1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/nvme.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/wait.h> 17 #include <linux/inet.h> 18 #include <asm/unaligned.h> 19 20 #include <rdma/ib_verbs.h> 21 #include <rdma/rdma_cm.h> 22 #include <rdma/rw.h> 23 #include <rdma/ib_cm.h> 24 25 #include <linux/nvme-rdma.h> 26 #include "nvmet.h" 27 28 /* 29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 30 */ 31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 32 #define NVMET_RDMA_MAX_INLINE_SGE 4 33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 34 35 /* Assume mpsmin == device_page_size == 4KB */ 36 #define NVMET_RDMA_MAX_MDTS 8 37 #define NVMET_RDMA_MAX_METADATA_MDTS 5 38 39 struct nvmet_rdma_srq; 40 41 struct nvmet_rdma_cmd { 42 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 43 struct ib_cqe cqe; 44 struct ib_recv_wr wr; 45 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 struct nvmet_rdma_srq *nsrq; 49 }; 50 51 enum { 52 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 53 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 54 }; 55 56 struct nvmet_rdma_rsp { 57 struct ib_sge send_sge; 58 struct ib_cqe send_cqe; 59 struct ib_send_wr send_wr; 60 61 struct nvmet_rdma_cmd *cmd; 62 struct nvmet_rdma_queue *queue; 63 64 struct ib_cqe read_cqe; 65 struct ib_cqe write_cqe; 66 struct rdma_rw_ctx rw; 67 68 struct nvmet_req req; 69 70 bool allocated; 71 u8 n_rdma; 72 u32 flags; 73 u32 invalidate_rkey; 74 75 struct list_head wait_list; 76 struct list_head free_list; 77 }; 78 79 enum nvmet_rdma_queue_state { 80 NVMET_RDMA_Q_CONNECTING, 81 NVMET_RDMA_Q_LIVE, 82 NVMET_RDMA_Q_DISCONNECTING, 83 }; 84 85 struct nvmet_rdma_queue { 86 struct rdma_cm_id *cm_id; 87 struct ib_qp *qp; 88 struct nvmet_port *port; 89 struct ib_cq *cq; 90 atomic_t sq_wr_avail; 91 struct nvmet_rdma_device *dev; 92 struct nvmet_rdma_srq *nsrq; 93 spinlock_t state_lock; 94 enum nvmet_rdma_queue_state state; 95 struct nvmet_cq nvme_cq; 96 struct nvmet_sq nvme_sq; 97 98 struct nvmet_rdma_rsp *rsps; 99 struct list_head free_rsps; 100 spinlock_t rsps_lock; 101 struct nvmet_rdma_cmd *cmds; 102 103 struct work_struct release_work; 104 struct list_head rsp_wait_list; 105 struct list_head rsp_wr_wait_list; 106 spinlock_t rsp_wr_wait_lock; 107 108 int idx; 109 int host_qid; 110 int comp_vector; 111 int recv_queue_size; 112 int send_queue_size; 113 114 struct list_head queue_list; 115 }; 116 117 struct nvmet_rdma_port { 118 struct nvmet_port *nport; 119 struct sockaddr_storage addr; 120 struct rdma_cm_id *cm_id; 121 struct delayed_work repair_work; 122 }; 123 124 struct nvmet_rdma_srq { 125 struct ib_srq *srq; 126 struct nvmet_rdma_cmd *cmds; 127 struct nvmet_rdma_device *ndev; 128 }; 129 130 struct nvmet_rdma_device { 131 struct ib_device *device; 132 struct ib_pd *pd; 133 struct nvmet_rdma_srq **srqs; 134 int srq_count; 135 size_t srq_size; 136 struct kref ref; 137 struct list_head entry; 138 int inline_data_size; 139 int inline_page_count; 140 }; 141 142 static bool nvmet_rdma_use_srq; 143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 144 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 145 146 static int srq_size_set(const char *val, const struct kernel_param *kp); 147 static const struct kernel_param_ops srq_size_ops = { 148 .set = srq_size_set, 149 .get = param_get_int, 150 }; 151 152 static int nvmet_rdma_srq_size = 1024; 153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 155 156 static DEFINE_IDA(nvmet_rdma_queue_ida); 157 static LIST_HEAD(nvmet_rdma_queue_list); 158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 159 160 static LIST_HEAD(device_list); 161 static DEFINE_MUTEX(device_list_mutex); 162 163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 171 struct nvmet_rdma_rsp *r); 172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 173 struct nvmet_rdma_rsp *r); 174 175 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 176 177 static int srq_size_set(const char *val, const struct kernel_param *kp) 178 { 179 int n = 0, ret; 180 181 ret = kstrtoint(val, 10, &n); 182 if (ret != 0 || n < 256) 183 return -EINVAL; 184 185 return param_set_int(val, kp); 186 } 187 188 static int num_pages(int len) 189 { 190 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 191 } 192 193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 194 { 195 return nvme_is_write(rsp->req.cmd) && 196 rsp->req.transfer_len && 197 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 198 } 199 200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 201 { 202 return !nvme_is_write(rsp->req.cmd) && 203 rsp->req.transfer_len && 204 !rsp->req.cqe->status && 205 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 206 } 207 208 static inline struct nvmet_rdma_rsp * 209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 210 { 211 struct nvmet_rdma_rsp *rsp; 212 unsigned long flags; 213 214 spin_lock_irqsave(&queue->rsps_lock, flags); 215 rsp = list_first_entry_or_null(&queue->free_rsps, 216 struct nvmet_rdma_rsp, free_list); 217 if (likely(rsp)) 218 list_del(&rsp->free_list); 219 spin_unlock_irqrestore(&queue->rsps_lock, flags); 220 221 if (unlikely(!rsp)) { 222 int ret; 223 224 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 225 if (unlikely(!rsp)) 226 return NULL; 227 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 228 if (unlikely(ret)) { 229 kfree(rsp); 230 return NULL; 231 } 232 233 rsp->allocated = true; 234 } 235 236 return rsp; 237 } 238 239 static inline void 240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 241 { 242 unsigned long flags; 243 244 if (unlikely(rsp->allocated)) { 245 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 246 kfree(rsp); 247 return; 248 } 249 250 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 251 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 252 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 253 } 254 255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 256 struct nvmet_rdma_cmd *c) 257 { 258 struct scatterlist *sg; 259 struct ib_sge *sge; 260 int i; 261 262 if (!ndev->inline_data_size) 263 return; 264 265 sg = c->inline_sg; 266 sge = &c->sge[1]; 267 268 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 269 if (sge->length) 270 ib_dma_unmap_page(ndev->device, sge->addr, 271 sge->length, DMA_FROM_DEVICE); 272 if (sg_page(sg)) 273 __free_page(sg_page(sg)); 274 } 275 } 276 277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 278 struct nvmet_rdma_cmd *c) 279 { 280 struct scatterlist *sg; 281 struct ib_sge *sge; 282 struct page *pg; 283 int len; 284 int i; 285 286 if (!ndev->inline_data_size) 287 return 0; 288 289 sg = c->inline_sg; 290 sg_init_table(sg, ndev->inline_page_count); 291 sge = &c->sge[1]; 292 len = ndev->inline_data_size; 293 294 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 295 pg = alloc_page(GFP_KERNEL); 296 if (!pg) 297 goto out_err; 298 sg_assign_page(sg, pg); 299 sge->addr = ib_dma_map_page(ndev->device, 300 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 301 if (ib_dma_mapping_error(ndev->device, sge->addr)) 302 goto out_err; 303 sge->length = min_t(int, len, PAGE_SIZE); 304 sge->lkey = ndev->pd->local_dma_lkey; 305 len -= sge->length; 306 } 307 308 return 0; 309 out_err: 310 for (; i >= 0; i--, sg--, sge--) { 311 if (sge->length) 312 ib_dma_unmap_page(ndev->device, sge->addr, 313 sge->length, DMA_FROM_DEVICE); 314 if (sg_page(sg)) 315 __free_page(sg_page(sg)); 316 } 317 return -ENOMEM; 318 } 319 320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 321 struct nvmet_rdma_cmd *c, bool admin) 322 { 323 /* NVMe command / RDMA RECV */ 324 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 325 if (!c->nvme_cmd) 326 goto out; 327 328 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 329 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 330 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 331 goto out_free_cmd; 332 333 c->sge[0].length = sizeof(*c->nvme_cmd); 334 c->sge[0].lkey = ndev->pd->local_dma_lkey; 335 336 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 337 goto out_unmap_cmd; 338 339 c->cqe.done = nvmet_rdma_recv_done; 340 341 c->wr.wr_cqe = &c->cqe; 342 c->wr.sg_list = c->sge; 343 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 344 345 return 0; 346 347 out_unmap_cmd: 348 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 349 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 350 out_free_cmd: 351 kfree(c->nvme_cmd); 352 353 out: 354 return -ENOMEM; 355 } 356 357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 358 struct nvmet_rdma_cmd *c, bool admin) 359 { 360 if (!admin) 361 nvmet_rdma_free_inline_pages(ndev, c); 362 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 363 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 364 kfree(c->nvme_cmd); 365 } 366 367 static struct nvmet_rdma_cmd * 368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 369 int nr_cmds, bool admin) 370 { 371 struct nvmet_rdma_cmd *cmds; 372 int ret = -EINVAL, i; 373 374 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 375 if (!cmds) 376 goto out; 377 378 for (i = 0; i < nr_cmds; i++) { 379 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 380 if (ret) 381 goto out_free; 382 } 383 384 return cmds; 385 386 out_free: 387 while (--i >= 0) 388 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 389 kfree(cmds); 390 out: 391 return ERR_PTR(ret); 392 } 393 394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 395 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 396 { 397 int i; 398 399 for (i = 0; i < nr_cmds; i++) 400 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 401 kfree(cmds); 402 } 403 404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 405 struct nvmet_rdma_rsp *r) 406 { 407 /* NVMe CQE / RDMA SEND */ 408 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 409 if (!r->req.cqe) 410 goto out; 411 412 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 413 sizeof(*r->req.cqe), DMA_TO_DEVICE); 414 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 415 goto out_free_rsp; 416 417 if (!ib_uses_virt_dma(ndev->device)) 418 r->req.p2p_client = &ndev->device->dev; 419 r->send_sge.length = sizeof(*r->req.cqe); 420 r->send_sge.lkey = ndev->pd->local_dma_lkey; 421 422 r->send_cqe.done = nvmet_rdma_send_done; 423 424 r->send_wr.wr_cqe = &r->send_cqe; 425 r->send_wr.sg_list = &r->send_sge; 426 r->send_wr.num_sge = 1; 427 r->send_wr.send_flags = IB_SEND_SIGNALED; 428 429 /* Data In / RDMA READ */ 430 r->read_cqe.done = nvmet_rdma_read_data_done; 431 /* Data Out / RDMA WRITE */ 432 r->write_cqe.done = nvmet_rdma_write_data_done; 433 434 return 0; 435 436 out_free_rsp: 437 kfree(r->req.cqe); 438 out: 439 return -ENOMEM; 440 } 441 442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 443 struct nvmet_rdma_rsp *r) 444 { 445 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 446 sizeof(*r->req.cqe), DMA_TO_DEVICE); 447 kfree(r->req.cqe); 448 } 449 450 static int 451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 452 { 453 struct nvmet_rdma_device *ndev = queue->dev; 454 int nr_rsps = queue->recv_queue_size * 2; 455 int ret = -EINVAL, i; 456 457 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 458 GFP_KERNEL); 459 if (!queue->rsps) 460 goto out; 461 462 for (i = 0; i < nr_rsps; i++) { 463 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 464 465 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 466 if (ret) 467 goto out_free; 468 469 list_add_tail(&rsp->free_list, &queue->free_rsps); 470 } 471 472 return 0; 473 474 out_free: 475 while (--i >= 0) { 476 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 477 478 list_del(&rsp->free_list); 479 nvmet_rdma_free_rsp(ndev, rsp); 480 } 481 kfree(queue->rsps); 482 out: 483 return ret; 484 } 485 486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 487 { 488 struct nvmet_rdma_device *ndev = queue->dev; 489 int i, nr_rsps = queue->recv_queue_size * 2; 490 491 for (i = 0; i < nr_rsps; i++) { 492 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 493 494 list_del(&rsp->free_list); 495 nvmet_rdma_free_rsp(ndev, rsp); 496 } 497 kfree(queue->rsps); 498 } 499 500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 501 struct nvmet_rdma_cmd *cmd) 502 { 503 int ret; 504 505 ib_dma_sync_single_for_device(ndev->device, 506 cmd->sge[0].addr, cmd->sge[0].length, 507 DMA_FROM_DEVICE); 508 509 if (cmd->nsrq) 510 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 511 else 512 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 513 514 if (unlikely(ret)) 515 pr_err("post_recv cmd failed\n"); 516 517 return ret; 518 } 519 520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 521 { 522 spin_lock(&queue->rsp_wr_wait_lock); 523 while (!list_empty(&queue->rsp_wr_wait_list)) { 524 struct nvmet_rdma_rsp *rsp; 525 bool ret; 526 527 rsp = list_entry(queue->rsp_wr_wait_list.next, 528 struct nvmet_rdma_rsp, wait_list); 529 list_del(&rsp->wait_list); 530 531 spin_unlock(&queue->rsp_wr_wait_lock); 532 ret = nvmet_rdma_execute_command(rsp); 533 spin_lock(&queue->rsp_wr_wait_lock); 534 535 if (!ret) { 536 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 537 break; 538 } 539 } 540 spin_unlock(&queue->rsp_wr_wait_lock); 541 } 542 543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 544 { 545 struct ib_mr_status mr_status; 546 int ret; 547 u16 status = 0; 548 549 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 550 if (ret) { 551 pr_err("ib_check_mr_status failed, ret %d\n", ret); 552 return NVME_SC_INVALID_PI; 553 } 554 555 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 556 switch (mr_status.sig_err.err_type) { 557 case IB_SIG_BAD_GUARD: 558 status = NVME_SC_GUARD_CHECK; 559 break; 560 case IB_SIG_BAD_REFTAG: 561 status = NVME_SC_REFTAG_CHECK; 562 break; 563 case IB_SIG_BAD_APPTAG: 564 status = NVME_SC_APPTAG_CHECK; 565 break; 566 } 567 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 568 mr_status.sig_err.err_type, 569 mr_status.sig_err.expected, 570 mr_status.sig_err.actual); 571 } 572 573 return status; 574 } 575 576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 577 struct nvme_command *cmd, struct ib_sig_domain *domain, 578 u16 control, u8 pi_type) 579 { 580 domain->sig_type = IB_SIG_TYPE_T10_DIF; 581 domain->sig.dif.bg_type = IB_T10DIF_CRC; 582 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 583 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 584 if (control & NVME_RW_PRINFO_PRCHK_REF) 585 domain->sig.dif.ref_remap = true; 586 587 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 588 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 589 domain->sig.dif.app_escape = true; 590 if (pi_type == NVME_NS_DPS_PI_TYPE3) 591 domain->sig.dif.ref_escape = true; 592 } 593 594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 595 struct ib_sig_attrs *sig_attrs) 596 { 597 struct nvme_command *cmd = req->cmd; 598 u16 control = le16_to_cpu(cmd->rw.control); 599 u8 pi_type = req->ns->pi_type; 600 struct blk_integrity *bi; 601 602 bi = bdev_get_integrity(req->ns->bdev); 603 604 memset(sig_attrs, 0, sizeof(*sig_attrs)); 605 606 if (control & NVME_RW_PRINFO_PRACT) { 607 /* for WRITE_INSERT/READ_STRIP no wire domain */ 608 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 609 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 610 pi_type); 611 /* Clear the PRACT bit since HCA will generate/verify the PI */ 612 control &= ~NVME_RW_PRINFO_PRACT; 613 cmd->rw.control = cpu_to_le16(control); 614 /* PI is added by the HW */ 615 req->transfer_len += req->metadata_len; 616 } else { 617 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 618 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 619 pi_type); 620 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 621 pi_type); 622 } 623 624 if (control & NVME_RW_PRINFO_PRCHK_REF) 625 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 626 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 627 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 628 if (control & NVME_RW_PRINFO_PRCHK_APP) 629 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 630 } 631 632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 633 struct ib_sig_attrs *sig_attrs) 634 { 635 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 636 struct nvmet_req *req = &rsp->req; 637 int ret; 638 639 if (req->metadata_len) 640 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 641 cm_id->port_num, req->sg, req->sg_cnt, 642 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 643 addr, key, nvmet_data_dir(req)); 644 else 645 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 646 req->sg, req->sg_cnt, 0, addr, key, 647 nvmet_data_dir(req)); 648 649 return ret; 650 } 651 652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 653 { 654 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 655 struct nvmet_req *req = &rsp->req; 656 657 if (req->metadata_len) 658 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 659 cm_id->port_num, req->sg, req->sg_cnt, 660 req->metadata_sg, req->metadata_sg_cnt, 661 nvmet_data_dir(req)); 662 else 663 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 664 req->sg, req->sg_cnt, nvmet_data_dir(req)); 665 } 666 667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 668 { 669 struct nvmet_rdma_queue *queue = rsp->queue; 670 671 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 672 673 if (rsp->n_rdma) 674 nvmet_rdma_rw_ctx_destroy(rsp); 675 676 if (rsp->req.sg != rsp->cmd->inline_sg) 677 nvmet_req_free_sgls(&rsp->req); 678 679 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 680 nvmet_rdma_process_wr_wait_list(queue); 681 682 nvmet_rdma_put_rsp(rsp); 683 } 684 685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 686 { 687 if (queue->nvme_sq.ctrl) { 688 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 689 } else { 690 /* 691 * we didn't setup the controller yet in case 692 * of admin connect error, just disconnect and 693 * cleanup the queue 694 */ 695 nvmet_rdma_queue_disconnect(queue); 696 } 697 } 698 699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 700 { 701 struct nvmet_rdma_rsp *rsp = 702 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 703 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 704 705 nvmet_rdma_release_rsp(rsp); 706 707 if (unlikely(wc->status != IB_WC_SUCCESS && 708 wc->status != IB_WC_WR_FLUSH_ERR)) { 709 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 710 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 711 nvmet_rdma_error_comp(queue); 712 } 713 } 714 715 static void nvmet_rdma_queue_response(struct nvmet_req *req) 716 { 717 struct nvmet_rdma_rsp *rsp = 718 container_of(req, struct nvmet_rdma_rsp, req); 719 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 720 struct ib_send_wr *first_wr; 721 722 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 723 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 724 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 725 } else { 726 rsp->send_wr.opcode = IB_WR_SEND; 727 } 728 729 if (nvmet_rdma_need_data_out(rsp)) { 730 if (rsp->req.metadata_len) 731 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 732 cm_id->port_num, &rsp->write_cqe, NULL); 733 else 734 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 735 cm_id->port_num, NULL, &rsp->send_wr); 736 } else { 737 first_wr = &rsp->send_wr; 738 } 739 740 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 741 742 ib_dma_sync_single_for_device(rsp->queue->dev->device, 743 rsp->send_sge.addr, rsp->send_sge.length, 744 DMA_TO_DEVICE); 745 746 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 747 pr_err("sending cmd response failed\n"); 748 nvmet_rdma_release_rsp(rsp); 749 } 750 } 751 752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 753 { 754 struct nvmet_rdma_rsp *rsp = 755 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 756 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 757 u16 status = 0; 758 759 WARN_ON(rsp->n_rdma <= 0); 760 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 761 rsp->n_rdma = 0; 762 763 if (unlikely(wc->status != IB_WC_SUCCESS)) { 764 nvmet_rdma_rw_ctx_destroy(rsp); 765 nvmet_req_uninit(&rsp->req); 766 nvmet_rdma_release_rsp(rsp); 767 if (wc->status != IB_WC_WR_FLUSH_ERR) { 768 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 769 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 770 nvmet_rdma_error_comp(queue); 771 } 772 return; 773 } 774 775 if (rsp->req.metadata_len) 776 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 777 nvmet_rdma_rw_ctx_destroy(rsp); 778 779 if (unlikely(status)) 780 nvmet_req_complete(&rsp->req, status); 781 else 782 rsp->req.execute(&rsp->req); 783 } 784 785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 786 { 787 struct nvmet_rdma_rsp *rsp = 788 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 789 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 790 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 791 u16 status; 792 793 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 794 return; 795 796 WARN_ON(rsp->n_rdma <= 0); 797 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 798 rsp->n_rdma = 0; 799 800 if (unlikely(wc->status != IB_WC_SUCCESS)) { 801 nvmet_rdma_rw_ctx_destroy(rsp); 802 nvmet_req_uninit(&rsp->req); 803 nvmet_rdma_release_rsp(rsp); 804 if (wc->status != IB_WC_WR_FLUSH_ERR) { 805 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 806 ib_wc_status_msg(wc->status), wc->status); 807 nvmet_rdma_error_comp(queue); 808 } 809 return; 810 } 811 812 /* 813 * Upon RDMA completion check the signature status 814 * - if succeeded send good NVMe response 815 * - if failed send bad NVMe response with appropriate error 816 */ 817 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 818 if (unlikely(status)) 819 rsp->req.cqe->status = cpu_to_le16(status << 1); 820 nvmet_rdma_rw_ctx_destroy(rsp); 821 822 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 823 pr_err("sending cmd response failed\n"); 824 nvmet_rdma_release_rsp(rsp); 825 } 826 } 827 828 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 829 u64 off) 830 { 831 int sg_count = num_pages(len); 832 struct scatterlist *sg; 833 int i; 834 835 sg = rsp->cmd->inline_sg; 836 for (i = 0; i < sg_count; i++, sg++) { 837 if (i < sg_count - 1) 838 sg_unmark_end(sg); 839 else 840 sg_mark_end(sg); 841 sg->offset = off; 842 sg->length = min_t(int, len, PAGE_SIZE - off); 843 len -= sg->length; 844 if (!i) 845 off = 0; 846 } 847 848 rsp->req.sg = rsp->cmd->inline_sg; 849 rsp->req.sg_cnt = sg_count; 850 } 851 852 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 853 { 854 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 855 u64 off = le64_to_cpu(sgl->addr); 856 u32 len = le32_to_cpu(sgl->length); 857 858 if (!nvme_is_write(rsp->req.cmd)) { 859 rsp->req.error_loc = 860 offsetof(struct nvme_common_command, opcode); 861 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 862 } 863 864 if (off + len > rsp->queue->dev->inline_data_size) { 865 pr_err("invalid inline data offset!\n"); 866 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 867 } 868 869 /* no data command? */ 870 if (!len) 871 return 0; 872 873 nvmet_rdma_use_inline_sg(rsp, len, off); 874 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 875 rsp->req.transfer_len += len; 876 return 0; 877 } 878 879 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 880 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 881 { 882 u64 addr = le64_to_cpu(sgl->addr); 883 u32 key = get_unaligned_le32(sgl->key); 884 struct ib_sig_attrs sig_attrs; 885 int ret; 886 887 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 888 889 /* no data command? */ 890 if (!rsp->req.transfer_len) 891 return 0; 892 893 if (rsp->req.metadata_len) 894 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 895 896 ret = nvmet_req_alloc_sgls(&rsp->req); 897 if (unlikely(ret < 0)) 898 goto error_out; 899 900 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 901 if (unlikely(ret < 0)) 902 goto error_out; 903 rsp->n_rdma += ret; 904 905 if (invalidate) { 906 rsp->invalidate_rkey = key; 907 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 908 } 909 910 return 0; 911 912 error_out: 913 rsp->req.transfer_len = 0; 914 return NVME_SC_INTERNAL; 915 } 916 917 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 918 { 919 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 920 921 switch (sgl->type >> 4) { 922 case NVME_SGL_FMT_DATA_DESC: 923 switch (sgl->type & 0xf) { 924 case NVME_SGL_FMT_OFFSET: 925 return nvmet_rdma_map_sgl_inline(rsp); 926 default: 927 pr_err("invalid SGL subtype: %#x\n", sgl->type); 928 rsp->req.error_loc = 929 offsetof(struct nvme_common_command, dptr); 930 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 931 } 932 case NVME_KEY_SGL_FMT_DATA_DESC: 933 switch (sgl->type & 0xf) { 934 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 935 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 936 case NVME_SGL_FMT_ADDRESS: 937 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 938 default: 939 pr_err("invalid SGL subtype: %#x\n", sgl->type); 940 rsp->req.error_loc = 941 offsetof(struct nvme_common_command, dptr); 942 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 943 } 944 default: 945 pr_err("invalid SGL type: %#x\n", sgl->type); 946 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 947 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 948 } 949 } 950 951 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 952 { 953 struct nvmet_rdma_queue *queue = rsp->queue; 954 955 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 956 &queue->sq_wr_avail) < 0)) { 957 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 958 1 + rsp->n_rdma, queue->idx, 959 queue->nvme_sq.ctrl->cntlid); 960 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 961 return false; 962 } 963 964 if (nvmet_rdma_need_data_in(rsp)) { 965 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 966 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 967 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 968 } else { 969 rsp->req.execute(&rsp->req); 970 } 971 972 return true; 973 } 974 975 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 976 struct nvmet_rdma_rsp *cmd) 977 { 978 u16 status; 979 980 ib_dma_sync_single_for_cpu(queue->dev->device, 981 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 982 DMA_FROM_DEVICE); 983 ib_dma_sync_single_for_cpu(queue->dev->device, 984 cmd->send_sge.addr, cmd->send_sge.length, 985 DMA_TO_DEVICE); 986 987 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 988 &queue->nvme_sq, &nvmet_rdma_ops)) 989 return; 990 991 status = nvmet_rdma_map_sgl(cmd); 992 if (status) 993 goto out_err; 994 995 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 996 spin_lock(&queue->rsp_wr_wait_lock); 997 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 998 spin_unlock(&queue->rsp_wr_wait_lock); 999 } 1000 1001 return; 1002 1003 out_err: 1004 nvmet_req_complete(&cmd->req, status); 1005 } 1006 1007 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1008 { 1009 struct nvmet_rdma_cmd *cmd = 1010 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1011 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1012 struct nvmet_rdma_rsp *rsp; 1013 1014 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1015 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1016 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1017 wc->wr_cqe, ib_wc_status_msg(wc->status), 1018 wc->status); 1019 nvmet_rdma_error_comp(queue); 1020 } 1021 return; 1022 } 1023 1024 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1025 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1026 nvmet_rdma_error_comp(queue); 1027 return; 1028 } 1029 1030 cmd->queue = queue; 1031 rsp = nvmet_rdma_get_rsp(queue); 1032 if (unlikely(!rsp)) { 1033 /* 1034 * we get here only under memory pressure, 1035 * silently drop and have the host retry 1036 * as we can't even fail it. 1037 */ 1038 nvmet_rdma_post_recv(queue->dev, cmd); 1039 return; 1040 } 1041 rsp->queue = queue; 1042 rsp->cmd = cmd; 1043 rsp->flags = 0; 1044 rsp->req.cmd = cmd->nvme_cmd; 1045 rsp->req.port = queue->port; 1046 rsp->n_rdma = 0; 1047 1048 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1049 unsigned long flags; 1050 1051 spin_lock_irqsave(&queue->state_lock, flags); 1052 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1053 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1054 else 1055 nvmet_rdma_put_rsp(rsp); 1056 spin_unlock_irqrestore(&queue->state_lock, flags); 1057 return; 1058 } 1059 1060 nvmet_rdma_handle_command(queue, rsp); 1061 } 1062 1063 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1064 { 1065 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1066 false); 1067 ib_destroy_srq(nsrq->srq); 1068 1069 kfree(nsrq); 1070 } 1071 1072 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1073 { 1074 int i; 1075 1076 if (!ndev->srqs) 1077 return; 1078 1079 for (i = 0; i < ndev->srq_count; i++) 1080 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1081 1082 kfree(ndev->srqs); 1083 } 1084 1085 static struct nvmet_rdma_srq * 1086 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1087 { 1088 struct ib_srq_init_attr srq_attr = { NULL, }; 1089 size_t srq_size = ndev->srq_size; 1090 struct nvmet_rdma_srq *nsrq; 1091 struct ib_srq *srq; 1092 int ret, i; 1093 1094 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1095 if (!nsrq) 1096 return ERR_PTR(-ENOMEM); 1097 1098 srq_attr.attr.max_wr = srq_size; 1099 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1100 srq_attr.attr.srq_limit = 0; 1101 srq_attr.srq_type = IB_SRQT_BASIC; 1102 srq = ib_create_srq(ndev->pd, &srq_attr); 1103 if (IS_ERR(srq)) { 1104 ret = PTR_ERR(srq); 1105 goto out_free; 1106 } 1107 1108 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1109 if (IS_ERR(nsrq->cmds)) { 1110 ret = PTR_ERR(nsrq->cmds); 1111 goto out_destroy_srq; 1112 } 1113 1114 nsrq->srq = srq; 1115 nsrq->ndev = ndev; 1116 1117 for (i = 0; i < srq_size; i++) { 1118 nsrq->cmds[i].nsrq = nsrq; 1119 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1120 if (ret) 1121 goto out_free_cmds; 1122 } 1123 1124 return nsrq; 1125 1126 out_free_cmds: 1127 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1128 out_destroy_srq: 1129 ib_destroy_srq(srq); 1130 out_free: 1131 kfree(nsrq); 1132 return ERR_PTR(ret); 1133 } 1134 1135 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1136 { 1137 int i, ret; 1138 1139 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1140 /* 1141 * If SRQs aren't supported we just go ahead and use normal 1142 * non-shared receive queues. 1143 */ 1144 pr_info("SRQ requested but not supported.\n"); 1145 return 0; 1146 } 1147 1148 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1149 nvmet_rdma_srq_size); 1150 ndev->srq_count = min(ndev->device->num_comp_vectors, 1151 ndev->device->attrs.max_srq); 1152 1153 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1154 if (!ndev->srqs) 1155 return -ENOMEM; 1156 1157 for (i = 0; i < ndev->srq_count; i++) { 1158 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1159 if (IS_ERR(ndev->srqs[i])) { 1160 ret = PTR_ERR(ndev->srqs[i]); 1161 goto err_srq; 1162 } 1163 } 1164 1165 return 0; 1166 1167 err_srq: 1168 while (--i >= 0) 1169 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1170 kfree(ndev->srqs); 1171 return ret; 1172 } 1173 1174 static void nvmet_rdma_free_dev(struct kref *ref) 1175 { 1176 struct nvmet_rdma_device *ndev = 1177 container_of(ref, struct nvmet_rdma_device, ref); 1178 1179 mutex_lock(&device_list_mutex); 1180 list_del(&ndev->entry); 1181 mutex_unlock(&device_list_mutex); 1182 1183 nvmet_rdma_destroy_srqs(ndev); 1184 ib_dealloc_pd(ndev->pd); 1185 1186 kfree(ndev); 1187 } 1188 1189 static struct nvmet_rdma_device * 1190 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1191 { 1192 struct nvmet_rdma_port *port = cm_id->context; 1193 struct nvmet_port *nport = port->nport; 1194 struct nvmet_rdma_device *ndev; 1195 int inline_page_count; 1196 int inline_sge_count; 1197 int ret; 1198 1199 mutex_lock(&device_list_mutex); 1200 list_for_each_entry(ndev, &device_list, entry) { 1201 if (ndev->device->node_guid == cm_id->device->node_guid && 1202 kref_get_unless_zero(&ndev->ref)) 1203 goto out_unlock; 1204 } 1205 1206 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1207 if (!ndev) 1208 goto out_err; 1209 1210 inline_page_count = num_pages(nport->inline_data_size); 1211 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1212 cm_id->device->attrs.max_recv_sge) - 1; 1213 if (inline_page_count > inline_sge_count) { 1214 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1215 nport->inline_data_size, cm_id->device->name, 1216 inline_sge_count * PAGE_SIZE); 1217 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1218 inline_page_count = inline_sge_count; 1219 } 1220 ndev->inline_data_size = nport->inline_data_size; 1221 ndev->inline_page_count = inline_page_count; 1222 1223 if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags & 1224 IB_DEVICE_INTEGRITY_HANDOVER)) { 1225 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1226 cm_id->device->name); 1227 nport->pi_enable = false; 1228 } 1229 1230 ndev->device = cm_id->device; 1231 kref_init(&ndev->ref); 1232 1233 ndev->pd = ib_alloc_pd(ndev->device, 0); 1234 if (IS_ERR(ndev->pd)) 1235 goto out_free_dev; 1236 1237 if (nvmet_rdma_use_srq) { 1238 ret = nvmet_rdma_init_srqs(ndev); 1239 if (ret) 1240 goto out_free_pd; 1241 } 1242 1243 list_add(&ndev->entry, &device_list); 1244 out_unlock: 1245 mutex_unlock(&device_list_mutex); 1246 pr_debug("added %s.\n", ndev->device->name); 1247 return ndev; 1248 1249 out_free_pd: 1250 ib_dealloc_pd(ndev->pd); 1251 out_free_dev: 1252 kfree(ndev); 1253 out_err: 1254 mutex_unlock(&device_list_mutex); 1255 return NULL; 1256 } 1257 1258 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1259 { 1260 struct ib_qp_init_attr qp_attr = { }; 1261 struct nvmet_rdma_device *ndev = queue->dev; 1262 int nr_cqe, ret, i, factor; 1263 1264 /* 1265 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1266 */ 1267 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1268 1269 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1270 queue->comp_vector, IB_POLL_WORKQUEUE); 1271 if (IS_ERR(queue->cq)) { 1272 ret = PTR_ERR(queue->cq); 1273 pr_err("failed to create CQ cqe= %d ret= %d\n", 1274 nr_cqe + 1, ret); 1275 goto out; 1276 } 1277 1278 qp_attr.qp_context = queue; 1279 qp_attr.event_handler = nvmet_rdma_qp_event; 1280 qp_attr.send_cq = queue->cq; 1281 qp_attr.recv_cq = queue->cq; 1282 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1283 qp_attr.qp_type = IB_QPT_RC; 1284 /* +1 for drain */ 1285 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1286 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1287 1 << NVMET_RDMA_MAX_MDTS); 1288 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1289 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1290 ndev->device->attrs.max_send_sge); 1291 1292 if (queue->nsrq) { 1293 qp_attr.srq = queue->nsrq->srq; 1294 } else { 1295 /* +1 for drain */ 1296 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1297 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1298 } 1299 1300 if (queue->port->pi_enable && queue->host_qid) 1301 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1302 1303 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1304 if (ret) { 1305 pr_err("failed to create_qp ret= %d\n", ret); 1306 goto err_destroy_cq; 1307 } 1308 queue->qp = queue->cm_id->qp; 1309 1310 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1311 1312 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1313 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1314 qp_attr.cap.max_send_wr, queue->cm_id); 1315 1316 if (!queue->nsrq) { 1317 for (i = 0; i < queue->recv_queue_size; i++) { 1318 queue->cmds[i].queue = queue; 1319 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1320 if (ret) 1321 goto err_destroy_qp; 1322 } 1323 } 1324 1325 out: 1326 return ret; 1327 1328 err_destroy_qp: 1329 rdma_destroy_qp(queue->cm_id); 1330 err_destroy_cq: 1331 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1332 goto out; 1333 } 1334 1335 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1336 { 1337 ib_drain_qp(queue->qp); 1338 if (queue->cm_id) 1339 rdma_destroy_id(queue->cm_id); 1340 ib_destroy_qp(queue->qp); 1341 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1342 queue->send_queue_size + 1); 1343 } 1344 1345 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1346 { 1347 pr_debug("freeing queue %d\n", queue->idx); 1348 1349 nvmet_sq_destroy(&queue->nvme_sq); 1350 1351 nvmet_rdma_destroy_queue_ib(queue); 1352 if (!queue->nsrq) { 1353 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1354 queue->recv_queue_size, 1355 !queue->host_qid); 1356 } 1357 nvmet_rdma_free_rsps(queue); 1358 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1359 kfree(queue); 1360 } 1361 1362 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1363 { 1364 struct nvmet_rdma_queue *queue = 1365 container_of(w, struct nvmet_rdma_queue, release_work); 1366 struct nvmet_rdma_device *dev = queue->dev; 1367 1368 nvmet_rdma_free_queue(queue); 1369 1370 kref_put(&dev->ref, nvmet_rdma_free_dev); 1371 } 1372 1373 static int 1374 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1375 struct nvmet_rdma_queue *queue) 1376 { 1377 struct nvme_rdma_cm_req *req; 1378 1379 req = (struct nvme_rdma_cm_req *)conn->private_data; 1380 if (!req || conn->private_data_len == 0) 1381 return NVME_RDMA_CM_INVALID_LEN; 1382 1383 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1384 return NVME_RDMA_CM_INVALID_RECFMT; 1385 1386 queue->host_qid = le16_to_cpu(req->qid); 1387 1388 /* 1389 * req->hsqsize corresponds to our recv queue size plus 1 1390 * req->hrqsize corresponds to our send queue size 1391 */ 1392 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1393 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1394 1395 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1396 return NVME_RDMA_CM_INVALID_HSQSIZE; 1397 1398 /* XXX: Should we enforce some kind of max for IO queues? */ 1399 1400 return 0; 1401 } 1402 1403 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1404 enum nvme_rdma_cm_status status) 1405 { 1406 struct nvme_rdma_cm_rej rej; 1407 1408 pr_debug("rejecting connect request: status %d (%s)\n", 1409 status, nvme_rdma_cm_msg(status)); 1410 1411 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1412 rej.sts = cpu_to_le16(status); 1413 1414 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1415 IB_CM_REJ_CONSUMER_DEFINED); 1416 } 1417 1418 static struct nvmet_rdma_queue * 1419 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1420 struct rdma_cm_id *cm_id, 1421 struct rdma_cm_event *event) 1422 { 1423 struct nvmet_rdma_port *port = cm_id->context; 1424 struct nvmet_rdma_queue *queue; 1425 int ret; 1426 1427 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1428 if (!queue) { 1429 ret = NVME_RDMA_CM_NO_RSC; 1430 goto out_reject; 1431 } 1432 1433 ret = nvmet_sq_init(&queue->nvme_sq); 1434 if (ret) { 1435 ret = NVME_RDMA_CM_NO_RSC; 1436 goto out_free_queue; 1437 } 1438 1439 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1440 if (ret) 1441 goto out_destroy_sq; 1442 1443 /* 1444 * Schedules the actual release because calling rdma_destroy_id from 1445 * inside a CM callback would trigger a deadlock. (great API design..) 1446 */ 1447 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1448 queue->dev = ndev; 1449 queue->cm_id = cm_id; 1450 queue->port = port->nport; 1451 1452 spin_lock_init(&queue->state_lock); 1453 queue->state = NVMET_RDMA_Q_CONNECTING; 1454 INIT_LIST_HEAD(&queue->rsp_wait_list); 1455 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1456 spin_lock_init(&queue->rsp_wr_wait_lock); 1457 INIT_LIST_HEAD(&queue->free_rsps); 1458 spin_lock_init(&queue->rsps_lock); 1459 INIT_LIST_HEAD(&queue->queue_list); 1460 1461 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1462 if (queue->idx < 0) { 1463 ret = NVME_RDMA_CM_NO_RSC; 1464 goto out_destroy_sq; 1465 } 1466 1467 /* 1468 * Spread the io queues across completion vectors, 1469 * but still keep all admin queues on vector 0. 1470 */ 1471 queue->comp_vector = !queue->host_qid ? 0 : 1472 queue->idx % ndev->device->num_comp_vectors; 1473 1474 1475 ret = nvmet_rdma_alloc_rsps(queue); 1476 if (ret) { 1477 ret = NVME_RDMA_CM_NO_RSC; 1478 goto out_ida_remove; 1479 } 1480 1481 if (ndev->srqs) { 1482 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1483 } else { 1484 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1485 queue->recv_queue_size, 1486 !queue->host_qid); 1487 if (IS_ERR(queue->cmds)) { 1488 ret = NVME_RDMA_CM_NO_RSC; 1489 goto out_free_responses; 1490 } 1491 } 1492 1493 ret = nvmet_rdma_create_queue_ib(queue); 1494 if (ret) { 1495 pr_err("%s: creating RDMA queue failed (%d).\n", 1496 __func__, ret); 1497 ret = NVME_RDMA_CM_NO_RSC; 1498 goto out_free_cmds; 1499 } 1500 1501 return queue; 1502 1503 out_free_cmds: 1504 if (!queue->nsrq) { 1505 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1506 queue->recv_queue_size, 1507 !queue->host_qid); 1508 } 1509 out_free_responses: 1510 nvmet_rdma_free_rsps(queue); 1511 out_ida_remove: 1512 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1513 out_destroy_sq: 1514 nvmet_sq_destroy(&queue->nvme_sq); 1515 out_free_queue: 1516 kfree(queue); 1517 out_reject: 1518 nvmet_rdma_cm_reject(cm_id, ret); 1519 return NULL; 1520 } 1521 1522 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1523 { 1524 struct nvmet_rdma_queue *queue = priv; 1525 1526 switch (event->event) { 1527 case IB_EVENT_COMM_EST: 1528 rdma_notify(queue->cm_id, event->event); 1529 break; 1530 case IB_EVENT_QP_LAST_WQE_REACHED: 1531 pr_debug("received last WQE reached event for queue=0x%p\n", 1532 queue); 1533 break; 1534 default: 1535 pr_err("received IB QP event: %s (%d)\n", 1536 ib_event_msg(event->event), event->event); 1537 break; 1538 } 1539 } 1540 1541 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1542 struct nvmet_rdma_queue *queue, 1543 struct rdma_conn_param *p) 1544 { 1545 struct rdma_conn_param param = { }; 1546 struct nvme_rdma_cm_rep priv = { }; 1547 int ret = -ENOMEM; 1548 1549 param.rnr_retry_count = 7; 1550 param.flow_control = 1; 1551 param.initiator_depth = min_t(u8, p->initiator_depth, 1552 queue->dev->device->attrs.max_qp_init_rd_atom); 1553 param.private_data = &priv; 1554 param.private_data_len = sizeof(priv); 1555 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1556 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1557 1558 ret = rdma_accept(cm_id, ¶m); 1559 if (ret) 1560 pr_err("rdma_accept failed (error code = %d)\n", ret); 1561 1562 return ret; 1563 } 1564 1565 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1566 struct rdma_cm_event *event) 1567 { 1568 struct nvmet_rdma_device *ndev; 1569 struct nvmet_rdma_queue *queue; 1570 int ret = -EINVAL; 1571 1572 ndev = nvmet_rdma_find_get_device(cm_id); 1573 if (!ndev) { 1574 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1575 return -ECONNREFUSED; 1576 } 1577 1578 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1579 if (!queue) { 1580 ret = -ENOMEM; 1581 goto put_device; 1582 } 1583 1584 if (queue->host_qid == 0) { 1585 /* Let inflight controller teardown complete */ 1586 flush_scheduled_work(); 1587 } 1588 1589 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1590 if (ret) { 1591 /* 1592 * Don't destroy the cm_id in free path, as we implicitly 1593 * destroy the cm_id here with non-zero ret code. 1594 */ 1595 queue->cm_id = NULL; 1596 goto free_queue; 1597 } 1598 1599 mutex_lock(&nvmet_rdma_queue_mutex); 1600 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1601 mutex_unlock(&nvmet_rdma_queue_mutex); 1602 1603 return 0; 1604 1605 free_queue: 1606 nvmet_rdma_free_queue(queue); 1607 put_device: 1608 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1609 1610 return ret; 1611 } 1612 1613 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1614 { 1615 unsigned long flags; 1616 1617 spin_lock_irqsave(&queue->state_lock, flags); 1618 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1619 pr_warn("trying to establish a connected queue\n"); 1620 goto out_unlock; 1621 } 1622 queue->state = NVMET_RDMA_Q_LIVE; 1623 1624 while (!list_empty(&queue->rsp_wait_list)) { 1625 struct nvmet_rdma_rsp *cmd; 1626 1627 cmd = list_first_entry(&queue->rsp_wait_list, 1628 struct nvmet_rdma_rsp, wait_list); 1629 list_del(&cmd->wait_list); 1630 1631 spin_unlock_irqrestore(&queue->state_lock, flags); 1632 nvmet_rdma_handle_command(queue, cmd); 1633 spin_lock_irqsave(&queue->state_lock, flags); 1634 } 1635 1636 out_unlock: 1637 spin_unlock_irqrestore(&queue->state_lock, flags); 1638 } 1639 1640 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1641 { 1642 bool disconnect = false; 1643 unsigned long flags; 1644 1645 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1646 1647 spin_lock_irqsave(&queue->state_lock, flags); 1648 switch (queue->state) { 1649 case NVMET_RDMA_Q_CONNECTING: 1650 while (!list_empty(&queue->rsp_wait_list)) { 1651 struct nvmet_rdma_rsp *rsp; 1652 1653 rsp = list_first_entry(&queue->rsp_wait_list, 1654 struct nvmet_rdma_rsp, 1655 wait_list); 1656 list_del(&rsp->wait_list); 1657 nvmet_rdma_put_rsp(rsp); 1658 } 1659 fallthrough; 1660 case NVMET_RDMA_Q_LIVE: 1661 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1662 disconnect = true; 1663 break; 1664 case NVMET_RDMA_Q_DISCONNECTING: 1665 break; 1666 } 1667 spin_unlock_irqrestore(&queue->state_lock, flags); 1668 1669 if (disconnect) { 1670 rdma_disconnect(queue->cm_id); 1671 schedule_work(&queue->release_work); 1672 } 1673 } 1674 1675 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1676 { 1677 bool disconnect = false; 1678 1679 mutex_lock(&nvmet_rdma_queue_mutex); 1680 if (!list_empty(&queue->queue_list)) { 1681 list_del_init(&queue->queue_list); 1682 disconnect = true; 1683 } 1684 mutex_unlock(&nvmet_rdma_queue_mutex); 1685 1686 if (disconnect) 1687 __nvmet_rdma_queue_disconnect(queue); 1688 } 1689 1690 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1691 struct nvmet_rdma_queue *queue) 1692 { 1693 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1694 1695 mutex_lock(&nvmet_rdma_queue_mutex); 1696 if (!list_empty(&queue->queue_list)) 1697 list_del_init(&queue->queue_list); 1698 mutex_unlock(&nvmet_rdma_queue_mutex); 1699 1700 pr_err("failed to connect queue %d\n", queue->idx); 1701 schedule_work(&queue->release_work); 1702 } 1703 1704 /** 1705 * nvme_rdma_device_removal() - Handle RDMA device removal 1706 * @cm_id: rdma_cm id, used for nvmet port 1707 * @queue: nvmet rdma queue (cm id qp_context) 1708 * 1709 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1710 * to unplug. Note that this event can be generated on a normal 1711 * queue cm_id and/or a device bound listener cm_id (where in this 1712 * case queue will be null). 1713 * 1714 * We registered an ib_client to handle device removal for queues, 1715 * so we only need to handle the listening port cm_ids. In this case 1716 * we nullify the priv to prevent double cm_id destruction and destroying 1717 * the cm_id implicitely by returning a non-zero rc to the callout. 1718 */ 1719 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1720 struct nvmet_rdma_queue *queue) 1721 { 1722 struct nvmet_rdma_port *port; 1723 1724 if (queue) { 1725 /* 1726 * This is a queue cm_id. we have registered 1727 * an ib_client to handle queues removal 1728 * so don't interfear and just return. 1729 */ 1730 return 0; 1731 } 1732 1733 port = cm_id->context; 1734 1735 /* 1736 * This is a listener cm_id. Make sure that 1737 * future remove_port won't invoke a double 1738 * cm_id destroy. use atomic xchg to make sure 1739 * we don't compete with remove_port. 1740 */ 1741 if (xchg(&port->cm_id, NULL) != cm_id) 1742 return 0; 1743 1744 /* 1745 * We need to return 1 so that the core will destroy 1746 * it's own ID. What a great API design.. 1747 */ 1748 return 1; 1749 } 1750 1751 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1752 struct rdma_cm_event *event) 1753 { 1754 struct nvmet_rdma_queue *queue = NULL; 1755 int ret = 0; 1756 1757 if (cm_id->qp) 1758 queue = cm_id->qp->qp_context; 1759 1760 pr_debug("%s (%d): status %d id %p\n", 1761 rdma_event_msg(event->event), event->event, 1762 event->status, cm_id); 1763 1764 switch (event->event) { 1765 case RDMA_CM_EVENT_CONNECT_REQUEST: 1766 ret = nvmet_rdma_queue_connect(cm_id, event); 1767 break; 1768 case RDMA_CM_EVENT_ESTABLISHED: 1769 nvmet_rdma_queue_established(queue); 1770 break; 1771 case RDMA_CM_EVENT_ADDR_CHANGE: 1772 if (!queue) { 1773 struct nvmet_rdma_port *port = cm_id->context; 1774 1775 schedule_delayed_work(&port->repair_work, 0); 1776 break; 1777 } 1778 fallthrough; 1779 case RDMA_CM_EVENT_DISCONNECTED: 1780 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1781 nvmet_rdma_queue_disconnect(queue); 1782 break; 1783 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1784 ret = nvmet_rdma_device_removal(cm_id, queue); 1785 break; 1786 case RDMA_CM_EVENT_REJECTED: 1787 pr_debug("Connection rejected: %s\n", 1788 rdma_reject_msg(cm_id, event->status)); 1789 fallthrough; 1790 case RDMA_CM_EVENT_UNREACHABLE: 1791 case RDMA_CM_EVENT_CONNECT_ERROR: 1792 nvmet_rdma_queue_connect_fail(cm_id, queue); 1793 break; 1794 default: 1795 pr_err("received unrecognized RDMA CM event %d\n", 1796 event->event); 1797 break; 1798 } 1799 1800 return ret; 1801 } 1802 1803 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1804 { 1805 struct nvmet_rdma_queue *queue; 1806 1807 restart: 1808 mutex_lock(&nvmet_rdma_queue_mutex); 1809 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1810 if (queue->nvme_sq.ctrl == ctrl) { 1811 list_del_init(&queue->queue_list); 1812 mutex_unlock(&nvmet_rdma_queue_mutex); 1813 1814 __nvmet_rdma_queue_disconnect(queue); 1815 goto restart; 1816 } 1817 } 1818 mutex_unlock(&nvmet_rdma_queue_mutex); 1819 } 1820 1821 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1822 { 1823 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1824 1825 if (cm_id) 1826 rdma_destroy_id(cm_id); 1827 } 1828 1829 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1830 { 1831 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1832 struct rdma_cm_id *cm_id; 1833 int ret; 1834 1835 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1836 RDMA_PS_TCP, IB_QPT_RC); 1837 if (IS_ERR(cm_id)) { 1838 pr_err("CM ID creation failed\n"); 1839 return PTR_ERR(cm_id); 1840 } 1841 1842 /* 1843 * Allow both IPv4 and IPv6 sockets to bind a single port 1844 * at the same time. 1845 */ 1846 ret = rdma_set_afonly(cm_id, 1); 1847 if (ret) { 1848 pr_err("rdma_set_afonly failed (%d)\n", ret); 1849 goto out_destroy_id; 1850 } 1851 1852 ret = rdma_bind_addr(cm_id, addr); 1853 if (ret) { 1854 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1855 goto out_destroy_id; 1856 } 1857 1858 ret = rdma_listen(cm_id, 128); 1859 if (ret) { 1860 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1861 goto out_destroy_id; 1862 } 1863 1864 port->cm_id = cm_id; 1865 return 0; 1866 1867 out_destroy_id: 1868 rdma_destroy_id(cm_id); 1869 return ret; 1870 } 1871 1872 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1873 { 1874 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1875 struct nvmet_rdma_port, repair_work); 1876 int ret; 1877 1878 nvmet_rdma_disable_port(port); 1879 ret = nvmet_rdma_enable_port(port); 1880 if (ret) 1881 schedule_delayed_work(&port->repair_work, 5 * HZ); 1882 } 1883 1884 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1885 { 1886 struct nvmet_rdma_port *port; 1887 __kernel_sa_family_t af; 1888 int ret; 1889 1890 port = kzalloc(sizeof(*port), GFP_KERNEL); 1891 if (!port) 1892 return -ENOMEM; 1893 1894 nport->priv = port; 1895 port->nport = nport; 1896 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1897 1898 switch (nport->disc_addr.adrfam) { 1899 case NVMF_ADDR_FAMILY_IP4: 1900 af = AF_INET; 1901 break; 1902 case NVMF_ADDR_FAMILY_IP6: 1903 af = AF_INET6; 1904 break; 1905 default: 1906 pr_err("address family %d not supported\n", 1907 nport->disc_addr.adrfam); 1908 ret = -EINVAL; 1909 goto out_free_port; 1910 } 1911 1912 if (nport->inline_data_size < 0) { 1913 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1914 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1915 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1916 nport->inline_data_size, 1917 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1918 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1919 } 1920 1921 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1922 nport->disc_addr.trsvcid, &port->addr); 1923 if (ret) { 1924 pr_err("malformed ip/port passed: %s:%s\n", 1925 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1926 goto out_free_port; 1927 } 1928 1929 ret = nvmet_rdma_enable_port(port); 1930 if (ret) 1931 goto out_free_port; 1932 1933 pr_info("enabling port %d (%pISpcs)\n", 1934 le16_to_cpu(nport->disc_addr.portid), 1935 (struct sockaddr *)&port->addr); 1936 1937 return 0; 1938 1939 out_free_port: 1940 kfree(port); 1941 return ret; 1942 } 1943 1944 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1945 { 1946 struct nvmet_rdma_port *port = nport->priv; 1947 1948 cancel_delayed_work_sync(&port->repair_work); 1949 nvmet_rdma_disable_port(port); 1950 kfree(port); 1951 } 1952 1953 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1954 struct nvmet_port *nport, char *traddr) 1955 { 1956 struct nvmet_rdma_port *port = nport->priv; 1957 struct rdma_cm_id *cm_id = port->cm_id; 1958 1959 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1960 struct nvmet_rdma_rsp *rsp = 1961 container_of(req, struct nvmet_rdma_rsp, req); 1962 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1963 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1964 1965 sprintf(traddr, "%pISc", addr); 1966 } else { 1967 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1968 } 1969 } 1970 1971 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 1972 { 1973 if (ctrl->pi_support) 1974 return NVMET_RDMA_MAX_METADATA_MDTS; 1975 return NVMET_RDMA_MAX_MDTS; 1976 } 1977 1978 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 1979 .owner = THIS_MODULE, 1980 .type = NVMF_TRTYPE_RDMA, 1981 .msdbd = 1, 1982 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 1983 .add_port = nvmet_rdma_add_port, 1984 .remove_port = nvmet_rdma_remove_port, 1985 .queue_response = nvmet_rdma_queue_response, 1986 .delete_ctrl = nvmet_rdma_delete_ctrl, 1987 .disc_traddr = nvmet_rdma_disc_port_addr, 1988 .get_mdts = nvmet_rdma_get_mdts, 1989 }; 1990 1991 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1992 { 1993 struct nvmet_rdma_queue *queue, *tmp; 1994 struct nvmet_rdma_device *ndev; 1995 bool found = false; 1996 1997 mutex_lock(&device_list_mutex); 1998 list_for_each_entry(ndev, &device_list, entry) { 1999 if (ndev->device == ib_device) { 2000 found = true; 2001 break; 2002 } 2003 } 2004 mutex_unlock(&device_list_mutex); 2005 2006 if (!found) 2007 return; 2008 2009 /* 2010 * IB Device that is used by nvmet controllers is being removed, 2011 * delete all queues using this device. 2012 */ 2013 mutex_lock(&nvmet_rdma_queue_mutex); 2014 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2015 queue_list) { 2016 if (queue->dev->device != ib_device) 2017 continue; 2018 2019 pr_info("Removing queue %d\n", queue->idx); 2020 list_del_init(&queue->queue_list); 2021 __nvmet_rdma_queue_disconnect(queue); 2022 } 2023 mutex_unlock(&nvmet_rdma_queue_mutex); 2024 2025 flush_scheduled_work(); 2026 } 2027 2028 static struct ib_client nvmet_rdma_ib_client = { 2029 .name = "nvmet_rdma", 2030 .remove = nvmet_rdma_remove_one 2031 }; 2032 2033 static int __init nvmet_rdma_init(void) 2034 { 2035 int ret; 2036 2037 ret = ib_register_client(&nvmet_rdma_ib_client); 2038 if (ret) 2039 return ret; 2040 2041 ret = nvmet_register_transport(&nvmet_rdma_ops); 2042 if (ret) 2043 goto err_ib_client; 2044 2045 return 0; 2046 2047 err_ib_client: 2048 ib_unregister_client(&nvmet_rdma_ib_client); 2049 return ret; 2050 } 2051 2052 static void __exit nvmet_rdma_exit(void) 2053 { 2054 nvmet_unregister_transport(&nvmet_rdma_ops); 2055 ib_unregister_client(&nvmet_rdma_ib_client); 2056 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2057 ida_destroy(&nvmet_rdma_queue_ida); 2058 } 2059 2060 module_init(nvmet_rdma_init); 2061 module_exit(nvmet_rdma_exit); 2062 2063 MODULE_LICENSE("GPL v2"); 2064 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2065