xref: /openbmc/linux/drivers/nvme/target/tcp.c (revision 34facb04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 
18 #include "nvmet.h"
19 
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
21 
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31 
32 #define NVMET_TCP_RECV_BUDGET		8
33 #define NVMET_TCP_SEND_BUDGET		8
34 #define NVMET_TCP_IO_WORK_BUDGET	64
35 
36 enum nvmet_tcp_send_state {
37 	NVMET_TCP_SEND_DATA_PDU,
38 	NVMET_TCP_SEND_DATA,
39 	NVMET_TCP_SEND_R2T,
40 	NVMET_TCP_SEND_DDGST,
41 	NVMET_TCP_SEND_RESPONSE
42 };
43 
44 enum nvmet_tcp_recv_state {
45 	NVMET_TCP_RECV_PDU,
46 	NVMET_TCP_RECV_DATA,
47 	NVMET_TCP_RECV_DDGST,
48 	NVMET_TCP_RECV_ERR,
49 };
50 
51 enum {
52 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
53 };
54 
55 struct nvmet_tcp_cmd {
56 	struct nvmet_tcp_queue		*queue;
57 	struct nvmet_req		req;
58 
59 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
60 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
61 	struct nvme_tcp_data_pdu	*data_pdu;
62 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
63 
64 	u32				rbytes_done;
65 	u32				wbytes_done;
66 
67 	u32				pdu_len;
68 	u32				pdu_recv;
69 	int				sg_idx;
70 	int				nr_mapped;
71 	struct msghdr			recv_msg;
72 	struct kvec			*iov;
73 	u32				flags;
74 
75 	struct list_head		entry;
76 	struct llist_node		lentry;
77 
78 	/* send state */
79 	u32				offset;
80 	struct scatterlist		*cur_sg;
81 	enum nvmet_tcp_send_state	state;
82 
83 	__le32				exp_ddgst;
84 	__le32				recv_ddgst;
85 };
86 
87 enum nvmet_tcp_queue_state {
88 	NVMET_TCP_Q_CONNECTING,
89 	NVMET_TCP_Q_LIVE,
90 	NVMET_TCP_Q_DISCONNECTING,
91 };
92 
93 struct nvmet_tcp_queue {
94 	struct socket		*sock;
95 	struct nvmet_tcp_port	*port;
96 	struct work_struct	io_work;
97 	int			cpu;
98 	struct nvmet_cq		nvme_cq;
99 	struct nvmet_sq		nvme_sq;
100 
101 	/* send state */
102 	struct nvmet_tcp_cmd	*cmds;
103 	unsigned int		nr_cmds;
104 	struct list_head	free_list;
105 	struct llist_head	resp_list;
106 	struct list_head	resp_send_list;
107 	int			send_list_len;
108 	struct nvmet_tcp_cmd	*snd_cmd;
109 
110 	/* recv state */
111 	int			offset;
112 	int			left;
113 	enum nvmet_tcp_recv_state rcv_state;
114 	struct nvmet_tcp_cmd	*cmd;
115 	union nvme_tcp_pdu	pdu;
116 
117 	/* digest state */
118 	bool			hdr_digest;
119 	bool			data_digest;
120 	struct ahash_request	*snd_hash;
121 	struct ahash_request	*rcv_hash;
122 
123 	spinlock_t		state_lock;
124 	enum nvmet_tcp_queue_state state;
125 
126 	struct sockaddr_storage	sockaddr;
127 	struct sockaddr_storage	sockaddr_peer;
128 	struct work_struct	release_work;
129 
130 	int			idx;
131 	struct list_head	queue_list;
132 
133 	struct nvmet_tcp_cmd	connect;
134 
135 	struct page_frag_cache	pf_cache;
136 
137 	void (*data_ready)(struct sock *);
138 	void (*state_change)(struct sock *);
139 	void (*write_space)(struct sock *);
140 };
141 
142 struct nvmet_tcp_port {
143 	struct socket		*sock;
144 	struct work_struct	accept_work;
145 	struct nvmet_port	*nport;
146 	struct sockaddr_storage addr;
147 	int			last_cpu;
148 	void (*data_ready)(struct sock *);
149 };
150 
151 static DEFINE_IDA(nvmet_tcp_queue_ida);
152 static LIST_HEAD(nvmet_tcp_queue_list);
153 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
154 
155 static struct workqueue_struct *nvmet_tcp_wq;
156 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
157 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
158 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
159 
160 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
161 		struct nvmet_tcp_cmd *cmd)
162 {
163 	return cmd - queue->cmds;
164 }
165 
166 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
167 {
168 	return nvme_is_write(cmd->req.cmd) &&
169 		cmd->rbytes_done < cmd->req.transfer_len;
170 }
171 
172 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
173 {
174 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
175 }
176 
177 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
178 {
179 	return !nvme_is_write(cmd->req.cmd) &&
180 		cmd->req.transfer_len > 0 &&
181 		!cmd->req.cqe->status;
182 }
183 
184 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
185 {
186 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
187 		!cmd->rbytes_done;
188 }
189 
190 static inline struct nvmet_tcp_cmd *
191 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
192 {
193 	struct nvmet_tcp_cmd *cmd;
194 
195 	cmd = list_first_entry_or_null(&queue->free_list,
196 				struct nvmet_tcp_cmd, entry);
197 	if (!cmd)
198 		return NULL;
199 	list_del_init(&cmd->entry);
200 
201 	cmd->rbytes_done = cmd->wbytes_done = 0;
202 	cmd->pdu_len = 0;
203 	cmd->pdu_recv = 0;
204 	cmd->iov = NULL;
205 	cmd->flags = 0;
206 	return cmd;
207 }
208 
209 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
210 {
211 	if (unlikely(cmd == &cmd->queue->connect))
212 		return;
213 
214 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
215 }
216 
217 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
218 {
219 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
220 }
221 
222 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
223 {
224 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
225 }
226 
227 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
228 		void *pdu, size_t len)
229 {
230 	struct scatterlist sg;
231 
232 	sg_init_one(&sg, pdu, len);
233 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
234 	crypto_ahash_digest(hash);
235 }
236 
237 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
238 	void *pdu, size_t len)
239 {
240 	struct nvme_tcp_hdr *hdr = pdu;
241 	__le32 recv_digest;
242 	__le32 exp_digest;
243 
244 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
245 		pr_err("queue %d: header digest enabled but no header digest\n",
246 			queue->idx);
247 		return -EPROTO;
248 	}
249 
250 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
251 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
252 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
253 	if (recv_digest != exp_digest) {
254 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
255 			queue->idx, le32_to_cpu(recv_digest),
256 			le32_to_cpu(exp_digest));
257 		return -EPROTO;
258 	}
259 
260 	return 0;
261 }
262 
263 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
264 {
265 	struct nvme_tcp_hdr *hdr = pdu;
266 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
267 	u32 len;
268 
269 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
270 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
271 
272 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
273 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
274 		return -EPROTO;
275 	}
276 
277 	return 0;
278 }
279 
280 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
281 {
282 	struct scatterlist *sg;
283 	int i;
284 
285 	sg = &cmd->req.sg[cmd->sg_idx];
286 
287 	for (i = 0; i < cmd->nr_mapped; i++)
288 		kunmap(sg_page(&sg[i]));
289 }
290 
291 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
292 {
293 	struct kvec *iov = cmd->iov;
294 	struct scatterlist *sg;
295 	u32 length, offset, sg_offset;
296 
297 	length = cmd->pdu_len;
298 	cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
299 	offset = cmd->rbytes_done;
300 	cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
301 	sg_offset = offset % PAGE_SIZE;
302 	sg = &cmd->req.sg[cmd->sg_idx];
303 
304 	while (length) {
305 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
306 
307 		iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
308 		iov->iov_len = iov_len;
309 
310 		length -= iov_len;
311 		sg = sg_next(sg);
312 		iov++;
313 	}
314 
315 	iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
316 		cmd->nr_mapped, cmd->pdu_len);
317 }
318 
319 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
320 {
321 	queue->rcv_state = NVMET_TCP_RECV_ERR;
322 	if (queue->nvme_sq.ctrl)
323 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
324 	else
325 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
326 }
327 
328 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
329 {
330 	if (status == -EPIPE || status == -ECONNRESET)
331 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
332 	else
333 		nvmet_tcp_fatal_error(queue);
334 }
335 
336 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
337 {
338 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
339 	u32 len = le32_to_cpu(sgl->length);
340 
341 	if (!len)
342 		return 0;
343 
344 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
345 			  NVME_SGL_FMT_OFFSET)) {
346 		if (!nvme_is_write(cmd->req.cmd))
347 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
348 
349 		if (len > cmd->req.port->inline_data_size)
350 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
351 		cmd->pdu_len = len;
352 	}
353 	cmd->req.transfer_len += len;
354 
355 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
356 	if (!cmd->req.sg)
357 		return NVME_SC_INTERNAL;
358 	cmd->cur_sg = cmd->req.sg;
359 
360 	if (nvmet_tcp_has_data_in(cmd)) {
361 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
362 				sizeof(*cmd->iov), GFP_KERNEL);
363 		if (!cmd->iov)
364 			goto err;
365 	}
366 
367 	return 0;
368 err:
369 	sgl_free(cmd->req.sg);
370 	return NVME_SC_INTERNAL;
371 }
372 
373 static void nvmet_tcp_ddgst(struct ahash_request *hash,
374 		struct nvmet_tcp_cmd *cmd)
375 {
376 	ahash_request_set_crypt(hash, cmd->req.sg,
377 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
378 	crypto_ahash_digest(hash);
379 }
380 
381 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
382 {
383 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
384 	struct nvmet_tcp_queue *queue = cmd->queue;
385 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
386 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
387 
388 	cmd->offset = 0;
389 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
390 
391 	pdu->hdr.type = nvme_tcp_c2h_data;
392 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
393 						NVME_TCP_F_DATA_SUCCESS : 0);
394 	pdu->hdr.hlen = sizeof(*pdu);
395 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
396 	pdu->hdr.plen =
397 		cpu_to_le32(pdu->hdr.hlen + hdgst +
398 				cmd->req.transfer_len + ddgst);
399 	pdu->command_id = cmd->req.cqe->command_id;
400 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
401 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
402 
403 	if (queue->data_digest) {
404 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
405 		nvmet_tcp_ddgst(queue->snd_hash, cmd);
406 	}
407 
408 	if (cmd->queue->hdr_digest) {
409 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
410 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
411 	}
412 }
413 
414 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
415 {
416 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
417 	struct nvmet_tcp_queue *queue = cmd->queue;
418 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
419 
420 	cmd->offset = 0;
421 	cmd->state = NVMET_TCP_SEND_R2T;
422 
423 	pdu->hdr.type = nvme_tcp_r2t;
424 	pdu->hdr.flags = 0;
425 	pdu->hdr.hlen = sizeof(*pdu);
426 	pdu->hdr.pdo = 0;
427 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
428 
429 	pdu->command_id = cmd->req.cmd->common.command_id;
430 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
431 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
432 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
433 	if (cmd->queue->hdr_digest) {
434 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
435 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
436 	}
437 }
438 
439 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
440 {
441 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
442 	struct nvmet_tcp_queue *queue = cmd->queue;
443 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
444 
445 	cmd->offset = 0;
446 	cmd->state = NVMET_TCP_SEND_RESPONSE;
447 
448 	pdu->hdr.type = nvme_tcp_rsp;
449 	pdu->hdr.flags = 0;
450 	pdu->hdr.hlen = sizeof(*pdu);
451 	pdu->hdr.pdo = 0;
452 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
453 	if (cmd->queue->hdr_digest) {
454 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
455 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
456 	}
457 }
458 
459 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
460 {
461 	struct llist_node *node;
462 
463 	node = llist_del_all(&queue->resp_list);
464 	if (!node)
465 		return;
466 
467 	while (node) {
468 		struct nvmet_tcp_cmd *cmd = llist_entry(node,
469 					struct nvmet_tcp_cmd, lentry);
470 
471 		list_add(&cmd->entry, &queue->resp_send_list);
472 		node = node->next;
473 		queue->send_list_len++;
474 	}
475 }
476 
477 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
478 {
479 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
480 				struct nvmet_tcp_cmd, entry);
481 	if (!queue->snd_cmd) {
482 		nvmet_tcp_process_resp_list(queue);
483 		queue->snd_cmd =
484 			list_first_entry_or_null(&queue->resp_send_list,
485 					struct nvmet_tcp_cmd, entry);
486 		if (unlikely(!queue->snd_cmd))
487 			return NULL;
488 	}
489 
490 	list_del_init(&queue->snd_cmd->entry);
491 	queue->send_list_len--;
492 
493 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
494 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
495 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
496 		nvmet_setup_r2t_pdu(queue->snd_cmd);
497 	else
498 		nvmet_setup_response_pdu(queue->snd_cmd);
499 
500 	return queue->snd_cmd;
501 }
502 
503 static void nvmet_tcp_queue_response(struct nvmet_req *req)
504 {
505 	struct nvmet_tcp_cmd *cmd =
506 		container_of(req, struct nvmet_tcp_cmd, req);
507 	struct nvmet_tcp_queue	*queue = cmd->queue;
508 
509 	llist_add(&cmd->lentry, &queue->resp_list);
510 	queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
511 }
512 
513 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
514 {
515 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
516 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
517 	int ret;
518 
519 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
520 			offset_in_page(cmd->data_pdu) + cmd->offset,
521 			left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
522 	if (ret <= 0)
523 		return ret;
524 
525 	cmd->offset += ret;
526 	left -= ret;
527 
528 	if (left)
529 		return -EAGAIN;
530 
531 	cmd->state = NVMET_TCP_SEND_DATA;
532 	cmd->offset  = 0;
533 	return 1;
534 }
535 
536 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
537 {
538 	struct nvmet_tcp_queue *queue = cmd->queue;
539 	int ret;
540 
541 	while (cmd->cur_sg) {
542 		struct page *page = sg_page(cmd->cur_sg);
543 		u32 left = cmd->cur_sg->length - cmd->offset;
544 		int flags = MSG_DONTWAIT;
545 
546 		if ((!last_in_batch && cmd->queue->send_list_len) ||
547 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
548 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
549 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
550 
551 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
552 					left, flags);
553 		if (ret <= 0)
554 			return ret;
555 
556 		cmd->offset += ret;
557 		cmd->wbytes_done += ret;
558 
559 		/* Done with sg?*/
560 		if (cmd->offset == cmd->cur_sg->length) {
561 			cmd->cur_sg = sg_next(cmd->cur_sg);
562 			cmd->offset = 0;
563 		}
564 	}
565 
566 	if (queue->data_digest) {
567 		cmd->state = NVMET_TCP_SEND_DDGST;
568 		cmd->offset = 0;
569 	} else {
570 		if (queue->nvme_sq.sqhd_disabled) {
571 			cmd->queue->snd_cmd = NULL;
572 			nvmet_tcp_put_cmd(cmd);
573 		} else {
574 			nvmet_setup_response_pdu(cmd);
575 		}
576 	}
577 
578 	if (queue->nvme_sq.sqhd_disabled) {
579 		kfree(cmd->iov);
580 		sgl_free(cmd->req.sg);
581 	}
582 
583 	return 1;
584 
585 }
586 
587 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
588 		bool last_in_batch)
589 {
590 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
591 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
592 	int flags = MSG_DONTWAIT;
593 	int ret;
594 
595 	if (!last_in_batch && cmd->queue->send_list_len)
596 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
597 	else
598 		flags |= MSG_EOR;
599 
600 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
601 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
602 	if (ret <= 0)
603 		return ret;
604 	cmd->offset += ret;
605 	left -= ret;
606 
607 	if (left)
608 		return -EAGAIN;
609 
610 	kfree(cmd->iov);
611 	sgl_free(cmd->req.sg);
612 	cmd->queue->snd_cmd = NULL;
613 	nvmet_tcp_put_cmd(cmd);
614 	return 1;
615 }
616 
617 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
618 {
619 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
620 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
621 	int flags = MSG_DONTWAIT;
622 	int ret;
623 
624 	if (!last_in_batch && cmd->queue->send_list_len)
625 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
626 	else
627 		flags |= MSG_EOR;
628 
629 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
630 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
631 	if (ret <= 0)
632 		return ret;
633 	cmd->offset += ret;
634 	left -= ret;
635 
636 	if (left)
637 		return -EAGAIN;
638 
639 	cmd->queue->snd_cmd = NULL;
640 	return 1;
641 }
642 
643 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
644 {
645 	struct nvmet_tcp_queue *queue = cmd->queue;
646 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
647 	struct kvec iov = {
648 		.iov_base = &cmd->exp_ddgst + cmd->offset,
649 		.iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
650 	};
651 	int ret;
652 
653 	if (!last_in_batch && cmd->queue->send_list_len)
654 		msg.msg_flags |= MSG_MORE;
655 	else
656 		msg.msg_flags |= MSG_EOR;
657 
658 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
659 	if (unlikely(ret <= 0))
660 		return ret;
661 
662 	cmd->offset += ret;
663 
664 	if (queue->nvme_sq.sqhd_disabled) {
665 		cmd->queue->snd_cmd = NULL;
666 		nvmet_tcp_put_cmd(cmd);
667 	} else {
668 		nvmet_setup_response_pdu(cmd);
669 	}
670 	return 1;
671 }
672 
673 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
674 		bool last_in_batch)
675 {
676 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
677 	int ret = 0;
678 
679 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
680 		cmd = nvmet_tcp_fetch_cmd(queue);
681 		if (unlikely(!cmd))
682 			return 0;
683 	}
684 
685 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
686 		ret = nvmet_try_send_data_pdu(cmd);
687 		if (ret <= 0)
688 			goto done_send;
689 	}
690 
691 	if (cmd->state == NVMET_TCP_SEND_DATA) {
692 		ret = nvmet_try_send_data(cmd, last_in_batch);
693 		if (ret <= 0)
694 			goto done_send;
695 	}
696 
697 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
698 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
699 		if (ret <= 0)
700 			goto done_send;
701 	}
702 
703 	if (cmd->state == NVMET_TCP_SEND_R2T) {
704 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
705 		if (ret <= 0)
706 			goto done_send;
707 	}
708 
709 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
710 		ret = nvmet_try_send_response(cmd, last_in_batch);
711 
712 done_send:
713 	if (ret < 0) {
714 		if (ret == -EAGAIN)
715 			return 0;
716 		return ret;
717 	}
718 
719 	return 1;
720 }
721 
722 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
723 		int budget, int *sends)
724 {
725 	int i, ret = 0;
726 
727 	for (i = 0; i < budget; i++) {
728 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
729 		if (unlikely(ret < 0)) {
730 			nvmet_tcp_socket_error(queue, ret);
731 			goto done;
732 		} else if (ret == 0) {
733 			break;
734 		}
735 		(*sends)++;
736 	}
737 done:
738 	return ret;
739 }
740 
741 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
742 {
743 	queue->offset = 0;
744 	queue->left = sizeof(struct nvme_tcp_hdr);
745 	queue->cmd = NULL;
746 	queue->rcv_state = NVMET_TCP_RECV_PDU;
747 }
748 
749 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
750 {
751 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
752 
753 	ahash_request_free(queue->rcv_hash);
754 	ahash_request_free(queue->snd_hash);
755 	crypto_free_ahash(tfm);
756 }
757 
758 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
759 {
760 	struct crypto_ahash *tfm;
761 
762 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
763 	if (IS_ERR(tfm))
764 		return PTR_ERR(tfm);
765 
766 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
767 	if (!queue->snd_hash)
768 		goto free_tfm;
769 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
770 
771 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
772 	if (!queue->rcv_hash)
773 		goto free_snd_hash;
774 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
775 
776 	return 0;
777 free_snd_hash:
778 	ahash_request_free(queue->snd_hash);
779 free_tfm:
780 	crypto_free_ahash(tfm);
781 	return -ENOMEM;
782 }
783 
784 
785 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
786 {
787 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
788 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
789 	struct msghdr msg = {};
790 	struct kvec iov;
791 	int ret;
792 
793 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
794 		pr_err("bad nvme-tcp pdu length (%d)\n",
795 			le32_to_cpu(icreq->hdr.plen));
796 		nvmet_tcp_fatal_error(queue);
797 	}
798 
799 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
800 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
801 		return -EPROTO;
802 	}
803 
804 	if (icreq->hpda != 0) {
805 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
806 			icreq->hpda);
807 		return -EPROTO;
808 	}
809 
810 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
811 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
812 	if (queue->hdr_digest || queue->data_digest) {
813 		ret = nvmet_tcp_alloc_crypto(queue);
814 		if (ret)
815 			return ret;
816 	}
817 
818 	memset(icresp, 0, sizeof(*icresp));
819 	icresp->hdr.type = nvme_tcp_icresp;
820 	icresp->hdr.hlen = sizeof(*icresp);
821 	icresp->hdr.pdo = 0;
822 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
823 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
824 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
825 	icresp->cpda = 0;
826 	if (queue->hdr_digest)
827 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
828 	if (queue->data_digest)
829 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
830 
831 	iov.iov_base = icresp;
832 	iov.iov_len = sizeof(*icresp);
833 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
834 	if (ret < 0)
835 		goto free_crypto;
836 
837 	queue->state = NVMET_TCP_Q_LIVE;
838 	nvmet_prepare_receive_pdu(queue);
839 	return 0;
840 free_crypto:
841 	if (queue->hdr_digest || queue->data_digest)
842 		nvmet_tcp_free_crypto(queue);
843 	return ret;
844 }
845 
846 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
847 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
848 {
849 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
850 	int ret;
851 
852 	if (!nvme_is_write(cmd->req.cmd) ||
853 	    data_len > cmd->req.port->inline_data_size) {
854 		nvmet_prepare_receive_pdu(queue);
855 		return;
856 	}
857 
858 	ret = nvmet_tcp_map_data(cmd);
859 	if (unlikely(ret)) {
860 		pr_err("queue %d: failed to map data\n", queue->idx);
861 		nvmet_tcp_fatal_error(queue);
862 		return;
863 	}
864 
865 	queue->rcv_state = NVMET_TCP_RECV_DATA;
866 	nvmet_tcp_map_pdu_iovec(cmd);
867 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
868 }
869 
870 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
871 {
872 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
873 	struct nvmet_tcp_cmd *cmd;
874 
875 	cmd = &queue->cmds[data->ttag];
876 
877 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
878 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
879 			data->ttag, le32_to_cpu(data->data_offset),
880 			cmd->rbytes_done);
881 		/* FIXME: use path and transport errors */
882 		nvmet_req_complete(&cmd->req,
883 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
884 		return -EPROTO;
885 	}
886 
887 	cmd->pdu_len = le32_to_cpu(data->data_length);
888 	cmd->pdu_recv = 0;
889 	nvmet_tcp_map_pdu_iovec(cmd);
890 	queue->cmd = cmd;
891 	queue->rcv_state = NVMET_TCP_RECV_DATA;
892 
893 	return 0;
894 }
895 
896 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
897 {
898 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
899 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
900 	struct nvmet_req *req;
901 	int ret;
902 
903 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
904 		if (hdr->type != nvme_tcp_icreq) {
905 			pr_err("unexpected pdu type (%d) before icreq\n",
906 				hdr->type);
907 			nvmet_tcp_fatal_error(queue);
908 			return -EPROTO;
909 		}
910 		return nvmet_tcp_handle_icreq(queue);
911 	}
912 
913 	if (hdr->type == nvme_tcp_h2c_data) {
914 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
915 		if (unlikely(ret))
916 			return ret;
917 		return 0;
918 	}
919 
920 	queue->cmd = nvmet_tcp_get_cmd(queue);
921 	if (unlikely(!queue->cmd)) {
922 		/* This should never happen */
923 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
924 			queue->idx, queue->nr_cmds, queue->send_list_len,
925 			nvme_cmd->common.opcode);
926 		nvmet_tcp_fatal_error(queue);
927 		return -ENOMEM;
928 	}
929 
930 	req = &queue->cmd->req;
931 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
932 
933 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
934 			&queue->nvme_sq, &nvmet_tcp_ops))) {
935 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
936 			req->cmd, req->cmd->common.command_id,
937 			req->cmd->common.opcode,
938 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
939 
940 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
941 		return -EAGAIN;
942 	}
943 
944 	ret = nvmet_tcp_map_data(queue->cmd);
945 	if (unlikely(ret)) {
946 		pr_err("queue %d: failed to map data\n", queue->idx);
947 		if (nvmet_tcp_has_inline_data(queue->cmd))
948 			nvmet_tcp_fatal_error(queue);
949 		else
950 			nvmet_req_complete(req, ret);
951 		ret = -EAGAIN;
952 		goto out;
953 	}
954 
955 	if (nvmet_tcp_need_data_in(queue->cmd)) {
956 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
957 			queue->rcv_state = NVMET_TCP_RECV_DATA;
958 			nvmet_tcp_map_pdu_iovec(queue->cmd);
959 			return 0;
960 		}
961 		/* send back R2T */
962 		nvmet_tcp_queue_response(&queue->cmd->req);
963 		goto out;
964 	}
965 
966 	queue->cmd->req.execute(&queue->cmd->req);
967 out:
968 	nvmet_prepare_receive_pdu(queue);
969 	return ret;
970 }
971 
972 static const u8 nvme_tcp_pdu_sizes[] = {
973 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
974 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
975 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
976 };
977 
978 static inline u8 nvmet_tcp_pdu_size(u8 type)
979 {
980 	size_t idx = type;
981 
982 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
983 		nvme_tcp_pdu_sizes[idx]) ?
984 			nvme_tcp_pdu_sizes[idx] : 0;
985 }
986 
987 static inline bool nvmet_tcp_pdu_valid(u8 type)
988 {
989 	switch (type) {
990 	case nvme_tcp_icreq:
991 	case nvme_tcp_cmd:
992 	case nvme_tcp_h2c_data:
993 		/* fallthru */
994 		return true;
995 	}
996 
997 	return false;
998 }
999 
1000 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1001 {
1002 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1003 	int len;
1004 	struct kvec iov;
1005 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1006 
1007 recv:
1008 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1009 	iov.iov_len = queue->left;
1010 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1011 			iov.iov_len, msg.msg_flags);
1012 	if (unlikely(len < 0))
1013 		return len;
1014 
1015 	queue->offset += len;
1016 	queue->left -= len;
1017 	if (queue->left)
1018 		return -EAGAIN;
1019 
1020 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1021 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1022 
1023 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1024 			pr_err("unexpected pdu type %d\n", hdr->type);
1025 			nvmet_tcp_fatal_error(queue);
1026 			return -EIO;
1027 		}
1028 
1029 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1030 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1031 			return -EIO;
1032 		}
1033 
1034 		queue->left = hdr->hlen - queue->offset + hdgst;
1035 		goto recv;
1036 	}
1037 
1038 	if (queue->hdr_digest &&
1039 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1040 		nvmet_tcp_fatal_error(queue); /* fatal */
1041 		return -EPROTO;
1042 	}
1043 
1044 	if (queue->data_digest &&
1045 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1046 		nvmet_tcp_fatal_error(queue); /* fatal */
1047 		return -EPROTO;
1048 	}
1049 
1050 	return nvmet_tcp_done_recv_pdu(queue);
1051 }
1052 
1053 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1054 {
1055 	struct nvmet_tcp_queue *queue = cmd->queue;
1056 
1057 	nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1058 	queue->offset = 0;
1059 	queue->left = NVME_TCP_DIGEST_LENGTH;
1060 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1061 }
1062 
1063 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1064 {
1065 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1066 	int ret;
1067 
1068 	while (msg_data_left(&cmd->recv_msg)) {
1069 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1070 			cmd->recv_msg.msg_flags);
1071 		if (ret <= 0)
1072 			return ret;
1073 
1074 		cmd->pdu_recv += ret;
1075 		cmd->rbytes_done += ret;
1076 	}
1077 
1078 	nvmet_tcp_unmap_pdu_iovec(cmd);
1079 
1080 	if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1081 	    cmd->rbytes_done == cmd->req.transfer_len) {
1082 		if (queue->data_digest) {
1083 			nvmet_tcp_prep_recv_ddgst(cmd);
1084 			return 0;
1085 		}
1086 		cmd->req.execute(&cmd->req);
1087 	}
1088 
1089 	nvmet_prepare_receive_pdu(queue);
1090 	return 0;
1091 }
1092 
1093 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1094 {
1095 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1096 	int ret;
1097 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1098 	struct kvec iov = {
1099 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1100 		.iov_len = queue->left
1101 	};
1102 
1103 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1104 			iov.iov_len, msg.msg_flags);
1105 	if (unlikely(ret < 0))
1106 		return ret;
1107 
1108 	queue->offset += ret;
1109 	queue->left -= ret;
1110 	if (queue->left)
1111 		return -EAGAIN;
1112 
1113 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1114 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1115 			queue->idx, cmd->req.cmd->common.command_id,
1116 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1117 			le32_to_cpu(cmd->exp_ddgst));
1118 		nvmet_tcp_finish_cmd(cmd);
1119 		nvmet_tcp_fatal_error(queue);
1120 		ret = -EPROTO;
1121 		goto out;
1122 	}
1123 
1124 	if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1125 	    cmd->rbytes_done == cmd->req.transfer_len)
1126 		cmd->req.execute(&cmd->req);
1127 	ret = 0;
1128 out:
1129 	nvmet_prepare_receive_pdu(queue);
1130 	return ret;
1131 }
1132 
1133 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1134 {
1135 	int result = 0;
1136 
1137 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1138 		return 0;
1139 
1140 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1141 		result = nvmet_tcp_try_recv_pdu(queue);
1142 		if (result != 0)
1143 			goto done_recv;
1144 	}
1145 
1146 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1147 		result = nvmet_tcp_try_recv_data(queue);
1148 		if (result != 0)
1149 			goto done_recv;
1150 	}
1151 
1152 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1153 		result = nvmet_tcp_try_recv_ddgst(queue);
1154 		if (result != 0)
1155 			goto done_recv;
1156 	}
1157 
1158 done_recv:
1159 	if (result < 0) {
1160 		if (result == -EAGAIN)
1161 			return 0;
1162 		return result;
1163 	}
1164 	return 1;
1165 }
1166 
1167 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1168 		int budget, int *recvs)
1169 {
1170 	int i, ret = 0;
1171 
1172 	for (i = 0; i < budget; i++) {
1173 		ret = nvmet_tcp_try_recv_one(queue);
1174 		if (unlikely(ret < 0)) {
1175 			nvmet_tcp_socket_error(queue, ret);
1176 			goto done;
1177 		} else if (ret == 0) {
1178 			break;
1179 		}
1180 		(*recvs)++;
1181 	}
1182 done:
1183 	return ret;
1184 }
1185 
1186 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1187 {
1188 	spin_lock(&queue->state_lock);
1189 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1190 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1191 		schedule_work(&queue->release_work);
1192 	}
1193 	spin_unlock(&queue->state_lock);
1194 }
1195 
1196 static void nvmet_tcp_io_work(struct work_struct *w)
1197 {
1198 	struct nvmet_tcp_queue *queue =
1199 		container_of(w, struct nvmet_tcp_queue, io_work);
1200 	bool pending;
1201 	int ret, ops = 0;
1202 
1203 	do {
1204 		pending = false;
1205 
1206 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1207 		if (ret > 0)
1208 			pending = true;
1209 		else if (ret < 0)
1210 			return;
1211 
1212 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1213 		if (ret > 0)
1214 			pending = true;
1215 		else if (ret < 0)
1216 			return;
1217 
1218 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1219 
1220 	/*
1221 	 * We exahusted our budget, requeue our selves
1222 	 */
1223 	if (pending)
1224 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1225 }
1226 
1227 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1228 		struct nvmet_tcp_cmd *c)
1229 {
1230 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1231 
1232 	c->queue = queue;
1233 	c->req.port = queue->port->nport;
1234 
1235 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1236 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1237 	if (!c->cmd_pdu)
1238 		return -ENOMEM;
1239 	c->req.cmd = &c->cmd_pdu->cmd;
1240 
1241 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1242 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1243 	if (!c->rsp_pdu)
1244 		goto out_free_cmd;
1245 	c->req.cqe = &c->rsp_pdu->cqe;
1246 
1247 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1248 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1249 	if (!c->data_pdu)
1250 		goto out_free_rsp;
1251 
1252 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1253 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1254 	if (!c->r2t_pdu)
1255 		goto out_free_data;
1256 
1257 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1258 
1259 	list_add_tail(&c->entry, &queue->free_list);
1260 
1261 	return 0;
1262 out_free_data:
1263 	page_frag_free(c->data_pdu);
1264 out_free_rsp:
1265 	page_frag_free(c->rsp_pdu);
1266 out_free_cmd:
1267 	page_frag_free(c->cmd_pdu);
1268 	return -ENOMEM;
1269 }
1270 
1271 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1272 {
1273 	page_frag_free(c->r2t_pdu);
1274 	page_frag_free(c->data_pdu);
1275 	page_frag_free(c->rsp_pdu);
1276 	page_frag_free(c->cmd_pdu);
1277 }
1278 
1279 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1280 {
1281 	struct nvmet_tcp_cmd *cmds;
1282 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1283 
1284 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1285 	if (!cmds)
1286 		goto out;
1287 
1288 	for (i = 0; i < nr_cmds; i++) {
1289 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1290 		if (ret)
1291 			goto out_free;
1292 	}
1293 
1294 	queue->cmds = cmds;
1295 
1296 	return 0;
1297 out_free:
1298 	while (--i >= 0)
1299 		nvmet_tcp_free_cmd(cmds + i);
1300 	kfree(cmds);
1301 out:
1302 	return ret;
1303 }
1304 
1305 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1306 {
1307 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1308 	int i;
1309 
1310 	for (i = 0; i < queue->nr_cmds; i++)
1311 		nvmet_tcp_free_cmd(cmds + i);
1312 
1313 	nvmet_tcp_free_cmd(&queue->connect);
1314 	kfree(cmds);
1315 }
1316 
1317 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1318 {
1319 	struct socket *sock = queue->sock;
1320 
1321 	write_lock_bh(&sock->sk->sk_callback_lock);
1322 	sock->sk->sk_data_ready =  queue->data_ready;
1323 	sock->sk->sk_state_change = queue->state_change;
1324 	sock->sk->sk_write_space = queue->write_space;
1325 	sock->sk->sk_user_data = NULL;
1326 	write_unlock_bh(&sock->sk->sk_callback_lock);
1327 }
1328 
1329 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1330 {
1331 	nvmet_req_uninit(&cmd->req);
1332 	nvmet_tcp_unmap_pdu_iovec(cmd);
1333 	kfree(cmd->iov);
1334 	sgl_free(cmd->req.sg);
1335 }
1336 
1337 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1338 {
1339 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1340 	int i;
1341 
1342 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1343 		if (nvmet_tcp_need_data_in(cmd))
1344 			nvmet_tcp_finish_cmd(cmd);
1345 	}
1346 
1347 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1348 		/* failed in connect */
1349 		nvmet_tcp_finish_cmd(&queue->connect);
1350 	}
1351 }
1352 
1353 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1354 {
1355 	struct nvmet_tcp_queue *queue =
1356 		container_of(w, struct nvmet_tcp_queue, release_work);
1357 
1358 	mutex_lock(&nvmet_tcp_queue_mutex);
1359 	list_del_init(&queue->queue_list);
1360 	mutex_unlock(&nvmet_tcp_queue_mutex);
1361 
1362 	nvmet_tcp_restore_socket_callbacks(queue);
1363 	flush_work(&queue->io_work);
1364 
1365 	nvmet_tcp_uninit_data_in_cmds(queue);
1366 	nvmet_sq_destroy(&queue->nvme_sq);
1367 	cancel_work_sync(&queue->io_work);
1368 	sock_release(queue->sock);
1369 	nvmet_tcp_free_cmds(queue);
1370 	if (queue->hdr_digest || queue->data_digest)
1371 		nvmet_tcp_free_crypto(queue);
1372 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1373 
1374 	kfree(queue);
1375 }
1376 
1377 static void nvmet_tcp_data_ready(struct sock *sk)
1378 {
1379 	struct nvmet_tcp_queue *queue;
1380 
1381 	read_lock_bh(&sk->sk_callback_lock);
1382 	queue = sk->sk_user_data;
1383 	if (likely(queue))
1384 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1385 	read_unlock_bh(&sk->sk_callback_lock);
1386 }
1387 
1388 static void nvmet_tcp_write_space(struct sock *sk)
1389 {
1390 	struct nvmet_tcp_queue *queue;
1391 
1392 	read_lock_bh(&sk->sk_callback_lock);
1393 	queue = sk->sk_user_data;
1394 	if (unlikely(!queue))
1395 		goto out;
1396 
1397 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1398 		queue->write_space(sk);
1399 		goto out;
1400 	}
1401 
1402 	if (sk_stream_is_writeable(sk)) {
1403 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1404 		queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1405 	}
1406 out:
1407 	read_unlock_bh(&sk->sk_callback_lock);
1408 }
1409 
1410 static void nvmet_tcp_state_change(struct sock *sk)
1411 {
1412 	struct nvmet_tcp_queue *queue;
1413 
1414 	write_lock_bh(&sk->sk_callback_lock);
1415 	queue = sk->sk_user_data;
1416 	if (!queue)
1417 		goto done;
1418 
1419 	switch (sk->sk_state) {
1420 	case TCP_FIN_WAIT1:
1421 	case TCP_CLOSE_WAIT:
1422 	case TCP_CLOSE:
1423 		/* FALLTHRU */
1424 		sk->sk_user_data = NULL;
1425 		nvmet_tcp_schedule_release_queue(queue);
1426 		break;
1427 	default:
1428 		pr_warn("queue %d unhandled state %d\n",
1429 			queue->idx, sk->sk_state);
1430 	}
1431 done:
1432 	write_unlock_bh(&sk->sk_callback_lock);
1433 }
1434 
1435 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1436 {
1437 	struct socket *sock = queue->sock;
1438 	struct inet_sock *inet = inet_sk(sock->sk);
1439 	int ret;
1440 
1441 	ret = kernel_getsockname(sock,
1442 		(struct sockaddr *)&queue->sockaddr);
1443 	if (ret < 0)
1444 		return ret;
1445 
1446 	ret = kernel_getpeername(sock,
1447 		(struct sockaddr *)&queue->sockaddr_peer);
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	/*
1452 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1453 	 * close. This is done to prevent stale data from being sent should
1454 	 * the network connection be restored before TCP times out.
1455 	 */
1456 	sock_no_linger(sock->sk);
1457 
1458 	if (so_priority > 0)
1459 		sock_set_priority(sock->sk, so_priority);
1460 
1461 	/* Set socket type of service */
1462 	if (inet->rcv_tos > 0)
1463 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1464 
1465 	write_lock_bh(&sock->sk->sk_callback_lock);
1466 	sock->sk->sk_user_data = queue;
1467 	queue->data_ready = sock->sk->sk_data_ready;
1468 	sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1469 	queue->state_change = sock->sk->sk_state_change;
1470 	sock->sk->sk_state_change = nvmet_tcp_state_change;
1471 	queue->write_space = sock->sk->sk_write_space;
1472 	sock->sk->sk_write_space = nvmet_tcp_write_space;
1473 	write_unlock_bh(&sock->sk->sk_callback_lock);
1474 
1475 	return 0;
1476 }
1477 
1478 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1479 		struct socket *newsock)
1480 {
1481 	struct nvmet_tcp_queue *queue;
1482 	int ret;
1483 
1484 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1485 	if (!queue)
1486 		return -ENOMEM;
1487 
1488 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1489 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1490 	queue->sock = newsock;
1491 	queue->port = port;
1492 	queue->nr_cmds = 0;
1493 	spin_lock_init(&queue->state_lock);
1494 	queue->state = NVMET_TCP_Q_CONNECTING;
1495 	INIT_LIST_HEAD(&queue->free_list);
1496 	init_llist_head(&queue->resp_list);
1497 	INIT_LIST_HEAD(&queue->resp_send_list);
1498 
1499 	queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1500 	if (queue->idx < 0) {
1501 		ret = queue->idx;
1502 		goto out_free_queue;
1503 	}
1504 
1505 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1506 	if (ret)
1507 		goto out_ida_remove;
1508 
1509 	ret = nvmet_sq_init(&queue->nvme_sq);
1510 	if (ret)
1511 		goto out_free_connect;
1512 
1513 	port->last_cpu = cpumask_next_wrap(port->last_cpu,
1514 				cpu_online_mask, -1, false);
1515 	queue->cpu = port->last_cpu;
1516 	nvmet_prepare_receive_pdu(queue);
1517 
1518 	mutex_lock(&nvmet_tcp_queue_mutex);
1519 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1520 	mutex_unlock(&nvmet_tcp_queue_mutex);
1521 
1522 	ret = nvmet_tcp_set_queue_sock(queue);
1523 	if (ret)
1524 		goto out_destroy_sq;
1525 
1526 	queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1527 
1528 	return 0;
1529 out_destroy_sq:
1530 	mutex_lock(&nvmet_tcp_queue_mutex);
1531 	list_del_init(&queue->queue_list);
1532 	mutex_unlock(&nvmet_tcp_queue_mutex);
1533 	nvmet_sq_destroy(&queue->nvme_sq);
1534 out_free_connect:
1535 	nvmet_tcp_free_cmd(&queue->connect);
1536 out_ida_remove:
1537 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1538 out_free_queue:
1539 	kfree(queue);
1540 	return ret;
1541 }
1542 
1543 static void nvmet_tcp_accept_work(struct work_struct *w)
1544 {
1545 	struct nvmet_tcp_port *port =
1546 		container_of(w, struct nvmet_tcp_port, accept_work);
1547 	struct socket *newsock;
1548 	int ret;
1549 
1550 	while (true) {
1551 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1552 		if (ret < 0) {
1553 			if (ret != -EAGAIN)
1554 				pr_warn("failed to accept err=%d\n", ret);
1555 			return;
1556 		}
1557 		ret = nvmet_tcp_alloc_queue(port, newsock);
1558 		if (ret) {
1559 			pr_err("failed to allocate queue\n");
1560 			sock_release(newsock);
1561 		}
1562 	}
1563 }
1564 
1565 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1566 {
1567 	struct nvmet_tcp_port *port;
1568 
1569 	read_lock_bh(&sk->sk_callback_lock);
1570 	port = sk->sk_user_data;
1571 	if (!port)
1572 		goto out;
1573 
1574 	if (sk->sk_state == TCP_LISTEN)
1575 		schedule_work(&port->accept_work);
1576 out:
1577 	read_unlock_bh(&sk->sk_callback_lock);
1578 }
1579 
1580 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1581 {
1582 	struct nvmet_tcp_port *port;
1583 	__kernel_sa_family_t af;
1584 	int ret;
1585 
1586 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1587 	if (!port)
1588 		return -ENOMEM;
1589 
1590 	switch (nport->disc_addr.adrfam) {
1591 	case NVMF_ADDR_FAMILY_IP4:
1592 		af = AF_INET;
1593 		break;
1594 	case NVMF_ADDR_FAMILY_IP6:
1595 		af = AF_INET6;
1596 		break;
1597 	default:
1598 		pr_err("address family %d not supported\n",
1599 				nport->disc_addr.adrfam);
1600 		ret = -EINVAL;
1601 		goto err_port;
1602 	}
1603 
1604 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1605 			nport->disc_addr.trsvcid, &port->addr);
1606 	if (ret) {
1607 		pr_err("malformed ip/port passed: %s:%s\n",
1608 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1609 		goto err_port;
1610 	}
1611 
1612 	port->nport = nport;
1613 	port->last_cpu = -1;
1614 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1615 	if (port->nport->inline_data_size < 0)
1616 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1617 
1618 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1619 				IPPROTO_TCP, &port->sock);
1620 	if (ret) {
1621 		pr_err("failed to create a socket\n");
1622 		goto err_port;
1623 	}
1624 
1625 	port->sock->sk->sk_user_data = port;
1626 	port->data_ready = port->sock->sk->sk_data_ready;
1627 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1628 	sock_set_reuseaddr(port->sock->sk);
1629 	tcp_sock_set_nodelay(port->sock->sk);
1630 	if (so_priority > 0)
1631 		sock_set_priority(port->sock->sk, so_priority);
1632 
1633 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1634 			sizeof(port->addr));
1635 	if (ret) {
1636 		pr_err("failed to bind port socket %d\n", ret);
1637 		goto err_sock;
1638 	}
1639 
1640 	ret = kernel_listen(port->sock, 128);
1641 	if (ret) {
1642 		pr_err("failed to listen %d on port sock\n", ret);
1643 		goto err_sock;
1644 	}
1645 
1646 	nport->priv = port;
1647 	pr_info("enabling port %d (%pISpc)\n",
1648 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1649 
1650 	return 0;
1651 
1652 err_sock:
1653 	sock_release(port->sock);
1654 err_port:
1655 	kfree(port);
1656 	return ret;
1657 }
1658 
1659 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1660 {
1661 	struct nvmet_tcp_port *port = nport->priv;
1662 
1663 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1664 	port->sock->sk->sk_data_ready = port->data_ready;
1665 	port->sock->sk->sk_user_data = NULL;
1666 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1667 	cancel_work_sync(&port->accept_work);
1668 
1669 	sock_release(port->sock);
1670 	kfree(port);
1671 }
1672 
1673 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1674 {
1675 	struct nvmet_tcp_queue *queue;
1676 
1677 	mutex_lock(&nvmet_tcp_queue_mutex);
1678 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1679 		if (queue->nvme_sq.ctrl == ctrl)
1680 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1681 	mutex_unlock(&nvmet_tcp_queue_mutex);
1682 }
1683 
1684 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1685 {
1686 	struct nvmet_tcp_queue *queue =
1687 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1688 
1689 	if (sq->qid == 0) {
1690 		/* Let inflight controller teardown complete */
1691 		flush_scheduled_work();
1692 	}
1693 
1694 	queue->nr_cmds = sq->size * 2;
1695 	if (nvmet_tcp_alloc_cmds(queue))
1696 		return NVME_SC_INTERNAL;
1697 	return 0;
1698 }
1699 
1700 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1701 		struct nvmet_port *nport, char *traddr)
1702 {
1703 	struct nvmet_tcp_port *port = nport->priv;
1704 
1705 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1706 		struct nvmet_tcp_cmd *cmd =
1707 			container_of(req, struct nvmet_tcp_cmd, req);
1708 		struct nvmet_tcp_queue *queue = cmd->queue;
1709 
1710 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1711 	} else {
1712 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1713 	}
1714 }
1715 
1716 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1717 	.owner			= THIS_MODULE,
1718 	.type			= NVMF_TRTYPE_TCP,
1719 	.msdbd			= 1,
1720 	.has_keyed_sgls		= 0,
1721 	.add_port		= nvmet_tcp_add_port,
1722 	.remove_port		= nvmet_tcp_remove_port,
1723 	.queue_response		= nvmet_tcp_queue_response,
1724 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1725 	.install_queue		= nvmet_tcp_install_queue,
1726 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1727 };
1728 
1729 static int __init nvmet_tcp_init(void)
1730 {
1731 	int ret;
1732 
1733 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1734 	if (!nvmet_tcp_wq)
1735 		return -ENOMEM;
1736 
1737 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1738 	if (ret)
1739 		goto err;
1740 
1741 	return 0;
1742 err:
1743 	destroy_workqueue(nvmet_tcp_wq);
1744 	return ret;
1745 }
1746 
1747 static void __exit nvmet_tcp_exit(void)
1748 {
1749 	struct nvmet_tcp_queue *queue;
1750 
1751 	nvmet_unregister_transport(&nvmet_tcp_ops);
1752 
1753 	flush_scheduled_work();
1754 	mutex_lock(&nvmet_tcp_queue_mutex);
1755 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1756 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1757 	mutex_unlock(&nvmet_tcp_queue_mutex);
1758 	flush_scheduled_work();
1759 
1760 	destroy_workqueue(nvmet_tcp_wq);
1761 }
1762 
1763 module_init(nvmet_tcp_init);
1764 module_exit(nvmet_tcp_exit);
1765 
1766 MODULE_LICENSE("GPL v2");
1767 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1768