1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 18 #include "nvmet.h" 19 20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 21 22 /* Define the socket priority to use for connections were it is desirable 23 * that the NIC consider performing optimized packet processing or filtering. 24 * A non-zero value being sufficient to indicate general consideration of any 25 * possible optimization. Making it a module param allows for alternative 26 * values that may be unique for some NIC implementations. 27 */ 28 static int so_priority; 29 module_param(so_priority, int, 0644); 30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority"); 31 32 #define NVMET_TCP_RECV_BUDGET 8 33 #define NVMET_TCP_SEND_BUDGET 8 34 #define NVMET_TCP_IO_WORK_BUDGET 64 35 36 enum nvmet_tcp_send_state { 37 NVMET_TCP_SEND_DATA_PDU, 38 NVMET_TCP_SEND_DATA, 39 NVMET_TCP_SEND_R2T, 40 NVMET_TCP_SEND_DDGST, 41 NVMET_TCP_SEND_RESPONSE 42 }; 43 44 enum nvmet_tcp_recv_state { 45 NVMET_TCP_RECV_PDU, 46 NVMET_TCP_RECV_DATA, 47 NVMET_TCP_RECV_DDGST, 48 NVMET_TCP_RECV_ERR, 49 }; 50 51 enum { 52 NVMET_TCP_F_INIT_FAILED = (1 << 0), 53 }; 54 55 struct nvmet_tcp_cmd { 56 struct nvmet_tcp_queue *queue; 57 struct nvmet_req req; 58 59 struct nvme_tcp_cmd_pdu *cmd_pdu; 60 struct nvme_tcp_rsp_pdu *rsp_pdu; 61 struct nvme_tcp_data_pdu *data_pdu; 62 struct nvme_tcp_r2t_pdu *r2t_pdu; 63 64 u32 rbytes_done; 65 u32 wbytes_done; 66 67 u32 pdu_len; 68 u32 pdu_recv; 69 int sg_idx; 70 int nr_mapped; 71 struct msghdr recv_msg; 72 struct kvec *iov; 73 u32 flags; 74 75 struct list_head entry; 76 struct llist_node lentry; 77 78 /* send state */ 79 u32 offset; 80 struct scatterlist *cur_sg; 81 enum nvmet_tcp_send_state state; 82 83 __le32 exp_ddgst; 84 __le32 recv_ddgst; 85 }; 86 87 enum nvmet_tcp_queue_state { 88 NVMET_TCP_Q_CONNECTING, 89 NVMET_TCP_Q_LIVE, 90 NVMET_TCP_Q_DISCONNECTING, 91 }; 92 93 struct nvmet_tcp_queue { 94 struct socket *sock; 95 struct nvmet_tcp_port *port; 96 struct work_struct io_work; 97 int cpu; 98 struct nvmet_cq nvme_cq; 99 struct nvmet_sq nvme_sq; 100 101 /* send state */ 102 struct nvmet_tcp_cmd *cmds; 103 unsigned int nr_cmds; 104 struct list_head free_list; 105 struct llist_head resp_list; 106 struct list_head resp_send_list; 107 int send_list_len; 108 struct nvmet_tcp_cmd *snd_cmd; 109 110 /* recv state */ 111 int offset; 112 int left; 113 enum nvmet_tcp_recv_state rcv_state; 114 struct nvmet_tcp_cmd *cmd; 115 union nvme_tcp_pdu pdu; 116 117 /* digest state */ 118 bool hdr_digest; 119 bool data_digest; 120 struct ahash_request *snd_hash; 121 struct ahash_request *rcv_hash; 122 123 spinlock_t state_lock; 124 enum nvmet_tcp_queue_state state; 125 126 struct sockaddr_storage sockaddr; 127 struct sockaddr_storage sockaddr_peer; 128 struct work_struct release_work; 129 130 int idx; 131 struct list_head queue_list; 132 133 struct nvmet_tcp_cmd connect; 134 135 struct page_frag_cache pf_cache; 136 137 void (*data_ready)(struct sock *); 138 void (*state_change)(struct sock *); 139 void (*write_space)(struct sock *); 140 }; 141 142 struct nvmet_tcp_port { 143 struct socket *sock; 144 struct work_struct accept_work; 145 struct nvmet_port *nport; 146 struct sockaddr_storage addr; 147 int last_cpu; 148 void (*data_ready)(struct sock *); 149 }; 150 151 static DEFINE_IDA(nvmet_tcp_queue_ida); 152 static LIST_HEAD(nvmet_tcp_queue_list); 153 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 154 155 static struct workqueue_struct *nvmet_tcp_wq; 156 static struct nvmet_fabrics_ops nvmet_tcp_ops; 157 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 158 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd); 159 160 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 161 struct nvmet_tcp_cmd *cmd) 162 { 163 return cmd - queue->cmds; 164 } 165 166 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 167 { 168 return nvme_is_write(cmd->req.cmd) && 169 cmd->rbytes_done < cmd->req.transfer_len; 170 } 171 172 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 173 { 174 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 175 } 176 177 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 178 { 179 return !nvme_is_write(cmd->req.cmd) && 180 cmd->req.transfer_len > 0 && 181 !cmd->req.cqe->status; 182 } 183 184 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 185 { 186 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 187 !cmd->rbytes_done; 188 } 189 190 static inline struct nvmet_tcp_cmd * 191 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 192 { 193 struct nvmet_tcp_cmd *cmd; 194 195 cmd = list_first_entry_or_null(&queue->free_list, 196 struct nvmet_tcp_cmd, entry); 197 if (!cmd) 198 return NULL; 199 list_del_init(&cmd->entry); 200 201 cmd->rbytes_done = cmd->wbytes_done = 0; 202 cmd->pdu_len = 0; 203 cmd->pdu_recv = 0; 204 cmd->iov = NULL; 205 cmd->flags = 0; 206 return cmd; 207 } 208 209 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 210 { 211 if (unlikely(cmd == &cmd->queue->connect)) 212 return; 213 214 list_add_tail(&cmd->entry, &cmd->queue->free_list); 215 } 216 217 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 218 { 219 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 220 } 221 222 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 223 { 224 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 225 } 226 227 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 228 void *pdu, size_t len) 229 { 230 struct scatterlist sg; 231 232 sg_init_one(&sg, pdu, len); 233 ahash_request_set_crypt(hash, &sg, pdu + len, len); 234 crypto_ahash_digest(hash); 235 } 236 237 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 238 void *pdu, size_t len) 239 { 240 struct nvme_tcp_hdr *hdr = pdu; 241 __le32 recv_digest; 242 __le32 exp_digest; 243 244 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 245 pr_err("queue %d: header digest enabled but no header digest\n", 246 queue->idx); 247 return -EPROTO; 248 } 249 250 recv_digest = *(__le32 *)(pdu + hdr->hlen); 251 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 252 exp_digest = *(__le32 *)(pdu + hdr->hlen); 253 if (recv_digest != exp_digest) { 254 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 255 queue->idx, le32_to_cpu(recv_digest), 256 le32_to_cpu(exp_digest)); 257 return -EPROTO; 258 } 259 260 return 0; 261 } 262 263 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 264 { 265 struct nvme_tcp_hdr *hdr = pdu; 266 u8 digest_len = nvmet_tcp_hdgst_len(queue); 267 u32 len; 268 269 len = le32_to_cpu(hdr->plen) - hdr->hlen - 270 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 271 272 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 273 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 274 return -EPROTO; 275 } 276 277 return 0; 278 } 279 280 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd) 281 { 282 struct scatterlist *sg; 283 int i; 284 285 sg = &cmd->req.sg[cmd->sg_idx]; 286 287 for (i = 0; i < cmd->nr_mapped; i++) 288 kunmap(sg_page(&sg[i])); 289 } 290 291 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd) 292 { 293 struct kvec *iov = cmd->iov; 294 struct scatterlist *sg; 295 u32 length, offset, sg_offset; 296 297 length = cmd->pdu_len; 298 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE); 299 offset = cmd->rbytes_done; 300 cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE); 301 sg_offset = offset % PAGE_SIZE; 302 sg = &cmd->req.sg[cmd->sg_idx]; 303 304 while (length) { 305 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 306 307 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset; 308 iov->iov_len = iov_len; 309 310 length -= iov_len; 311 sg = sg_next(sg); 312 iov++; 313 } 314 315 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov, 316 cmd->nr_mapped, cmd->pdu_len); 317 } 318 319 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 320 { 321 queue->rcv_state = NVMET_TCP_RECV_ERR; 322 if (queue->nvme_sq.ctrl) 323 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 324 else 325 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 326 } 327 328 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 329 { 330 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 331 u32 len = le32_to_cpu(sgl->length); 332 333 if (!len) 334 return 0; 335 336 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 337 NVME_SGL_FMT_OFFSET)) { 338 if (!nvme_is_write(cmd->req.cmd)) 339 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 340 341 if (len > cmd->req.port->inline_data_size) 342 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 343 cmd->pdu_len = len; 344 } 345 cmd->req.transfer_len += len; 346 347 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 348 if (!cmd->req.sg) 349 return NVME_SC_INTERNAL; 350 cmd->cur_sg = cmd->req.sg; 351 352 if (nvmet_tcp_has_data_in(cmd)) { 353 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 354 sizeof(*cmd->iov), GFP_KERNEL); 355 if (!cmd->iov) 356 goto err; 357 } 358 359 return 0; 360 err: 361 sgl_free(cmd->req.sg); 362 return NVME_SC_INTERNAL; 363 } 364 365 static void nvmet_tcp_ddgst(struct ahash_request *hash, 366 struct nvmet_tcp_cmd *cmd) 367 { 368 ahash_request_set_crypt(hash, cmd->req.sg, 369 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 370 crypto_ahash_digest(hash); 371 } 372 373 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 374 { 375 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 376 struct nvmet_tcp_queue *queue = cmd->queue; 377 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 378 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 379 380 cmd->offset = 0; 381 cmd->state = NVMET_TCP_SEND_DATA_PDU; 382 383 pdu->hdr.type = nvme_tcp_c2h_data; 384 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 385 NVME_TCP_F_DATA_SUCCESS : 0); 386 pdu->hdr.hlen = sizeof(*pdu); 387 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 388 pdu->hdr.plen = 389 cpu_to_le32(pdu->hdr.hlen + hdgst + 390 cmd->req.transfer_len + ddgst); 391 pdu->command_id = cmd->req.cqe->command_id; 392 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 393 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 394 395 if (queue->data_digest) { 396 pdu->hdr.flags |= NVME_TCP_F_DDGST; 397 nvmet_tcp_ddgst(queue->snd_hash, cmd); 398 } 399 400 if (cmd->queue->hdr_digest) { 401 pdu->hdr.flags |= NVME_TCP_F_HDGST; 402 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 403 } 404 } 405 406 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 407 { 408 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 409 struct nvmet_tcp_queue *queue = cmd->queue; 410 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 411 412 cmd->offset = 0; 413 cmd->state = NVMET_TCP_SEND_R2T; 414 415 pdu->hdr.type = nvme_tcp_r2t; 416 pdu->hdr.flags = 0; 417 pdu->hdr.hlen = sizeof(*pdu); 418 pdu->hdr.pdo = 0; 419 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 420 421 pdu->command_id = cmd->req.cmd->common.command_id; 422 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 423 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 424 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 425 if (cmd->queue->hdr_digest) { 426 pdu->hdr.flags |= NVME_TCP_F_HDGST; 427 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 428 } 429 } 430 431 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 432 { 433 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 434 struct nvmet_tcp_queue *queue = cmd->queue; 435 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 436 437 cmd->offset = 0; 438 cmd->state = NVMET_TCP_SEND_RESPONSE; 439 440 pdu->hdr.type = nvme_tcp_rsp; 441 pdu->hdr.flags = 0; 442 pdu->hdr.hlen = sizeof(*pdu); 443 pdu->hdr.pdo = 0; 444 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 445 if (cmd->queue->hdr_digest) { 446 pdu->hdr.flags |= NVME_TCP_F_HDGST; 447 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 448 } 449 } 450 451 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 452 { 453 struct llist_node *node; 454 455 node = llist_del_all(&queue->resp_list); 456 if (!node) 457 return; 458 459 while (node) { 460 struct nvmet_tcp_cmd *cmd = llist_entry(node, 461 struct nvmet_tcp_cmd, lentry); 462 463 list_add(&cmd->entry, &queue->resp_send_list); 464 node = node->next; 465 queue->send_list_len++; 466 } 467 } 468 469 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 470 { 471 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 472 struct nvmet_tcp_cmd, entry); 473 if (!queue->snd_cmd) { 474 nvmet_tcp_process_resp_list(queue); 475 queue->snd_cmd = 476 list_first_entry_or_null(&queue->resp_send_list, 477 struct nvmet_tcp_cmd, entry); 478 if (unlikely(!queue->snd_cmd)) 479 return NULL; 480 } 481 482 list_del_init(&queue->snd_cmd->entry); 483 queue->send_list_len--; 484 485 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 486 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 487 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 488 nvmet_setup_r2t_pdu(queue->snd_cmd); 489 else 490 nvmet_setup_response_pdu(queue->snd_cmd); 491 492 return queue->snd_cmd; 493 } 494 495 static void nvmet_tcp_queue_response(struct nvmet_req *req) 496 { 497 struct nvmet_tcp_cmd *cmd = 498 container_of(req, struct nvmet_tcp_cmd, req); 499 struct nvmet_tcp_queue *queue = cmd->queue; 500 501 llist_add(&cmd->lentry, &queue->resp_list); 502 queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work); 503 } 504 505 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 506 { 507 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 508 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 509 int ret; 510 511 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu), 512 offset_in_page(cmd->data_pdu) + cmd->offset, 513 left, MSG_DONTWAIT | MSG_MORE); 514 if (ret <= 0) 515 return ret; 516 517 cmd->offset += ret; 518 left -= ret; 519 520 if (left) 521 return -EAGAIN; 522 523 cmd->state = NVMET_TCP_SEND_DATA; 524 cmd->offset = 0; 525 return 1; 526 } 527 528 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 529 { 530 struct nvmet_tcp_queue *queue = cmd->queue; 531 int ret; 532 533 while (cmd->cur_sg) { 534 struct page *page = sg_page(cmd->cur_sg); 535 u32 left = cmd->cur_sg->length - cmd->offset; 536 int flags = MSG_DONTWAIT; 537 538 if ((!last_in_batch && cmd->queue->send_list_len) || 539 cmd->wbytes_done + left < cmd->req.transfer_len || 540 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 541 flags |= MSG_MORE; 542 543 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset, 544 left, flags); 545 if (ret <= 0) 546 return ret; 547 548 cmd->offset += ret; 549 cmd->wbytes_done += ret; 550 551 /* Done with sg?*/ 552 if (cmd->offset == cmd->cur_sg->length) { 553 cmd->cur_sg = sg_next(cmd->cur_sg); 554 cmd->offset = 0; 555 } 556 } 557 558 if (queue->data_digest) { 559 cmd->state = NVMET_TCP_SEND_DDGST; 560 cmd->offset = 0; 561 } else { 562 if (queue->nvme_sq.sqhd_disabled) { 563 cmd->queue->snd_cmd = NULL; 564 nvmet_tcp_put_cmd(cmd); 565 } else { 566 nvmet_setup_response_pdu(cmd); 567 } 568 } 569 570 if (queue->nvme_sq.sqhd_disabled) { 571 kfree(cmd->iov); 572 sgl_free(cmd->req.sg); 573 } 574 575 return 1; 576 577 } 578 579 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 580 bool last_in_batch) 581 { 582 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 583 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 584 int flags = MSG_DONTWAIT; 585 int ret; 586 587 if (!last_in_batch && cmd->queue->send_list_len) 588 flags |= MSG_MORE; 589 else 590 flags |= MSG_EOR; 591 592 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu), 593 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags); 594 if (ret <= 0) 595 return ret; 596 cmd->offset += ret; 597 left -= ret; 598 599 if (left) 600 return -EAGAIN; 601 602 kfree(cmd->iov); 603 sgl_free(cmd->req.sg); 604 cmd->queue->snd_cmd = NULL; 605 nvmet_tcp_put_cmd(cmd); 606 return 1; 607 } 608 609 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 610 { 611 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 612 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 613 int flags = MSG_DONTWAIT; 614 int ret; 615 616 if (!last_in_batch && cmd->queue->send_list_len) 617 flags |= MSG_MORE; 618 else 619 flags |= MSG_EOR; 620 621 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu), 622 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags); 623 if (ret <= 0) 624 return ret; 625 cmd->offset += ret; 626 left -= ret; 627 628 if (left) 629 return -EAGAIN; 630 631 cmd->queue->snd_cmd = NULL; 632 return 1; 633 } 634 635 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 636 { 637 struct nvmet_tcp_queue *queue = cmd->queue; 638 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 639 struct kvec iov = { 640 .iov_base = &cmd->exp_ddgst + cmd->offset, 641 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset 642 }; 643 int ret; 644 645 if (!last_in_batch && cmd->queue->send_list_len) 646 msg.msg_flags |= MSG_MORE; 647 648 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 649 if (unlikely(ret <= 0)) 650 return ret; 651 652 cmd->offset += ret; 653 654 if (queue->nvme_sq.sqhd_disabled) { 655 cmd->queue->snd_cmd = NULL; 656 nvmet_tcp_put_cmd(cmd); 657 } else { 658 nvmet_setup_response_pdu(cmd); 659 } 660 return 1; 661 } 662 663 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 664 bool last_in_batch) 665 { 666 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 667 int ret = 0; 668 669 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 670 cmd = nvmet_tcp_fetch_cmd(queue); 671 if (unlikely(!cmd)) 672 return 0; 673 } 674 675 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 676 ret = nvmet_try_send_data_pdu(cmd); 677 if (ret <= 0) 678 goto done_send; 679 } 680 681 if (cmd->state == NVMET_TCP_SEND_DATA) { 682 ret = nvmet_try_send_data(cmd, last_in_batch); 683 if (ret <= 0) 684 goto done_send; 685 } 686 687 if (cmd->state == NVMET_TCP_SEND_DDGST) { 688 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 689 if (ret <= 0) 690 goto done_send; 691 } 692 693 if (cmd->state == NVMET_TCP_SEND_R2T) { 694 ret = nvmet_try_send_r2t(cmd, last_in_batch); 695 if (ret <= 0) 696 goto done_send; 697 } 698 699 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 700 ret = nvmet_try_send_response(cmd, last_in_batch); 701 702 done_send: 703 if (ret < 0) { 704 if (ret == -EAGAIN) 705 return 0; 706 return ret; 707 } 708 709 return 1; 710 } 711 712 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 713 int budget, int *sends) 714 { 715 int i, ret = 0; 716 717 for (i = 0; i < budget; i++) { 718 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 719 if (ret <= 0) 720 break; 721 (*sends)++; 722 } 723 724 return ret; 725 } 726 727 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 728 { 729 queue->offset = 0; 730 queue->left = sizeof(struct nvme_tcp_hdr); 731 queue->cmd = NULL; 732 queue->rcv_state = NVMET_TCP_RECV_PDU; 733 } 734 735 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 736 { 737 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 738 739 ahash_request_free(queue->rcv_hash); 740 ahash_request_free(queue->snd_hash); 741 crypto_free_ahash(tfm); 742 } 743 744 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 745 { 746 struct crypto_ahash *tfm; 747 748 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 749 if (IS_ERR(tfm)) 750 return PTR_ERR(tfm); 751 752 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 753 if (!queue->snd_hash) 754 goto free_tfm; 755 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 756 757 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 758 if (!queue->rcv_hash) 759 goto free_snd_hash; 760 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 761 762 return 0; 763 free_snd_hash: 764 ahash_request_free(queue->snd_hash); 765 free_tfm: 766 crypto_free_ahash(tfm); 767 return -ENOMEM; 768 } 769 770 771 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 772 { 773 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 774 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 775 struct msghdr msg = {}; 776 struct kvec iov; 777 int ret; 778 779 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 780 pr_err("bad nvme-tcp pdu length (%d)\n", 781 le32_to_cpu(icreq->hdr.plen)); 782 nvmet_tcp_fatal_error(queue); 783 } 784 785 if (icreq->pfv != NVME_TCP_PFV_1_0) { 786 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 787 return -EPROTO; 788 } 789 790 if (icreq->hpda != 0) { 791 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 792 icreq->hpda); 793 return -EPROTO; 794 } 795 796 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 797 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 798 if (queue->hdr_digest || queue->data_digest) { 799 ret = nvmet_tcp_alloc_crypto(queue); 800 if (ret) 801 return ret; 802 } 803 804 memset(icresp, 0, sizeof(*icresp)); 805 icresp->hdr.type = nvme_tcp_icresp; 806 icresp->hdr.hlen = sizeof(*icresp); 807 icresp->hdr.pdo = 0; 808 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 809 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 810 icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */ 811 icresp->cpda = 0; 812 if (queue->hdr_digest) 813 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 814 if (queue->data_digest) 815 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 816 817 iov.iov_base = icresp; 818 iov.iov_len = sizeof(*icresp); 819 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 820 if (ret < 0) 821 goto free_crypto; 822 823 queue->state = NVMET_TCP_Q_LIVE; 824 nvmet_prepare_receive_pdu(queue); 825 return 0; 826 free_crypto: 827 if (queue->hdr_digest || queue->data_digest) 828 nvmet_tcp_free_crypto(queue); 829 return ret; 830 } 831 832 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 833 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 834 { 835 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 836 int ret; 837 838 if (!nvme_is_write(cmd->req.cmd) || 839 data_len > cmd->req.port->inline_data_size) { 840 nvmet_prepare_receive_pdu(queue); 841 return; 842 } 843 844 ret = nvmet_tcp_map_data(cmd); 845 if (unlikely(ret)) { 846 pr_err("queue %d: failed to map data\n", queue->idx); 847 nvmet_tcp_fatal_error(queue); 848 return; 849 } 850 851 queue->rcv_state = NVMET_TCP_RECV_DATA; 852 nvmet_tcp_map_pdu_iovec(cmd); 853 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 854 } 855 856 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 857 { 858 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 859 struct nvmet_tcp_cmd *cmd; 860 861 cmd = &queue->cmds[data->ttag]; 862 863 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 864 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 865 data->ttag, le32_to_cpu(data->data_offset), 866 cmd->rbytes_done); 867 /* FIXME: use path and transport errors */ 868 nvmet_req_complete(&cmd->req, 869 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 870 return -EPROTO; 871 } 872 873 cmd->pdu_len = le32_to_cpu(data->data_length); 874 cmd->pdu_recv = 0; 875 nvmet_tcp_map_pdu_iovec(cmd); 876 queue->cmd = cmd; 877 queue->rcv_state = NVMET_TCP_RECV_DATA; 878 879 return 0; 880 } 881 882 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 883 { 884 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 885 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 886 struct nvmet_req *req; 887 int ret; 888 889 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 890 if (hdr->type != nvme_tcp_icreq) { 891 pr_err("unexpected pdu type (%d) before icreq\n", 892 hdr->type); 893 nvmet_tcp_fatal_error(queue); 894 return -EPROTO; 895 } 896 return nvmet_tcp_handle_icreq(queue); 897 } 898 899 if (hdr->type == nvme_tcp_h2c_data) { 900 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 901 if (unlikely(ret)) 902 return ret; 903 return 0; 904 } 905 906 queue->cmd = nvmet_tcp_get_cmd(queue); 907 if (unlikely(!queue->cmd)) { 908 /* This should never happen */ 909 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 910 queue->idx, queue->nr_cmds, queue->send_list_len, 911 nvme_cmd->common.opcode); 912 nvmet_tcp_fatal_error(queue); 913 return -ENOMEM; 914 } 915 916 req = &queue->cmd->req; 917 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 918 919 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 920 &queue->nvme_sq, &nvmet_tcp_ops))) { 921 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 922 req->cmd, req->cmd->common.command_id, 923 req->cmd->common.opcode, 924 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 925 926 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 927 return -EAGAIN; 928 } 929 930 ret = nvmet_tcp_map_data(queue->cmd); 931 if (unlikely(ret)) { 932 pr_err("queue %d: failed to map data\n", queue->idx); 933 if (nvmet_tcp_has_inline_data(queue->cmd)) 934 nvmet_tcp_fatal_error(queue); 935 else 936 nvmet_req_complete(req, ret); 937 ret = -EAGAIN; 938 goto out; 939 } 940 941 if (nvmet_tcp_need_data_in(queue->cmd)) { 942 if (nvmet_tcp_has_inline_data(queue->cmd)) { 943 queue->rcv_state = NVMET_TCP_RECV_DATA; 944 nvmet_tcp_map_pdu_iovec(queue->cmd); 945 return 0; 946 } 947 /* send back R2T */ 948 nvmet_tcp_queue_response(&queue->cmd->req); 949 goto out; 950 } 951 952 queue->cmd->req.execute(&queue->cmd->req); 953 out: 954 nvmet_prepare_receive_pdu(queue); 955 return ret; 956 } 957 958 static const u8 nvme_tcp_pdu_sizes[] = { 959 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 960 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 961 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 962 }; 963 964 static inline u8 nvmet_tcp_pdu_size(u8 type) 965 { 966 size_t idx = type; 967 968 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 969 nvme_tcp_pdu_sizes[idx]) ? 970 nvme_tcp_pdu_sizes[idx] : 0; 971 } 972 973 static inline bool nvmet_tcp_pdu_valid(u8 type) 974 { 975 switch (type) { 976 case nvme_tcp_icreq: 977 case nvme_tcp_cmd: 978 case nvme_tcp_h2c_data: 979 /* fallthru */ 980 return true; 981 } 982 983 return false; 984 } 985 986 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 987 { 988 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 989 int len; 990 struct kvec iov; 991 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 992 993 recv: 994 iov.iov_base = (void *)&queue->pdu + queue->offset; 995 iov.iov_len = queue->left; 996 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 997 iov.iov_len, msg.msg_flags); 998 if (unlikely(len < 0)) 999 return len; 1000 1001 queue->offset += len; 1002 queue->left -= len; 1003 if (queue->left) 1004 return -EAGAIN; 1005 1006 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1007 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1008 1009 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1010 pr_err("unexpected pdu type %d\n", hdr->type); 1011 nvmet_tcp_fatal_error(queue); 1012 return -EIO; 1013 } 1014 1015 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1016 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1017 return -EIO; 1018 } 1019 1020 queue->left = hdr->hlen - queue->offset + hdgst; 1021 goto recv; 1022 } 1023 1024 if (queue->hdr_digest && 1025 nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) { 1026 nvmet_tcp_fatal_error(queue); /* fatal */ 1027 return -EPROTO; 1028 } 1029 1030 if (queue->data_digest && 1031 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1032 nvmet_tcp_fatal_error(queue); /* fatal */ 1033 return -EPROTO; 1034 } 1035 1036 return nvmet_tcp_done_recv_pdu(queue); 1037 } 1038 1039 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1040 { 1041 struct nvmet_tcp_queue *queue = cmd->queue; 1042 1043 nvmet_tcp_ddgst(queue->rcv_hash, cmd); 1044 queue->offset = 0; 1045 queue->left = NVME_TCP_DIGEST_LENGTH; 1046 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1047 } 1048 1049 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1050 { 1051 struct nvmet_tcp_cmd *cmd = queue->cmd; 1052 int ret; 1053 1054 while (msg_data_left(&cmd->recv_msg)) { 1055 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1056 cmd->recv_msg.msg_flags); 1057 if (ret <= 0) 1058 return ret; 1059 1060 cmd->pdu_recv += ret; 1061 cmd->rbytes_done += ret; 1062 } 1063 1064 nvmet_tcp_unmap_pdu_iovec(cmd); 1065 1066 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1067 cmd->rbytes_done == cmd->req.transfer_len) { 1068 if (queue->data_digest) { 1069 nvmet_tcp_prep_recv_ddgst(cmd); 1070 return 0; 1071 } 1072 cmd->req.execute(&cmd->req); 1073 } 1074 1075 nvmet_prepare_receive_pdu(queue); 1076 return 0; 1077 } 1078 1079 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1080 { 1081 struct nvmet_tcp_cmd *cmd = queue->cmd; 1082 int ret; 1083 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1084 struct kvec iov = { 1085 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1086 .iov_len = queue->left 1087 }; 1088 1089 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1090 iov.iov_len, msg.msg_flags); 1091 if (unlikely(ret < 0)) 1092 return ret; 1093 1094 queue->offset += ret; 1095 queue->left -= ret; 1096 if (queue->left) 1097 return -EAGAIN; 1098 1099 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1100 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1101 queue->idx, cmd->req.cmd->common.command_id, 1102 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1103 le32_to_cpu(cmd->exp_ddgst)); 1104 nvmet_tcp_finish_cmd(cmd); 1105 nvmet_tcp_fatal_error(queue); 1106 ret = -EPROTO; 1107 goto out; 1108 } 1109 1110 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) && 1111 cmd->rbytes_done == cmd->req.transfer_len) 1112 cmd->req.execute(&cmd->req); 1113 ret = 0; 1114 out: 1115 nvmet_prepare_receive_pdu(queue); 1116 return ret; 1117 } 1118 1119 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1120 { 1121 int result = 0; 1122 1123 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1124 return 0; 1125 1126 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1127 result = nvmet_tcp_try_recv_pdu(queue); 1128 if (result != 0) 1129 goto done_recv; 1130 } 1131 1132 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1133 result = nvmet_tcp_try_recv_data(queue); 1134 if (result != 0) 1135 goto done_recv; 1136 } 1137 1138 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1139 result = nvmet_tcp_try_recv_ddgst(queue); 1140 if (result != 0) 1141 goto done_recv; 1142 } 1143 1144 done_recv: 1145 if (result < 0) { 1146 if (result == -EAGAIN) 1147 return 0; 1148 return result; 1149 } 1150 return 1; 1151 } 1152 1153 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1154 int budget, int *recvs) 1155 { 1156 int i, ret = 0; 1157 1158 for (i = 0; i < budget; i++) { 1159 ret = nvmet_tcp_try_recv_one(queue); 1160 if (ret <= 0) 1161 break; 1162 (*recvs)++; 1163 } 1164 1165 return ret; 1166 } 1167 1168 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1169 { 1170 spin_lock(&queue->state_lock); 1171 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1172 queue->state = NVMET_TCP_Q_DISCONNECTING; 1173 schedule_work(&queue->release_work); 1174 } 1175 spin_unlock(&queue->state_lock); 1176 } 1177 1178 static void nvmet_tcp_io_work(struct work_struct *w) 1179 { 1180 struct nvmet_tcp_queue *queue = 1181 container_of(w, struct nvmet_tcp_queue, io_work); 1182 bool pending; 1183 int ret, ops = 0; 1184 1185 do { 1186 pending = false; 1187 1188 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1189 if (ret > 0) { 1190 pending = true; 1191 } else if (ret < 0) { 1192 if (ret == -EPIPE || ret == -ECONNRESET) 1193 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1194 else 1195 nvmet_tcp_fatal_error(queue); 1196 return; 1197 } 1198 1199 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1200 if (ret > 0) { 1201 /* transmitted message/data */ 1202 pending = true; 1203 } else if (ret < 0) { 1204 if (ret == -EPIPE || ret == -ECONNRESET) 1205 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1206 else 1207 nvmet_tcp_fatal_error(queue); 1208 return; 1209 } 1210 1211 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1212 1213 /* 1214 * We exahusted our budget, requeue our selves 1215 */ 1216 if (pending) 1217 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1218 } 1219 1220 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1221 struct nvmet_tcp_cmd *c) 1222 { 1223 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1224 1225 c->queue = queue; 1226 c->req.port = queue->port->nport; 1227 1228 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1229 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1230 if (!c->cmd_pdu) 1231 return -ENOMEM; 1232 c->req.cmd = &c->cmd_pdu->cmd; 1233 1234 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1235 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1236 if (!c->rsp_pdu) 1237 goto out_free_cmd; 1238 c->req.cqe = &c->rsp_pdu->cqe; 1239 1240 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1241 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1242 if (!c->data_pdu) 1243 goto out_free_rsp; 1244 1245 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1246 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1247 if (!c->r2t_pdu) 1248 goto out_free_data; 1249 1250 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1251 1252 list_add_tail(&c->entry, &queue->free_list); 1253 1254 return 0; 1255 out_free_data: 1256 page_frag_free(c->data_pdu); 1257 out_free_rsp: 1258 page_frag_free(c->rsp_pdu); 1259 out_free_cmd: 1260 page_frag_free(c->cmd_pdu); 1261 return -ENOMEM; 1262 } 1263 1264 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1265 { 1266 page_frag_free(c->r2t_pdu); 1267 page_frag_free(c->data_pdu); 1268 page_frag_free(c->rsp_pdu); 1269 page_frag_free(c->cmd_pdu); 1270 } 1271 1272 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1273 { 1274 struct nvmet_tcp_cmd *cmds; 1275 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1276 1277 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1278 if (!cmds) 1279 goto out; 1280 1281 for (i = 0; i < nr_cmds; i++) { 1282 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1283 if (ret) 1284 goto out_free; 1285 } 1286 1287 queue->cmds = cmds; 1288 1289 return 0; 1290 out_free: 1291 while (--i >= 0) 1292 nvmet_tcp_free_cmd(cmds + i); 1293 kfree(cmds); 1294 out: 1295 return ret; 1296 } 1297 1298 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1299 { 1300 struct nvmet_tcp_cmd *cmds = queue->cmds; 1301 int i; 1302 1303 for (i = 0; i < queue->nr_cmds; i++) 1304 nvmet_tcp_free_cmd(cmds + i); 1305 1306 nvmet_tcp_free_cmd(&queue->connect); 1307 kfree(cmds); 1308 } 1309 1310 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1311 { 1312 struct socket *sock = queue->sock; 1313 1314 write_lock_bh(&sock->sk->sk_callback_lock); 1315 sock->sk->sk_data_ready = queue->data_ready; 1316 sock->sk->sk_state_change = queue->state_change; 1317 sock->sk->sk_write_space = queue->write_space; 1318 sock->sk->sk_user_data = NULL; 1319 write_unlock_bh(&sock->sk->sk_callback_lock); 1320 } 1321 1322 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd) 1323 { 1324 nvmet_req_uninit(&cmd->req); 1325 nvmet_tcp_unmap_pdu_iovec(cmd); 1326 kfree(cmd->iov); 1327 sgl_free(cmd->req.sg); 1328 } 1329 1330 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1331 { 1332 struct nvmet_tcp_cmd *cmd = queue->cmds; 1333 int i; 1334 1335 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1336 if (nvmet_tcp_need_data_in(cmd)) 1337 nvmet_tcp_finish_cmd(cmd); 1338 } 1339 1340 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1341 /* failed in connect */ 1342 nvmet_tcp_finish_cmd(&queue->connect); 1343 } 1344 } 1345 1346 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1347 { 1348 struct nvmet_tcp_queue *queue = 1349 container_of(w, struct nvmet_tcp_queue, release_work); 1350 1351 mutex_lock(&nvmet_tcp_queue_mutex); 1352 list_del_init(&queue->queue_list); 1353 mutex_unlock(&nvmet_tcp_queue_mutex); 1354 1355 nvmet_tcp_restore_socket_callbacks(queue); 1356 flush_work(&queue->io_work); 1357 1358 nvmet_tcp_uninit_data_in_cmds(queue); 1359 nvmet_sq_destroy(&queue->nvme_sq); 1360 cancel_work_sync(&queue->io_work); 1361 sock_release(queue->sock); 1362 nvmet_tcp_free_cmds(queue); 1363 if (queue->hdr_digest || queue->data_digest) 1364 nvmet_tcp_free_crypto(queue); 1365 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1366 1367 kfree(queue); 1368 } 1369 1370 static void nvmet_tcp_data_ready(struct sock *sk) 1371 { 1372 struct nvmet_tcp_queue *queue; 1373 1374 read_lock_bh(&sk->sk_callback_lock); 1375 queue = sk->sk_user_data; 1376 if (likely(queue)) 1377 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1378 read_unlock_bh(&sk->sk_callback_lock); 1379 } 1380 1381 static void nvmet_tcp_write_space(struct sock *sk) 1382 { 1383 struct nvmet_tcp_queue *queue; 1384 1385 read_lock_bh(&sk->sk_callback_lock); 1386 queue = sk->sk_user_data; 1387 if (unlikely(!queue)) 1388 goto out; 1389 1390 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1391 queue->write_space(sk); 1392 goto out; 1393 } 1394 1395 if (sk_stream_is_writeable(sk)) { 1396 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1397 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1398 } 1399 out: 1400 read_unlock_bh(&sk->sk_callback_lock); 1401 } 1402 1403 static void nvmet_tcp_state_change(struct sock *sk) 1404 { 1405 struct nvmet_tcp_queue *queue; 1406 1407 write_lock_bh(&sk->sk_callback_lock); 1408 queue = sk->sk_user_data; 1409 if (!queue) 1410 goto done; 1411 1412 switch (sk->sk_state) { 1413 case TCP_FIN_WAIT1: 1414 case TCP_CLOSE_WAIT: 1415 case TCP_CLOSE: 1416 /* FALLTHRU */ 1417 sk->sk_user_data = NULL; 1418 nvmet_tcp_schedule_release_queue(queue); 1419 break; 1420 default: 1421 pr_warn("queue %d unhandled state %d\n", 1422 queue->idx, sk->sk_state); 1423 } 1424 done: 1425 write_unlock_bh(&sk->sk_callback_lock); 1426 } 1427 1428 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1429 { 1430 struct socket *sock = queue->sock; 1431 struct inet_sock *inet = inet_sk(sock->sk); 1432 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1433 int ret; 1434 1435 ret = kernel_getsockname(sock, 1436 (struct sockaddr *)&queue->sockaddr); 1437 if (ret < 0) 1438 return ret; 1439 1440 ret = kernel_getpeername(sock, 1441 (struct sockaddr *)&queue->sockaddr_peer); 1442 if (ret < 0) 1443 return ret; 1444 1445 /* 1446 * Cleanup whatever is sitting in the TCP transmit queue on socket 1447 * close. This is done to prevent stale data from being sent should 1448 * the network connection be restored before TCP times out. 1449 */ 1450 ret = kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER, 1451 (char *)&sol, sizeof(sol)); 1452 if (ret) 1453 return ret; 1454 1455 if (so_priority > 0) { 1456 ret = kernel_setsockopt(sock, SOL_SOCKET, SO_PRIORITY, 1457 (char *)&so_priority, sizeof(so_priority)); 1458 if (ret) 1459 return ret; 1460 } 1461 1462 /* Set socket type of service */ 1463 if (inet->rcv_tos > 0) { 1464 int tos = inet->rcv_tos; 1465 1466 ret = kernel_setsockopt(sock, SOL_IP, IP_TOS, 1467 (char *)&tos, sizeof(tos)); 1468 if (ret) 1469 return ret; 1470 } 1471 1472 write_lock_bh(&sock->sk->sk_callback_lock); 1473 sock->sk->sk_user_data = queue; 1474 queue->data_ready = sock->sk->sk_data_ready; 1475 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1476 queue->state_change = sock->sk->sk_state_change; 1477 sock->sk->sk_state_change = nvmet_tcp_state_change; 1478 queue->write_space = sock->sk->sk_write_space; 1479 sock->sk->sk_write_space = nvmet_tcp_write_space; 1480 write_unlock_bh(&sock->sk->sk_callback_lock); 1481 1482 return 0; 1483 } 1484 1485 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1486 struct socket *newsock) 1487 { 1488 struct nvmet_tcp_queue *queue; 1489 int ret; 1490 1491 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1492 if (!queue) 1493 return -ENOMEM; 1494 1495 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1496 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1497 queue->sock = newsock; 1498 queue->port = port; 1499 queue->nr_cmds = 0; 1500 spin_lock_init(&queue->state_lock); 1501 queue->state = NVMET_TCP_Q_CONNECTING; 1502 INIT_LIST_HEAD(&queue->free_list); 1503 init_llist_head(&queue->resp_list); 1504 INIT_LIST_HEAD(&queue->resp_send_list); 1505 1506 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL); 1507 if (queue->idx < 0) { 1508 ret = queue->idx; 1509 goto out_free_queue; 1510 } 1511 1512 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1513 if (ret) 1514 goto out_ida_remove; 1515 1516 ret = nvmet_sq_init(&queue->nvme_sq); 1517 if (ret) 1518 goto out_free_connect; 1519 1520 port->last_cpu = cpumask_next_wrap(port->last_cpu, 1521 cpu_online_mask, -1, false); 1522 queue->cpu = port->last_cpu; 1523 nvmet_prepare_receive_pdu(queue); 1524 1525 mutex_lock(&nvmet_tcp_queue_mutex); 1526 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1527 mutex_unlock(&nvmet_tcp_queue_mutex); 1528 1529 ret = nvmet_tcp_set_queue_sock(queue); 1530 if (ret) 1531 goto out_destroy_sq; 1532 1533 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work); 1534 1535 return 0; 1536 out_destroy_sq: 1537 mutex_lock(&nvmet_tcp_queue_mutex); 1538 list_del_init(&queue->queue_list); 1539 mutex_unlock(&nvmet_tcp_queue_mutex); 1540 nvmet_sq_destroy(&queue->nvme_sq); 1541 out_free_connect: 1542 nvmet_tcp_free_cmd(&queue->connect); 1543 out_ida_remove: 1544 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx); 1545 out_free_queue: 1546 kfree(queue); 1547 return ret; 1548 } 1549 1550 static void nvmet_tcp_accept_work(struct work_struct *w) 1551 { 1552 struct nvmet_tcp_port *port = 1553 container_of(w, struct nvmet_tcp_port, accept_work); 1554 struct socket *newsock; 1555 int ret; 1556 1557 while (true) { 1558 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1559 if (ret < 0) { 1560 if (ret != -EAGAIN) 1561 pr_warn("failed to accept err=%d\n", ret); 1562 return; 1563 } 1564 ret = nvmet_tcp_alloc_queue(port, newsock); 1565 if (ret) { 1566 pr_err("failed to allocate queue\n"); 1567 sock_release(newsock); 1568 } 1569 } 1570 } 1571 1572 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1573 { 1574 struct nvmet_tcp_port *port; 1575 1576 read_lock_bh(&sk->sk_callback_lock); 1577 port = sk->sk_user_data; 1578 if (!port) 1579 goto out; 1580 1581 if (sk->sk_state == TCP_LISTEN) 1582 schedule_work(&port->accept_work); 1583 out: 1584 read_unlock_bh(&sk->sk_callback_lock); 1585 } 1586 1587 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1588 { 1589 struct nvmet_tcp_port *port; 1590 __kernel_sa_family_t af; 1591 int opt, ret; 1592 1593 port = kzalloc(sizeof(*port), GFP_KERNEL); 1594 if (!port) 1595 return -ENOMEM; 1596 1597 switch (nport->disc_addr.adrfam) { 1598 case NVMF_ADDR_FAMILY_IP4: 1599 af = AF_INET; 1600 break; 1601 case NVMF_ADDR_FAMILY_IP6: 1602 af = AF_INET6; 1603 break; 1604 default: 1605 pr_err("address family %d not supported\n", 1606 nport->disc_addr.adrfam); 1607 ret = -EINVAL; 1608 goto err_port; 1609 } 1610 1611 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1612 nport->disc_addr.trsvcid, &port->addr); 1613 if (ret) { 1614 pr_err("malformed ip/port passed: %s:%s\n", 1615 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1616 goto err_port; 1617 } 1618 1619 port->nport = nport; 1620 port->last_cpu = -1; 1621 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1622 if (port->nport->inline_data_size < 0) 1623 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1624 1625 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1626 IPPROTO_TCP, &port->sock); 1627 if (ret) { 1628 pr_err("failed to create a socket\n"); 1629 goto err_port; 1630 } 1631 1632 port->sock->sk->sk_user_data = port; 1633 port->data_ready = port->sock->sk->sk_data_ready; 1634 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1635 1636 opt = 1; 1637 ret = kernel_setsockopt(port->sock, IPPROTO_TCP, 1638 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1639 if (ret) { 1640 pr_err("failed to set TCP_NODELAY sock opt %d\n", ret); 1641 goto err_sock; 1642 } 1643 1644 ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_REUSEADDR, 1645 (char *)&opt, sizeof(opt)); 1646 if (ret) { 1647 pr_err("failed to set SO_REUSEADDR sock opt %d\n", ret); 1648 goto err_sock; 1649 } 1650 1651 if (so_priority > 0) { 1652 ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_PRIORITY, 1653 (char *)&so_priority, sizeof(so_priority)); 1654 if (ret) { 1655 pr_err("failed to set SO_PRIORITY sock opt %d\n", ret); 1656 goto err_sock; 1657 } 1658 } 1659 1660 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1661 sizeof(port->addr)); 1662 if (ret) { 1663 pr_err("failed to bind port socket %d\n", ret); 1664 goto err_sock; 1665 } 1666 1667 ret = kernel_listen(port->sock, 128); 1668 if (ret) { 1669 pr_err("failed to listen %d on port sock\n", ret); 1670 goto err_sock; 1671 } 1672 1673 nport->priv = port; 1674 pr_info("enabling port %d (%pISpc)\n", 1675 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1676 1677 return 0; 1678 1679 err_sock: 1680 sock_release(port->sock); 1681 err_port: 1682 kfree(port); 1683 return ret; 1684 } 1685 1686 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1687 { 1688 struct nvmet_tcp_port *port = nport->priv; 1689 1690 write_lock_bh(&port->sock->sk->sk_callback_lock); 1691 port->sock->sk->sk_data_ready = port->data_ready; 1692 port->sock->sk->sk_user_data = NULL; 1693 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1694 cancel_work_sync(&port->accept_work); 1695 1696 sock_release(port->sock); 1697 kfree(port); 1698 } 1699 1700 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1701 { 1702 struct nvmet_tcp_queue *queue; 1703 1704 mutex_lock(&nvmet_tcp_queue_mutex); 1705 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1706 if (queue->nvme_sq.ctrl == ctrl) 1707 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1708 mutex_unlock(&nvmet_tcp_queue_mutex); 1709 } 1710 1711 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1712 { 1713 struct nvmet_tcp_queue *queue = 1714 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1715 1716 if (sq->qid == 0) { 1717 /* Let inflight controller teardown complete */ 1718 flush_scheduled_work(); 1719 } 1720 1721 queue->nr_cmds = sq->size * 2; 1722 if (nvmet_tcp_alloc_cmds(queue)) 1723 return NVME_SC_INTERNAL; 1724 return 0; 1725 } 1726 1727 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1728 struct nvmet_port *nport, char *traddr) 1729 { 1730 struct nvmet_tcp_port *port = nport->priv; 1731 1732 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1733 struct nvmet_tcp_cmd *cmd = 1734 container_of(req, struct nvmet_tcp_cmd, req); 1735 struct nvmet_tcp_queue *queue = cmd->queue; 1736 1737 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1738 } else { 1739 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1740 } 1741 } 1742 1743 static struct nvmet_fabrics_ops nvmet_tcp_ops = { 1744 .owner = THIS_MODULE, 1745 .type = NVMF_TRTYPE_TCP, 1746 .msdbd = 1, 1747 .has_keyed_sgls = 0, 1748 .add_port = nvmet_tcp_add_port, 1749 .remove_port = nvmet_tcp_remove_port, 1750 .queue_response = nvmet_tcp_queue_response, 1751 .delete_ctrl = nvmet_tcp_delete_ctrl, 1752 .install_queue = nvmet_tcp_install_queue, 1753 .disc_traddr = nvmet_tcp_disc_port_addr, 1754 }; 1755 1756 static int __init nvmet_tcp_init(void) 1757 { 1758 int ret; 1759 1760 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0); 1761 if (!nvmet_tcp_wq) 1762 return -ENOMEM; 1763 1764 ret = nvmet_register_transport(&nvmet_tcp_ops); 1765 if (ret) 1766 goto err; 1767 1768 return 0; 1769 err: 1770 destroy_workqueue(nvmet_tcp_wq); 1771 return ret; 1772 } 1773 1774 static void __exit nvmet_tcp_exit(void) 1775 { 1776 struct nvmet_tcp_queue *queue; 1777 1778 nvmet_unregister_transport(&nvmet_tcp_ops); 1779 1780 flush_scheduled_work(); 1781 mutex_lock(&nvmet_tcp_queue_mutex); 1782 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1783 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1784 mutex_unlock(&nvmet_tcp_queue_mutex); 1785 flush_scheduled_work(); 1786 1787 destroy_workqueue(nvmet_tcp_wq); 1788 } 1789 1790 module_init(nvmet_tcp_init); 1791 module_exit(nvmet_tcp_exit); 1792 1793 MODULE_LICENSE("GPL v2"); 1794 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1795