xref: /openbmc/linux/drivers/nvme/target/tcp.c (revision 7559e757)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvmet.h"
20 
21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
22 
23 static int param_store_val(const char *str, int *val, int min, int max)
24 {
25 	int ret, new_val;
26 
27 	ret = kstrtoint(str, 10, &new_val);
28 	if (ret)
29 		return -EINVAL;
30 
31 	if (new_val < min || new_val > max)
32 		return -EINVAL;
33 
34 	*val = new_val;
35 	return 0;
36 }
37 
38 static int set_params(const char *str, const struct kernel_param *kp)
39 {
40 	return param_store_val(str, kp->arg, 0, INT_MAX);
41 }
42 
43 static const struct kernel_param_ops set_param_ops = {
44 	.set	= set_params,
45 	.get	= param_get_int,
46 };
47 
48 /* Define the socket priority to use for connections were it is desirable
49  * that the NIC consider performing optimized packet processing or filtering.
50  * A non-zero value being sufficient to indicate general consideration of any
51  * possible optimization.  Making it a module param allows for alternative
52  * values that may be unique for some NIC implementations.
53  */
54 static int so_priority;
55 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
56 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
57 
58 /* Define a time period (in usecs) that io_work() shall sample an activated
59  * queue before determining it to be idle.  This optional module behavior
60  * can enable NIC solutions that support socket optimized packet processing
61  * using advanced interrupt moderation techniques.
62  */
63 static int idle_poll_period_usecs;
64 device_param_cb(idle_poll_period_usecs, &set_param_ops,
65 		&idle_poll_period_usecs, 0644);
66 MODULE_PARM_DESC(idle_poll_period_usecs,
67 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
68 
69 #define NVMET_TCP_RECV_BUDGET		8
70 #define NVMET_TCP_SEND_BUDGET		8
71 #define NVMET_TCP_IO_WORK_BUDGET	64
72 
73 enum nvmet_tcp_send_state {
74 	NVMET_TCP_SEND_DATA_PDU,
75 	NVMET_TCP_SEND_DATA,
76 	NVMET_TCP_SEND_R2T,
77 	NVMET_TCP_SEND_DDGST,
78 	NVMET_TCP_SEND_RESPONSE
79 };
80 
81 enum nvmet_tcp_recv_state {
82 	NVMET_TCP_RECV_PDU,
83 	NVMET_TCP_RECV_DATA,
84 	NVMET_TCP_RECV_DDGST,
85 	NVMET_TCP_RECV_ERR,
86 };
87 
88 enum {
89 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
90 };
91 
92 struct nvmet_tcp_cmd {
93 	struct nvmet_tcp_queue		*queue;
94 	struct nvmet_req		req;
95 
96 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
97 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
98 	struct nvme_tcp_data_pdu	*data_pdu;
99 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
100 
101 	u32				rbytes_done;
102 	u32				wbytes_done;
103 
104 	u32				pdu_len;
105 	u32				pdu_recv;
106 	int				sg_idx;
107 	struct msghdr			recv_msg;
108 	struct bio_vec			*iov;
109 	u32				flags;
110 
111 	struct list_head		entry;
112 	struct llist_node		lentry;
113 
114 	/* send state */
115 	u32				offset;
116 	struct scatterlist		*cur_sg;
117 	enum nvmet_tcp_send_state	state;
118 
119 	__le32				exp_ddgst;
120 	__le32				recv_ddgst;
121 };
122 
123 enum nvmet_tcp_queue_state {
124 	NVMET_TCP_Q_CONNECTING,
125 	NVMET_TCP_Q_LIVE,
126 	NVMET_TCP_Q_DISCONNECTING,
127 };
128 
129 struct nvmet_tcp_queue {
130 	struct socket		*sock;
131 	struct nvmet_tcp_port	*port;
132 	struct work_struct	io_work;
133 	struct nvmet_cq		nvme_cq;
134 	struct nvmet_sq		nvme_sq;
135 
136 	/* send state */
137 	struct nvmet_tcp_cmd	*cmds;
138 	unsigned int		nr_cmds;
139 	struct list_head	free_list;
140 	struct llist_head	resp_list;
141 	struct list_head	resp_send_list;
142 	int			send_list_len;
143 	struct nvmet_tcp_cmd	*snd_cmd;
144 
145 	/* recv state */
146 	int			offset;
147 	int			left;
148 	enum nvmet_tcp_recv_state rcv_state;
149 	struct nvmet_tcp_cmd	*cmd;
150 	union nvme_tcp_pdu	pdu;
151 
152 	/* digest state */
153 	bool			hdr_digest;
154 	bool			data_digest;
155 	struct ahash_request	*snd_hash;
156 	struct ahash_request	*rcv_hash;
157 
158 	unsigned long           poll_end;
159 
160 	spinlock_t		state_lock;
161 	enum nvmet_tcp_queue_state state;
162 
163 	struct sockaddr_storage	sockaddr;
164 	struct sockaddr_storage	sockaddr_peer;
165 	struct work_struct	release_work;
166 
167 	int			idx;
168 	struct list_head	queue_list;
169 
170 	struct nvmet_tcp_cmd	connect;
171 
172 	struct page_frag_cache	pf_cache;
173 
174 	void (*data_ready)(struct sock *);
175 	void (*state_change)(struct sock *);
176 	void (*write_space)(struct sock *);
177 };
178 
179 struct nvmet_tcp_port {
180 	struct socket		*sock;
181 	struct work_struct	accept_work;
182 	struct nvmet_port	*nport;
183 	struct sockaddr_storage addr;
184 	void (*data_ready)(struct sock *);
185 };
186 
187 static DEFINE_IDA(nvmet_tcp_queue_ida);
188 static LIST_HEAD(nvmet_tcp_queue_list);
189 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
190 
191 static struct workqueue_struct *nvmet_tcp_wq;
192 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
193 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
194 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
195 
196 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
197 		struct nvmet_tcp_cmd *cmd)
198 {
199 	if (unlikely(!queue->nr_cmds)) {
200 		/* We didn't allocate cmds yet, send 0xffff */
201 		return USHRT_MAX;
202 	}
203 
204 	return cmd - queue->cmds;
205 }
206 
207 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
208 {
209 	return nvme_is_write(cmd->req.cmd) &&
210 		cmd->rbytes_done < cmd->req.transfer_len;
211 }
212 
213 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
214 {
215 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
216 }
217 
218 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
219 {
220 	return !nvme_is_write(cmd->req.cmd) &&
221 		cmd->req.transfer_len > 0 &&
222 		!cmd->req.cqe->status;
223 }
224 
225 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
226 {
227 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
228 		!cmd->rbytes_done;
229 }
230 
231 static inline struct nvmet_tcp_cmd *
232 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
233 {
234 	struct nvmet_tcp_cmd *cmd;
235 
236 	cmd = list_first_entry_or_null(&queue->free_list,
237 				struct nvmet_tcp_cmd, entry);
238 	if (!cmd)
239 		return NULL;
240 	list_del_init(&cmd->entry);
241 
242 	cmd->rbytes_done = cmd->wbytes_done = 0;
243 	cmd->pdu_len = 0;
244 	cmd->pdu_recv = 0;
245 	cmd->iov = NULL;
246 	cmd->flags = 0;
247 	return cmd;
248 }
249 
250 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
251 {
252 	if (unlikely(cmd == &cmd->queue->connect))
253 		return;
254 
255 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
256 }
257 
258 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
259 {
260 	return queue->sock->sk->sk_incoming_cpu;
261 }
262 
263 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
264 {
265 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267 
268 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
269 {
270 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272 
273 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
274 		void *pdu, size_t len)
275 {
276 	struct scatterlist sg;
277 
278 	sg_init_one(&sg, pdu, len);
279 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
280 	crypto_ahash_digest(hash);
281 }
282 
283 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
284 	void *pdu, size_t len)
285 {
286 	struct nvme_tcp_hdr *hdr = pdu;
287 	__le32 recv_digest;
288 	__le32 exp_digest;
289 
290 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
291 		pr_err("queue %d: header digest enabled but no header digest\n",
292 			queue->idx);
293 		return -EPROTO;
294 	}
295 
296 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
297 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
298 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
299 	if (recv_digest != exp_digest) {
300 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
301 			queue->idx, le32_to_cpu(recv_digest),
302 			le32_to_cpu(exp_digest));
303 		return -EPROTO;
304 	}
305 
306 	return 0;
307 }
308 
309 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
310 {
311 	struct nvme_tcp_hdr *hdr = pdu;
312 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
313 	u32 len;
314 
315 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
316 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
317 
318 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
319 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
320 		return -EPROTO;
321 	}
322 
323 	return 0;
324 }
325 
326 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
327 {
328 	kfree(cmd->iov);
329 	sgl_free(cmd->req.sg);
330 	cmd->iov = NULL;
331 	cmd->req.sg = NULL;
332 }
333 
334 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
335 {
336 	struct bio_vec *iov = cmd->iov;
337 	struct scatterlist *sg;
338 	u32 length, offset, sg_offset;
339 	int nr_pages;
340 
341 	length = cmd->pdu_len;
342 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
343 	offset = cmd->rbytes_done;
344 	cmd->sg_idx = offset / PAGE_SIZE;
345 	sg_offset = offset % PAGE_SIZE;
346 	sg = &cmd->req.sg[cmd->sg_idx];
347 
348 	while (length) {
349 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
350 
351 		bvec_set_page(iov, sg_page(sg), sg->length,
352 				sg->offset + sg_offset);
353 
354 		length -= iov_len;
355 		sg = sg_next(sg);
356 		iov++;
357 		sg_offset = 0;
358 	}
359 
360 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
361 		      nr_pages, cmd->pdu_len);
362 }
363 
364 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
365 {
366 	queue->rcv_state = NVMET_TCP_RECV_ERR;
367 	if (queue->nvme_sq.ctrl)
368 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
369 	else
370 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
371 }
372 
373 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
374 {
375 	if (status == -EPIPE || status == -ECONNRESET)
376 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
377 	else
378 		nvmet_tcp_fatal_error(queue);
379 }
380 
381 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
382 {
383 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
384 	u32 len = le32_to_cpu(sgl->length);
385 
386 	if (!len)
387 		return 0;
388 
389 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
390 			  NVME_SGL_FMT_OFFSET)) {
391 		if (!nvme_is_write(cmd->req.cmd))
392 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
393 
394 		if (len > cmd->req.port->inline_data_size)
395 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
396 		cmd->pdu_len = len;
397 	}
398 	cmd->req.transfer_len += len;
399 
400 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
401 	if (!cmd->req.sg)
402 		return NVME_SC_INTERNAL;
403 	cmd->cur_sg = cmd->req.sg;
404 
405 	if (nvmet_tcp_has_data_in(cmd)) {
406 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
407 				sizeof(*cmd->iov), GFP_KERNEL);
408 		if (!cmd->iov)
409 			goto err;
410 	}
411 
412 	return 0;
413 err:
414 	nvmet_tcp_free_cmd_buffers(cmd);
415 	return NVME_SC_INTERNAL;
416 }
417 
418 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
419 		struct nvmet_tcp_cmd *cmd)
420 {
421 	ahash_request_set_crypt(hash, cmd->req.sg,
422 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
423 	crypto_ahash_digest(hash);
424 }
425 
426 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
427 {
428 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
429 	struct nvmet_tcp_queue *queue = cmd->queue;
430 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
431 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
432 
433 	cmd->offset = 0;
434 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
435 
436 	pdu->hdr.type = nvme_tcp_c2h_data;
437 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
438 						NVME_TCP_F_DATA_SUCCESS : 0);
439 	pdu->hdr.hlen = sizeof(*pdu);
440 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
441 	pdu->hdr.plen =
442 		cpu_to_le32(pdu->hdr.hlen + hdgst +
443 				cmd->req.transfer_len + ddgst);
444 	pdu->command_id = cmd->req.cqe->command_id;
445 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
446 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
447 
448 	if (queue->data_digest) {
449 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
450 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
451 	}
452 
453 	if (cmd->queue->hdr_digest) {
454 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
455 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
456 	}
457 }
458 
459 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
460 {
461 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
462 	struct nvmet_tcp_queue *queue = cmd->queue;
463 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
464 
465 	cmd->offset = 0;
466 	cmd->state = NVMET_TCP_SEND_R2T;
467 
468 	pdu->hdr.type = nvme_tcp_r2t;
469 	pdu->hdr.flags = 0;
470 	pdu->hdr.hlen = sizeof(*pdu);
471 	pdu->hdr.pdo = 0;
472 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
473 
474 	pdu->command_id = cmd->req.cmd->common.command_id;
475 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
476 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
477 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
478 	if (cmd->queue->hdr_digest) {
479 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
480 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
481 	}
482 }
483 
484 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
485 {
486 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
487 	struct nvmet_tcp_queue *queue = cmd->queue;
488 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
489 
490 	cmd->offset = 0;
491 	cmd->state = NVMET_TCP_SEND_RESPONSE;
492 
493 	pdu->hdr.type = nvme_tcp_rsp;
494 	pdu->hdr.flags = 0;
495 	pdu->hdr.hlen = sizeof(*pdu);
496 	pdu->hdr.pdo = 0;
497 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
498 	if (cmd->queue->hdr_digest) {
499 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
500 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
501 	}
502 }
503 
504 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
505 {
506 	struct llist_node *node;
507 	struct nvmet_tcp_cmd *cmd;
508 
509 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
510 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
511 		list_add(&cmd->entry, &queue->resp_send_list);
512 		queue->send_list_len++;
513 	}
514 }
515 
516 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
517 {
518 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
519 				struct nvmet_tcp_cmd, entry);
520 	if (!queue->snd_cmd) {
521 		nvmet_tcp_process_resp_list(queue);
522 		queue->snd_cmd =
523 			list_first_entry_or_null(&queue->resp_send_list,
524 					struct nvmet_tcp_cmd, entry);
525 		if (unlikely(!queue->snd_cmd))
526 			return NULL;
527 	}
528 
529 	list_del_init(&queue->snd_cmd->entry);
530 	queue->send_list_len--;
531 
532 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
533 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
534 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
535 		nvmet_setup_r2t_pdu(queue->snd_cmd);
536 	else
537 		nvmet_setup_response_pdu(queue->snd_cmd);
538 
539 	return queue->snd_cmd;
540 }
541 
542 static void nvmet_tcp_queue_response(struct nvmet_req *req)
543 {
544 	struct nvmet_tcp_cmd *cmd =
545 		container_of(req, struct nvmet_tcp_cmd, req);
546 	struct nvmet_tcp_queue	*queue = cmd->queue;
547 	struct nvme_sgl_desc *sgl;
548 	u32 len;
549 
550 	if (unlikely(cmd == queue->cmd)) {
551 		sgl = &cmd->req.cmd->common.dptr.sgl;
552 		len = le32_to_cpu(sgl->length);
553 
554 		/*
555 		 * Wait for inline data before processing the response.
556 		 * Avoid using helpers, this might happen before
557 		 * nvmet_req_init is completed.
558 		 */
559 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
560 		    len && len <= cmd->req.port->inline_data_size &&
561 		    nvme_is_write(cmd->req.cmd))
562 			return;
563 	}
564 
565 	llist_add(&cmd->lentry, &queue->resp_list);
566 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
567 }
568 
569 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
570 {
571 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
572 		nvmet_tcp_queue_response(&cmd->req);
573 	else
574 		cmd->req.execute(&cmd->req);
575 }
576 
577 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
578 {
579 	struct msghdr msg = {
580 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
581 	};
582 	struct bio_vec bvec;
583 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
584 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
585 	int ret;
586 
587 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
588 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
589 	ret = sock_sendmsg(cmd->queue->sock, &msg);
590 	if (ret <= 0)
591 		return ret;
592 
593 	cmd->offset += ret;
594 	left -= ret;
595 
596 	if (left)
597 		return -EAGAIN;
598 
599 	cmd->state = NVMET_TCP_SEND_DATA;
600 	cmd->offset  = 0;
601 	return 1;
602 }
603 
604 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
605 {
606 	struct nvmet_tcp_queue *queue = cmd->queue;
607 	int ret;
608 
609 	while (cmd->cur_sg) {
610 		struct msghdr msg = {
611 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
612 		};
613 		struct page *page = sg_page(cmd->cur_sg);
614 		struct bio_vec bvec;
615 		u32 left = cmd->cur_sg->length - cmd->offset;
616 
617 		if ((!last_in_batch && cmd->queue->send_list_len) ||
618 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
619 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
620 			msg.msg_flags |= MSG_MORE;
621 
622 		bvec_set_page(&bvec, page, left, cmd->offset);
623 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
624 		ret = sock_sendmsg(cmd->queue->sock, &msg);
625 		if (ret <= 0)
626 			return ret;
627 
628 		cmd->offset += ret;
629 		cmd->wbytes_done += ret;
630 
631 		/* Done with sg?*/
632 		if (cmd->offset == cmd->cur_sg->length) {
633 			cmd->cur_sg = sg_next(cmd->cur_sg);
634 			cmd->offset = 0;
635 		}
636 	}
637 
638 	if (queue->data_digest) {
639 		cmd->state = NVMET_TCP_SEND_DDGST;
640 		cmd->offset = 0;
641 	} else {
642 		if (queue->nvme_sq.sqhd_disabled) {
643 			cmd->queue->snd_cmd = NULL;
644 			nvmet_tcp_put_cmd(cmd);
645 		} else {
646 			nvmet_setup_response_pdu(cmd);
647 		}
648 	}
649 
650 	if (queue->nvme_sq.sqhd_disabled)
651 		nvmet_tcp_free_cmd_buffers(cmd);
652 
653 	return 1;
654 
655 }
656 
657 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
658 		bool last_in_batch)
659 {
660 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
661 	struct bio_vec bvec;
662 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
663 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
664 	int ret;
665 
666 	if (!last_in_batch && cmd->queue->send_list_len)
667 		msg.msg_flags |= MSG_MORE;
668 	else
669 		msg.msg_flags |= MSG_EOR;
670 
671 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
672 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
673 	ret = sock_sendmsg(cmd->queue->sock, &msg);
674 	if (ret <= 0)
675 		return ret;
676 	cmd->offset += ret;
677 	left -= ret;
678 
679 	if (left)
680 		return -EAGAIN;
681 
682 	nvmet_tcp_free_cmd_buffers(cmd);
683 	cmd->queue->snd_cmd = NULL;
684 	nvmet_tcp_put_cmd(cmd);
685 	return 1;
686 }
687 
688 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
689 {
690 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
691 	struct bio_vec bvec;
692 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
693 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
694 	int ret;
695 
696 	if (!last_in_batch && cmd->queue->send_list_len)
697 		msg.msg_flags |= MSG_MORE;
698 	else
699 		msg.msg_flags |= MSG_EOR;
700 
701 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
702 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
703 	ret = sock_sendmsg(cmd->queue->sock, &msg);
704 	if (ret <= 0)
705 		return ret;
706 	cmd->offset += ret;
707 	left -= ret;
708 
709 	if (left)
710 		return -EAGAIN;
711 
712 	cmd->queue->snd_cmd = NULL;
713 	return 1;
714 }
715 
716 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
717 {
718 	struct nvmet_tcp_queue *queue = cmd->queue;
719 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
720 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
721 	struct kvec iov = {
722 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
723 		.iov_len = left
724 	};
725 	int ret;
726 
727 	if (!last_in_batch && cmd->queue->send_list_len)
728 		msg.msg_flags |= MSG_MORE;
729 	else
730 		msg.msg_flags |= MSG_EOR;
731 
732 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
733 	if (unlikely(ret <= 0))
734 		return ret;
735 
736 	cmd->offset += ret;
737 	left -= ret;
738 
739 	if (left)
740 		return -EAGAIN;
741 
742 	if (queue->nvme_sq.sqhd_disabled) {
743 		cmd->queue->snd_cmd = NULL;
744 		nvmet_tcp_put_cmd(cmd);
745 	} else {
746 		nvmet_setup_response_pdu(cmd);
747 	}
748 	return 1;
749 }
750 
751 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
752 		bool last_in_batch)
753 {
754 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
755 	int ret = 0;
756 
757 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
758 		cmd = nvmet_tcp_fetch_cmd(queue);
759 		if (unlikely(!cmd))
760 			return 0;
761 	}
762 
763 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
764 		ret = nvmet_try_send_data_pdu(cmd);
765 		if (ret <= 0)
766 			goto done_send;
767 	}
768 
769 	if (cmd->state == NVMET_TCP_SEND_DATA) {
770 		ret = nvmet_try_send_data(cmd, last_in_batch);
771 		if (ret <= 0)
772 			goto done_send;
773 	}
774 
775 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
776 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
777 		if (ret <= 0)
778 			goto done_send;
779 	}
780 
781 	if (cmd->state == NVMET_TCP_SEND_R2T) {
782 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
783 		if (ret <= 0)
784 			goto done_send;
785 	}
786 
787 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
788 		ret = nvmet_try_send_response(cmd, last_in_batch);
789 
790 done_send:
791 	if (ret < 0) {
792 		if (ret == -EAGAIN)
793 			return 0;
794 		return ret;
795 	}
796 
797 	return 1;
798 }
799 
800 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
801 		int budget, int *sends)
802 {
803 	int i, ret = 0;
804 
805 	for (i = 0; i < budget; i++) {
806 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
807 		if (unlikely(ret < 0)) {
808 			nvmet_tcp_socket_error(queue, ret);
809 			goto done;
810 		} else if (ret == 0) {
811 			break;
812 		}
813 		(*sends)++;
814 	}
815 done:
816 	return ret;
817 }
818 
819 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
820 {
821 	queue->offset = 0;
822 	queue->left = sizeof(struct nvme_tcp_hdr);
823 	queue->cmd = NULL;
824 	queue->rcv_state = NVMET_TCP_RECV_PDU;
825 }
826 
827 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
828 {
829 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
830 
831 	ahash_request_free(queue->rcv_hash);
832 	ahash_request_free(queue->snd_hash);
833 	crypto_free_ahash(tfm);
834 }
835 
836 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
837 {
838 	struct crypto_ahash *tfm;
839 
840 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
841 	if (IS_ERR(tfm))
842 		return PTR_ERR(tfm);
843 
844 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
845 	if (!queue->snd_hash)
846 		goto free_tfm;
847 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
848 
849 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
850 	if (!queue->rcv_hash)
851 		goto free_snd_hash;
852 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
853 
854 	return 0;
855 free_snd_hash:
856 	ahash_request_free(queue->snd_hash);
857 free_tfm:
858 	crypto_free_ahash(tfm);
859 	return -ENOMEM;
860 }
861 
862 
863 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
864 {
865 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
866 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
867 	struct msghdr msg = {};
868 	struct kvec iov;
869 	int ret;
870 
871 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
872 		pr_err("bad nvme-tcp pdu length (%d)\n",
873 			le32_to_cpu(icreq->hdr.plen));
874 		nvmet_tcp_fatal_error(queue);
875 	}
876 
877 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
878 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
879 		return -EPROTO;
880 	}
881 
882 	if (icreq->hpda != 0) {
883 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
884 			icreq->hpda);
885 		return -EPROTO;
886 	}
887 
888 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
889 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
890 	if (queue->hdr_digest || queue->data_digest) {
891 		ret = nvmet_tcp_alloc_crypto(queue);
892 		if (ret)
893 			return ret;
894 	}
895 
896 	memset(icresp, 0, sizeof(*icresp));
897 	icresp->hdr.type = nvme_tcp_icresp;
898 	icresp->hdr.hlen = sizeof(*icresp);
899 	icresp->hdr.pdo = 0;
900 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
901 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
902 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
903 	icresp->cpda = 0;
904 	if (queue->hdr_digest)
905 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
906 	if (queue->data_digest)
907 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
908 
909 	iov.iov_base = icresp;
910 	iov.iov_len = sizeof(*icresp);
911 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
912 	if (ret < 0)
913 		goto free_crypto;
914 
915 	queue->state = NVMET_TCP_Q_LIVE;
916 	nvmet_prepare_receive_pdu(queue);
917 	return 0;
918 free_crypto:
919 	if (queue->hdr_digest || queue->data_digest)
920 		nvmet_tcp_free_crypto(queue);
921 	return ret;
922 }
923 
924 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
925 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
926 {
927 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
928 	int ret;
929 
930 	/*
931 	 * This command has not been processed yet, hence we are trying to
932 	 * figure out if there is still pending data left to receive. If
933 	 * we don't, we can simply prepare for the next pdu and bail out,
934 	 * otherwise we will need to prepare a buffer and receive the
935 	 * stale data before continuing forward.
936 	 */
937 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
938 	    data_len > cmd->req.port->inline_data_size) {
939 		nvmet_prepare_receive_pdu(queue);
940 		return;
941 	}
942 
943 	ret = nvmet_tcp_map_data(cmd);
944 	if (unlikely(ret)) {
945 		pr_err("queue %d: failed to map data\n", queue->idx);
946 		nvmet_tcp_fatal_error(queue);
947 		return;
948 	}
949 
950 	queue->rcv_state = NVMET_TCP_RECV_DATA;
951 	nvmet_tcp_build_pdu_iovec(cmd);
952 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
953 }
954 
955 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
956 {
957 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
958 	struct nvmet_tcp_cmd *cmd;
959 
960 	if (likely(queue->nr_cmds)) {
961 		if (unlikely(data->ttag >= queue->nr_cmds)) {
962 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
963 				queue->idx, data->ttag, queue->nr_cmds);
964 			nvmet_tcp_fatal_error(queue);
965 			return -EPROTO;
966 		}
967 		cmd = &queue->cmds[data->ttag];
968 	} else {
969 		cmd = &queue->connect;
970 	}
971 
972 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
973 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
974 			data->ttag, le32_to_cpu(data->data_offset),
975 			cmd->rbytes_done);
976 		/* FIXME: use path and transport errors */
977 		nvmet_req_complete(&cmd->req,
978 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
979 		return -EPROTO;
980 	}
981 
982 	cmd->pdu_len = le32_to_cpu(data->data_length);
983 	cmd->pdu_recv = 0;
984 	nvmet_tcp_build_pdu_iovec(cmd);
985 	queue->cmd = cmd;
986 	queue->rcv_state = NVMET_TCP_RECV_DATA;
987 
988 	return 0;
989 }
990 
991 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
992 {
993 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
994 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
995 	struct nvmet_req *req;
996 	int ret;
997 
998 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
999 		if (hdr->type != nvme_tcp_icreq) {
1000 			pr_err("unexpected pdu type (%d) before icreq\n",
1001 				hdr->type);
1002 			nvmet_tcp_fatal_error(queue);
1003 			return -EPROTO;
1004 		}
1005 		return nvmet_tcp_handle_icreq(queue);
1006 	}
1007 
1008 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1009 		pr_err("queue %d: received icreq pdu in state %d\n",
1010 			queue->idx, queue->state);
1011 		nvmet_tcp_fatal_error(queue);
1012 		return -EPROTO;
1013 	}
1014 
1015 	if (hdr->type == nvme_tcp_h2c_data) {
1016 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1017 		if (unlikely(ret))
1018 			return ret;
1019 		return 0;
1020 	}
1021 
1022 	queue->cmd = nvmet_tcp_get_cmd(queue);
1023 	if (unlikely(!queue->cmd)) {
1024 		/* This should never happen */
1025 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1026 			queue->idx, queue->nr_cmds, queue->send_list_len,
1027 			nvme_cmd->common.opcode);
1028 		nvmet_tcp_fatal_error(queue);
1029 		return -ENOMEM;
1030 	}
1031 
1032 	req = &queue->cmd->req;
1033 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1034 
1035 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1036 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1037 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1038 			req->cmd, req->cmd->common.command_id,
1039 			req->cmd->common.opcode,
1040 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
1041 
1042 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1043 		return 0;
1044 	}
1045 
1046 	ret = nvmet_tcp_map_data(queue->cmd);
1047 	if (unlikely(ret)) {
1048 		pr_err("queue %d: failed to map data\n", queue->idx);
1049 		if (nvmet_tcp_has_inline_data(queue->cmd))
1050 			nvmet_tcp_fatal_error(queue);
1051 		else
1052 			nvmet_req_complete(req, ret);
1053 		ret = -EAGAIN;
1054 		goto out;
1055 	}
1056 
1057 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1058 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1059 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1060 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1061 			return 0;
1062 		}
1063 		/* send back R2T */
1064 		nvmet_tcp_queue_response(&queue->cmd->req);
1065 		goto out;
1066 	}
1067 
1068 	queue->cmd->req.execute(&queue->cmd->req);
1069 out:
1070 	nvmet_prepare_receive_pdu(queue);
1071 	return ret;
1072 }
1073 
1074 static const u8 nvme_tcp_pdu_sizes[] = {
1075 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1076 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1077 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1078 };
1079 
1080 static inline u8 nvmet_tcp_pdu_size(u8 type)
1081 {
1082 	size_t idx = type;
1083 
1084 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1085 		nvme_tcp_pdu_sizes[idx]) ?
1086 			nvme_tcp_pdu_sizes[idx] : 0;
1087 }
1088 
1089 static inline bool nvmet_tcp_pdu_valid(u8 type)
1090 {
1091 	switch (type) {
1092 	case nvme_tcp_icreq:
1093 	case nvme_tcp_cmd:
1094 	case nvme_tcp_h2c_data:
1095 		/* fallthru */
1096 		return true;
1097 	}
1098 
1099 	return false;
1100 }
1101 
1102 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1103 {
1104 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1105 	int len;
1106 	struct kvec iov;
1107 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1108 
1109 recv:
1110 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1111 	iov.iov_len = queue->left;
1112 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1113 			iov.iov_len, msg.msg_flags);
1114 	if (unlikely(len < 0))
1115 		return len;
1116 
1117 	queue->offset += len;
1118 	queue->left -= len;
1119 	if (queue->left)
1120 		return -EAGAIN;
1121 
1122 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1123 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1124 
1125 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1126 			pr_err("unexpected pdu type %d\n", hdr->type);
1127 			nvmet_tcp_fatal_error(queue);
1128 			return -EIO;
1129 		}
1130 
1131 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1132 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1133 			return -EIO;
1134 		}
1135 
1136 		queue->left = hdr->hlen - queue->offset + hdgst;
1137 		goto recv;
1138 	}
1139 
1140 	if (queue->hdr_digest &&
1141 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1142 		nvmet_tcp_fatal_error(queue); /* fatal */
1143 		return -EPROTO;
1144 	}
1145 
1146 	if (queue->data_digest &&
1147 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1148 		nvmet_tcp_fatal_error(queue); /* fatal */
1149 		return -EPROTO;
1150 	}
1151 
1152 	return nvmet_tcp_done_recv_pdu(queue);
1153 }
1154 
1155 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1156 {
1157 	struct nvmet_tcp_queue *queue = cmd->queue;
1158 
1159 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1160 	queue->offset = 0;
1161 	queue->left = NVME_TCP_DIGEST_LENGTH;
1162 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1163 }
1164 
1165 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1166 {
1167 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1168 	int ret;
1169 
1170 	while (msg_data_left(&cmd->recv_msg)) {
1171 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1172 			cmd->recv_msg.msg_flags);
1173 		if (ret <= 0)
1174 			return ret;
1175 
1176 		cmd->pdu_recv += ret;
1177 		cmd->rbytes_done += ret;
1178 	}
1179 
1180 	if (queue->data_digest) {
1181 		nvmet_tcp_prep_recv_ddgst(cmd);
1182 		return 0;
1183 	}
1184 
1185 	if (cmd->rbytes_done == cmd->req.transfer_len)
1186 		nvmet_tcp_execute_request(cmd);
1187 
1188 	nvmet_prepare_receive_pdu(queue);
1189 	return 0;
1190 }
1191 
1192 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1193 {
1194 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1195 	int ret;
1196 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1197 	struct kvec iov = {
1198 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1199 		.iov_len = queue->left
1200 	};
1201 
1202 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1203 			iov.iov_len, msg.msg_flags);
1204 	if (unlikely(ret < 0))
1205 		return ret;
1206 
1207 	queue->offset += ret;
1208 	queue->left -= ret;
1209 	if (queue->left)
1210 		return -EAGAIN;
1211 
1212 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1213 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1214 			queue->idx, cmd->req.cmd->common.command_id,
1215 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1216 			le32_to_cpu(cmd->exp_ddgst));
1217 		nvmet_req_uninit(&cmd->req);
1218 		nvmet_tcp_free_cmd_buffers(cmd);
1219 		nvmet_tcp_fatal_error(queue);
1220 		ret = -EPROTO;
1221 		goto out;
1222 	}
1223 
1224 	if (cmd->rbytes_done == cmd->req.transfer_len)
1225 		nvmet_tcp_execute_request(cmd);
1226 
1227 	ret = 0;
1228 out:
1229 	nvmet_prepare_receive_pdu(queue);
1230 	return ret;
1231 }
1232 
1233 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1234 {
1235 	int result = 0;
1236 
1237 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1238 		return 0;
1239 
1240 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1241 		result = nvmet_tcp_try_recv_pdu(queue);
1242 		if (result != 0)
1243 			goto done_recv;
1244 	}
1245 
1246 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1247 		result = nvmet_tcp_try_recv_data(queue);
1248 		if (result != 0)
1249 			goto done_recv;
1250 	}
1251 
1252 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1253 		result = nvmet_tcp_try_recv_ddgst(queue);
1254 		if (result != 0)
1255 			goto done_recv;
1256 	}
1257 
1258 done_recv:
1259 	if (result < 0) {
1260 		if (result == -EAGAIN)
1261 			return 0;
1262 		return result;
1263 	}
1264 	return 1;
1265 }
1266 
1267 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1268 		int budget, int *recvs)
1269 {
1270 	int i, ret = 0;
1271 
1272 	for (i = 0; i < budget; i++) {
1273 		ret = nvmet_tcp_try_recv_one(queue);
1274 		if (unlikely(ret < 0)) {
1275 			nvmet_tcp_socket_error(queue, ret);
1276 			goto done;
1277 		} else if (ret == 0) {
1278 			break;
1279 		}
1280 		(*recvs)++;
1281 	}
1282 done:
1283 	return ret;
1284 }
1285 
1286 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1287 {
1288 	spin_lock(&queue->state_lock);
1289 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1290 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1291 		queue_work(nvmet_wq, &queue->release_work);
1292 	}
1293 	spin_unlock(&queue->state_lock);
1294 }
1295 
1296 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1297 {
1298 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1299 }
1300 
1301 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1302 		int ops)
1303 {
1304 	if (!idle_poll_period_usecs)
1305 		return false;
1306 
1307 	if (ops)
1308 		nvmet_tcp_arm_queue_deadline(queue);
1309 
1310 	return !time_after(jiffies, queue->poll_end);
1311 }
1312 
1313 static void nvmet_tcp_io_work(struct work_struct *w)
1314 {
1315 	struct nvmet_tcp_queue *queue =
1316 		container_of(w, struct nvmet_tcp_queue, io_work);
1317 	bool pending;
1318 	int ret, ops = 0;
1319 
1320 	do {
1321 		pending = false;
1322 
1323 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1324 		if (ret > 0)
1325 			pending = true;
1326 		else if (ret < 0)
1327 			return;
1328 
1329 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1330 		if (ret > 0)
1331 			pending = true;
1332 		else if (ret < 0)
1333 			return;
1334 
1335 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1336 
1337 	/*
1338 	 * Requeue the worker if idle deadline period is in progress or any
1339 	 * ops activity was recorded during the do-while loop above.
1340 	 */
1341 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1342 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1343 }
1344 
1345 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1346 		struct nvmet_tcp_cmd *c)
1347 {
1348 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1349 
1350 	c->queue = queue;
1351 	c->req.port = queue->port->nport;
1352 
1353 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1354 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1355 	if (!c->cmd_pdu)
1356 		return -ENOMEM;
1357 	c->req.cmd = &c->cmd_pdu->cmd;
1358 
1359 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1360 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1361 	if (!c->rsp_pdu)
1362 		goto out_free_cmd;
1363 	c->req.cqe = &c->rsp_pdu->cqe;
1364 
1365 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1366 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1367 	if (!c->data_pdu)
1368 		goto out_free_rsp;
1369 
1370 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1371 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1372 	if (!c->r2t_pdu)
1373 		goto out_free_data;
1374 
1375 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1376 
1377 	list_add_tail(&c->entry, &queue->free_list);
1378 
1379 	return 0;
1380 out_free_data:
1381 	page_frag_free(c->data_pdu);
1382 out_free_rsp:
1383 	page_frag_free(c->rsp_pdu);
1384 out_free_cmd:
1385 	page_frag_free(c->cmd_pdu);
1386 	return -ENOMEM;
1387 }
1388 
1389 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1390 {
1391 	page_frag_free(c->r2t_pdu);
1392 	page_frag_free(c->data_pdu);
1393 	page_frag_free(c->rsp_pdu);
1394 	page_frag_free(c->cmd_pdu);
1395 }
1396 
1397 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1398 {
1399 	struct nvmet_tcp_cmd *cmds;
1400 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1401 
1402 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1403 	if (!cmds)
1404 		goto out;
1405 
1406 	for (i = 0; i < nr_cmds; i++) {
1407 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1408 		if (ret)
1409 			goto out_free;
1410 	}
1411 
1412 	queue->cmds = cmds;
1413 
1414 	return 0;
1415 out_free:
1416 	while (--i >= 0)
1417 		nvmet_tcp_free_cmd(cmds + i);
1418 	kfree(cmds);
1419 out:
1420 	return ret;
1421 }
1422 
1423 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1424 {
1425 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1426 	int i;
1427 
1428 	for (i = 0; i < queue->nr_cmds; i++)
1429 		nvmet_tcp_free_cmd(cmds + i);
1430 
1431 	nvmet_tcp_free_cmd(&queue->connect);
1432 	kfree(cmds);
1433 }
1434 
1435 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1436 {
1437 	struct socket *sock = queue->sock;
1438 
1439 	write_lock_bh(&sock->sk->sk_callback_lock);
1440 	sock->sk->sk_data_ready =  queue->data_ready;
1441 	sock->sk->sk_state_change = queue->state_change;
1442 	sock->sk->sk_write_space = queue->write_space;
1443 	sock->sk->sk_user_data = NULL;
1444 	write_unlock_bh(&sock->sk->sk_callback_lock);
1445 }
1446 
1447 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1448 {
1449 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1450 	int i;
1451 
1452 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1453 		if (nvmet_tcp_need_data_in(cmd))
1454 			nvmet_req_uninit(&cmd->req);
1455 	}
1456 
1457 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1458 		/* failed in connect */
1459 		nvmet_req_uninit(&queue->connect.req);
1460 	}
1461 }
1462 
1463 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1464 {
1465 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1466 	int i;
1467 
1468 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1469 		if (nvmet_tcp_need_data_in(cmd))
1470 			nvmet_tcp_free_cmd_buffers(cmd);
1471 	}
1472 
1473 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1474 		nvmet_tcp_free_cmd_buffers(&queue->connect);
1475 }
1476 
1477 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1478 {
1479 	struct page *page;
1480 	struct nvmet_tcp_queue *queue =
1481 		container_of(w, struct nvmet_tcp_queue, release_work);
1482 
1483 	mutex_lock(&nvmet_tcp_queue_mutex);
1484 	list_del_init(&queue->queue_list);
1485 	mutex_unlock(&nvmet_tcp_queue_mutex);
1486 
1487 	nvmet_tcp_restore_socket_callbacks(queue);
1488 	cancel_work_sync(&queue->io_work);
1489 	/* stop accepting incoming data */
1490 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1491 
1492 	nvmet_tcp_uninit_data_in_cmds(queue);
1493 	nvmet_sq_destroy(&queue->nvme_sq);
1494 	cancel_work_sync(&queue->io_work);
1495 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1496 	sock_release(queue->sock);
1497 	nvmet_tcp_free_cmds(queue);
1498 	if (queue->hdr_digest || queue->data_digest)
1499 		nvmet_tcp_free_crypto(queue);
1500 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1501 
1502 	page = virt_to_head_page(queue->pf_cache.va);
1503 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1504 	kfree(queue);
1505 }
1506 
1507 static void nvmet_tcp_data_ready(struct sock *sk)
1508 {
1509 	struct nvmet_tcp_queue *queue;
1510 
1511 	trace_sk_data_ready(sk);
1512 
1513 	read_lock_bh(&sk->sk_callback_lock);
1514 	queue = sk->sk_user_data;
1515 	if (likely(queue))
1516 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1517 	read_unlock_bh(&sk->sk_callback_lock);
1518 }
1519 
1520 static void nvmet_tcp_write_space(struct sock *sk)
1521 {
1522 	struct nvmet_tcp_queue *queue;
1523 
1524 	read_lock_bh(&sk->sk_callback_lock);
1525 	queue = sk->sk_user_data;
1526 	if (unlikely(!queue))
1527 		goto out;
1528 
1529 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1530 		queue->write_space(sk);
1531 		goto out;
1532 	}
1533 
1534 	if (sk_stream_is_writeable(sk)) {
1535 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1536 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1537 	}
1538 out:
1539 	read_unlock_bh(&sk->sk_callback_lock);
1540 }
1541 
1542 static void nvmet_tcp_state_change(struct sock *sk)
1543 {
1544 	struct nvmet_tcp_queue *queue;
1545 
1546 	read_lock_bh(&sk->sk_callback_lock);
1547 	queue = sk->sk_user_data;
1548 	if (!queue)
1549 		goto done;
1550 
1551 	switch (sk->sk_state) {
1552 	case TCP_FIN_WAIT2:
1553 	case TCP_LAST_ACK:
1554 		break;
1555 	case TCP_FIN_WAIT1:
1556 	case TCP_CLOSE_WAIT:
1557 	case TCP_CLOSE:
1558 		/* FALLTHRU */
1559 		nvmet_tcp_schedule_release_queue(queue);
1560 		break;
1561 	default:
1562 		pr_warn("queue %d unhandled state %d\n",
1563 			queue->idx, sk->sk_state);
1564 	}
1565 done:
1566 	read_unlock_bh(&sk->sk_callback_lock);
1567 }
1568 
1569 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1570 {
1571 	struct socket *sock = queue->sock;
1572 	struct inet_sock *inet = inet_sk(sock->sk);
1573 	int ret;
1574 
1575 	ret = kernel_getsockname(sock,
1576 		(struct sockaddr *)&queue->sockaddr);
1577 	if (ret < 0)
1578 		return ret;
1579 
1580 	ret = kernel_getpeername(sock,
1581 		(struct sockaddr *)&queue->sockaddr_peer);
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	/*
1586 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1587 	 * close. This is done to prevent stale data from being sent should
1588 	 * the network connection be restored before TCP times out.
1589 	 */
1590 	sock_no_linger(sock->sk);
1591 
1592 	if (so_priority > 0)
1593 		sock_set_priority(sock->sk, so_priority);
1594 
1595 	/* Set socket type of service */
1596 	if (inet->rcv_tos > 0)
1597 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1598 
1599 	ret = 0;
1600 	write_lock_bh(&sock->sk->sk_callback_lock);
1601 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1602 		/*
1603 		 * If the socket is already closing, don't even start
1604 		 * consuming it
1605 		 */
1606 		ret = -ENOTCONN;
1607 	} else {
1608 		sock->sk->sk_user_data = queue;
1609 		queue->data_ready = sock->sk->sk_data_ready;
1610 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1611 		queue->state_change = sock->sk->sk_state_change;
1612 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1613 		queue->write_space = sock->sk->sk_write_space;
1614 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1615 		if (idle_poll_period_usecs)
1616 			nvmet_tcp_arm_queue_deadline(queue);
1617 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1618 	}
1619 	write_unlock_bh(&sock->sk->sk_callback_lock);
1620 
1621 	return ret;
1622 }
1623 
1624 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1625 		struct socket *newsock)
1626 {
1627 	struct nvmet_tcp_queue *queue;
1628 	int ret;
1629 
1630 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1631 	if (!queue)
1632 		return -ENOMEM;
1633 
1634 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1635 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1636 	queue->sock = newsock;
1637 	queue->port = port;
1638 	queue->nr_cmds = 0;
1639 	spin_lock_init(&queue->state_lock);
1640 	queue->state = NVMET_TCP_Q_CONNECTING;
1641 	INIT_LIST_HEAD(&queue->free_list);
1642 	init_llist_head(&queue->resp_list);
1643 	INIT_LIST_HEAD(&queue->resp_send_list);
1644 
1645 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1646 	if (queue->idx < 0) {
1647 		ret = queue->idx;
1648 		goto out_free_queue;
1649 	}
1650 
1651 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1652 	if (ret)
1653 		goto out_ida_remove;
1654 
1655 	ret = nvmet_sq_init(&queue->nvme_sq);
1656 	if (ret)
1657 		goto out_free_connect;
1658 
1659 	nvmet_prepare_receive_pdu(queue);
1660 
1661 	mutex_lock(&nvmet_tcp_queue_mutex);
1662 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1663 	mutex_unlock(&nvmet_tcp_queue_mutex);
1664 
1665 	ret = nvmet_tcp_set_queue_sock(queue);
1666 	if (ret)
1667 		goto out_destroy_sq;
1668 
1669 	return 0;
1670 out_destroy_sq:
1671 	mutex_lock(&nvmet_tcp_queue_mutex);
1672 	list_del_init(&queue->queue_list);
1673 	mutex_unlock(&nvmet_tcp_queue_mutex);
1674 	nvmet_sq_destroy(&queue->nvme_sq);
1675 out_free_connect:
1676 	nvmet_tcp_free_cmd(&queue->connect);
1677 out_ida_remove:
1678 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1679 out_free_queue:
1680 	kfree(queue);
1681 	return ret;
1682 }
1683 
1684 static void nvmet_tcp_accept_work(struct work_struct *w)
1685 {
1686 	struct nvmet_tcp_port *port =
1687 		container_of(w, struct nvmet_tcp_port, accept_work);
1688 	struct socket *newsock;
1689 	int ret;
1690 
1691 	while (true) {
1692 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1693 		if (ret < 0) {
1694 			if (ret != -EAGAIN)
1695 				pr_warn("failed to accept err=%d\n", ret);
1696 			return;
1697 		}
1698 		ret = nvmet_tcp_alloc_queue(port, newsock);
1699 		if (ret) {
1700 			pr_err("failed to allocate queue\n");
1701 			sock_release(newsock);
1702 		}
1703 	}
1704 }
1705 
1706 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1707 {
1708 	struct nvmet_tcp_port *port;
1709 
1710 	trace_sk_data_ready(sk);
1711 
1712 	read_lock_bh(&sk->sk_callback_lock);
1713 	port = sk->sk_user_data;
1714 	if (!port)
1715 		goto out;
1716 
1717 	if (sk->sk_state == TCP_LISTEN)
1718 		queue_work(nvmet_wq, &port->accept_work);
1719 out:
1720 	read_unlock_bh(&sk->sk_callback_lock);
1721 }
1722 
1723 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1724 {
1725 	struct nvmet_tcp_port *port;
1726 	__kernel_sa_family_t af;
1727 	int ret;
1728 
1729 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1730 	if (!port)
1731 		return -ENOMEM;
1732 
1733 	switch (nport->disc_addr.adrfam) {
1734 	case NVMF_ADDR_FAMILY_IP4:
1735 		af = AF_INET;
1736 		break;
1737 	case NVMF_ADDR_FAMILY_IP6:
1738 		af = AF_INET6;
1739 		break;
1740 	default:
1741 		pr_err("address family %d not supported\n",
1742 				nport->disc_addr.adrfam);
1743 		ret = -EINVAL;
1744 		goto err_port;
1745 	}
1746 
1747 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1748 			nport->disc_addr.trsvcid, &port->addr);
1749 	if (ret) {
1750 		pr_err("malformed ip/port passed: %s:%s\n",
1751 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1752 		goto err_port;
1753 	}
1754 
1755 	port->nport = nport;
1756 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1757 	if (port->nport->inline_data_size < 0)
1758 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1759 
1760 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1761 				IPPROTO_TCP, &port->sock);
1762 	if (ret) {
1763 		pr_err("failed to create a socket\n");
1764 		goto err_port;
1765 	}
1766 
1767 	port->sock->sk->sk_user_data = port;
1768 	port->data_ready = port->sock->sk->sk_data_ready;
1769 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1770 	sock_set_reuseaddr(port->sock->sk);
1771 	tcp_sock_set_nodelay(port->sock->sk);
1772 	if (so_priority > 0)
1773 		sock_set_priority(port->sock->sk, so_priority);
1774 
1775 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1776 			sizeof(port->addr));
1777 	if (ret) {
1778 		pr_err("failed to bind port socket %d\n", ret);
1779 		goto err_sock;
1780 	}
1781 
1782 	ret = kernel_listen(port->sock, 128);
1783 	if (ret) {
1784 		pr_err("failed to listen %d on port sock\n", ret);
1785 		goto err_sock;
1786 	}
1787 
1788 	nport->priv = port;
1789 	pr_info("enabling port %d (%pISpc)\n",
1790 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1791 
1792 	return 0;
1793 
1794 err_sock:
1795 	sock_release(port->sock);
1796 err_port:
1797 	kfree(port);
1798 	return ret;
1799 }
1800 
1801 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1802 {
1803 	struct nvmet_tcp_queue *queue;
1804 
1805 	mutex_lock(&nvmet_tcp_queue_mutex);
1806 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1807 		if (queue->port == port)
1808 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1809 	mutex_unlock(&nvmet_tcp_queue_mutex);
1810 }
1811 
1812 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1813 {
1814 	struct nvmet_tcp_port *port = nport->priv;
1815 
1816 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1817 	port->sock->sk->sk_data_ready = port->data_ready;
1818 	port->sock->sk->sk_user_data = NULL;
1819 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1820 	cancel_work_sync(&port->accept_work);
1821 	/*
1822 	 * Destroy the remaining queues, which are not belong to any
1823 	 * controller yet.
1824 	 */
1825 	nvmet_tcp_destroy_port_queues(port);
1826 
1827 	sock_release(port->sock);
1828 	kfree(port);
1829 }
1830 
1831 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1832 {
1833 	struct nvmet_tcp_queue *queue;
1834 
1835 	mutex_lock(&nvmet_tcp_queue_mutex);
1836 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1837 		if (queue->nvme_sq.ctrl == ctrl)
1838 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1839 	mutex_unlock(&nvmet_tcp_queue_mutex);
1840 }
1841 
1842 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1843 {
1844 	struct nvmet_tcp_queue *queue =
1845 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1846 
1847 	if (sq->qid == 0) {
1848 		/* Let inflight controller teardown complete */
1849 		flush_workqueue(nvmet_wq);
1850 	}
1851 
1852 	queue->nr_cmds = sq->size * 2;
1853 	if (nvmet_tcp_alloc_cmds(queue))
1854 		return NVME_SC_INTERNAL;
1855 	return 0;
1856 }
1857 
1858 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1859 		struct nvmet_port *nport, char *traddr)
1860 {
1861 	struct nvmet_tcp_port *port = nport->priv;
1862 
1863 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1864 		struct nvmet_tcp_cmd *cmd =
1865 			container_of(req, struct nvmet_tcp_cmd, req);
1866 		struct nvmet_tcp_queue *queue = cmd->queue;
1867 
1868 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1869 	} else {
1870 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1871 	}
1872 }
1873 
1874 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1875 	.owner			= THIS_MODULE,
1876 	.type			= NVMF_TRTYPE_TCP,
1877 	.msdbd			= 1,
1878 	.add_port		= nvmet_tcp_add_port,
1879 	.remove_port		= nvmet_tcp_remove_port,
1880 	.queue_response		= nvmet_tcp_queue_response,
1881 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1882 	.install_queue		= nvmet_tcp_install_queue,
1883 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1884 };
1885 
1886 static int __init nvmet_tcp_init(void)
1887 {
1888 	int ret;
1889 
1890 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1891 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1892 	if (!nvmet_tcp_wq)
1893 		return -ENOMEM;
1894 
1895 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1896 	if (ret)
1897 		goto err;
1898 
1899 	return 0;
1900 err:
1901 	destroy_workqueue(nvmet_tcp_wq);
1902 	return ret;
1903 }
1904 
1905 static void __exit nvmet_tcp_exit(void)
1906 {
1907 	struct nvmet_tcp_queue *queue;
1908 
1909 	nvmet_unregister_transport(&nvmet_tcp_ops);
1910 
1911 	flush_workqueue(nvmet_wq);
1912 	mutex_lock(&nvmet_tcp_queue_mutex);
1913 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1914 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1915 	mutex_unlock(&nvmet_tcp_queue_mutex);
1916 	flush_workqueue(nvmet_wq);
1917 
1918 	destroy_workqueue(nvmet_tcp_wq);
1919 }
1920 
1921 module_init(nvmet_tcp_init);
1922 module_exit(nvmet_tcp_exit);
1923 
1924 MODULE_LICENSE("GPL v2");
1925 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1926