1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 #include <trace/events/sock.h> 18 19 #include "nvmet.h" 20 21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 22 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ 23 24 static int param_store_val(const char *str, int *val, int min, int max) 25 { 26 int ret, new_val; 27 28 ret = kstrtoint(str, 10, &new_val); 29 if (ret) 30 return -EINVAL; 31 32 if (new_val < min || new_val > max) 33 return -EINVAL; 34 35 *val = new_val; 36 return 0; 37 } 38 39 static int set_params(const char *str, const struct kernel_param *kp) 40 { 41 return param_store_val(str, kp->arg, 0, INT_MAX); 42 } 43 44 static const struct kernel_param_ops set_param_ops = { 45 .set = set_params, 46 .get = param_get_int, 47 }; 48 49 /* Define the socket priority to use for connections were it is desirable 50 * that the NIC consider performing optimized packet processing or filtering. 51 * A non-zero value being sufficient to indicate general consideration of any 52 * possible optimization. Making it a module param allows for alternative 53 * values that may be unique for some NIC implementations. 54 */ 55 static int so_priority; 56 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 57 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 58 59 /* Define a time period (in usecs) that io_work() shall sample an activated 60 * queue before determining it to be idle. This optional module behavior 61 * can enable NIC solutions that support socket optimized packet processing 62 * using advanced interrupt moderation techniques. 63 */ 64 static int idle_poll_period_usecs; 65 device_param_cb(idle_poll_period_usecs, &set_param_ops, 66 &idle_poll_period_usecs, 0644); 67 MODULE_PARM_DESC(idle_poll_period_usecs, 68 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 69 70 #define NVMET_TCP_RECV_BUDGET 8 71 #define NVMET_TCP_SEND_BUDGET 8 72 #define NVMET_TCP_IO_WORK_BUDGET 64 73 74 enum nvmet_tcp_send_state { 75 NVMET_TCP_SEND_DATA_PDU, 76 NVMET_TCP_SEND_DATA, 77 NVMET_TCP_SEND_R2T, 78 NVMET_TCP_SEND_DDGST, 79 NVMET_TCP_SEND_RESPONSE 80 }; 81 82 enum nvmet_tcp_recv_state { 83 NVMET_TCP_RECV_PDU, 84 NVMET_TCP_RECV_DATA, 85 NVMET_TCP_RECV_DDGST, 86 NVMET_TCP_RECV_ERR, 87 }; 88 89 enum { 90 NVMET_TCP_F_INIT_FAILED = (1 << 0), 91 }; 92 93 struct nvmet_tcp_cmd { 94 struct nvmet_tcp_queue *queue; 95 struct nvmet_req req; 96 97 struct nvme_tcp_cmd_pdu *cmd_pdu; 98 struct nvme_tcp_rsp_pdu *rsp_pdu; 99 struct nvme_tcp_data_pdu *data_pdu; 100 struct nvme_tcp_r2t_pdu *r2t_pdu; 101 102 u32 rbytes_done; 103 u32 wbytes_done; 104 105 u32 pdu_len; 106 u32 pdu_recv; 107 int sg_idx; 108 struct msghdr recv_msg; 109 struct bio_vec *iov; 110 u32 flags; 111 112 struct list_head entry; 113 struct llist_node lentry; 114 115 /* send state */ 116 u32 offset; 117 struct scatterlist *cur_sg; 118 enum nvmet_tcp_send_state state; 119 120 __le32 exp_ddgst; 121 __le32 recv_ddgst; 122 }; 123 124 enum nvmet_tcp_queue_state { 125 NVMET_TCP_Q_CONNECTING, 126 NVMET_TCP_Q_LIVE, 127 NVMET_TCP_Q_DISCONNECTING, 128 }; 129 130 struct nvmet_tcp_queue { 131 struct socket *sock; 132 struct nvmet_tcp_port *port; 133 struct work_struct io_work; 134 struct nvmet_cq nvme_cq; 135 struct nvmet_sq nvme_sq; 136 137 /* send state */ 138 struct nvmet_tcp_cmd *cmds; 139 unsigned int nr_cmds; 140 struct list_head free_list; 141 struct llist_head resp_list; 142 struct list_head resp_send_list; 143 int send_list_len; 144 struct nvmet_tcp_cmd *snd_cmd; 145 146 /* recv state */ 147 int offset; 148 int left; 149 enum nvmet_tcp_recv_state rcv_state; 150 struct nvmet_tcp_cmd *cmd; 151 union nvme_tcp_pdu pdu; 152 153 /* digest state */ 154 bool hdr_digest; 155 bool data_digest; 156 struct ahash_request *snd_hash; 157 struct ahash_request *rcv_hash; 158 159 unsigned long poll_end; 160 161 spinlock_t state_lock; 162 enum nvmet_tcp_queue_state state; 163 164 struct sockaddr_storage sockaddr; 165 struct sockaddr_storage sockaddr_peer; 166 struct work_struct release_work; 167 168 int idx; 169 struct list_head queue_list; 170 171 struct nvmet_tcp_cmd connect; 172 173 struct page_frag_cache pf_cache; 174 175 void (*data_ready)(struct sock *); 176 void (*state_change)(struct sock *); 177 void (*write_space)(struct sock *); 178 }; 179 180 struct nvmet_tcp_port { 181 struct socket *sock; 182 struct work_struct accept_work; 183 struct nvmet_port *nport; 184 struct sockaddr_storage addr; 185 void (*data_ready)(struct sock *); 186 }; 187 188 static DEFINE_IDA(nvmet_tcp_queue_ida); 189 static LIST_HEAD(nvmet_tcp_queue_list); 190 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 191 192 static struct workqueue_struct *nvmet_tcp_wq; 193 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 194 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 195 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 196 197 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 198 struct nvmet_tcp_cmd *cmd) 199 { 200 if (unlikely(!queue->nr_cmds)) { 201 /* We didn't allocate cmds yet, send 0xffff */ 202 return USHRT_MAX; 203 } 204 205 return cmd - queue->cmds; 206 } 207 208 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 209 { 210 return nvme_is_write(cmd->req.cmd) && 211 cmd->rbytes_done < cmd->req.transfer_len; 212 } 213 214 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 215 { 216 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 217 } 218 219 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 220 { 221 return !nvme_is_write(cmd->req.cmd) && 222 cmd->req.transfer_len > 0 && 223 !cmd->req.cqe->status; 224 } 225 226 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 227 { 228 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 229 !cmd->rbytes_done; 230 } 231 232 static inline struct nvmet_tcp_cmd * 233 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 234 { 235 struct nvmet_tcp_cmd *cmd; 236 237 cmd = list_first_entry_or_null(&queue->free_list, 238 struct nvmet_tcp_cmd, entry); 239 if (!cmd) 240 return NULL; 241 list_del_init(&cmd->entry); 242 243 cmd->rbytes_done = cmd->wbytes_done = 0; 244 cmd->pdu_len = 0; 245 cmd->pdu_recv = 0; 246 cmd->iov = NULL; 247 cmd->flags = 0; 248 return cmd; 249 } 250 251 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 252 { 253 if (unlikely(cmd == &cmd->queue->connect)) 254 return; 255 256 list_add_tail(&cmd->entry, &cmd->queue->free_list); 257 } 258 259 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 260 { 261 return queue->sock->sk->sk_incoming_cpu; 262 } 263 264 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 265 { 266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 267 } 268 269 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 270 { 271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 272 } 273 274 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 275 void *pdu, size_t len) 276 { 277 struct scatterlist sg; 278 279 sg_init_one(&sg, pdu, len); 280 ahash_request_set_crypt(hash, &sg, pdu + len, len); 281 crypto_ahash_digest(hash); 282 } 283 284 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 285 void *pdu, size_t len) 286 { 287 struct nvme_tcp_hdr *hdr = pdu; 288 __le32 recv_digest; 289 __le32 exp_digest; 290 291 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 292 pr_err("queue %d: header digest enabled but no header digest\n", 293 queue->idx); 294 return -EPROTO; 295 } 296 297 recv_digest = *(__le32 *)(pdu + hdr->hlen); 298 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 299 exp_digest = *(__le32 *)(pdu + hdr->hlen); 300 if (recv_digest != exp_digest) { 301 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 302 queue->idx, le32_to_cpu(recv_digest), 303 le32_to_cpu(exp_digest)); 304 return -EPROTO; 305 } 306 307 return 0; 308 } 309 310 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 311 { 312 struct nvme_tcp_hdr *hdr = pdu; 313 u8 digest_len = nvmet_tcp_hdgst_len(queue); 314 u32 len; 315 316 len = le32_to_cpu(hdr->plen) - hdr->hlen - 317 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 318 319 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 320 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 321 return -EPROTO; 322 } 323 324 return 0; 325 } 326 327 /* If cmd buffers are NULL, no operation is performed */ 328 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 329 { 330 kfree(cmd->iov); 331 sgl_free(cmd->req.sg); 332 cmd->iov = NULL; 333 cmd->req.sg = NULL; 334 } 335 336 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 337 { 338 struct bio_vec *iov = cmd->iov; 339 struct scatterlist *sg; 340 u32 length, offset, sg_offset; 341 int nr_pages; 342 343 length = cmd->pdu_len; 344 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 345 offset = cmd->rbytes_done; 346 cmd->sg_idx = offset / PAGE_SIZE; 347 sg_offset = offset % PAGE_SIZE; 348 sg = &cmd->req.sg[cmd->sg_idx]; 349 350 while (length) { 351 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 352 353 bvec_set_page(iov, sg_page(sg), iov_len, 354 sg->offset + sg_offset); 355 356 length -= iov_len; 357 sg = sg_next(sg); 358 iov++; 359 sg_offset = 0; 360 } 361 362 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 363 nr_pages, cmd->pdu_len); 364 } 365 366 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 367 { 368 queue->rcv_state = NVMET_TCP_RECV_ERR; 369 if (queue->nvme_sq.ctrl) 370 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 371 else 372 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 373 } 374 375 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 376 { 377 queue->rcv_state = NVMET_TCP_RECV_ERR; 378 if (status == -EPIPE || status == -ECONNRESET) 379 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 380 else 381 nvmet_tcp_fatal_error(queue); 382 } 383 384 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 385 { 386 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 387 u32 len = le32_to_cpu(sgl->length); 388 389 if (!len) 390 return 0; 391 392 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 393 NVME_SGL_FMT_OFFSET)) { 394 if (!nvme_is_write(cmd->req.cmd)) 395 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 396 397 if (len > cmd->req.port->inline_data_size) 398 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 399 cmd->pdu_len = len; 400 } 401 cmd->req.transfer_len += len; 402 403 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 404 if (!cmd->req.sg) 405 return NVME_SC_INTERNAL; 406 cmd->cur_sg = cmd->req.sg; 407 408 if (nvmet_tcp_has_data_in(cmd)) { 409 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 410 sizeof(*cmd->iov), GFP_KERNEL); 411 if (!cmd->iov) 412 goto err; 413 } 414 415 return 0; 416 err: 417 nvmet_tcp_free_cmd_buffers(cmd); 418 return NVME_SC_INTERNAL; 419 } 420 421 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 422 struct nvmet_tcp_cmd *cmd) 423 { 424 ahash_request_set_crypt(hash, cmd->req.sg, 425 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 426 crypto_ahash_digest(hash); 427 } 428 429 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 430 { 431 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 432 struct nvmet_tcp_queue *queue = cmd->queue; 433 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 434 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 435 436 cmd->offset = 0; 437 cmd->state = NVMET_TCP_SEND_DATA_PDU; 438 439 pdu->hdr.type = nvme_tcp_c2h_data; 440 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 441 NVME_TCP_F_DATA_SUCCESS : 0); 442 pdu->hdr.hlen = sizeof(*pdu); 443 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 444 pdu->hdr.plen = 445 cpu_to_le32(pdu->hdr.hlen + hdgst + 446 cmd->req.transfer_len + ddgst); 447 pdu->command_id = cmd->req.cqe->command_id; 448 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 449 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 450 451 if (queue->data_digest) { 452 pdu->hdr.flags |= NVME_TCP_F_DDGST; 453 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 454 } 455 456 if (cmd->queue->hdr_digest) { 457 pdu->hdr.flags |= NVME_TCP_F_HDGST; 458 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 459 } 460 } 461 462 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 463 { 464 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 465 struct nvmet_tcp_queue *queue = cmd->queue; 466 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 467 468 cmd->offset = 0; 469 cmd->state = NVMET_TCP_SEND_R2T; 470 471 pdu->hdr.type = nvme_tcp_r2t; 472 pdu->hdr.flags = 0; 473 pdu->hdr.hlen = sizeof(*pdu); 474 pdu->hdr.pdo = 0; 475 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 476 477 pdu->command_id = cmd->req.cmd->common.command_id; 478 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 479 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 480 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 481 if (cmd->queue->hdr_digest) { 482 pdu->hdr.flags |= NVME_TCP_F_HDGST; 483 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 484 } 485 } 486 487 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 488 { 489 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 490 struct nvmet_tcp_queue *queue = cmd->queue; 491 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 492 493 cmd->offset = 0; 494 cmd->state = NVMET_TCP_SEND_RESPONSE; 495 496 pdu->hdr.type = nvme_tcp_rsp; 497 pdu->hdr.flags = 0; 498 pdu->hdr.hlen = sizeof(*pdu); 499 pdu->hdr.pdo = 0; 500 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 501 if (cmd->queue->hdr_digest) { 502 pdu->hdr.flags |= NVME_TCP_F_HDGST; 503 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 504 } 505 } 506 507 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 508 { 509 struct llist_node *node; 510 struct nvmet_tcp_cmd *cmd; 511 512 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 513 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 514 list_add(&cmd->entry, &queue->resp_send_list); 515 queue->send_list_len++; 516 } 517 } 518 519 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 520 { 521 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 522 struct nvmet_tcp_cmd, entry); 523 if (!queue->snd_cmd) { 524 nvmet_tcp_process_resp_list(queue); 525 queue->snd_cmd = 526 list_first_entry_or_null(&queue->resp_send_list, 527 struct nvmet_tcp_cmd, entry); 528 if (unlikely(!queue->snd_cmd)) 529 return NULL; 530 } 531 532 list_del_init(&queue->snd_cmd->entry); 533 queue->send_list_len--; 534 535 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 536 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 537 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 538 nvmet_setup_r2t_pdu(queue->snd_cmd); 539 else 540 nvmet_setup_response_pdu(queue->snd_cmd); 541 542 return queue->snd_cmd; 543 } 544 545 static void nvmet_tcp_queue_response(struct nvmet_req *req) 546 { 547 struct nvmet_tcp_cmd *cmd = 548 container_of(req, struct nvmet_tcp_cmd, req); 549 struct nvmet_tcp_queue *queue = cmd->queue; 550 struct nvme_sgl_desc *sgl; 551 u32 len; 552 553 if (unlikely(cmd == queue->cmd)) { 554 sgl = &cmd->req.cmd->common.dptr.sgl; 555 len = le32_to_cpu(sgl->length); 556 557 /* 558 * Wait for inline data before processing the response. 559 * Avoid using helpers, this might happen before 560 * nvmet_req_init is completed. 561 */ 562 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 563 len && len <= cmd->req.port->inline_data_size && 564 nvme_is_write(cmd->req.cmd)) 565 return; 566 } 567 568 llist_add(&cmd->lentry, &queue->resp_list); 569 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 570 } 571 572 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 573 { 574 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 575 nvmet_tcp_queue_response(&cmd->req); 576 else 577 cmd->req.execute(&cmd->req); 578 } 579 580 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 581 { 582 struct msghdr msg = { 583 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 584 }; 585 struct bio_vec bvec; 586 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 587 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 588 int ret; 589 590 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 591 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 592 ret = sock_sendmsg(cmd->queue->sock, &msg); 593 if (ret <= 0) 594 return ret; 595 596 cmd->offset += ret; 597 left -= ret; 598 599 if (left) 600 return -EAGAIN; 601 602 cmd->state = NVMET_TCP_SEND_DATA; 603 cmd->offset = 0; 604 return 1; 605 } 606 607 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 608 { 609 struct nvmet_tcp_queue *queue = cmd->queue; 610 int ret; 611 612 while (cmd->cur_sg) { 613 struct msghdr msg = { 614 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 615 }; 616 struct page *page = sg_page(cmd->cur_sg); 617 struct bio_vec bvec; 618 u32 left = cmd->cur_sg->length - cmd->offset; 619 620 if ((!last_in_batch && cmd->queue->send_list_len) || 621 cmd->wbytes_done + left < cmd->req.transfer_len || 622 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 623 msg.msg_flags |= MSG_MORE; 624 625 bvec_set_page(&bvec, page, left, cmd->offset); 626 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 627 ret = sock_sendmsg(cmd->queue->sock, &msg); 628 if (ret <= 0) 629 return ret; 630 631 cmd->offset += ret; 632 cmd->wbytes_done += ret; 633 634 /* Done with sg?*/ 635 if (cmd->offset == cmd->cur_sg->length) { 636 cmd->cur_sg = sg_next(cmd->cur_sg); 637 cmd->offset = 0; 638 } 639 } 640 641 if (queue->data_digest) { 642 cmd->state = NVMET_TCP_SEND_DDGST; 643 cmd->offset = 0; 644 } else { 645 if (queue->nvme_sq.sqhd_disabled) { 646 cmd->queue->snd_cmd = NULL; 647 nvmet_tcp_put_cmd(cmd); 648 } else { 649 nvmet_setup_response_pdu(cmd); 650 } 651 } 652 653 if (queue->nvme_sq.sqhd_disabled) 654 nvmet_tcp_free_cmd_buffers(cmd); 655 656 return 1; 657 658 } 659 660 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 661 bool last_in_batch) 662 { 663 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 664 struct bio_vec bvec; 665 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 666 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 667 int ret; 668 669 if (!last_in_batch && cmd->queue->send_list_len) 670 msg.msg_flags |= MSG_MORE; 671 else 672 msg.msg_flags |= MSG_EOR; 673 674 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 675 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 676 ret = sock_sendmsg(cmd->queue->sock, &msg); 677 if (ret <= 0) 678 return ret; 679 cmd->offset += ret; 680 left -= ret; 681 682 if (left) 683 return -EAGAIN; 684 685 nvmet_tcp_free_cmd_buffers(cmd); 686 cmd->queue->snd_cmd = NULL; 687 nvmet_tcp_put_cmd(cmd); 688 return 1; 689 } 690 691 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 692 { 693 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 694 struct bio_vec bvec; 695 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 696 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 697 int ret; 698 699 if (!last_in_batch && cmd->queue->send_list_len) 700 msg.msg_flags |= MSG_MORE; 701 else 702 msg.msg_flags |= MSG_EOR; 703 704 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 705 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 706 ret = sock_sendmsg(cmd->queue->sock, &msg); 707 if (ret <= 0) 708 return ret; 709 cmd->offset += ret; 710 left -= ret; 711 712 if (left) 713 return -EAGAIN; 714 715 cmd->queue->snd_cmd = NULL; 716 return 1; 717 } 718 719 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 720 { 721 struct nvmet_tcp_queue *queue = cmd->queue; 722 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 723 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 724 struct kvec iov = { 725 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 726 .iov_len = left 727 }; 728 int ret; 729 730 if (!last_in_batch && cmd->queue->send_list_len) 731 msg.msg_flags |= MSG_MORE; 732 else 733 msg.msg_flags |= MSG_EOR; 734 735 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 736 if (unlikely(ret <= 0)) 737 return ret; 738 739 cmd->offset += ret; 740 left -= ret; 741 742 if (left) 743 return -EAGAIN; 744 745 if (queue->nvme_sq.sqhd_disabled) { 746 cmd->queue->snd_cmd = NULL; 747 nvmet_tcp_put_cmd(cmd); 748 } else { 749 nvmet_setup_response_pdu(cmd); 750 } 751 return 1; 752 } 753 754 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 755 bool last_in_batch) 756 { 757 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 758 int ret = 0; 759 760 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 761 cmd = nvmet_tcp_fetch_cmd(queue); 762 if (unlikely(!cmd)) 763 return 0; 764 } 765 766 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 767 ret = nvmet_try_send_data_pdu(cmd); 768 if (ret <= 0) 769 goto done_send; 770 } 771 772 if (cmd->state == NVMET_TCP_SEND_DATA) { 773 ret = nvmet_try_send_data(cmd, last_in_batch); 774 if (ret <= 0) 775 goto done_send; 776 } 777 778 if (cmd->state == NVMET_TCP_SEND_DDGST) { 779 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 780 if (ret <= 0) 781 goto done_send; 782 } 783 784 if (cmd->state == NVMET_TCP_SEND_R2T) { 785 ret = nvmet_try_send_r2t(cmd, last_in_batch); 786 if (ret <= 0) 787 goto done_send; 788 } 789 790 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 791 ret = nvmet_try_send_response(cmd, last_in_batch); 792 793 done_send: 794 if (ret < 0) { 795 if (ret == -EAGAIN) 796 return 0; 797 return ret; 798 } 799 800 return 1; 801 } 802 803 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 804 int budget, int *sends) 805 { 806 int i, ret = 0; 807 808 for (i = 0; i < budget; i++) { 809 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 810 if (unlikely(ret < 0)) { 811 nvmet_tcp_socket_error(queue, ret); 812 goto done; 813 } else if (ret == 0) { 814 break; 815 } 816 (*sends)++; 817 } 818 done: 819 return ret; 820 } 821 822 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 823 { 824 queue->offset = 0; 825 queue->left = sizeof(struct nvme_tcp_hdr); 826 queue->cmd = NULL; 827 queue->rcv_state = NVMET_TCP_RECV_PDU; 828 } 829 830 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 831 { 832 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 833 834 ahash_request_free(queue->rcv_hash); 835 ahash_request_free(queue->snd_hash); 836 crypto_free_ahash(tfm); 837 } 838 839 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 840 { 841 struct crypto_ahash *tfm; 842 843 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 844 if (IS_ERR(tfm)) 845 return PTR_ERR(tfm); 846 847 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 848 if (!queue->snd_hash) 849 goto free_tfm; 850 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 851 852 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 853 if (!queue->rcv_hash) 854 goto free_snd_hash; 855 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 856 857 return 0; 858 free_snd_hash: 859 ahash_request_free(queue->snd_hash); 860 free_tfm: 861 crypto_free_ahash(tfm); 862 return -ENOMEM; 863 } 864 865 866 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 867 { 868 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 869 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 870 struct msghdr msg = {}; 871 struct kvec iov; 872 int ret; 873 874 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 875 pr_err("bad nvme-tcp pdu length (%d)\n", 876 le32_to_cpu(icreq->hdr.plen)); 877 nvmet_tcp_fatal_error(queue); 878 } 879 880 if (icreq->pfv != NVME_TCP_PFV_1_0) { 881 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 882 return -EPROTO; 883 } 884 885 if (icreq->hpda != 0) { 886 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 887 icreq->hpda); 888 return -EPROTO; 889 } 890 891 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 892 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 893 if (queue->hdr_digest || queue->data_digest) { 894 ret = nvmet_tcp_alloc_crypto(queue); 895 if (ret) 896 return ret; 897 } 898 899 memset(icresp, 0, sizeof(*icresp)); 900 icresp->hdr.type = nvme_tcp_icresp; 901 icresp->hdr.hlen = sizeof(*icresp); 902 icresp->hdr.pdo = 0; 903 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 904 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 905 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); 906 icresp->cpda = 0; 907 if (queue->hdr_digest) 908 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 909 if (queue->data_digest) 910 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 911 912 iov.iov_base = icresp; 913 iov.iov_len = sizeof(*icresp); 914 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 915 if (ret < 0) 916 return ret; /* queue removal will cleanup */ 917 918 queue->state = NVMET_TCP_Q_LIVE; 919 nvmet_prepare_receive_pdu(queue); 920 return 0; 921 } 922 923 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 924 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 925 { 926 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 927 int ret; 928 929 /* 930 * This command has not been processed yet, hence we are trying to 931 * figure out if there is still pending data left to receive. If 932 * we don't, we can simply prepare for the next pdu and bail out, 933 * otherwise we will need to prepare a buffer and receive the 934 * stale data before continuing forward. 935 */ 936 if (!nvme_is_write(cmd->req.cmd) || !data_len || 937 data_len > cmd->req.port->inline_data_size) { 938 nvmet_prepare_receive_pdu(queue); 939 return; 940 } 941 942 ret = nvmet_tcp_map_data(cmd); 943 if (unlikely(ret)) { 944 pr_err("queue %d: failed to map data\n", queue->idx); 945 nvmet_tcp_fatal_error(queue); 946 return; 947 } 948 949 queue->rcv_state = NVMET_TCP_RECV_DATA; 950 nvmet_tcp_build_pdu_iovec(cmd); 951 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 952 } 953 954 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 955 { 956 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 957 struct nvmet_tcp_cmd *cmd; 958 unsigned int exp_data_len; 959 960 if (likely(queue->nr_cmds)) { 961 if (unlikely(data->ttag >= queue->nr_cmds)) { 962 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 963 queue->idx, data->ttag, queue->nr_cmds); 964 nvmet_tcp_fatal_error(queue); 965 return -EPROTO; 966 } 967 cmd = &queue->cmds[data->ttag]; 968 } else { 969 cmd = &queue->connect; 970 } 971 972 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 973 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 974 data->ttag, le32_to_cpu(data->data_offset), 975 cmd->rbytes_done); 976 /* FIXME: use path and transport errors */ 977 nvmet_tcp_fatal_error(queue); 978 return -EPROTO; 979 } 980 981 exp_data_len = le32_to_cpu(data->hdr.plen) - 982 nvmet_tcp_hdgst_len(queue) - 983 nvmet_tcp_ddgst_len(queue) - 984 sizeof(*data); 985 986 cmd->pdu_len = le32_to_cpu(data->data_length); 987 if (unlikely(cmd->pdu_len != exp_data_len || 988 cmd->pdu_len == 0 || 989 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { 990 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); 991 /* FIXME: use proper transport errors */ 992 nvmet_tcp_fatal_error(queue); 993 return -EPROTO; 994 } 995 cmd->pdu_recv = 0; 996 nvmet_tcp_build_pdu_iovec(cmd); 997 queue->cmd = cmd; 998 queue->rcv_state = NVMET_TCP_RECV_DATA; 999 1000 return 0; 1001 } 1002 1003 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 1004 { 1005 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1006 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 1007 struct nvmet_req *req; 1008 int ret; 1009 1010 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1011 if (hdr->type != nvme_tcp_icreq) { 1012 pr_err("unexpected pdu type (%d) before icreq\n", 1013 hdr->type); 1014 nvmet_tcp_fatal_error(queue); 1015 return -EPROTO; 1016 } 1017 return nvmet_tcp_handle_icreq(queue); 1018 } 1019 1020 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1021 pr_err("queue %d: received icreq pdu in state %d\n", 1022 queue->idx, queue->state); 1023 nvmet_tcp_fatal_error(queue); 1024 return -EPROTO; 1025 } 1026 1027 if (hdr->type == nvme_tcp_h2c_data) { 1028 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1029 if (unlikely(ret)) 1030 return ret; 1031 return 0; 1032 } 1033 1034 queue->cmd = nvmet_tcp_get_cmd(queue); 1035 if (unlikely(!queue->cmd)) { 1036 /* This should never happen */ 1037 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1038 queue->idx, queue->nr_cmds, queue->send_list_len, 1039 nvme_cmd->common.opcode); 1040 nvmet_tcp_fatal_error(queue); 1041 return -ENOMEM; 1042 } 1043 1044 req = &queue->cmd->req; 1045 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1046 1047 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1048 &queue->nvme_sq, &nvmet_tcp_ops))) { 1049 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1050 req->cmd, req->cmd->common.command_id, 1051 req->cmd->common.opcode, 1052 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1053 1054 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1055 return 0; 1056 } 1057 1058 ret = nvmet_tcp_map_data(queue->cmd); 1059 if (unlikely(ret)) { 1060 pr_err("queue %d: failed to map data\n", queue->idx); 1061 if (nvmet_tcp_has_inline_data(queue->cmd)) 1062 nvmet_tcp_fatal_error(queue); 1063 else 1064 nvmet_req_complete(req, ret); 1065 ret = -EAGAIN; 1066 goto out; 1067 } 1068 1069 if (nvmet_tcp_need_data_in(queue->cmd)) { 1070 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1071 queue->rcv_state = NVMET_TCP_RECV_DATA; 1072 nvmet_tcp_build_pdu_iovec(queue->cmd); 1073 return 0; 1074 } 1075 /* send back R2T */ 1076 nvmet_tcp_queue_response(&queue->cmd->req); 1077 goto out; 1078 } 1079 1080 queue->cmd->req.execute(&queue->cmd->req); 1081 out: 1082 nvmet_prepare_receive_pdu(queue); 1083 return ret; 1084 } 1085 1086 static const u8 nvme_tcp_pdu_sizes[] = { 1087 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1088 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1089 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1090 }; 1091 1092 static inline u8 nvmet_tcp_pdu_size(u8 type) 1093 { 1094 size_t idx = type; 1095 1096 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1097 nvme_tcp_pdu_sizes[idx]) ? 1098 nvme_tcp_pdu_sizes[idx] : 0; 1099 } 1100 1101 static inline bool nvmet_tcp_pdu_valid(u8 type) 1102 { 1103 switch (type) { 1104 case nvme_tcp_icreq: 1105 case nvme_tcp_cmd: 1106 case nvme_tcp_h2c_data: 1107 /* fallthru */ 1108 return true; 1109 } 1110 1111 return false; 1112 } 1113 1114 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1115 { 1116 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1117 int len; 1118 struct kvec iov; 1119 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1120 1121 recv: 1122 iov.iov_base = (void *)&queue->pdu + queue->offset; 1123 iov.iov_len = queue->left; 1124 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1125 iov.iov_len, msg.msg_flags); 1126 if (unlikely(len < 0)) 1127 return len; 1128 1129 queue->offset += len; 1130 queue->left -= len; 1131 if (queue->left) 1132 return -EAGAIN; 1133 1134 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1135 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1136 1137 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1138 pr_err("unexpected pdu type %d\n", hdr->type); 1139 nvmet_tcp_fatal_error(queue); 1140 return -EIO; 1141 } 1142 1143 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1144 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1145 return -EIO; 1146 } 1147 1148 queue->left = hdr->hlen - queue->offset + hdgst; 1149 goto recv; 1150 } 1151 1152 if (queue->hdr_digest && 1153 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1154 nvmet_tcp_fatal_error(queue); /* fatal */ 1155 return -EPROTO; 1156 } 1157 1158 if (queue->data_digest && 1159 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1160 nvmet_tcp_fatal_error(queue); /* fatal */ 1161 return -EPROTO; 1162 } 1163 1164 return nvmet_tcp_done_recv_pdu(queue); 1165 } 1166 1167 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1168 { 1169 struct nvmet_tcp_queue *queue = cmd->queue; 1170 1171 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1172 queue->offset = 0; 1173 queue->left = NVME_TCP_DIGEST_LENGTH; 1174 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1175 } 1176 1177 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1178 { 1179 struct nvmet_tcp_cmd *cmd = queue->cmd; 1180 int ret; 1181 1182 while (msg_data_left(&cmd->recv_msg)) { 1183 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1184 cmd->recv_msg.msg_flags); 1185 if (ret <= 0) 1186 return ret; 1187 1188 cmd->pdu_recv += ret; 1189 cmd->rbytes_done += ret; 1190 } 1191 1192 if (queue->data_digest) { 1193 nvmet_tcp_prep_recv_ddgst(cmd); 1194 return 0; 1195 } 1196 1197 if (cmd->rbytes_done == cmd->req.transfer_len) 1198 nvmet_tcp_execute_request(cmd); 1199 1200 nvmet_prepare_receive_pdu(queue); 1201 return 0; 1202 } 1203 1204 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1205 { 1206 struct nvmet_tcp_cmd *cmd = queue->cmd; 1207 int ret; 1208 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1209 struct kvec iov = { 1210 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1211 .iov_len = queue->left 1212 }; 1213 1214 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1215 iov.iov_len, msg.msg_flags); 1216 if (unlikely(ret < 0)) 1217 return ret; 1218 1219 queue->offset += ret; 1220 queue->left -= ret; 1221 if (queue->left) 1222 return -EAGAIN; 1223 1224 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1225 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1226 queue->idx, cmd->req.cmd->common.command_id, 1227 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1228 le32_to_cpu(cmd->exp_ddgst)); 1229 nvmet_req_uninit(&cmd->req); 1230 nvmet_tcp_free_cmd_buffers(cmd); 1231 nvmet_tcp_fatal_error(queue); 1232 ret = -EPROTO; 1233 goto out; 1234 } 1235 1236 if (cmd->rbytes_done == cmd->req.transfer_len) 1237 nvmet_tcp_execute_request(cmd); 1238 1239 ret = 0; 1240 out: 1241 nvmet_prepare_receive_pdu(queue); 1242 return ret; 1243 } 1244 1245 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1246 { 1247 int result = 0; 1248 1249 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1250 return 0; 1251 1252 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1253 result = nvmet_tcp_try_recv_pdu(queue); 1254 if (result != 0) 1255 goto done_recv; 1256 } 1257 1258 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1259 result = nvmet_tcp_try_recv_data(queue); 1260 if (result != 0) 1261 goto done_recv; 1262 } 1263 1264 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1265 result = nvmet_tcp_try_recv_ddgst(queue); 1266 if (result != 0) 1267 goto done_recv; 1268 } 1269 1270 done_recv: 1271 if (result < 0) { 1272 if (result == -EAGAIN) 1273 return 0; 1274 return result; 1275 } 1276 return 1; 1277 } 1278 1279 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1280 int budget, int *recvs) 1281 { 1282 int i, ret = 0; 1283 1284 for (i = 0; i < budget; i++) { 1285 ret = nvmet_tcp_try_recv_one(queue); 1286 if (unlikely(ret < 0)) { 1287 nvmet_tcp_socket_error(queue, ret); 1288 goto done; 1289 } else if (ret == 0) { 1290 break; 1291 } 1292 (*recvs)++; 1293 } 1294 done: 1295 return ret; 1296 } 1297 1298 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1299 { 1300 spin_lock(&queue->state_lock); 1301 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1302 queue->state = NVMET_TCP_Q_DISCONNECTING; 1303 queue_work(nvmet_wq, &queue->release_work); 1304 } 1305 spin_unlock(&queue->state_lock); 1306 } 1307 1308 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1309 { 1310 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1311 } 1312 1313 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1314 int ops) 1315 { 1316 if (!idle_poll_period_usecs) 1317 return false; 1318 1319 if (ops) 1320 nvmet_tcp_arm_queue_deadline(queue); 1321 1322 return !time_after(jiffies, queue->poll_end); 1323 } 1324 1325 static void nvmet_tcp_io_work(struct work_struct *w) 1326 { 1327 struct nvmet_tcp_queue *queue = 1328 container_of(w, struct nvmet_tcp_queue, io_work); 1329 bool pending; 1330 int ret, ops = 0; 1331 1332 do { 1333 pending = false; 1334 1335 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1336 if (ret > 0) 1337 pending = true; 1338 else if (ret < 0) 1339 return; 1340 1341 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1342 if (ret > 0) 1343 pending = true; 1344 else if (ret < 0) 1345 return; 1346 1347 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1348 1349 /* 1350 * Requeue the worker if idle deadline period is in progress or any 1351 * ops activity was recorded during the do-while loop above. 1352 */ 1353 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1354 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1355 } 1356 1357 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1358 struct nvmet_tcp_cmd *c) 1359 { 1360 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1361 1362 c->queue = queue; 1363 c->req.port = queue->port->nport; 1364 1365 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1366 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1367 if (!c->cmd_pdu) 1368 return -ENOMEM; 1369 c->req.cmd = &c->cmd_pdu->cmd; 1370 1371 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1372 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1373 if (!c->rsp_pdu) 1374 goto out_free_cmd; 1375 c->req.cqe = &c->rsp_pdu->cqe; 1376 1377 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1378 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1379 if (!c->data_pdu) 1380 goto out_free_rsp; 1381 1382 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1383 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1384 if (!c->r2t_pdu) 1385 goto out_free_data; 1386 1387 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1388 1389 list_add_tail(&c->entry, &queue->free_list); 1390 1391 return 0; 1392 out_free_data: 1393 page_frag_free(c->data_pdu); 1394 out_free_rsp: 1395 page_frag_free(c->rsp_pdu); 1396 out_free_cmd: 1397 page_frag_free(c->cmd_pdu); 1398 return -ENOMEM; 1399 } 1400 1401 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1402 { 1403 page_frag_free(c->r2t_pdu); 1404 page_frag_free(c->data_pdu); 1405 page_frag_free(c->rsp_pdu); 1406 page_frag_free(c->cmd_pdu); 1407 } 1408 1409 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1410 { 1411 struct nvmet_tcp_cmd *cmds; 1412 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1413 1414 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1415 if (!cmds) 1416 goto out; 1417 1418 for (i = 0; i < nr_cmds; i++) { 1419 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1420 if (ret) 1421 goto out_free; 1422 } 1423 1424 queue->cmds = cmds; 1425 1426 return 0; 1427 out_free: 1428 while (--i >= 0) 1429 nvmet_tcp_free_cmd(cmds + i); 1430 kfree(cmds); 1431 out: 1432 return ret; 1433 } 1434 1435 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1436 { 1437 struct nvmet_tcp_cmd *cmds = queue->cmds; 1438 int i; 1439 1440 for (i = 0; i < queue->nr_cmds; i++) 1441 nvmet_tcp_free_cmd(cmds + i); 1442 1443 nvmet_tcp_free_cmd(&queue->connect); 1444 kfree(cmds); 1445 } 1446 1447 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1448 { 1449 struct socket *sock = queue->sock; 1450 1451 write_lock_bh(&sock->sk->sk_callback_lock); 1452 sock->sk->sk_data_ready = queue->data_ready; 1453 sock->sk->sk_state_change = queue->state_change; 1454 sock->sk->sk_write_space = queue->write_space; 1455 sock->sk->sk_user_data = NULL; 1456 write_unlock_bh(&sock->sk->sk_callback_lock); 1457 } 1458 1459 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1460 { 1461 struct nvmet_tcp_cmd *cmd = queue->cmds; 1462 int i; 1463 1464 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1465 if (nvmet_tcp_need_data_in(cmd)) 1466 nvmet_req_uninit(&cmd->req); 1467 } 1468 1469 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1470 /* failed in connect */ 1471 nvmet_req_uninit(&queue->connect.req); 1472 } 1473 } 1474 1475 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1476 { 1477 struct nvmet_tcp_cmd *cmd = queue->cmds; 1478 int i; 1479 1480 for (i = 0; i < queue->nr_cmds; i++, cmd++) 1481 nvmet_tcp_free_cmd_buffers(cmd); 1482 nvmet_tcp_free_cmd_buffers(&queue->connect); 1483 } 1484 1485 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1486 { 1487 struct page *page; 1488 struct nvmet_tcp_queue *queue = 1489 container_of(w, struct nvmet_tcp_queue, release_work); 1490 1491 mutex_lock(&nvmet_tcp_queue_mutex); 1492 list_del_init(&queue->queue_list); 1493 mutex_unlock(&nvmet_tcp_queue_mutex); 1494 1495 nvmet_tcp_restore_socket_callbacks(queue); 1496 cancel_work_sync(&queue->io_work); 1497 /* stop accepting incoming data */ 1498 queue->rcv_state = NVMET_TCP_RECV_ERR; 1499 1500 nvmet_tcp_uninit_data_in_cmds(queue); 1501 nvmet_sq_destroy(&queue->nvme_sq); 1502 cancel_work_sync(&queue->io_work); 1503 nvmet_tcp_free_cmd_data_in_buffers(queue); 1504 sock_release(queue->sock); 1505 nvmet_tcp_free_cmds(queue); 1506 if (queue->hdr_digest || queue->data_digest) 1507 nvmet_tcp_free_crypto(queue); 1508 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1509 1510 page = virt_to_head_page(queue->pf_cache.va); 1511 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1512 kfree(queue); 1513 } 1514 1515 static void nvmet_tcp_data_ready(struct sock *sk) 1516 { 1517 struct nvmet_tcp_queue *queue; 1518 1519 trace_sk_data_ready(sk); 1520 1521 read_lock_bh(&sk->sk_callback_lock); 1522 queue = sk->sk_user_data; 1523 if (likely(queue)) 1524 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1525 read_unlock_bh(&sk->sk_callback_lock); 1526 } 1527 1528 static void nvmet_tcp_write_space(struct sock *sk) 1529 { 1530 struct nvmet_tcp_queue *queue; 1531 1532 read_lock_bh(&sk->sk_callback_lock); 1533 queue = sk->sk_user_data; 1534 if (unlikely(!queue)) 1535 goto out; 1536 1537 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1538 queue->write_space(sk); 1539 goto out; 1540 } 1541 1542 if (sk_stream_is_writeable(sk)) { 1543 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1544 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1545 } 1546 out: 1547 read_unlock_bh(&sk->sk_callback_lock); 1548 } 1549 1550 static void nvmet_tcp_state_change(struct sock *sk) 1551 { 1552 struct nvmet_tcp_queue *queue; 1553 1554 read_lock_bh(&sk->sk_callback_lock); 1555 queue = sk->sk_user_data; 1556 if (!queue) 1557 goto done; 1558 1559 switch (sk->sk_state) { 1560 case TCP_FIN_WAIT2: 1561 case TCP_LAST_ACK: 1562 break; 1563 case TCP_FIN_WAIT1: 1564 case TCP_CLOSE_WAIT: 1565 case TCP_CLOSE: 1566 /* FALLTHRU */ 1567 nvmet_tcp_schedule_release_queue(queue); 1568 break; 1569 default: 1570 pr_warn("queue %d unhandled state %d\n", 1571 queue->idx, sk->sk_state); 1572 } 1573 done: 1574 read_unlock_bh(&sk->sk_callback_lock); 1575 } 1576 1577 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1578 { 1579 struct socket *sock = queue->sock; 1580 struct inet_sock *inet = inet_sk(sock->sk); 1581 int ret; 1582 1583 ret = kernel_getsockname(sock, 1584 (struct sockaddr *)&queue->sockaddr); 1585 if (ret < 0) 1586 return ret; 1587 1588 ret = kernel_getpeername(sock, 1589 (struct sockaddr *)&queue->sockaddr_peer); 1590 if (ret < 0) 1591 return ret; 1592 1593 /* 1594 * Cleanup whatever is sitting in the TCP transmit queue on socket 1595 * close. This is done to prevent stale data from being sent should 1596 * the network connection be restored before TCP times out. 1597 */ 1598 sock_no_linger(sock->sk); 1599 1600 if (so_priority > 0) 1601 sock_set_priority(sock->sk, so_priority); 1602 1603 /* Set socket type of service */ 1604 if (inet->rcv_tos > 0) 1605 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1606 1607 ret = 0; 1608 write_lock_bh(&sock->sk->sk_callback_lock); 1609 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1610 /* 1611 * If the socket is already closing, don't even start 1612 * consuming it 1613 */ 1614 ret = -ENOTCONN; 1615 } else { 1616 sock->sk->sk_user_data = queue; 1617 queue->data_ready = sock->sk->sk_data_ready; 1618 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1619 queue->state_change = sock->sk->sk_state_change; 1620 sock->sk->sk_state_change = nvmet_tcp_state_change; 1621 queue->write_space = sock->sk->sk_write_space; 1622 sock->sk->sk_write_space = nvmet_tcp_write_space; 1623 if (idle_poll_period_usecs) 1624 nvmet_tcp_arm_queue_deadline(queue); 1625 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1626 } 1627 write_unlock_bh(&sock->sk->sk_callback_lock); 1628 1629 return ret; 1630 } 1631 1632 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1633 struct socket *newsock) 1634 { 1635 struct nvmet_tcp_queue *queue; 1636 int ret; 1637 1638 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1639 if (!queue) 1640 return -ENOMEM; 1641 1642 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1643 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1644 queue->sock = newsock; 1645 queue->port = port; 1646 queue->nr_cmds = 0; 1647 spin_lock_init(&queue->state_lock); 1648 queue->state = NVMET_TCP_Q_CONNECTING; 1649 INIT_LIST_HEAD(&queue->free_list); 1650 init_llist_head(&queue->resp_list); 1651 INIT_LIST_HEAD(&queue->resp_send_list); 1652 1653 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1654 if (queue->idx < 0) { 1655 ret = queue->idx; 1656 goto out_free_queue; 1657 } 1658 1659 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1660 if (ret) 1661 goto out_ida_remove; 1662 1663 ret = nvmet_sq_init(&queue->nvme_sq); 1664 if (ret) 1665 goto out_free_connect; 1666 1667 nvmet_prepare_receive_pdu(queue); 1668 1669 mutex_lock(&nvmet_tcp_queue_mutex); 1670 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1671 mutex_unlock(&nvmet_tcp_queue_mutex); 1672 1673 ret = nvmet_tcp_set_queue_sock(queue); 1674 if (ret) 1675 goto out_destroy_sq; 1676 1677 return 0; 1678 out_destroy_sq: 1679 mutex_lock(&nvmet_tcp_queue_mutex); 1680 list_del_init(&queue->queue_list); 1681 mutex_unlock(&nvmet_tcp_queue_mutex); 1682 nvmet_sq_destroy(&queue->nvme_sq); 1683 out_free_connect: 1684 nvmet_tcp_free_cmd(&queue->connect); 1685 out_ida_remove: 1686 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1687 out_free_queue: 1688 kfree(queue); 1689 return ret; 1690 } 1691 1692 static void nvmet_tcp_accept_work(struct work_struct *w) 1693 { 1694 struct nvmet_tcp_port *port = 1695 container_of(w, struct nvmet_tcp_port, accept_work); 1696 struct socket *newsock; 1697 int ret; 1698 1699 while (true) { 1700 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1701 if (ret < 0) { 1702 if (ret != -EAGAIN) 1703 pr_warn("failed to accept err=%d\n", ret); 1704 return; 1705 } 1706 ret = nvmet_tcp_alloc_queue(port, newsock); 1707 if (ret) { 1708 pr_err("failed to allocate queue\n"); 1709 sock_release(newsock); 1710 } 1711 } 1712 } 1713 1714 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1715 { 1716 struct nvmet_tcp_port *port; 1717 1718 trace_sk_data_ready(sk); 1719 1720 read_lock_bh(&sk->sk_callback_lock); 1721 port = sk->sk_user_data; 1722 if (!port) 1723 goto out; 1724 1725 if (sk->sk_state == TCP_LISTEN) 1726 queue_work(nvmet_wq, &port->accept_work); 1727 out: 1728 read_unlock_bh(&sk->sk_callback_lock); 1729 } 1730 1731 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1732 { 1733 struct nvmet_tcp_port *port; 1734 __kernel_sa_family_t af; 1735 int ret; 1736 1737 port = kzalloc(sizeof(*port), GFP_KERNEL); 1738 if (!port) 1739 return -ENOMEM; 1740 1741 switch (nport->disc_addr.adrfam) { 1742 case NVMF_ADDR_FAMILY_IP4: 1743 af = AF_INET; 1744 break; 1745 case NVMF_ADDR_FAMILY_IP6: 1746 af = AF_INET6; 1747 break; 1748 default: 1749 pr_err("address family %d not supported\n", 1750 nport->disc_addr.adrfam); 1751 ret = -EINVAL; 1752 goto err_port; 1753 } 1754 1755 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1756 nport->disc_addr.trsvcid, &port->addr); 1757 if (ret) { 1758 pr_err("malformed ip/port passed: %s:%s\n", 1759 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1760 goto err_port; 1761 } 1762 1763 port->nport = nport; 1764 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1765 if (port->nport->inline_data_size < 0) 1766 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1767 1768 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1769 IPPROTO_TCP, &port->sock); 1770 if (ret) { 1771 pr_err("failed to create a socket\n"); 1772 goto err_port; 1773 } 1774 1775 port->sock->sk->sk_user_data = port; 1776 port->data_ready = port->sock->sk->sk_data_ready; 1777 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1778 sock_set_reuseaddr(port->sock->sk); 1779 tcp_sock_set_nodelay(port->sock->sk); 1780 if (so_priority > 0) 1781 sock_set_priority(port->sock->sk, so_priority); 1782 1783 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1784 sizeof(port->addr)); 1785 if (ret) { 1786 pr_err("failed to bind port socket %d\n", ret); 1787 goto err_sock; 1788 } 1789 1790 ret = kernel_listen(port->sock, 128); 1791 if (ret) { 1792 pr_err("failed to listen %d on port sock\n", ret); 1793 goto err_sock; 1794 } 1795 1796 nport->priv = port; 1797 pr_info("enabling port %d (%pISpc)\n", 1798 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1799 1800 return 0; 1801 1802 err_sock: 1803 sock_release(port->sock); 1804 err_port: 1805 kfree(port); 1806 return ret; 1807 } 1808 1809 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 1810 { 1811 struct nvmet_tcp_queue *queue; 1812 1813 mutex_lock(&nvmet_tcp_queue_mutex); 1814 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1815 if (queue->port == port) 1816 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1817 mutex_unlock(&nvmet_tcp_queue_mutex); 1818 } 1819 1820 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1821 { 1822 struct nvmet_tcp_port *port = nport->priv; 1823 1824 write_lock_bh(&port->sock->sk->sk_callback_lock); 1825 port->sock->sk->sk_data_ready = port->data_ready; 1826 port->sock->sk->sk_user_data = NULL; 1827 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1828 cancel_work_sync(&port->accept_work); 1829 /* 1830 * Destroy the remaining queues, which are not belong to any 1831 * controller yet. 1832 */ 1833 nvmet_tcp_destroy_port_queues(port); 1834 1835 sock_release(port->sock); 1836 kfree(port); 1837 } 1838 1839 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1840 { 1841 struct nvmet_tcp_queue *queue; 1842 1843 mutex_lock(&nvmet_tcp_queue_mutex); 1844 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1845 if (queue->nvme_sq.ctrl == ctrl) 1846 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1847 mutex_unlock(&nvmet_tcp_queue_mutex); 1848 } 1849 1850 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1851 { 1852 struct nvmet_tcp_queue *queue = 1853 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1854 1855 if (sq->qid == 0) { 1856 /* Let inflight controller teardown complete */ 1857 flush_workqueue(nvmet_wq); 1858 } 1859 1860 queue->nr_cmds = sq->size * 2; 1861 if (nvmet_tcp_alloc_cmds(queue)) 1862 return NVME_SC_INTERNAL; 1863 return 0; 1864 } 1865 1866 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1867 struct nvmet_port *nport, char *traddr) 1868 { 1869 struct nvmet_tcp_port *port = nport->priv; 1870 1871 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1872 struct nvmet_tcp_cmd *cmd = 1873 container_of(req, struct nvmet_tcp_cmd, req); 1874 struct nvmet_tcp_queue *queue = cmd->queue; 1875 1876 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1877 } else { 1878 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1879 } 1880 } 1881 1882 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1883 .owner = THIS_MODULE, 1884 .type = NVMF_TRTYPE_TCP, 1885 .msdbd = 1, 1886 .add_port = nvmet_tcp_add_port, 1887 .remove_port = nvmet_tcp_remove_port, 1888 .queue_response = nvmet_tcp_queue_response, 1889 .delete_ctrl = nvmet_tcp_delete_ctrl, 1890 .install_queue = nvmet_tcp_install_queue, 1891 .disc_traddr = nvmet_tcp_disc_port_addr, 1892 }; 1893 1894 static int __init nvmet_tcp_init(void) 1895 { 1896 int ret; 1897 1898 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 1899 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1900 if (!nvmet_tcp_wq) 1901 return -ENOMEM; 1902 1903 ret = nvmet_register_transport(&nvmet_tcp_ops); 1904 if (ret) 1905 goto err; 1906 1907 return 0; 1908 err: 1909 destroy_workqueue(nvmet_tcp_wq); 1910 return ret; 1911 } 1912 1913 static void __exit nvmet_tcp_exit(void) 1914 { 1915 struct nvmet_tcp_queue *queue; 1916 1917 nvmet_unregister_transport(&nvmet_tcp_ops); 1918 1919 flush_workqueue(nvmet_wq); 1920 mutex_lock(&nvmet_tcp_queue_mutex); 1921 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1922 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1923 mutex_unlock(&nvmet_tcp_queue_mutex); 1924 flush_workqueue(nvmet_wq); 1925 1926 destroy_workqueue(nvmet_tcp_wq); 1927 ida_destroy(&nvmet_tcp_queue_ida); 1928 } 1929 1930 module_init(nvmet_tcp_init); 1931 module_exit(nvmet_tcp_exit); 1932 1933 MODULE_LICENSE("GPL v2"); 1934 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1935