1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 18 #include "nvmet.h" 19 20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 21 22 /* Define the socket priority to use for connections were it is desirable 23 * that the NIC consider performing optimized packet processing or filtering. 24 * A non-zero value being sufficient to indicate general consideration of any 25 * possible optimization. Making it a module param allows for alternative 26 * values that may be unique for some NIC implementations. 27 */ 28 static int so_priority; 29 module_param(so_priority, int, 0644); 30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority"); 31 32 #define NVMET_TCP_RECV_BUDGET 8 33 #define NVMET_TCP_SEND_BUDGET 8 34 #define NVMET_TCP_IO_WORK_BUDGET 64 35 36 enum nvmet_tcp_send_state { 37 NVMET_TCP_SEND_DATA_PDU, 38 NVMET_TCP_SEND_DATA, 39 NVMET_TCP_SEND_R2T, 40 NVMET_TCP_SEND_DDGST, 41 NVMET_TCP_SEND_RESPONSE 42 }; 43 44 enum nvmet_tcp_recv_state { 45 NVMET_TCP_RECV_PDU, 46 NVMET_TCP_RECV_DATA, 47 NVMET_TCP_RECV_DDGST, 48 NVMET_TCP_RECV_ERR, 49 }; 50 51 enum { 52 NVMET_TCP_F_INIT_FAILED = (1 << 0), 53 }; 54 55 struct nvmet_tcp_cmd { 56 struct nvmet_tcp_queue *queue; 57 struct nvmet_req req; 58 59 struct nvme_tcp_cmd_pdu *cmd_pdu; 60 struct nvme_tcp_rsp_pdu *rsp_pdu; 61 struct nvme_tcp_data_pdu *data_pdu; 62 struct nvme_tcp_r2t_pdu *r2t_pdu; 63 64 u32 rbytes_done; 65 u32 wbytes_done; 66 67 u32 pdu_len; 68 u32 pdu_recv; 69 int sg_idx; 70 int nr_mapped; 71 struct msghdr recv_msg; 72 struct kvec *iov; 73 u32 flags; 74 75 struct list_head entry; 76 struct llist_node lentry; 77 78 /* send state */ 79 u32 offset; 80 struct scatterlist *cur_sg; 81 enum nvmet_tcp_send_state state; 82 83 __le32 exp_ddgst; 84 __le32 recv_ddgst; 85 }; 86 87 enum nvmet_tcp_queue_state { 88 NVMET_TCP_Q_CONNECTING, 89 NVMET_TCP_Q_LIVE, 90 NVMET_TCP_Q_DISCONNECTING, 91 }; 92 93 struct nvmet_tcp_queue { 94 struct socket *sock; 95 struct nvmet_tcp_port *port; 96 struct work_struct io_work; 97 struct nvmet_cq nvme_cq; 98 struct nvmet_sq nvme_sq; 99 100 /* send state */ 101 struct nvmet_tcp_cmd *cmds; 102 unsigned int nr_cmds; 103 struct list_head free_list; 104 struct llist_head resp_list; 105 struct list_head resp_send_list; 106 int send_list_len; 107 struct nvmet_tcp_cmd *snd_cmd; 108 109 /* recv state */ 110 int offset; 111 int left; 112 enum nvmet_tcp_recv_state rcv_state; 113 struct nvmet_tcp_cmd *cmd; 114 union nvme_tcp_pdu pdu; 115 116 /* digest state */ 117 bool hdr_digest; 118 bool data_digest; 119 struct ahash_request *snd_hash; 120 struct ahash_request *rcv_hash; 121 122 spinlock_t state_lock; 123 enum nvmet_tcp_queue_state state; 124 125 struct sockaddr_storage sockaddr; 126 struct sockaddr_storage sockaddr_peer; 127 struct work_struct release_work; 128 129 int idx; 130 struct list_head queue_list; 131 132 struct nvmet_tcp_cmd connect; 133 134 struct page_frag_cache pf_cache; 135 136 void (*data_ready)(struct sock *); 137 void (*state_change)(struct sock *); 138 void (*write_space)(struct sock *); 139 }; 140 141 struct nvmet_tcp_port { 142 struct socket *sock; 143 struct work_struct accept_work; 144 struct nvmet_port *nport; 145 struct sockaddr_storage addr; 146 void (*data_ready)(struct sock *); 147 }; 148 149 static DEFINE_IDA(nvmet_tcp_queue_ida); 150 static LIST_HEAD(nvmet_tcp_queue_list); 151 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 152 153 static struct workqueue_struct *nvmet_tcp_wq; 154 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 155 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 156 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd); 157 158 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 159 struct nvmet_tcp_cmd *cmd) 160 { 161 if (unlikely(!queue->nr_cmds)) { 162 /* We didn't allocate cmds yet, send 0xffff */ 163 return USHRT_MAX; 164 } 165 166 return cmd - queue->cmds; 167 } 168 169 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 170 { 171 return nvme_is_write(cmd->req.cmd) && 172 cmd->rbytes_done < cmd->req.transfer_len; 173 } 174 175 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 176 { 177 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 178 } 179 180 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 181 { 182 return !nvme_is_write(cmd->req.cmd) && 183 cmd->req.transfer_len > 0 && 184 !cmd->req.cqe->status; 185 } 186 187 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 188 { 189 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 190 !cmd->rbytes_done; 191 } 192 193 static inline struct nvmet_tcp_cmd * 194 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 195 { 196 struct nvmet_tcp_cmd *cmd; 197 198 cmd = list_first_entry_or_null(&queue->free_list, 199 struct nvmet_tcp_cmd, entry); 200 if (!cmd) 201 return NULL; 202 list_del_init(&cmd->entry); 203 204 cmd->rbytes_done = cmd->wbytes_done = 0; 205 cmd->pdu_len = 0; 206 cmd->pdu_recv = 0; 207 cmd->iov = NULL; 208 cmd->flags = 0; 209 return cmd; 210 } 211 212 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 213 { 214 if (unlikely(cmd == &cmd->queue->connect)) 215 return; 216 217 list_add_tail(&cmd->entry, &cmd->queue->free_list); 218 } 219 220 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 221 { 222 return queue->sock->sk->sk_incoming_cpu; 223 } 224 225 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 226 { 227 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 228 } 229 230 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 231 { 232 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 233 } 234 235 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 236 void *pdu, size_t len) 237 { 238 struct scatterlist sg; 239 240 sg_init_one(&sg, pdu, len); 241 ahash_request_set_crypt(hash, &sg, pdu + len, len); 242 crypto_ahash_digest(hash); 243 } 244 245 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 246 void *pdu, size_t len) 247 { 248 struct nvme_tcp_hdr *hdr = pdu; 249 __le32 recv_digest; 250 __le32 exp_digest; 251 252 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 253 pr_err("queue %d: header digest enabled but no header digest\n", 254 queue->idx); 255 return -EPROTO; 256 } 257 258 recv_digest = *(__le32 *)(pdu + hdr->hlen); 259 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 260 exp_digest = *(__le32 *)(pdu + hdr->hlen); 261 if (recv_digest != exp_digest) { 262 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 263 queue->idx, le32_to_cpu(recv_digest), 264 le32_to_cpu(exp_digest)); 265 return -EPROTO; 266 } 267 268 return 0; 269 } 270 271 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 272 { 273 struct nvme_tcp_hdr *hdr = pdu; 274 u8 digest_len = nvmet_tcp_hdgst_len(queue); 275 u32 len; 276 277 len = le32_to_cpu(hdr->plen) - hdr->hlen - 278 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 279 280 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 281 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 282 return -EPROTO; 283 } 284 285 return 0; 286 } 287 288 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd) 289 { 290 struct scatterlist *sg; 291 int i; 292 293 sg = &cmd->req.sg[cmd->sg_idx]; 294 295 for (i = 0; i < cmd->nr_mapped; i++) 296 kunmap(sg_page(&sg[i])); 297 } 298 299 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd) 300 { 301 struct kvec *iov = cmd->iov; 302 struct scatterlist *sg; 303 u32 length, offset, sg_offset; 304 305 length = cmd->pdu_len; 306 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE); 307 offset = cmd->rbytes_done; 308 cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE); 309 sg_offset = offset % PAGE_SIZE; 310 sg = &cmd->req.sg[cmd->sg_idx]; 311 312 while (length) { 313 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 314 315 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset; 316 iov->iov_len = iov_len; 317 318 length -= iov_len; 319 sg = sg_next(sg); 320 iov++; 321 } 322 323 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov, 324 cmd->nr_mapped, cmd->pdu_len); 325 } 326 327 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 328 { 329 queue->rcv_state = NVMET_TCP_RECV_ERR; 330 if (queue->nvme_sq.ctrl) 331 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 332 else 333 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 334 } 335 336 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 337 { 338 if (status == -EPIPE || status == -ECONNRESET) 339 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 340 else 341 nvmet_tcp_fatal_error(queue); 342 } 343 344 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 345 { 346 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 347 u32 len = le32_to_cpu(sgl->length); 348 349 if (!len) 350 return 0; 351 352 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 353 NVME_SGL_FMT_OFFSET)) { 354 if (!nvme_is_write(cmd->req.cmd)) 355 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 356 357 if (len > cmd->req.port->inline_data_size) 358 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 359 cmd->pdu_len = len; 360 } 361 cmd->req.transfer_len += len; 362 363 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 364 if (!cmd->req.sg) 365 return NVME_SC_INTERNAL; 366 cmd->cur_sg = cmd->req.sg; 367 368 if (nvmet_tcp_has_data_in(cmd)) { 369 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 370 sizeof(*cmd->iov), GFP_KERNEL); 371 if (!cmd->iov) 372 goto err; 373 } 374 375 return 0; 376 err: 377 sgl_free(cmd->req.sg); 378 return NVME_SC_INTERNAL; 379 } 380 381 static void nvmet_tcp_ddgst(struct ahash_request *hash, 382 struct nvmet_tcp_cmd *cmd) 383 { 384 ahash_request_set_crypt(hash, cmd->req.sg, 385 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 386 crypto_ahash_digest(hash); 387 } 388 389 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 390 { 391 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 392 struct nvmet_tcp_queue *queue = cmd->queue; 393 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 394 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 395 396 cmd->offset = 0; 397 cmd->state = NVMET_TCP_SEND_DATA_PDU; 398 399 pdu->hdr.type = nvme_tcp_c2h_data; 400 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 401 NVME_TCP_F_DATA_SUCCESS : 0); 402 pdu->hdr.hlen = sizeof(*pdu); 403 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 404 pdu->hdr.plen = 405 cpu_to_le32(pdu->hdr.hlen + hdgst + 406 cmd->req.transfer_len + ddgst); 407 pdu->command_id = cmd->req.cqe->command_id; 408 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 409 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 410 411 if (queue->data_digest) { 412 pdu->hdr.flags |= NVME_TCP_F_DDGST; 413 nvmet_tcp_ddgst(queue->snd_hash, cmd); 414 } 415 416 if (cmd->queue->hdr_digest) { 417 pdu->hdr.flags |= NVME_TCP_F_HDGST; 418 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 419 } 420 } 421 422 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 423 { 424 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 425 struct nvmet_tcp_queue *queue = cmd->queue; 426 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 427 428 cmd->offset = 0; 429 cmd->state = NVMET_TCP_SEND_R2T; 430 431 pdu->hdr.type = nvme_tcp_r2t; 432 pdu->hdr.flags = 0; 433 pdu->hdr.hlen = sizeof(*pdu); 434 pdu->hdr.pdo = 0; 435 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 436 437 pdu->command_id = cmd->req.cmd->common.command_id; 438 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 439 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 440 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 441 if (cmd->queue->hdr_digest) { 442 pdu->hdr.flags |= NVME_TCP_F_HDGST; 443 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 444 } 445 } 446 447 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 448 { 449 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 450 struct nvmet_tcp_queue *queue = cmd->queue; 451 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 452 453 cmd->offset = 0; 454 cmd->state = NVMET_TCP_SEND_RESPONSE; 455 456 pdu->hdr.type = nvme_tcp_rsp; 457 pdu->hdr.flags = 0; 458 pdu->hdr.hlen = sizeof(*pdu); 459 pdu->hdr.pdo = 0; 460 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 461 if (cmd->queue->hdr_digest) { 462 pdu->hdr.flags |= NVME_TCP_F_HDGST; 463 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 464 } 465 } 466 467 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 468 { 469 struct llist_node *node; 470 struct nvmet_tcp_cmd *cmd; 471 472 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 473 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 474 list_add(&cmd->entry, &queue->resp_send_list); 475 queue->send_list_len++; 476 } 477 } 478 479 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 480 { 481 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 482 struct nvmet_tcp_cmd, entry); 483 if (!queue->snd_cmd) { 484 nvmet_tcp_process_resp_list(queue); 485 queue->snd_cmd = 486 list_first_entry_or_null(&queue->resp_send_list, 487 struct nvmet_tcp_cmd, entry); 488 if (unlikely(!queue->snd_cmd)) 489 return NULL; 490 } 491 492 list_del_init(&queue->snd_cmd->entry); 493 queue->send_list_len--; 494 495 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 496 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 497 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 498 nvmet_setup_r2t_pdu(queue->snd_cmd); 499 else 500 nvmet_setup_response_pdu(queue->snd_cmd); 501 502 return queue->snd_cmd; 503 } 504 505 static void nvmet_tcp_queue_response(struct nvmet_req *req) 506 { 507 struct nvmet_tcp_cmd *cmd = 508 container_of(req, struct nvmet_tcp_cmd, req); 509 struct nvmet_tcp_queue *queue = cmd->queue; 510 511 llist_add(&cmd->lentry, &queue->resp_list); 512 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 513 } 514 515 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 516 { 517 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 518 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 519 int ret; 520 521 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu), 522 offset_in_page(cmd->data_pdu) + cmd->offset, 523 left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 524 if (ret <= 0) 525 return ret; 526 527 cmd->offset += ret; 528 left -= ret; 529 530 if (left) 531 return -EAGAIN; 532 533 cmd->state = NVMET_TCP_SEND_DATA; 534 cmd->offset = 0; 535 return 1; 536 } 537 538 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 539 { 540 struct nvmet_tcp_queue *queue = cmd->queue; 541 int ret; 542 543 while (cmd->cur_sg) { 544 struct page *page = sg_page(cmd->cur_sg); 545 u32 left = cmd->cur_sg->length - cmd->offset; 546 int flags = MSG_DONTWAIT; 547 548 if ((!last_in_batch && cmd->queue->send_list_len) || 549 cmd->wbytes_done + left < cmd->req.transfer_len || 550 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 551 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 552 553 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset, 554 left, flags); 555 if (ret <= 0) 556 return ret; 557 558 cmd->offset += ret; 559 cmd->wbytes_done += ret; 560 561 /* Done with sg?*/ 562 if (cmd->offset == cmd->cur_sg->length) { 563 cmd->cur_sg = sg_next(cmd->cur_sg); 564 cmd->offset = 0; 565 } 566 } 567 568 if (queue->data_digest) { 569 cmd->state = NVMET_TCP_SEND_DDGST; 570 cmd->offset = 0; 571 } else { 572 if (queue->nvme_sq.sqhd_disabled) { 573 cmd->queue->snd_cmd = NULL; 574 nvmet_tcp_put_cmd(cmd); 575 } else { 576 nvmet_setup_response_pdu(cmd); 577 } 578 } 579 580 if (queue->nvme_sq.sqhd_disabled) { 581 kfree(cmd->iov); 582 sgl_free(cmd->req.sg); 583 } 584 585 return 1; 586 587 } 588 589 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 590 bool last_in_batch) 591 { 592 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 593 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 594 int flags = MSG_DONTWAIT; 595 int ret; 596 597 if (!last_in_batch && cmd->queue->send_list_len) 598 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 599 else 600 flags |= MSG_EOR; 601 602 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu), 603 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags); 604 if (ret <= 0) 605 return ret; 606 cmd->offset += ret; 607 left -= ret; 608 609 if (left) 610 return -EAGAIN; 611 612 kfree(cmd->iov); 613 sgl_free(cmd->req.sg); 614 cmd->queue->snd_cmd = NULL; 615 nvmet_tcp_put_cmd(cmd); 616 return 1; 617 } 618 619 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 620 { 621 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 622 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 623 int flags = MSG_DONTWAIT; 624 int ret; 625 626 if (!last_in_batch && cmd->queue->send_list_len) 627 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 628 else 629 flags |= MSG_EOR; 630 631 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu), 632 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags); 633 if (ret <= 0) 634 return ret; 635 cmd->offset += ret; 636 left -= ret; 637 638 if (left) 639 return -EAGAIN; 640 641 cmd->queue->snd_cmd = NULL; 642 return 1; 643 } 644 645 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 646 { 647 struct nvmet_tcp_queue *queue = cmd->queue; 648 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 649 struct kvec iov = { 650 .iov_base = &cmd->exp_ddgst + cmd->offset, 651 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset 652 }; 653 int ret; 654 655 if (!last_in_batch && cmd->queue->send_list_len) 656 msg.msg_flags |= MSG_MORE; 657 else 658 msg.msg_flags |= MSG_EOR; 659 660 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 661 if (unlikely(ret <= 0)) 662 return ret; 663 664 cmd->offset += ret; 665 666 if (queue->nvme_sq.sqhd_disabled) { 667 cmd->queue->snd_cmd = NULL; 668 nvmet_tcp_put_cmd(cmd); 669 } else { 670 nvmet_setup_response_pdu(cmd); 671 } 672 return 1; 673 } 674 675 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 676 bool last_in_batch) 677 { 678 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 679 int ret = 0; 680 681 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 682 cmd = nvmet_tcp_fetch_cmd(queue); 683 if (unlikely(!cmd)) 684 return 0; 685 } 686 687 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 688 ret = nvmet_try_send_data_pdu(cmd); 689 if (ret <= 0) 690 goto done_send; 691 } 692 693 if (cmd->state == NVMET_TCP_SEND_DATA) { 694 ret = nvmet_try_send_data(cmd, last_in_batch); 695 if (ret <= 0) 696 goto done_send; 697 } 698 699 if (cmd->state == NVMET_TCP_SEND_DDGST) { 700 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 701 if (ret <= 0) 702 goto done_send; 703 } 704 705 if (cmd->state == NVMET_TCP_SEND_R2T) { 706 ret = nvmet_try_send_r2t(cmd, last_in_batch); 707 if (ret <= 0) 708 goto done_send; 709 } 710 711 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 712 ret = nvmet_try_send_response(cmd, last_in_batch); 713 714 done_send: 715 if (ret < 0) { 716 if (ret == -EAGAIN) 717 return 0; 718 return ret; 719 } 720 721 return 1; 722 } 723 724 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 725 int budget, int *sends) 726 { 727 int i, ret = 0; 728 729 for (i = 0; i < budget; i++) { 730 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 731 if (unlikely(ret < 0)) { 732 nvmet_tcp_socket_error(queue, ret); 733 goto done; 734 } else if (ret == 0) { 735 break; 736 } 737 (*sends)++; 738 } 739 done: 740 return ret; 741 } 742 743 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 744 { 745 queue->offset = 0; 746 queue->left = sizeof(struct nvme_tcp_hdr); 747 queue->cmd = NULL; 748 queue->rcv_state = NVMET_TCP_RECV_PDU; 749 } 750 751 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 752 { 753 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 754 755 ahash_request_free(queue->rcv_hash); 756 ahash_request_free(queue->snd_hash); 757 crypto_free_ahash(tfm); 758 } 759 760 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 761 { 762 struct crypto_ahash *tfm; 763 764 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 765 if (IS_ERR(tfm)) 766 return PTR_ERR(tfm); 767 768 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 769 if (!queue->snd_hash) 770 goto free_tfm; 771 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 772 773 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 774 if (!queue->rcv_hash) 775 goto free_snd_hash; 776 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 777 778 return 0; 779 free_snd_hash: 780 ahash_request_free(queue->snd_hash); 781 free_tfm: 782 crypto_free_ahash(tfm); 783 return -ENOMEM; 784 } 785 786 787 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 788 { 789 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 790 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 791 struct msghdr msg = {}; 792 struct kvec iov; 793 int ret; 794 795 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 796 pr_err("bad nvme-tcp pdu length (%d)\n", 797 le32_to_cpu(icreq->hdr.plen)); 798 nvmet_tcp_fatal_error(queue); 799 } 800 801 if (icreq->pfv != NVME_TCP_PFV_1_0) { 802 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 803 return -EPROTO; 804 } 805 806 if (icreq->hpda != 0) { 807 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 808 icreq->hpda); 809 return -EPROTO; 810 } 811 812 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 813 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 814 if (queue->hdr_digest || queue->data_digest) { 815 ret = nvmet_tcp_alloc_crypto(queue); 816 if (ret) 817 return ret; 818 } 819 820 memset(icresp, 0, sizeof(*icresp)); 821 icresp->hdr.type = nvme_tcp_icresp; 822 icresp->hdr.hlen = sizeof(*icresp); 823 icresp->hdr.pdo = 0; 824 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 825 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 826 icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */ 827 icresp->cpda = 0; 828 if (queue->hdr_digest) 829 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 830 if (queue->data_digest) 831 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 832 833 iov.iov_base = icresp; 834 iov.iov_len = sizeof(*icresp); 835 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 836 if (ret < 0) 837 goto free_crypto; 838 839 queue->state = NVMET_TCP_Q_LIVE; 840 nvmet_prepare_receive_pdu(queue); 841 return 0; 842 free_crypto: 843 if (queue->hdr_digest || queue->data_digest) 844 nvmet_tcp_free_crypto(queue); 845 return ret; 846 } 847 848 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 849 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 850 { 851 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 852 int ret; 853 854 if (!nvme_is_write(cmd->req.cmd) || 855 data_len > cmd->req.port->inline_data_size) { 856 nvmet_prepare_receive_pdu(queue); 857 return; 858 } 859 860 ret = nvmet_tcp_map_data(cmd); 861 if (unlikely(ret)) { 862 pr_err("queue %d: failed to map data\n", queue->idx); 863 nvmet_tcp_fatal_error(queue); 864 return; 865 } 866 867 queue->rcv_state = NVMET_TCP_RECV_DATA; 868 nvmet_tcp_map_pdu_iovec(cmd); 869 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 870 } 871 872 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 873 { 874 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 875 struct nvmet_tcp_cmd *cmd; 876 877 if (likely(queue->nr_cmds)) 878 cmd = &queue->cmds[data->ttag]; 879 else 880 cmd = &queue->connect; 881 882 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 883 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 884 data->ttag, le32_to_cpu(data->data_offset), 885 cmd->rbytes_done); 886 /* FIXME: use path and transport errors */ 887 nvmet_req_complete(&cmd->req, 888 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 889 return -EPROTO; 890 } 891 892 cmd->pdu_len = le32_to_cpu(data->data_length); 893 cmd->pdu_recv = 0; 894 nvmet_tcp_map_pdu_iovec(cmd); 895 queue->cmd = cmd; 896 queue->rcv_state = NVMET_TCP_RECV_DATA; 897 898 return 0; 899 } 900 901 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 902 { 903 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 904 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 905 struct nvmet_req *req; 906 int ret; 907 908 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 909 if (hdr->type != nvme_tcp_icreq) { 910 pr_err("unexpected pdu type (%d) before icreq\n", 911 hdr->type); 912 nvmet_tcp_fatal_error(queue); 913 return -EPROTO; 914 } 915 return nvmet_tcp_handle_icreq(queue); 916 } 917 918 if (hdr->type == nvme_tcp_h2c_data) { 919 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 920 if (unlikely(ret)) 921 return ret; 922 return 0; 923 } 924 925 queue->cmd = nvmet_tcp_get_cmd(queue); 926 if (unlikely(!queue->cmd)) { 927 /* This should never happen */ 928 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 929 queue->idx, queue->nr_cmds, queue->send_list_len, 930 nvme_cmd->common.opcode); 931 nvmet_tcp_fatal_error(queue); 932 return -ENOMEM; 933 } 934 935 req = &queue->cmd->req; 936 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 937 938 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 939 &queue->nvme_sq, &nvmet_tcp_ops))) { 940 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 941 req->cmd, req->cmd->common.command_id, 942 req->cmd->common.opcode, 943 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 944 945 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 946 return -EAGAIN; 947 } 948 949 ret = nvmet_tcp_map_data(queue->cmd); 950 if (unlikely(ret)) { 951 pr_err("queue %d: failed to map data\n", queue->idx); 952 if (nvmet_tcp_has_inline_data(queue->cmd)) 953 nvmet_tcp_fatal_error(queue); 954 else 955 nvmet_req_complete(req, ret); 956 ret = -EAGAIN; 957 goto out; 958 } 959 960 if (nvmet_tcp_need_data_in(queue->cmd)) { 961 if (nvmet_tcp_has_inline_data(queue->cmd)) { 962 queue->rcv_state = NVMET_TCP_RECV_DATA; 963 nvmet_tcp_map_pdu_iovec(queue->cmd); 964 return 0; 965 } 966 /* send back R2T */ 967 nvmet_tcp_queue_response(&queue->cmd->req); 968 goto out; 969 } 970 971 queue->cmd->req.execute(&queue->cmd->req); 972 out: 973 nvmet_prepare_receive_pdu(queue); 974 return ret; 975 } 976 977 static const u8 nvme_tcp_pdu_sizes[] = { 978 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 979 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 980 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 981 }; 982 983 static inline u8 nvmet_tcp_pdu_size(u8 type) 984 { 985 size_t idx = type; 986 987 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 988 nvme_tcp_pdu_sizes[idx]) ? 989 nvme_tcp_pdu_sizes[idx] : 0; 990 } 991 992 static inline bool nvmet_tcp_pdu_valid(u8 type) 993 { 994 switch (type) { 995 case nvme_tcp_icreq: 996 case nvme_tcp_cmd: 997 case nvme_tcp_h2c_data: 998 /* fallthru */ 999 return true; 1000 } 1001 1002 return false; 1003 } 1004 1005 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1006 { 1007 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1008 int len; 1009 struct kvec iov; 1010 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1011 1012 recv: 1013 iov.iov_base = (void *)&queue->pdu + queue->offset; 1014 iov.iov_len = queue->left; 1015 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1016 iov.iov_len, msg.msg_flags); 1017 if (unlikely(len < 0)) 1018 return len; 1019 1020 queue->offset += len; 1021 queue->left -= len; 1022 if (queue->left) 1023 return -EAGAIN; 1024 1025 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1026 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1027 1028 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1029 pr_err("unexpected pdu type %d\n", hdr->type); 1030 nvmet_tcp_fatal_error(queue); 1031 return -EIO; 1032 } 1033 1034 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1035 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1036 return -EIO; 1037 } 1038 1039 queue->left = hdr->hlen - queue->offset + hdgst; 1040 goto recv; 1041 } 1042 1043 if (queue->hdr_digest && 1044 nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) { 1045 nvmet_tcp_fatal_error(queue); /* fatal */ 1046 return -EPROTO; 1047 } 1048 1049 if (queue->data_digest && 1050 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1051 nvmet_tcp_fatal_error(queue); /* fatal */ 1052 return -EPROTO; 1053 } 1054 1055 return nvmet_tcp_done_recv_pdu(queue); 1056 } 1057 1058 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1059 { 1060 struct nvmet_tcp_queue *queue = cmd->queue; 1061 1062 nvmet_tcp_ddgst(queue->rcv_hash, cmd); 1063 queue->offset = 0; 1064 queue->left = NVME_TCP_DIGEST_LENGTH; 1065 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1066 } 1067 1068 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1069 { 1070 struct nvmet_tcp_cmd *cmd = queue->cmd; 1071 int ret; 1072 1073 while (msg_data_left(&cmd->recv_msg)) { 1074 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1075 cmd->recv_msg.msg_flags); 1076 if (ret <= 0) 1077 return ret; 1078 1079 cmd->pdu_recv += ret; 1080 cmd->rbytes_done += ret; 1081 } 1082 1083 nvmet_tcp_unmap_pdu_iovec(cmd); 1084 1085 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1086 cmd->rbytes_done == cmd->req.transfer_len) { 1087 if (queue->data_digest) { 1088 nvmet_tcp_prep_recv_ddgst(cmd); 1089 return 0; 1090 } 1091 cmd->req.execute(&cmd->req); 1092 } 1093 1094 nvmet_prepare_receive_pdu(queue); 1095 return 0; 1096 } 1097 1098 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1099 { 1100 struct nvmet_tcp_cmd *cmd = queue->cmd; 1101 int ret; 1102 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1103 struct kvec iov = { 1104 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1105 .iov_len = queue->left 1106 }; 1107 1108 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1109 iov.iov_len, msg.msg_flags); 1110 if (unlikely(ret < 0)) 1111 return ret; 1112 1113 queue->offset += ret; 1114 queue->left -= ret; 1115 if (queue->left) 1116 return -EAGAIN; 1117 1118 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1119 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1120 queue->idx, cmd->req.cmd->common.command_id, 1121 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1122 le32_to_cpu(cmd->exp_ddgst)); 1123 nvmet_tcp_finish_cmd(cmd); 1124 nvmet_tcp_fatal_error(queue); 1125 ret = -EPROTO; 1126 goto out; 1127 } 1128 1129 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1130 cmd->rbytes_done == cmd->req.transfer_len) 1131 cmd->req.execute(&cmd->req); 1132 ret = 0; 1133 out: 1134 nvmet_prepare_receive_pdu(queue); 1135 return ret; 1136 } 1137 1138 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1139 { 1140 int result = 0; 1141 1142 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1143 return 0; 1144 1145 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1146 result = nvmet_tcp_try_recv_pdu(queue); 1147 if (result != 0) 1148 goto done_recv; 1149 } 1150 1151 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1152 result = nvmet_tcp_try_recv_data(queue); 1153 if (result != 0) 1154 goto done_recv; 1155 } 1156 1157 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1158 result = nvmet_tcp_try_recv_ddgst(queue); 1159 if (result != 0) 1160 goto done_recv; 1161 } 1162 1163 done_recv: 1164 if (result < 0) { 1165 if (result == -EAGAIN) 1166 return 0; 1167 return result; 1168 } 1169 return 1; 1170 } 1171 1172 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1173 int budget, int *recvs) 1174 { 1175 int i, ret = 0; 1176 1177 for (i = 0; i < budget; i++) { 1178 ret = nvmet_tcp_try_recv_one(queue); 1179 if (unlikely(ret < 0)) { 1180 nvmet_tcp_socket_error(queue, ret); 1181 goto done; 1182 } else if (ret == 0) { 1183 break; 1184 } 1185 (*recvs)++; 1186 } 1187 done: 1188 return ret; 1189 } 1190 1191 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1192 { 1193 spin_lock(&queue->state_lock); 1194 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1195 queue->state = NVMET_TCP_Q_DISCONNECTING; 1196 schedule_work(&queue->release_work); 1197 } 1198 spin_unlock(&queue->state_lock); 1199 } 1200 1201 static void nvmet_tcp_io_work(struct work_struct *w) 1202 { 1203 struct nvmet_tcp_queue *queue = 1204 container_of(w, struct nvmet_tcp_queue, io_work); 1205 bool pending; 1206 int ret, ops = 0; 1207 1208 do { 1209 pending = false; 1210 1211 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1212 if (ret > 0) 1213 pending = true; 1214 else if (ret < 0) 1215 return; 1216 1217 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1218 if (ret > 0) 1219 pending = true; 1220 else if (ret < 0) 1221 return; 1222 1223 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1224 1225 /* 1226 * We exahusted our budget, requeue our selves 1227 */ 1228 if (pending) 1229 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1230 } 1231 1232 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1233 struct nvmet_tcp_cmd *c) 1234 { 1235 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1236 1237 c->queue = queue; 1238 c->req.port = queue->port->nport; 1239 1240 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1241 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1242 if (!c->cmd_pdu) 1243 return -ENOMEM; 1244 c->req.cmd = &c->cmd_pdu->cmd; 1245 1246 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1247 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1248 if (!c->rsp_pdu) 1249 goto out_free_cmd; 1250 c->req.cqe = &c->rsp_pdu->cqe; 1251 1252 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1253 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1254 if (!c->data_pdu) 1255 goto out_free_rsp; 1256 1257 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1258 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1259 if (!c->r2t_pdu) 1260 goto out_free_data; 1261 1262 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1263 1264 list_add_tail(&c->entry, &queue->free_list); 1265 1266 return 0; 1267 out_free_data: 1268 page_frag_free(c->data_pdu); 1269 out_free_rsp: 1270 page_frag_free(c->rsp_pdu); 1271 out_free_cmd: 1272 page_frag_free(c->cmd_pdu); 1273 return -ENOMEM; 1274 } 1275 1276 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1277 { 1278 page_frag_free(c->r2t_pdu); 1279 page_frag_free(c->data_pdu); 1280 page_frag_free(c->rsp_pdu); 1281 page_frag_free(c->cmd_pdu); 1282 } 1283 1284 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1285 { 1286 struct nvmet_tcp_cmd *cmds; 1287 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1288 1289 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1290 if (!cmds) 1291 goto out; 1292 1293 for (i = 0; i < nr_cmds; i++) { 1294 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1295 if (ret) 1296 goto out_free; 1297 } 1298 1299 queue->cmds = cmds; 1300 1301 return 0; 1302 out_free: 1303 while (--i >= 0) 1304 nvmet_tcp_free_cmd(cmds + i); 1305 kfree(cmds); 1306 out: 1307 return ret; 1308 } 1309 1310 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1311 { 1312 struct nvmet_tcp_cmd *cmds = queue->cmds; 1313 int i; 1314 1315 for (i = 0; i < queue->nr_cmds; i++) 1316 nvmet_tcp_free_cmd(cmds + i); 1317 1318 nvmet_tcp_free_cmd(&queue->connect); 1319 kfree(cmds); 1320 } 1321 1322 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1323 { 1324 struct socket *sock = queue->sock; 1325 1326 write_lock_bh(&sock->sk->sk_callback_lock); 1327 sock->sk->sk_data_ready = queue->data_ready; 1328 sock->sk->sk_state_change = queue->state_change; 1329 sock->sk->sk_write_space = queue->write_space; 1330 sock->sk->sk_user_data = NULL; 1331 write_unlock_bh(&sock->sk->sk_callback_lock); 1332 } 1333 1334 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd) 1335 { 1336 nvmet_req_uninit(&cmd->req); 1337 nvmet_tcp_unmap_pdu_iovec(cmd); 1338 kfree(cmd->iov); 1339 sgl_free(cmd->req.sg); 1340 } 1341 1342 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1343 { 1344 struct nvmet_tcp_cmd *cmd = queue->cmds; 1345 int i; 1346 1347 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1348 if (nvmet_tcp_need_data_in(cmd)) 1349 nvmet_tcp_finish_cmd(cmd); 1350 } 1351 1352 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1353 /* failed in connect */ 1354 nvmet_tcp_finish_cmd(&queue->connect); 1355 } 1356 } 1357 1358 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1359 { 1360 struct nvmet_tcp_queue *queue = 1361 container_of(w, struct nvmet_tcp_queue, release_work); 1362 1363 mutex_lock(&nvmet_tcp_queue_mutex); 1364 list_del_init(&queue->queue_list); 1365 mutex_unlock(&nvmet_tcp_queue_mutex); 1366 1367 nvmet_tcp_restore_socket_callbacks(queue); 1368 flush_work(&queue->io_work); 1369 1370 nvmet_tcp_uninit_data_in_cmds(queue); 1371 nvmet_sq_destroy(&queue->nvme_sq); 1372 cancel_work_sync(&queue->io_work); 1373 sock_release(queue->sock); 1374 nvmet_tcp_free_cmds(queue); 1375 if (queue->hdr_digest || queue->data_digest) 1376 nvmet_tcp_free_crypto(queue); 1377 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1378 1379 kfree(queue); 1380 } 1381 1382 static void nvmet_tcp_data_ready(struct sock *sk) 1383 { 1384 struct nvmet_tcp_queue *queue; 1385 1386 read_lock_bh(&sk->sk_callback_lock); 1387 queue = sk->sk_user_data; 1388 if (likely(queue)) 1389 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1390 read_unlock_bh(&sk->sk_callback_lock); 1391 } 1392 1393 static void nvmet_tcp_write_space(struct sock *sk) 1394 { 1395 struct nvmet_tcp_queue *queue; 1396 1397 read_lock_bh(&sk->sk_callback_lock); 1398 queue = sk->sk_user_data; 1399 if (unlikely(!queue)) 1400 goto out; 1401 1402 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1403 queue->write_space(sk); 1404 goto out; 1405 } 1406 1407 if (sk_stream_is_writeable(sk)) { 1408 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1409 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1410 } 1411 out: 1412 read_unlock_bh(&sk->sk_callback_lock); 1413 } 1414 1415 static void nvmet_tcp_state_change(struct sock *sk) 1416 { 1417 struct nvmet_tcp_queue *queue; 1418 1419 write_lock_bh(&sk->sk_callback_lock); 1420 queue = sk->sk_user_data; 1421 if (!queue) 1422 goto done; 1423 1424 switch (sk->sk_state) { 1425 case TCP_FIN_WAIT1: 1426 case TCP_CLOSE_WAIT: 1427 case TCP_CLOSE: 1428 /* FALLTHRU */ 1429 sk->sk_user_data = NULL; 1430 nvmet_tcp_schedule_release_queue(queue); 1431 break; 1432 default: 1433 pr_warn("queue %d unhandled state %d\n", 1434 queue->idx, sk->sk_state); 1435 } 1436 done: 1437 write_unlock_bh(&sk->sk_callback_lock); 1438 } 1439 1440 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1441 { 1442 struct socket *sock = queue->sock; 1443 struct inet_sock *inet = inet_sk(sock->sk); 1444 int ret; 1445 1446 ret = kernel_getsockname(sock, 1447 (struct sockaddr *)&queue->sockaddr); 1448 if (ret < 0) 1449 return ret; 1450 1451 ret = kernel_getpeername(sock, 1452 (struct sockaddr *)&queue->sockaddr_peer); 1453 if (ret < 0) 1454 return ret; 1455 1456 /* 1457 * Cleanup whatever is sitting in the TCP transmit queue on socket 1458 * close. This is done to prevent stale data from being sent should 1459 * the network connection be restored before TCP times out. 1460 */ 1461 sock_no_linger(sock->sk); 1462 1463 if (so_priority > 0) 1464 sock_set_priority(sock->sk, so_priority); 1465 1466 /* Set socket type of service */ 1467 if (inet->rcv_tos > 0) 1468 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1469 1470 write_lock_bh(&sock->sk->sk_callback_lock); 1471 sock->sk->sk_user_data = queue; 1472 queue->data_ready = sock->sk->sk_data_ready; 1473 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1474 queue->state_change = sock->sk->sk_state_change; 1475 sock->sk->sk_state_change = nvmet_tcp_state_change; 1476 queue->write_space = sock->sk->sk_write_space; 1477 sock->sk->sk_write_space = nvmet_tcp_write_space; 1478 write_unlock_bh(&sock->sk->sk_callback_lock); 1479 1480 return 0; 1481 } 1482 1483 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1484 struct socket *newsock) 1485 { 1486 struct nvmet_tcp_queue *queue; 1487 int ret; 1488 1489 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1490 if (!queue) 1491 return -ENOMEM; 1492 1493 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1494 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1495 queue->sock = newsock; 1496 queue->port = port; 1497 queue->nr_cmds = 0; 1498 spin_lock_init(&queue->state_lock); 1499 queue->state = NVMET_TCP_Q_CONNECTING; 1500 INIT_LIST_HEAD(&queue->free_list); 1501 init_llist_head(&queue->resp_list); 1502 INIT_LIST_HEAD(&queue->resp_send_list); 1503 1504 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL); 1505 if (queue->idx < 0) { 1506 ret = queue->idx; 1507 goto out_free_queue; 1508 } 1509 1510 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1511 if (ret) 1512 goto out_ida_remove; 1513 1514 ret = nvmet_sq_init(&queue->nvme_sq); 1515 if (ret) 1516 goto out_free_connect; 1517 1518 nvmet_prepare_receive_pdu(queue); 1519 1520 mutex_lock(&nvmet_tcp_queue_mutex); 1521 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1522 mutex_unlock(&nvmet_tcp_queue_mutex); 1523 1524 ret = nvmet_tcp_set_queue_sock(queue); 1525 if (ret) 1526 goto out_destroy_sq; 1527 1528 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1529 1530 return 0; 1531 out_destroy_sq: 1532 mutex_lock(&nvmet_tcp_queue_mutex); 1533 list_del_init(&queue->queue_list); 1534 mutex_unlock(&nvmet_tcp_queue_mutex); 1535 nvmet_sq_destroy(&queue->nvme_sq); 1536 out_free_connect: 1537 nvmet_tcp_free_cmd(&queue->connect); 1538 out_ida_remove: 1539 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1540 out_free_queue: 1541 kfree(queue); 1542 return ret; 1543 } 1544 1545 static void nvmet_tcp_accept_work(struct work_struct *w) 1546 { 1547 struct nvmet_tcp_port *port = 1548 container_of(w, struct nvmet_tcp_port, accept_work); 1549 struct socket *newsock; 1550 int ret; 1551 1552 while (true) { 1553 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1554 if (ret < 0) { 1555 if (ret != -EAGAIN) 1556 pr_warn("failed to accept err=%d\n", ret); 1557 return; 1558 } 1559 ret = nvmet_tcp_alloc_queue(port, newsock); 1560 if (ret) { 1561 pr_err("failed to allocate queue\n"); 1562 sock_release(newsock); 1563 } 1564 } 1565 } 1566 1567 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1568 { 1569 struct nvmet_tcp_port *port; 1570 1571 read_lock_bh(&sk->sk_callback_lock); 1572 port = sk->sk_user_data; 1573 if (!port) 1574 goto out; 1575 1576 if (sk->sk_state == TCP_LISTEN) 1577 schedule_work(&port->accept_work); 1578 out: 1579 read_unlock_bh(&sk->sk_callback_lock); 1580 } 1581 1582 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1583 { 1584 struct nvmet_tcp_port *port; 1585 __kernel_sa_family_t af; 1586 int ret; 1587 1588 port = kzalloc(sizeof(*port), GFP_KERNEL); 1589 if (!port) 1590 return -ENOMEM; 1591 1592 switch (nport->disc_addr.adrfam) { 1593 case NVMF_ADDR_FAMILY_IP4: 1594 af = AF_INET; 1595 break; 1596 case NVMF_ADDR_FAMILY_IP6: 1597 af = AF_INET6; 1598 break; 1599 default: 1600 pr_err("address family %d not supported\n", 1601 nport->disc_addr.adrfam); 1602 ret = -EINVAL; 1603 goto err_port; 1604 } 1605 1606 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1607 nport->disc_addr.trsvcid, &port->addr); 1608 if (ret) { 1609 pr_err("malformed ip/port passed: %s:%s\n", 1610 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1611 goto err_port; 1612 } 1613 1614 port->nport = nport; 1615 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1616 if (port->nport->inline_data_size < 0) 1617 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1618 1619 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1620 IPPROTO_TCP, &port->sock); 1621 if (ret) { 1622 pr_err("failed to create a socket\n"); 1623 goto err_port; 1624 } 1625 1626 port->sock->sk->sk_user_data = port; 1627 port->data_ready = port->sock->sk->sk_data_ready; 1628 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1629 sock_set_reuseaddr(port->sock->sk); 1630 tcp_sock_set_nodelay(port->sock->sk); 1631 if (so_priority > 0) 1632 sock_set_priority(port->sock->sk, so_priority); 1633 1634 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1635 sizeof(port->addr)); 1636 if (ret) { 1637 pr_err("failed to bind port socket %d\n", ret); 1638 goto err_sock; 1639 } 1640 1641 ret = kernel_listen(port->sock, 128); 1642 if (ret) { 1643 pr_err("failed to listen %d on port sock\n", ret); 1644 goto err_sock; 1645 } 1646 1647 nport->priv = port; 1648 pr_info("enabling port %d (%pISpc)\n", 1649 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1650 1651 return 0; 1652 1653 err_sock: 1654 sock_release(port->sock); 1655 err_port: 1656 kfree(port); 1657 return ret; 1658 } 1659 1660 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1661 { 1662 struct nvmet_tcp_port *port = nport->priv; 1663 1664 write_lock_bh(&port->sock->sk->sk_callback_lock); 1665 port->sock->sk->sk_data_ready = port->data_ready; 1666 port->sock->sk->sk_user_data = NULL; 1667 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1668 cancel_work_sync(&port->accept_work); 1669 1670 sock_release(port->sock); 1671 kfree(port); 1672 } 1673 1674 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1675 { 1676 struct nvmet_tcp_queue *queue; 1677 1678 mutex_lock(&nvmet_tcp_queue_mutex); 1679 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1680 if (queue->nvme_sq.ctrl == ctrl) 1681 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1682 mutex_unlock(&nvmet_tcp_queue_mutex); 1683 } 1684 1685 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1686 { 1687 struct nvmet_tcp_queue *queue = 1688 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1689 1690 if (sq->qid == 0) { 1691 /* Let inflight controller teardown complete */ 1692 flush_scheduled_work(); 1693 } 1694 1695 queue->nr_cmds = sq->size * 2; 1696 if (nvmet_tcp_alloc_cmds(queue)) 1697 return NVME_SC_INTERNAL; 1698 return 0; 1699 } 1700 1701 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1702 struct nvmet_port *nport, char *traddr) 1703 { 1704 struct nvmet_tcp_port *port = nport->priv; 1705 1706 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1707 struct nvmet_tcp_cmd *cmd = 1708 container_of(req, struct nvmet_tcp_cmd, req); 1709 struct nvmet_tcp_queue *queue = cmd->queue; 1710 1711 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1712 } else { 1713 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1714 } 1715 } 1716 1717 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1718 .owner = THIS_MODULE, 1719 .type = NVMF_TRTYPE_TCP, 1720 .msdbd = 1, 1721 .add_port = nvmet_tcp_add_port, 1722 .remove_port = nvmet_tcp_remove_port, 1723 .queue_response = nvmet_tcp_queue_response, 1724 .delete_ctrl = nvmet_tcp_delete_ctrl, 1725 .install_queue = nvmet_tcp_install_queue, 1726 .disc_traddr = nvmet_tcp_disc_port_addr, 1727 }; 1728 1729 static int __init nvmet_tcp_init(void) 1730 { 1731 int ret; 1732 1733 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0); 1734 if (!nvmet_tcp_wq) 1735 return -ENOMEM; 1736 1737 ret = nvmet_register_transport(&nvmet_tcp_ops); 1738 if (ret) 1739 goto err; 1740 1741 return 0; 1742 err: 1743 destroy_workqueue(nvmet_tcp_wq); 1744 return ret; 1745 } 1746 1747 static void __exit nvmet_tcp_exit(void) 1748 { 1749 struct nvmet_tcp_queue *queue; 1750 1751 nvmet_unregister_transport(&nvmet_tcp_ops); 1752 1753 flush_scheduled_work(); 1754 mutex_lock(&nvmet_tcp_queue_mutex); 1755 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1756 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1757 mutex_unlock(&nvmet_tcp_queue_mutex); 1758 flush_scheduled_work(); 1759 1760 destroy_workqueue(nvmet_tcp_wq); 1761 } 1762 1763 module_init(nvmet_tcp_init); 1764 module_exit(nvmet_tcp_exit); 1765 1766 MODULE_LICENSE("GPL v2"); 1767 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1768