_RECV_BUDGET 8 71 #define NVMET_TCP_SEND_BUDGET 8 72 #define NVMET_TCP_IO_WORK_BUDGET 64 73 74 enum nvmet_tcp_send_state { 75 NVMET_TCP_SEND_DATA_PDU, 76 NVMET_TCP_SEND_DATA, 77 NVMET_TCP_SEND_R2T, 78 NVMET_TCP_SEND_DDGST, 79 NVMET_TCP_SEND_RESPONSE 80 }; 81 82 enum nvmet_tcp_recv_state { 83 NVMET_TCP_RECV_PDU, 84 NVMET_TCP_RECV_DATA, 85 NVMET_TCP_RECV_DDGST, 86 NVMET_TCP_RECV_ERR, 87 }; 88 89 enum { 90 NVMET_TCP_F_INIT_FAILED = (1 << 0), 91 }; 92 93 struct nvmet_tcp_cmd { 94 struct nvmet_tcp_queue *queue; 95 struct nvmet_req req; 96 97 struct nvme_tcp_cmd_pdu *cmd_pdu; 98 struct nvme_tcp_rsp_pdu *rsp_pdu; 99 struct nvme_tcp_data_pdu *data_pdu; 100 struct nvme_tcp_r2t_pdu *r2t_pdu; 101 102 u32 rbytes_done; 103 u32 wbytes_done; 104 105 u32 pdu_len; 106 u32 pdu_recv; 107 int sg_idx; 108 struct msghdr recv_msg; 109 struct bio_vec *iov; 110 u32 flags; 111 112 struct list_head entry; 113 struct llist_node lentry; 114 115 /* send state */ 116 u32 offset; 117 struct scatterlist *cur_sg; 118 enum nvmet_tcp_send_state state; 119 120 __le32 exp_ddgst; 121 __le32 recv_ddgst; 122 }; 123 124 enum nvmet_tcp_queue_state { 125 NVMET_TCP_Q_CONNECTING, 126 NVMET_TCP_Q_LIVE, 127 NVMET_TCP_Q_DISCONNECTING, 128 }; 129 130 struct nvmet_tcp_queue { 131 struct socket *sock; 132 struct nvmet_tcp_port *port; 133 struct work_struct io_work; 134 struct nvmet_cq nvme_cq; 135 struct nvmet_sq nvme_sq; 136 137 /* send state */ 138 struct nvmet_tcp_cmd *cmds; 139 unsigned int nr_cmds; 140 struct list_head free_list; 141 struct llist_head resp_list; 142 struct list_head resp_send_list; 143 int send_list_len; 144 struct nvmet_tcp_cmd *snd_cmd; 145 146 /* recv state */ 147 int offset; 148 int left; 149 enum nvmet_tcp_recv_state rcv_state; 150 struct nvmet_tcp_cmd *cmd; 151 union nvme_tcp_pdu pdu; 152 153 /* digest state */ 154 bool hdr_digest; 155 bool data_digest; 156 struct ahash_request *snd_hash; 157 struct ahash_request *rcv_hash; 158 159 unsigned long poll_end; 160 161 spinlock_t state_lock; 162 enum nvmet_tcp_queue_state state; 163 164 struct sockaddr_storage sockaddr; 165 struct sockaddr_storage sockaddr_peer; 166 struct work_struct release_work; 167 168 int idx; 169 struct list_head queue_list; 170 171 struct nvmet_tcp_cmd connect; 172 173 struct page_frag_cache pf_cache; 174 175 void (*data_ready)(struct sock *); 176 void (*state_change)(struct sock *); 177 void (*write_space)(struct sock *); 178 }; 179 180 struct nvmet_tcp_port { 181 struct socket *sock; 182 struct work_struct accept_work; 183 struct nvmet_port *nport; 184 struct sockaddr_storage addr; 185 void (*data_ready)(struct sock *); 186 }; 187 188 static DEFINE_IDA(nvmet_tcp_queue_ida); 189 static LIST_HEAD(nvmet_tcp_queue_list); 190 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 191 192 static struct workqueue_struct *nvmet_tcp_wq; 193 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 194 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 195 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 196 197 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 198 struct nvmet_tcp_cmd *cmd) 199 { 200 if (unlikely(!queue->nr_cmds)) { 201 /* We didn't allocate cmds yet, send 0xffff */ 202 return USHRT_MAX; 203 } 204 205 return cmd - queue->cmds; 206 } 207 208 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 209 { 210 return nvme_is_write(cmd->req.cmd) && 211 cmd->rbytes_done < cmd->req.transfer_len; 212 } 213 214 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 215 { 216 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 217 } 218 219 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 220 { 221 return !nvme_is_write(cmd->req.cmd) && 222 cmd->req.transfer_len > 0 && 223 !cmd->req.cqe->status; 224 } 225 226 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 227 { 228 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 229 !cmd->rbytes_done; 230 } 231 232 static inline struct nvmet_tcp_cmd * 233 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 234 { 235 struct nvmet_tcp_cmd *cmd; 236 237 cmd = list_first_entry_or_null(&queue->free_list, 238 struct nvmet_tcp_cmd, entry); 239 if (!cmd) 240 return NULL; 241 list_del_init(&cmd->entry); 242 243 cmd->rbytes_done = cmd->wbytes_done = 0; 244 cmd->pdu_len = 0; 245 cmd->pdu_recv = 0; 246 cmd->iov = NULL; 247 cmd->flags = 0; 248 return cmd; 249 } 250 251 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 252 { 253 if (unlikely(cmd == &cmd->queue->connect)) 254 return; 255 256 list_add_tail(&cmd->entry, &cmd->queue->free_list); 257 } 258 259 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 260 { 261 return queue->sock->sk->sk_incoming_cpu; 262 } 263 264 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 265 { 266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 267 } 268 269 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 270 { 271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 272 } 273 274 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 275 void *pdu, size_t len) 276 { 277 struct scatterlist sg; 278 279 sg_init_one(&sg, pdu, len); 280 ahash_request_set_crypt(hash, &sg, pdu + len, len); 281 crypto_ahash_digest(hash); 282 } 283 284 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 285 void *pdu, size_t len) 286 { 287 struct nvme_tcp_hdr *hdr = pdu; 288 __le32 recv_digest; 289 __le32 exp_digest; 290 291 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 292 pr_err("queue %d: header digest enabled but no header digest\n", 293 queue->idx); 294 return -EPROTO; 295 } 296 297 recv_digest = *(__le32 *)(pdu + hdr->hlen); 298 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 299 exp_digest = *(__le32 *)(pdu + hdr->hlen); 300 if (recv_digest != exp_digest) { 301 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 302 queue->idx, le32_to_cpu(recv_digest), 303 le32_to_cpu(exp_digest)); 304 return -EPROTO; 305 } 306 307 return 0; 308 } 309 310 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 311 { 312 struct nvme_tcp_hdr *hdr = pdu; 313 u8 digest_len = nvmet_tcp_hdgst_len(queue); 314 u32 len; 315 316 len = le32_to_cpu(hdr->plen) - hdr->hlen - 317 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 318 319 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 320 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 321 return -EPROTO; 322 } 323 324 return 0; 325 } 326 327 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 328 { 329 kfree(cmd->iov); 330 sgl_free(cmd->req.sg); 331 cmd->iov = NULL; 332 cmd->req.sg = NULL; 333 } 334 335 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 336 { 337 struct bio_vec *iov = cmd->iov; 338 struct scatterlist *sg; 339 u32 length, offset, sg_offset; 340 int nr_pages; 341 342 length = cmd->pdu_len; 343 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 344 offset = cmd->rbytes_done; 345 cmd->sg_idx = offset / PAGE_SIZE; 346 sg_offset = offset % PAGE_SIZE; 347 sg = &cmd->req.sg[cmd->sg_idx]; 348 349 while (length) { 350 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 351 352 bvec_set_page(iov, sg_page(sg), iov_len, 353 sg->offset + sg_offset); 354 355 length -= iov_len; 356 sg = sg_next(sg); 357 iov++; 358 sg_offset = 0; 359 } 360 361 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 362 nr_pages, cmd->pdu_len); 363 } 364 365 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 366 { 367 queue->rcv_state = NVMET_TCP_RECV_ERR; 368 if (queue->nvme_sq.ctrl) 369 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 370 else 371 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 372 } 373 374 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 375 { 376 queue->rcv_state = NVMET_TCP_RECV_ERR; 377 if (status == -EPIPE || status == -ECONNRESET) 378 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 379 else 380 nvmet_tcp_fatal_error(queue); 381 } 382 383 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 384 { 385 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 386 u32 len = le32_to_cpu(sgl->length); 387 388 if (!len) 389 return 0; 390 391 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 392 NVME_SGL_FMT_OFFSET)) { 393 if (!nvme_is_write(cmd->req.cmd)) 394 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 395 396 if (len > cmd->req.port->inline_data_size) 397 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 398 cmd->pdu_len = len; 399 } 400 cmd->req.transfer_len += len; 401 402 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 403 if (!cmd->req.sg) 404 return NVME_SC_INTERNAL; 405 cmd->cur_sg = cmd->req.sg; 406 407 if (nvmet_tcp_has_data_in(cmd)) { 408 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 409 sizeof(*cmd->iov), GFP_KERNEL); 410 if (!cmd->iov) 411 goto err; 412 } 413 414 return 0; 415 err: 416 nvmet_tcp_free_cmd_buffers(cmd); 417 return NVME_SC_INTERNAL; 418 } 419 420 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 421 struct nvmet_tcp_cmd *cmd) 422 { 423 ahash_request_set_crypt(hash, cmd->req.sg, 424 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 425 crypto_ahash_digest(hash); 426 } 427 428 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 429 { 430 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 431 struct nvmet_tcp_queue *queue = cmd->queue; 432 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 433 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 434 435 cmd->offset = 0; 436 cmd->state = NVMET_TCP_SEND_DATA_PDU; 437 438 pdu->hdr.type = nvme_tcp_c2h_data; 439 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 440 NVME_TCP_F_DATA_SUCCESS : 0); 441 pdu->hdr.hlen = sizeof(*pdu); 442 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 443 pdu->hdr.plen = 444 cpu_to_le32(pdu->hdr.hlen + hdgst + 445 cmd->req.transfer_len + ddgst); 446 pdu->command_id = cmd->req.cqe->command_id; 447 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 448 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 449 450 if (queue->data_digest) { 451 pdu->hdr.flags |= NVME_TCP_F_DDGST; 452 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 453 } 454 455 if (cmd->queue->hdr_digest) { 456 pdu->hdr.flags |= NVME_TCP_F_HDGST; 457 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 458 } 459 } 460 461 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 462 { 463 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 464 struct nvmet_tcp_queue *queue = cmd->queue; 465 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 466 467 cmd->offset = 0; 468 cmd->state = NVMET_TCP_SEND_R2T; 469 470 pdu->hdr.type = nvme_tcp_r2t; 471 pdu->hdr.flags = 0; 472 pdu->hdr.hlen = sizeof(*pdu); 473 pdu->hdr.pdo = 0; 474 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 475 476 pdu->command_id = cmd->req.cmd->common.command_id; 477 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 478 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 479 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 480 if (cmd->queue->hdr_digest) { 481 pdu->hdr.flags |= NVME_TCP_F_HDGST; 482 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 483 } 484 } 485 486 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 487 { 488 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 489 struct nvmet_tcp_queue *queue = cmd->queue; 490 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 491 492 cmd->offset = 0; 493 cmd->state = NVMET_TCP_SEND_RESPONSE; 494 495 pdu->hdr.type = nvme_tcp_rsp; 496 pdu->hdr.flags = 0; 497 pdu->hdr.hlen = sizeof(*pdu); 498 pdu->hdr.pdo = 0; 499 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 500 if (cmd->queue->hdr_digest) { 501 pdu->hdr.flags |= NVME_TCP_F_HDGST; 502 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 503 } 504 } 505 506 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 507 { 508 struct llist_node *node; 509 struct nvmet_tcp_cmd *cmd; 510 511 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 512 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 513 list_add(&cmd->entry, &queue->resp_send_list); 514 queue->send_list_len++; 515 } 516 } 517 518 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 519 { 520 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 521 struct nvmet_tcp_cmd, entry); 522 if (!queue->snd_cmd) { 523 nvmet_tcp_process_resp_list(queue); 524 queue->snd_cmd = 525 list_first_entry_or_null(&queue->resp_send_list, 526 struct nvmet_tcp_cmd, entry); 527 if (unlikely(!queue->snd_cmd)) 528 return NULL; 529 } 530 531 list_del_init(&queue->snd_cmd->entry); 532 queue->send_list_len--; 533 534 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 535 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 536 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 537 nvmet_setup_r2t_pdu(queue->snd_cmd); 538 else 539 nvmet_setup_response_pdu(queue->snd_cmd); 540 541 return queue->snd_cmd; 542 } 543 544 static void nvmet_tcp_queue_response(struct nvmet_req *req) 545 { 546 struct nvmet_tcp_cmd *cmd = 547 container_of(req, struct nvmet_tcp_cmd, req); 548 struct nvmet_tcp_queue *queue = cmd->queue; 549 struct nvme_sgl_desc *sgl; 550 u32 len; 551 552 if (unlikely(cmd == queue->cmd)) { 553 sgl = &cmd->req.cmd->common.dptr.sgl; 554 len = le32_to_cpu(sgl->length); 555 556 /* 557 * Wait for inline data before processing the response. 558 * Avoid using helpers, this might happen before 559 * nvmet_req_init is completed. 560 */ 561 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 562 len && len <= cmd->req.port->inline_data_size && 563 nvme_is_write(cmd->req.cmd)) 564 return; 565 } 566 567 llist_add(&cmd->lentry, &queue->resp_list); 568 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 569 } 570 571 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 572 { 573 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 574 nvmet_tcp_queue_response(&cmd->req); 575 else 576 cmd->req.execute(&cmd->req); 577 } 578 579 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 580 { 581 struct msghdr msg = { 582 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 583 }; 584 struct bio_vec bvec; 585 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 586 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 587 int ret; 588 589 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 590 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 591 ret = sock_sendmsg(cmd->queue->sock, &msg); 592 if (ret <= 0) 593 return ret; 594 595 cmd->offset += ret; 596 left -= ret; 597 598 if (left) 599 return -EAGAIN; 600 601 cmd->state = NVMET_TCP_SEND_DATA; 602 cmd->offset = 0; 603 return 1; 604 } 605 606 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 607 { 608 struct nvmet_tcp_queue *queue = cmd->queue; 609 int ret; 610 611 while (cmd->cur_sg) { 612 struct msghdr msg = { 613 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 614 }; 615 struct page *page = sg_page(cmd->cur_sg); 616 struct bio_vec bvec; 617 u32 left = cmd->cur_sg->length - cmd->offset; 618 619 if ((!last_in_batch && cmd->queue->send_list_len) || 620 cmd->wbytes_done + left < cmd->req.transfer_len || 621 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 622 msg.msg_flags |= MSG_MORE; 623 624 bvec_set_page(&bvec, page, left, cmd->offset); 625 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 626 ret = sock_sendmsg(cmd->queue->sock, &msg); 627 if (ret <= 0) 628 return ret; 629 630 cmd->offset += ret; 631 cmd->wbytes_done += ret; 632 633 /* Done with sg?*/ 634 if (cmd->offset == cmd->cur_sg->length) { 635 cmd->cur_sg = sg_next(cmd->cur_sg); 636 cmd->offset = 0; 637 } 638 } 639 640 if (queue->data_digest) { 641 cmd->state = NVMET_TCP_SEND_DDGST; 642 cmd->offset = 0; 643 } else { 644 if (queue->nvme_sq.sqhd_disabled) { 645 cmd->queue->snd_cmd = NULL; 646 nvmet_tcp_put_cmd(cmd); 647 } else { 648 nvmet_setup_response_pdu(cmd); 649 } 650 } 651 652 if (queue->nvme_sq.sqhd_disabled) 653 nvmet_tcp_free_cmd_buffers(cmd); 654 655 return 1; 656 657 } 658 659 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 660 bool last_in_batch) 661 { 662 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 663 struct bio_vec bvec; 664 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 665 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 666 int ret; 667 668 if (!last_in_batch && cmd->queue->send_list_len) 669 msg.msg_flags |= MSG_MORE; 670 else 671 msg.msg_flags |= MSG_EOR; 672 673 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 674 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 675 ret = sock_sendmsg(cmd->queue->sock, &msg); 676 if (ret <= 0) 677 return ret; 678 cmd->offset += ret; 679 left -= ret; 680 681 if (left) 682 return -EAGAIN; 683 684 nvmet_tcp_free_cmd_buffers(cmd); 685 cmd->queue->snd_cmd = NULL; 686 nvmet_tcp_put_cmd(cmd); 687 return 1; 688 } 689 690 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 691 { 692 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 693 struct bio_vec bvec; 694 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 695 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 696 int ret; 697 698 if (!last_in_batch && cmd->queue->send_list_len) 699 msg.msg_flags |= MSG_MORE; 700 else 701 msg.msg_flags |= MSG_EOR; 702 703 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 704 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 705 ret = sock_sendmsg(cmd->queue->sock, &msg); 706 if (ret <= 0) 707 return ret; 708 cmd->offset += ret; 709 left -= ret; 710 711 if (left) 712 return -EAGAIN; 713 714 cmd->queue->snd_cmd = NULL; 715 return 1; 716 } 717 718 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 719 { 720 struct nvmet_tcp_queue *queue = cmd->queue; 721 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 722 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 723 struct kvec iov = { 724 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 725 .iov_len = left 726 }; 727 int ret; 728 729 if (!last_in_batch && cmd->queue->send_list_len) 730 msg.msg_flags |= MSG_MORE; 731 else 732 msg.msg_flags |= MSG_EOR; 733 734 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 735 if (unlikely(ret <= 0)) 736 return ret; 737 738 cmd->offset += ret; 739 left -= ret; 740 741 if (left) 742 return -EAGAIN; 743 744 if (queue->nvme_sq.sqhd_disabled) { 745 cmd->queue->snd_cmd = NULL; 746 nvmet_tcp_put_cmd(cmd); 747 } else { 748 nvmet_setup_response_pdu(cmd); 749 } 750 return 1; 751 } 752 753 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 754 bool last_in_batch) 755 { 756 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 757 int ret = 0; 758 759 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 760 cmd = nvmet_tcp_fetch_cmd(queue); 761 if (unlikely(!cmd)) 762 return 0; 763 } 764 765 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 766 ret = nvmet_try_send_data_pdu(cmd); 767 if (ret <= 0) 768 goto done_send; 769 } 770 771 if (cmd->state == NVMET_TCP_SEND_DATA) { 772 ret = nvmet_try_send_data(cmd, last_in_batch); 773 if (ret <= 0) 774 goto done_send; 775 } 776 777 if (cmd->state == NVMET_TCP_SEND_DDGST) { 778 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 779 if (ret <= 0) 780 goto done_send; 781 } 782 783 if (cmd->state == NVMET_TCP_SEND_R2T) { 784 ret = nvmet_try_send_r2t(cmd, last_in_batch); 785 if (ret <= 0) 786 goto done_send; 787 } 788 789 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 790 ret = nvmet_try_send_response(cmd, last_in_batch); 791 792 done_send: 793 if (ret < 0) { 794 if (ret == -EAGAIN) 795 return 0; 796 return ret; 797 } 798 799 return 1; 800 } 801 802 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 803 int budget, int *sends) 804 { 805 int i, ret = 0; 806 807 for (i = 0; i < budget; i++) { 808 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 809 if (unlikely(ret < 0)) { 810 nvmet_tcp_socket_error(queue, ret); 811 goto done; 812 } else if (ret == 0) { 813 break; 814 } 815 (*sends)++; 816 } 817 done: 818 return ret; 819 } 820 821 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 822 { 823 queue->offset = 0; 824 queue->left = sizeof(struct nvme_tcp_hdr); 825 queue->cmd = NULL; 826 queue->rcv_state = NVMET_TCP_RECV_PDU; 827 } 828 829 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 830 { 831 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 832 833 ahash_request_free(queue->rcv_hash); 834 ahash_request_free(queue->snd_hash); 835 crypto_free_ahash(tfm); 836 } 837 838 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 839 { 840 struct crypto_ahash *tfm; 841 842 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 843 if (IS_ERR(tfm)) 844 return PTR_ERR(tfm); 845 846 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 847 if (!queue->snd_hash) 848 goto free_tfm; 849 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 850 851 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 852 if (!queue->rcv_hash) 853 goto free_snd_hash; 854 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 855 856 return 0; 857 free_snd_hash: 858 ahash_request_free(queue->snd_hash); 859 free_tfm: 860 crypto_free_ahash(tfm); 861 return -ENOMEM; 862 } 863 864 865 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 866 { 867 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 868 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 869 struct msghdr msg = {}; 870 struct kvec iov; 871 int ret; 872 873 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 874 pr_err("bad nvme-tcp pdu length (%d)\n", 875 le32_to_cpu(icreq->hdr.plen)); 876 nvmet_tcp_fatal_error(queue); 877 } 878 879 if (icreq->pfv != NVME_TCP_PFV_1_0) { 880 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 881 return -EPROTO; 882 } 883 884 if (icreq->hpda != 0) { 885 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 886 icreq->hpda); 887 return -EPROTO; 888 } 889 890 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 891 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 892 if (queue->hdr_digest || queue->data_digest) { 893 ret = nvmet_tcp_alloc_crypto(queue); 894 if (ret) 895 return ret; 896 } 897 898 memset(icresp, 0, sizeof(*icresp)); 899 icresp->hdr.type = nvme_tcp_icresp; 900 icresp->hdr.hlen = sizeof(*icresp); 901 icresp->hdr.pdo = 0; 902 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 903 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 904 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); 905 icresp->cpda = 0; 906 if (queue->hdr_digest) 907 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 908 if (queue->data_digest) 909 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 910 911 iov.iov_base = icresp; 912 iov.iov_len = sizeof(*icresp); 913 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 914 if (ret < 0) 915 return ret; /* queue removal will cleanup */ 916 917 queue->state = NVMET_TCP_Q_LIVE; 918 nvmet_prepare_receive_pdu(queue); 919 return 0; 920 } 921 922 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 923 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 924 { 925 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 926 int ret; 927 928 /* 929 * This command has not been processed yet, hence we are trying to 930 * figure out if there is still pending data left to receive. If 931 * we don't, we can simply prepare for the next pdu and bail out, 932 * otherwise we will need to prepare a buffer and receive the 933 * stale data before continuing forward. 934 */ 935 if (!nvme_is_write(cmd->req.cmd) || !data_len || 936 data_len > cmd->req.port->inline_data_size) { 937 nvmet_prepare_receive_pdu(queue); 938 return; 939 } 940 941 ret = nvmet_tcp_map_data(cmd); 942 if (unlikely(ret)) { 943 pr_err("queue %d: failed to map data\n", queue->idx); 944 nvmet_tcp_fatal_error(queue); 945 return; 946 } 947 948 queue->rcv_state = NVMET_TCP_RECV_DATA; 949 nvmet_tcp_build_pdu_iovec(cmd); 950 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 951 } 952 953 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 954 { 955 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 956 struct nvmet_tcp_cmd *cmd; 957 unsigned int exp_data_len; 958 959 if (likely(queue->nr_cmds)) { 960 if (unlikely(data->ttag >= queue->nr_cmds)) { 961 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 962 queue->idx, data->ttag, queue->nr_cmds); 963 nvmet_tcp_fatal_error(queue); 964 return -EPROTO; 965 } 966 cmd = &queue->cmds[data->ttag]; 967 } else { 968 cmd = &queue->connect; 969 } 970 971 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 972 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 973 data->ttag, le32_to_cpu(data->data_offset), 974 cmd->rbytes_done); 975 /* FIXME: use path and transport errors */ 976 nvmet_tcp_fatal_error(queue); 977 return -EPROTO; 978 } 979 980 exp_data_len = le32_to_cpu(data->hdr.plen) - 981 nvmet_tcp_hdgst_len(queue) - 982 nvmet_tcp_ddgst_len(queue) - 983 sizeof(*data); 984 985 cmd->pdu_len = le32_to_cpu(data->data_length); 986 if (unlikely(cmd->pdu_len != exp_data_len || 987 cmd->pdu_len == 0 || 988 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { 989 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); 990 /* FIXME: use proper transport errors */ 991 nvmet_tcp_fatal_error(queue); 992 return -EPROTO; 993 } 994 cmd->pdu_recv = 0; 995 nvmet_tcp_build_pdu_iovec(cmd); 996 queue->cmd = cmd; 997 queue->rcv_state = NVMET_TCP_RECV_DATA; 998 999 return 0; 1000 } 1001 1002 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 1003 { 1004 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1005 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 1006 struct nvmet_req *req; 1007 int ret; 1008 1009 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1010 if (hdr->type != nvme_tcp_icreq) { 1011 pr_err("unexpected pdu type (%d) before icreq\n", 1012 hdr->type); 1013 nvmet_tcp_fatal_error(queue); 1014 return -EPROTO; 1015 } 1016 return nvmet_tcp_handle_icreq(queue); 1017 } 1018 1019 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1020 pr_err("queue %d: received icreq pdu in state %d\n", 1021 queue->idx, queue->state); 1022 nvmet_tcp_fatal_error(queue); 1023 return -EPROTO; 1024 } 1025 1026 if (hdr->type == nvme_tcp_h2c_data) { 1027 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1028 if (unlikely(ret)) 1029 return ret; 1030 return 0; 1031 } 1032 1033 queue->cmd = nvmet_tcp_get_cmd(queue); 1034 if (unlikely(!queue->cmd)) { 1035 /* This should never happen */ 1036 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1037 queue->idx, queue->nr_cmds, queue->send_list_len, 1038 nvme_cmd->common.opcode); 1039 nvmet_tcp_fatal_error(queue); 1040 return -ENOMEM; 1041 } 1042 1043 req = &queue->cmd->req; 1044 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1045 1046 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1047 &queue->nvme_sq, &nvmet_tcp_ops))) { 1048 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1049 req->cmd, req->cmd->common.command_id, 1050 req->cmd->common.opcode, 1051 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1052 1053 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1054 return 0; 1055 } 1056 1057 ret = nvmet_tcp_map_data(queue->cmd); 1058 if (unlikely(ret)) { 1059 pr_err("queue %d: failed to map data\n", queue->idx); 1060 if (nvmet_tcp_has_inline_data(queue->cmd)) 1061 nvmet_tcp_fatal_error(queue); 1062 else 1063 nvmet_req_complete(req, ret); 1064 ret = -EAGAIN; 1065 goto out; 1066 } 1067 1068 if (nvmet_tcp_need_data_in(queue->cmd)) { 1069 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1070 queue->rcv_state = NVMET_TCP_RECV_DATA; 1071 nvmet_tcp_build_pdu_iovec(queue->cmd); 1072 return 0; 1073 } 1074 /* send back R2T */ 1075 nvmet_tcp_queue_response(&queue->cmd->req); 1076 goto out; 1077 } 1078 1079 queue->cmd->req.execute(&queue->cmd->req); 1080 out: 1081 nvmet_prepare_receive_pdu(queue); 1082 return ret; 1083 } 1084 1085 static const u8 nvme_tcp_pdu_sizes[] = { 1086 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1087 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1088 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1089 }; 1090 1091 static inline u8 nvmet_tcp_pdu_size(u8 type) 1092 { 1093 size_t idx = type; 1094 1095 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1096 nvme_tcp_pdu_sizes[idx]) ? 1097 nvme_tcp_pdu_sizes[idx] : 0; 1098 } 1099 1100 static inline bool nvmet_tcp_pdu_valid(u8 type) 1101 { 1102 switch (type) { 1103 case nvme_tcp_icreq: 1104 case nvme_tcp_cmd: 1105 case nvme_tcp_h2c_data: 1106 /* fallthru */ 1107 return true; 1108 } 1109 1110 return false; 1111 } 1112 1113 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1114 { 1115 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1116 int len; 1117 struct kvec iov; 1118 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1119 1120 recv: 1121 iov.iov_base = (void *)&queue->pdu + queue->offset; 1122 iov.iov_len = queue->left; 1123 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1124 iov.iov_len, msg.msg_flags); 1125 if (unlikely(len < 0)) 1126 return len; 1127 1128 queue->offset += len; 1129 queue->left -= len; 1130 if (queue->left) 1131 return -EAGAIN; 1132 1133 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1134 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1135 1136 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1137 pr_err("unexpected pdu type %d\n", hdr->type); 1138 nvmet_tcp_fatal_error(queue); 1139 return -EIO; 1140 } 1141 1142 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1143 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1144 return -EIO; 1145 } 1146 1147 queue->left = hdr->hlen - queue->offset + hdgst; 1148 goto recv; 1149 } 1150 1151 if (queue->hdr_digest && 1152 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1153 nvmet_tcp_fatal_error(queue); /* fatal */ 1154 return -EPROTO; 1155 } 1156 1157 if (queue->data_digest && 1158 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1159 nvmet_tcp_fatal_error(queue); /* fatal */ 1160 return -EPROTO; 1161 } 1162 1163 return nvmet_tcp_done_recv_pdu(queue); 1164 } 1165 1166 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1167 { 1168 struct nvmet_tcp_queue *queue = cmd->queue; 1169 1170 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1171 queue->offset = 0; 1172 queue->left = NVME_TCP_DIGEST_LENGTH; 1173 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1174 } 1175 1176 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1177 { 1178 struct nvmet_tcp_cmd *cmd = queue->cmd; 1179 int ret; 1180 1181 while (msg_data_left(&cmd->recv_msg)) { 1182 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1183 cmd->recv_msg.msg_flags); 1184 if (ret <= 0) 1185 return ret; 1186 1187 cmd->pdu_recv += ret; 1188 cmd->rbytes_done += ret; 1189 } 1190 1191 if (queue->data_digest) { 1192 nvmet_tcp_prep_recv_ddgst(cmd); 1193 return 0; 1194 } 1195 1196 if (cmd->rbytes_done == cmd->req.transfer_len) 1197 nvmet_tcp_execute_request(cmd); 1198 1199 nvmet_prepare_receive_pdu(queue); 1200 return 0; 1201 } 1202 1203 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1204 { 1205 struct nvmet_tcp_cmd *cmd = queue->cmd; 1206 int ret; 1207 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1208 struct kvec iov = { 1209 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1210 .iov_len = queue->left 1211 }; 1212 1213 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1214 iov.iov_len, msg.msg_flags); 1215 if (unlikely(ret < 0)) 1216 return ret; 1217 1218 queue->offset += ret; 1219 queue->left -= ret; 1220 if (queue->left) 1221 return -EAGAIN; 1222 1223 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1224 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1225 queue->idx, cmd->req.cmd->common.command_id, 1226 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1227 le32_to_cpu(cmd->exp_ddgst)); 1228 nvmet_req_uninit(&cmd->req); 1229 nvmet_tcp_free_cmd_buffers(cmd); 1230 nvmet_tcp_fatal_error(queue); 1231 ret = -EPROTO; 1232 goto out; 1233 } 1234 1235 if (cmd->rbytes_done == cmd->req.transfer_len) 1236 nvmet_tcp_execute_request(cmd); 1237 1238 ret = 0; 1239 out: 1240 nvmet_prepare_receive_pdu(queue); 1241 return ret; 1242 } 1243 1244 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1245 { 1246 int result = 0; 1247 1248 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1249 return 0; 1250 1251 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1252 result = nvmet_tcp_try_recv_pdu(queue); 1253 if (result != 0) 1254 goto done_recv; 1255 } 1256 1257 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1258 result = nvmet_tcp_try_recv_data(queue); 1259 if (result != 0) 1260 goto done_recv; 1261 } 1262 1263 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1264 result = nvmet_tcp_try_recv_ddgst(queue); 1265 if (result != 0) 1266 goto done_recv; 1267 } 1268 1269 done_recv: 1270 if (result < 0) { 1271 if (result == -EAGAIN) 1272 return 0; 1273 return result; 1274 } 1275 return 1; 1276 } 1277 1278 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1279 int budget, int *recvs) 1280 { 1281 int i, ret = 0; 1282 1283 for (i = 0; i < budget; i++) { 1284 ret = nvmet_tcp_try_recv_one(queue); 1285 if (unlikely(ret < 0)) { 1286 nvmet_tcp_socket_error(queue, ret); 1287 goto done; 1288 } else if (ret == 0) { 1289 break; 1290 } 1291 (*recvs)++; 1292 } 1293 done: 1294 return ret; 1295 } 1296 1297 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1298 { 1299 spin_lock(&queue->state_lock); 1300 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1301 queue->state = NVMET_TCP_Q_DISCONNECTING; 1302 queue_work(nvmet_wq, &queue->release_work); 1303 } 1304 spin_unlock(&queue->state_lock); 1305 } 1306 1307 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1308 { 1309 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1310 } 1311 1312 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1313 int ops) 1314 { 1315 if (!idle_poll_period_usecs) 1316 return false; 1317 1318 if (ops) 1319 nvmet_tcp_arm_queue_deadline(queue); 1320 1321 return !time_after(jiffies, queue->poll_end); 1322 } 1323 1324 static void nvmet_tcp_io_work(struct work_struct *w) 1325 { 1326 struct nvmet_tcp_queue *queue = 1327 container_of(w, struct nvmet_tcp_queue, io_work); 1328 bool pending; 1329 int ret, ops = 0; 1330 1331 do { 1332 pending = false; 1333 1334 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1335 if (ret > 0) 1336 pending = true; 1337 else if (ret < 0) 1338 return; 1339 1340 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1341 if (ret > 0) 1342 pending = true; 1343 else if (ret < 0) 1344 return; 1345 1346 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1347 1348 /* 1349 * Requeue the worker if idle deadline period is in progress or any 1350 * ops activity was recorded during the do-while loop above. 1351 */ 1352 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1353 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1354 } 1355 1356 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1357 struct nvmet_tcp_cmd *c) 1358 { 1359 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1360 1361 c->queue = queue; 1362 c->req.port = queue->port->nport; 1363 1364 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1365 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1366 if (!c->cmd_pdu) 1367 return -ENOMEM; 1368 c->req.cmd = &c->cmd_pdu->cmd; 1369 1370 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1371 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1372 if (!c->rsp_pdu) 1373 goto out_free_cmd; 1374 c->req.cqe = &c->rsp_pdu->cqe; 1375 1376 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1377 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1378 if (!c->data_pdu) 1379 goto out_free_rsp; 1380 1381 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1382 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1383 if (!c->r2t_pdu) 1384 goto out_free_data; 1385 1386 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1387 1388 list_add_tail(&c->entry, &queue->free_list); 1389 1390 return 0; 1391 out_free_data: 1392 page_frag_free(c->data_pdu); 1393 out_free_rsp: 1394 page_frag_free(c->rsp_pdu); 1395 out_free_cmd: 1396 page_frag_free(c->cmd_pdu); 1397 return -ENOMEM; 1398 } 1399 1400 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1401 { 1402 page_frag_free(c->r2t_pdu); 1403 page_frag_free(c->data_pdu); 1404 page_frag_free(c->rsp_pdu); 1405 page_frag_free(c->cmd_pdu); 1406 } 1407 1408 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1409 { 1410 struct nvmet_tcp_cmd *cmds; 1411 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1412 1413 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1414 if (!cmds) 1415 goto out; 1416 1417 for (i = 0; i < nr_cmds; i++) { 1418 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1419 if (ret) 1420 goto out_free; 1421 } 1422 1423 queue->cmds = cmds; 1424 1425 return 0; 1426 out_free: 1427 while (--i >= 0) 1428 nvmet_tcp_free_cmd(cmds + i); 1429 kfree(cmds); 1430 out: 1431 return ret; 1432 } 1433 1434 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1435 { 1436 struct nvmet_tcp_cmd *cmds = queue->cmds; 1437 int i; 1438 1439 for (i = 0; i < queue->nr_cmds; i++) 1440 nvmet_tcp_free_cmd(cmds + i); 1441 1442 nvmet_tcp_free_cmd(&queue->connect); 1443 kfree(cmds); 1444 } 1445 1446 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1447 { 1448 struct socket *sock = queue->sock; 1449 1450 write_lock_bh(&sock->sk->sk_callback_lock); 1451 sock->sk->sk_data_ready = queue->data_ready; 1452 sock->sk->sk_state_change = queue->state_change; 1453 sock->sk->sk_write_space = queue->write_space; 1454 sock->sk->sk_user_data = NULL; 1455 write_unlock_bh(&sock->sk->sk_callback_lock); 1456 } 1457 1458 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1459 { 1460 struct nvmet_tcp_cmd *cmd = queue->cmds; 1461 int i; 1462 1463 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1464 if (nvmet_tcp_need_data_in(cmd)) 1465 nvmet_req_uninit(&cmd->req); 1466 } 1467 1468 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1469 /* failed in connect */ 1470 nvmet_req_uninit(&queue->connect.req); 1471 } 1472 } 1473 1474 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1475 { 1476 struct nvmet_tcp_cmd *cmd = queue->cmds; 1477 int i; 1478 1479 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1480 if (nvmet_tcp_need_data_in(cmd)) 1481 nvmet_tcp_free_cmd_buffers(cmd); 1482 } 1483 1484 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) 1485 nvmet_tcp_free_cmd_buffers(&queue->connect); 1486 } 1487 1488 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1489 { 1490 struct page *page; 1491 struct nvmet_tcp_queue *queue = 1492 container_of(w, struct nvmet_tcp_queue, release_work); 1493 1494 mutex_lock(&nvmet_tcp_queue_mutex); 1495 list_del_init(&queue->queue_list); 1496 mutex_unlock(&nvmet_tcp_queue_mutex); 1497 1498 nvmet_tcp_restore_socket_callbacks(queue); 1499 cancel_work_sync(&queue->io_work); 1500 /* stop accepting incoming data */ 1501 queue->rcv_state = NVMET_TCP_RECV_ERR; 1502 1503 nvmet_tcp_uninit_data_in_cmds(queue); 1504 nvmet_sq_destroy(&queue->nvme_sq); 1505 cancel_work_sync(&queue->io_work); 1506 nvmet_tcp_free_cmd_data_in_buffers(queue); 1507 sock_release(queue->sock); 1508 nvmet_tcp_free_cmds(queue); 1509 if (queue->hdr_digest || queue->data_digest) 1510 nvmet_tcp_free_crypto(queue); 1511 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1512 1513 page = virt_to_head_page(queue->pf_cache.va); 1514 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1515 kfree(queue); 1516 } 1517 1518 static void nvmet_tcp_data_ready(struct sock *sk) 1519 { 1520 struct nvmet_tcp_queue *queue; 1521 1522 trace_sk_data_ready(sk); 1523 1524 read_lock_bh(&sk->sk_callback_lock); 1525 queue = sk->sk_user_data; 1526 if (likely(queue)) 1527 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1528 read_unlock_bh(&sk->sk_callback_lock); 1529 } 1530 1531 static void nvmet_tcp_write_space(struct sock *sk) 1532 { 1533 struct nvmet_tcp_queue *queue; 1534 1535 read_lock_bh(&sk->sk_callback_lock); 1536 queue = sk->sk_user_data; 1537 if (unlikely(!queue)) 1538 goto out; 1539 1540 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1541 queue->write_space(sk); 1542 goto out; 1543 } 1544 1545 if (sk_stream_is_writeable(sk)) { 1546 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1547 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1548 } 1549 out: 1550 read_unlock_bh(&sk->sk_callback_lock); 1551 } 1552 1553 static void nvmet_tcp_state_change(struct sock *sk) 1554 { 1555 struct nvmet_tcp_queue *queue; 1556 1557 read_lock_bh(&sk->sk_callback_lock); 1558 queue = sk->sk_user_data; 1559 if (!queue) 1560 goto done; 1561 1562 switch (sk->sk_state) { 1563 case TCP_FIN_WAIT2: 1564 case TCP_LAST_ACK: 1565 break; 1566 case TCP_FIN_WAIT1: 1567 case TCP_CLOSE_WAIT: 1568 case TCP_CLOSE: 1569 /* FALLTHRU */ 1570 nvmet_tcp_schedule_release_queue(queue); 1571 break; 1572 default: 1573 pr_warn("queue %d unhandled state %d\n", 1574 queue->idx, sk->sk_state); 1575 } 1576 done: 1577 read_unlock_bh(&sk->sk_callback_lock); 1578 } 1579 1580 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1581 { 1582 struct socket *sock = queue->sock; 1583 struct inet_sock *inet = inet_sk(sock->sk); 1584 int ret; 1585 1586 ret = kernel_getsockname(sock, 1587 (struct sockaddr *)&queue->sockaddr); 1588 if (ret < 0) 1589 return ret; 1590 1591 ret = kernel_getpeername(sock, 1592 (struct sockaddr *)&queue->sockaddr_peer); 1593 if (ret < 0) 1594 return ret; 1595 1596 /* 1597 * Cleanup whatever is sitting in the TCP transmit queue on socket 1598 * close. This is done to prevent stale data from being sent should 1599 * the network connection be restored before TCP times out. 1600 */ 1601 sock_no_linger(sock->sk); 1602 1603 if (so_priority > 0) 1604 sock_set_priority(sock->sk, so_priority); 1605 1606 /* Set socket type of service */ 1607 if (inet->rcv_tos > 0) 1608 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1609 1610 ret = 0; 1611 write_lock_bh(&sock->sk->sk_callback_lock); 1612 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1613 /* 1614 * If the socket is already closing, don't even start 1615 * consuming it 1616 */ 1617 ret = -ENOTCONN; 1618 } else { 1619 sock->sk->sk_user_data = queue; 1620 queue->data_ready = sock->sk->sk_data_ready; 1621 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1622 queue->state_change = sock->sk->sk_state_change; 1623 sock->sk->sk_state_change = nvmet_tcp_state_change; 1624 queue->write_space = sock->sk->sk_write_space; 1625 sock->sk->sk_write_space = nvmet_tcp_write_space; 1626 if (idle_poll_period_usecs) 1627 nvmet_tcp_arm_queue_deadline(queue); 1628 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1629 } 1630 write_unlock_bh(&sock->sk->sk_callback_lock); 1631 1632 return ret; 1633 } 1634 1635 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1636 struct socket *newsock) 1637 { 1638 struct nvmet_tcp_queue *queue; 1639 int ret; 1640 1641 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1642 if (!queue) 1643 return -ENOMEM; 1644 1645 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1646 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1647 queue->sock = newsock; 1648 queue->port = port; 1649 queue->nr_cmds = 0; 1650 spin_lock_init(&queue->state_lock); 1651 queue->state = NVMET_TCP_Q_CONNECTING; 1652 INIT_LIST_HEAD(&queue->free_list); 1653 init_llist_head(&queue->resp_list); 1654 INIT_LIST_HEAD(&queue->resp_send_list); 1655 1656 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1657 if (queue->idx < 0) { 1658 ret = queue->idx; 1659 goto out_free_queue; 1660 } 1661 1662 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1663 if (ret) 1664 goto out_ida_remove; 1665 1666 ret = nvmet_sq_init(&queue->nvme_sq); 1667 if (ret) 1668 goto out_free_connect; 1669 1670 nvmet_prepare_receive_pdu(queue); 1671 1672 mutex_lock(&nvmet_tcp_queue_mutex); 1673 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1674 mutex_unlock(&nvmet_tcp_queue_mutex); 1675 1676 ret = nvmet_tcp_set_queue_sock(queue); 1677 if (ret) 1678 goto out_destroy_sq; 1679 1680 return 0; 1681 out_destroy_sq: 1682 mutex_lock(&nvmet_tcp_queue_mutex); 1683 list_del_init(&queue->queue_list); 1684 mutex_unlock(&nvmet_tcp_queue_mutex); 1685 nvmet_sq_destroy(&queue->nvme_sq); 1686 out_free_connect: 1687 nvmet_tcp_free_cmd(&queue->connect); 1688 out_ida_remove: 1689 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1690 out_free_queue: 1691 kfree(queue); 1692 return ret; 1693 } 1694 1695 static void nvmet_tcp_accept_work(struct work_struct *w) 1696 { 1697 struct nvmet_tcp_port *port = 1698 container_of(w, struct nvmet_tcp_port, accept_work); 1699 struct socket *newsock; 1700 int ret; 1701 1702 while (true) { 1703 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1704 if (ret < 0) { 1705 if (ret != -EAGAIN) 1706 pr_warn("failed to accept err=%d\n", ret); 1707 return; 1708 } 1709 ret = nvmet_tcp_alloc_queue(port, newsock); 1710 if (ret) { 1711 pr_err("failed to allocate queue\n"); 1712 sock_release(newsock); 1713 } 1714 } 1715 } 1716 1717 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1718 { 1719 struct nvmet_tcp_port *port; 1720 1721 trace_sk_data_ready(sk); 1722 1723 read_lock_bh(&sk->sk_callback_lock); 1724 port = sk->sk_user_data; 1725 if (!port) 1726 goto out; 1727 1728 if (sk->sk_state == TCP_LISTEN) 1729 queue_work(nvmet_wq, &port->accept_work); 1730 out: 1731 read_unlock_bh(&sk->sk_callback_lock); 1732 } 1733 1734 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1735 { 1736 struct nvmet_tcp_port *port; 1737 __kernel_sa_family_t af; 1738 int ret; 1739 1740 port = kzalloc(sizeof(*port), GFP_KERNEL); 1741 if (!port) 1742 return -ENOMEM; 1743 1744 switch (nport->disc_addr.adrfam) { 1745 case NVMF_ADDR_FAMILY_IP4: 1746 af = AF_INET; 1747 break; 1748 case NVMF_ADDR_FAMILY_IP6: 1749 af = AF_INET6; 1750 break; 1751 default: 1752 pr_err("address family %d not supported\n", 1753 nport->disc_addr.adrfam); 1754 ret = -EINVAL; 1755 goto err_port; 1756 } 1757 1758 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1759 nport->disc_addr.trsvcid, &port->addr); 1760 if (ret) { 1761 pr_err("malformed ip/port passed: %s:%s\n", 1762 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1763 goto err_port; 1764 } 1765 1766 port->nport = nport; 1767 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1768 if (port->nport->inline_data_size < 0) 1769 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1770 1771 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1772 IPPROTO_TCP, &port->sock); 1773 if (ret) { 1774 pr_err("failed to create a socket\n"); 1775 goto err_port; 1776 } 1777 1778 port->sock->sk->sk_user_data = port; 1779 port->data_ready = port->sock->sk->sk_data_ready; 1780 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1781 sock_set_reuseaddr(port->sock->sk); 1782 tcp_sock_set_nodelay(port->sock->sk); 1783 if (so_priority > 0) 1784 sock_set_priority(port->sock->sk, so_priority); 1785 1786 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1787 sizeof(port->addr)); 1788 if (ret) { 1789 pr_err("failed to bind port socket %d\n", ret); 1790 goto err_sock; 1791 } 1792 1793 ret = kernel_listen(port->sock, 128); 1794 if (ret) { 1795 pr_err("failed to listen %d on port sock\n", ret); 1796 goto err_sock; 1797 } 1798 1799 nport->priv = port; 1800 pr_info("enabling port %d (%pISpc)\n", 1801 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1802 1803 return 0; 1804 1805 err_sock: 1806 sock_release(port->sock); 1807 err_port: 1808 kfree(port); 1809 return ret; 1810 } 1811 1812 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 1813 { 1814 struct nvmet_tcp_queue *queue; 1815 1816 mutex_lock(&nvmet_tcp_queue_mutex); 1817 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1818 if (queue->port == port) 1819 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1820 mutex_unlock(&nvmet_tcp_queue_mutex); 1821 } 1822 1823 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1824 { 1825 struct nvmet_tcp_port *port = nport->priv; 1826 1827 write_lock_bh(&port->sock->sk->sk_callback_lock); 1828 port->sock->sk->sk_data_ready = port->data_ready; 1829 port->sock->sk->sk_user_data = NULL; 1830 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1831 cancel_work_sync(&port->accept_work); 1832 /* 1833 * Destroy the remaining queues, which are not belong to any 1834 * controller yet. 1835 */ 1836 nvmet_tcp_destroy_port_queues(port); 1837 1838 sock_release(port->sock); 1839 kfree(port); 1840 } 1841 1842 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1843 { 1844 struct nvmet_tcp_queue *queue; 1845 1846 mutex_lock(&nvmet_tcp_queue_mutex); 1847 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1848 if (queue->nvme_sq.ctrl == ctrl) 1849 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1850 mutex_unlock(&nvmet_tcp_queue_mutex); 1851 } 1852 1853 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1854 { 1855 struct nvmet_tcp_queue *queue = 1856 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1857 1858 if (sq->qid == 0) { 1859 /* Let inflight controller teardown complete */ 1860 flush_workqueue(nvmet_wq); 1861 } 1862 1863 queue->nr_cmds = sq->size * 2; 1864 if (nvmet_tcp_alloc_cmds(queue)) 1865 return NVME_SC_INTERNAL; 1866 return 0; 1867 } 1868 1869 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1870 struct nvmet_port *nport, char *traddr) 1871 { 1872 struct nvmet_tcp_port *port = nport->priv; 1873 1874 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1875 struct nvmet_tcp_cmd *cmd = 1876 container_of(req, struct nvmet_tcp_cmd, req); 1877 struct nvmet_tcp_queue *queue = cmd->queue; 1878 1879 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1880 } else { 1881 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1882 } 1883 } 1884 1885 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1886 .owner = THIS_MODULE, 1887 .type = NVMF_TRTYPE_TCP, 1888 .msdbd = 1, 1889 .add_port = nvmet_tcp_add_port, 1890 .remove_port = nvmet_tcp_remove_port, 1891 .queue_response = nvmet_tcp_queue_response, 1892 .delete_ctrl = nvmet_tcp_delete_ctrl, 1893 .install_queue = nvmet_tcp_install_queue, 1894 .disc_traddr = nvmet_tcp_disc_port_addr, 1895 }; 1896 1897 static int __init nvmet_tcp_init(void) 1898 { 1899 int ret; 1900 1901 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 1902 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1903 if (!nvmet_tcp_wq) 1904 return -ENOMEM; 1905 1906 ret = nvmet_register_transport(&nvmet_tcp_ops); 1907 if (ret) 1908 goto err; 1909 1910 return 0; 1911 err: 1912 destroy_workqueue(nvmet_tcp_wq); 1913 return ret; 1914 } 1915 1916 static void __exit nvmet_tcp_exit(void) 1917 { 1918 struct nvmet_tcp_queue *queue; 1919 1920 nvmet_unregister_transport(&nvmet_tcp_ops); 1921 1922 flush_workqueue(nvmet_wq); 1923 mutex_lock(&nvmet_tcp_queue_mutex); 1924 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1925 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1926 mutex_unlock(&nvmet_tcp_queue_mutex); 1927 flush_workqueue(nvmet_wq); 1928 1929 destroy_workqueue(nvmet_tcp_wq); 1930 ida_destroy(&nvmet_tcp_queue_ida); 1931 } 1932 1933 module_init(nvmet_tcp_init); 1934 module_exit(nvmet_tcp_exit); 1935 1936 MODULE_LICENSE("GPL v2"); 1937 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1938