xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19 
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 #include <rdma/ib_cm.h>
24 
25 #include <linux/nvme-rdma.h>
26 #include "nvmet.h"
27 
28 /*
29  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30  */
31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
32 #define NVMET_RDMA_MAX_INLINE_SGE		4
33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
34 
35 /* Assume mpsmin == device_page_size == 4KB */
36 #define NVMET_RDMA_MAX_MDTS			8
37 #define NVMET_RDMA_MAX_METADATA_MDTS		5
38 
39 struct nvmet_rdma_srq;
40 
41 struct nvmet_rdma_cmd {
42 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43 	struct ib_cqe		cqe;
44 	struct ib_recv_wr	wr;
45 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46 	struct nvme_command     *nvme_cmd;
47 	struct nvmet_rdma_queue	*queue;
48 	struct nvmet_rdma_srq   *nsrq;
49 };
50 
51 enum {
52 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
53 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
54 };
55 
56 struct nvmet_rdma_rsp {
57 	struct ib_sge		send_sge;
58 	struct ib_cqe		send_cqe;
59 	struct ib_send_wr	send_wr;
60 
61 	struct nvmet_rdma_cmd	*cmd;
62 	struct nvmet_rdma_queue	*queue;
63 
64 	struct ib_cqe		read_cqe;
65 	struct ib_cqe		write_cqe;
66 	struct rdma_rw_ctx	rw;
67 
68 	struct nvmet_req	req;
69 
70 	bool			allocated;
71 	u8			n_rdma;
72 	u32			flags;
73 	u32			invalidate_rkey;
74 
75 	struct list_head	wait_list;
76 	struct list_head	free_list;
77 };
78 
79 enum nvmet_rdma_queue_state {
80 	NVMET_RDMA_Q_CONNECTING,
81 	NVMET_RDMA_Q_LIVE,
82 	NVMET_RDMA_Q_DISCONNECTING,
83 };
84 
85 struct nvmet_rdma_queue {
86 	struct rdma_cm_id	*cm_id;
87 	struct ib_qp		*qp;
88 	struct nvmet_port	*port;
89 	struct ib_cq		*cq;
90 	atomic_t		sq_wr_avail;
91 	struct nvmet_rdma_device *dev;
92 	struct nvmet_rdma_srq   *nsrq;
93 	spinlock_t		state_lock;
94 	enum nvmet_rdma_queue_state state;
95 	struct nvmet_cq		nvme_cq;
96 	struct nvmet_sq		nvme_sq;
97 
98 	struct nvmet_rdma_rsp	*rsps;
99 	struct list_head	free_rsps;
100 	spinlock_t		rsps_lock;
101 	struct nvmet_rdma_cmd	*cmds;
102 
103 	struct work_struct	release_work;
104 	struct list_head	rsp_wait_list;
105 	struct list_head	rsp_wr_wait_list;
106 	spinlock_t		rsp_wr_wait_lock;
107 
108 	int			idx;
109 	int			host_qid;
110 	int			comp_vector;
111 	int			recv_queue_size;
112 	int			send_queue_size;
113 
114 	struct list_head	queue_list;
115 };
116 
117 struct nvmet_rdma_port {
118 	struct nvmet_port	*nport;
119 	struct sockaddr_storage addr;
120 	struct rdma_cm_id	*cm_id;
121 	struct delayed_work	repair_work;
122 };
123 
124 struct nvmet_rdma_srq {
125 	struct ib_srq            *srq;
126 	struct nvmet_rdma_cmd    *cmds;
127 	struct nvmet_rdma_device *ndev;
128 };
129 
130 struct nvmet_rdma_device {
131 	struct ib_device	*device;
132 	struct ib_pd		*pd;
133 	struct nvmet_rdma_srq	**srqs;
134 	int			srq_count;
135 	size_t			srq_size;
136 	struct kref		ref;
137 	struct list_head	entry;
138 	int			inline_data_size;
139 	int			inline_page_count;
140 };
141 
142 static bool nvmet_rdma_use_srq;
143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
145 
146 static int srq_size_set(const char *val, const struct kernel_param *kp);
147 static const struct kernel_param_ops srq_size_ops = {
148 	.set = srq_size_set,
149 	.get = param_get_int,
150 };
151 
152 static int nvmet_rdma_srq_size = 1024;
153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
155 
156 static DEFINE_IDA(nvmet_rdma_queue_ida);
157 static LIST_HEAD(nvmet_rdma_queue_list);
158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
159 
160 static LIST_HEAD(device_list);
161 static DEFINE_MUTEX(device_list_mutex);
162 
163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171 				struct nvmet_rdma_rsp *r);
172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173 				struct nvmet_rdma_rsp *r);
174 
175 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176 
177 static int srq_size_set(const char *val, const struct kernel_param *kp)
178 {
179 	int n = 0, ret;
180 
181 	ret = kstrtoint(val, 10, &n);
182 	if (ret != 0 || n < 256)
183 		return -EINVAL;
184 
185 	return param_set_int(val, kp);
186 }
187 
188 static int num_pages(int len)
189 {
190 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
191 }
192 
193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
194 {
195 	return nvme_is_write(rsp->req.cmd) &&
196 		rsp->req.transfer_len &&
197 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
198 }
199 
200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
201 {
202 	return !nvme_is_write(rsp->req.cmd) &&
203 		rsp->req.transfer_len &&
204 		!rsp->req.cqe->status &&
205 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
206 }
207 
208 static inline struct nvmet_rdma_rsp *
209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
210 {
211 	struct nvmet_rdma_rsp *rsp;
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&queue->rsps_lock, flags);
215 	rsp = list_first_entry_or_null(&queue->free_rsps,
216 				struct nvmet_rdma_rsp, free_list);
217 	if (likely(rsp))
218 		list_del(&rsp->free_list);
219 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
220 
221 	if (unlikely(!rsp)) {
222 		int ret;
223 
224 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225 		if (unlikely(!rsp))
226 			return NULL;
227 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228 		if (unlikely(ret)) {
229 			kfree(rsp);
230 			return NULL;
231 		}
232 
233 		rsp->allocated = true;
234 	}
235 
236 	return rsp;
237 }
238 
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242 	unsigned long flags;
243 
244 	if (unlikely(rsp->allocated)) {
245 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246 		kfree(rsp);
247 		return;
248 	}
249 
250 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
253 }
254 
255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256 				struct nvmet_rdma_cmd *c)
257 {
258 	struct scatterlist *sg;
259 	struct ib_sge *sge;
260 	int i;
261 
262 	if (!ndev->inline_data_size)
263 		return;
264 
265 	sg = c->inline_sg;
266 	sge = &c->sge[1];
267 
268 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269 		if (sge->length)
270 			ib_dma_unmap_page(ndev->device, sge->addr,
271 					sge->length, DMA_FROM_DEVICE);
272 		if (sg_page(sg))
273 			__free_page(sg_page(sg));
274 	}
275 }
276 
277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278 				struct nvmet_rdma_cmd *c)
279 {
280 	struct scatterlist *sg;
281 	struct ib_sge *sge;
282 	struct page *pg;
283 	int len;
284 	int i;
285 
286 	if (!ndev->inline_data_size)
287 		return 0;
288 
289 	sg = c->inline_sg;
290 	sg_init_table(sg, ndev->inline_page_count);
291 	sge = &c->sge[1];
292 	len = ndev->inline_data_size;
293 
294 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295 		pg = alloc_page(GFP_KERNEL);
296 		if (!pg)
297 			goto out_err;
298 		sg_assign_page(sg, pg);
299 		sge->addr = ib_dma_map_page(ndev->device,
300 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301 		if (ib_dma_mapping_error(ndev->device, sge->addr))
302 			goto out_err;
303 		sge->length = min_t(int, len, PAGE_SIZE);
304 		sge->lkey = ndev->pd->local_dma_lkey;
305 		len -= sge->length;
306 	}
307 
308 	return 0;
309 out_err:
310 	for (; i >= 0; i--, sg--, sge--) {
311 		if (sge->length)
312 			ib_dma_unmap_page(ndev->device, sge->addr,
313 					sge->length, DMA_FROM_DEVICE);
314 		if (sg_page(sg))
315 			__free_page(sg_page(sg));
316 	}
317 	return -ENOMEM;
318 }
319 
320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321 			struct nvmet_rdma_cmd *c, bool admin)
322 {
323 	/* NVMe command / RDMA RECV */
324 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325 	if (!c->nvme_cmd)
326 		goto out;
327 
328 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331 		goto out_free_cmd;
332 
333 	c->sge[0].length = sizeof(*c->nvme_cmd);
334 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
335 
336 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337 		goto out_unmap_cmd;
338 
339 	c->cqe.done = nvmet_rdma_recv_done;
340 
341 	c->wr.wr_cqe = &c->cqe;
342 	c->wr.sg_list = c->sge;
343 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344 
345 	return 0;
346 
347 out_unmap_cmd:
348 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350 out_free_cmd:
351 	kfree(c->nvme_cmd);
352 
353 out:
354 	return -ENOMEM;
355 }
356 
357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358 		struct nvmet_rdma_cmd *c, bool admin)
359 {
360 	if (!admin)
361 		nvmet_rdma_free_inline_pages(ndev, c);
362 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364 	kfree(c->nvme_cmd);
365 }
366 
367 static struct nvmet_rdma_cmd *
368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369 		int nr_cmds, bool admin)
370 {
371 	struct nvmet_rdma_cmd *cmds;
372 	int ret = -EINVAL, i;
373 
374 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375 	if (!cmds)
376 		goto out;
377 
378 	for (i = 0; i < nr_cmds; i++) {
379 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380 		if (ret)
381 			goto out_free;
382 	}
383 
384 	return cmds;
385 
386 out_free:
387 	while (--i >= 0)
388 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389 	kfree(cmds);
390 out:
391 	return ERR_PTR(ret);
392 }
393 
394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
396 {
397 	int i;
398 
399 	for (i = 0; i < nr_cmds; i++)
400 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401 	kfree(cmds);
402 }
403 
404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405 		struct nvmet_rdma_rsp *r)
406 {
407 	/* NVMe CQE / RDMA SEND */
408 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409 	if (!r->req.cqe)
410 		goto out;
411 
412 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
414 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415 		goto out_free_rsp;
416 
417 	r->req.p2p_client = &ndev->device->dev;
418 	r->send_sge.length = sizeof(*r->req.cqe);
419 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
420 
421 	r->send_cqe.done = nvmet_rdma_send_done;
422 
423 	r->send_wr.wr_cqe = &r->send_cqe;
424 	r->send_wr.sg_list = &r->send_sge;
425 	r->send_wr.num_sge = 1;
426 	r->send_wr.send_flags = IB_SEND_SIGNALED;
427 
428 	/* Data In / RDMA READ */
429 	r->read_cqe.done = nvmet_rdma_read_data_done;
430 	/* Data Out / RDMA WRITE */
431 	r->write_cqe.done = nvmet_rdma_write_data_done;
432 
433 	return 0;
434 
435 out_free_rsp:
436 	kfree(r->req.cqe);
437 out:
438 	return -ENOMEM;
439 }
440 
441 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
442 		struct nvmet_rdma_rsp *r)
443 {
444 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
445 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
446 	kfree(r->req.cqe);
447 }
448 
449 static int
450 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
451 {
452 	struct nvmet_rdma_device *ndev = queue->dev;
453 	int nr_rsps = queue->recv_queue_size * 2;
454 	int ret = -EINVAL, i;
455 
456 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
457 			GFP_KERNEL);
458 	if (!queue->rsps)
459 		goto out;
460 
461 	for (i = 0; i < nr_rsps; i++) {
462 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
463 
464 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
465 		if (ret)
466 			goto out_free;
467 
468 		list_add_tail(&rsp->free_list, &queue->free_rsps);
469 	}
470 
471 	return 0;
472 
473 out_free:
474 	while (--i >= 0) {
475 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
476 
477 		list_del(&rsp->free_list);
478 		nvmet_rdma_free_rsp(ndev, rsp);
479 	}
480 	kfree(queue->rsps);
481 out:
482 	return ret;
483 }
484 
485 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
486 {
487 	struct nvmet_rdma_device *ndev = queue->dev;
488 	int i, nr_rsps = queue->recv_queue_size * 2;
489 
490 	for (i = 0; i < nr_rsps; i++) {
491 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
492 
493 		list_del(&rsp->free_list);
494 		nvmet_rdma_free_rsp(ndev, rsp);
495 	}
496 	kfree(queue->rsps);
497 }
498 
499 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
500 		struct nvmet_rdma_cmd *cmd)
501 {
502 	int ret;
503 
504 	ib_dma_sync_single_for_device(ndev->device,
505 		cmd->sge[0].addr, cmd->sge[0].length,
506 		DMA_FROM_DEVICE);
507 
508 	if (cmd->nsrq)
509 		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
510 	else
511 		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
512 
513 	if (unlikely(ret))
514 		pr_err("post_recv cmd failed\n");
515 
516 	return ret;
517 }
518 
519 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
520 {
521 	spin_lock(&queue->rsp_wr_wait_lock);
522 	while (!list_empty(&queue->rsp_wr_wait_list)) {
523 		struct nvmet_rdma_rsp *rsp;
524 		bool ret;
525 
526 		rsp = list_entry(queue->rsp_wr_wait_list.next,
527 				struct nvmet_rdma_rsp, wait_list);
528 		list_del(&rsp->wait_list);
529 
530 		spin_unlock(&queue->rsp_wr_wait_lock);
531 		ret = nvmet_rdma_execute_command(rsp);
532 		spin_lock(&queue->rsp_wr_wait_lock);
533 
534 		if (!ret) {
535 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
536 			break;
537 		}
538 	}
539 	spin_unlock(&queue->rsp_wr_wait_lock);
540 }
541 
542 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
543 {
544 	struct ib_mr_status mr_status;
545 	int ret;
546 	u16 status = 0;
547 
548 	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
549 	if (ret) {
550 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
551 		return NVME_SC_INVALID_PI;
552 	}
553 
554 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
555 		switch (mr_status.sig_err.err_type) {
556 		case IB_SIG_BAD_GUARD:
557 			status = NVME_SC_GUARD_CHECK;
558 			break;
559 		case IB_SIG_BAD_REFTAG:
560 			status = NVME_SC_REFTAG_CHECK;
561 			break;
562 		case IB_SIG_BAD_APPTAG:
563 			status = NVME_SC_APPTAG_CHECK;
564 			break;
565 		}
566 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
567 		       mr_status.sig_err.err_type,
568 		       mr_status.sig_err.expected,
569 		       mr_status.sig_err.actual);
570 	}
571 
572 	return status;
573 }
574 
575 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
576 		struct nvme_command *cmd, struct ib_sig_domain *domain,
577 		u16 control, u8 pi_type)
578 {
579 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
580 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
581 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
582 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
583 	if (control & NVME_RW_PRINFO_PRCHK_REF)
584 		domain->sig.dif.ref_remap = true;
585 
586 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
587 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
588 	domain->sig.dif.app_escape = true;
589 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
590 		domain->sig.dif.ref_escape = true;
591 }
592 
593 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
594 				     struct ib_sig_attrs *sig_attrs)
595 {
596 	struct nvme_command *cmd = req->cmd;
597 	u16 control = le16_to_cpu(cmd->rw.control);
598 	u8 pi_type = req->ns->pi_type;
599 	struct blk_integrity *bi;
600 
601 	bi = bdev_get_integrity(req->ns->bdev);
602 
603 	memset(sig_attrs, 0, sizeof(*sig_attrs));
604 
605 	if (control & NVME_RW_PRINFO_PRACT) {
606 		/* for WRITE_INSERT/READ_STRIP no wire domain */
607 		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
608 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
609 					  pi_type);
610 		/* Clear the PRACT bit since HCA will generate/verify the PI */
611 		control &= ~NVME_RW_PRINFO_PRACT;
612 		cmd->rw.control = cpu_to_le16(control);
613 		/* PI is added by the HW */
614 		req->transfer_len += req->metadata_len;
615 	} else {
616 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
617 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
618 					  pi_type);
619 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
620 					  pi_type);
621 	}
622 
623 	if (control & NVME_RW_PRINFO_PRCHK_REF)
624 		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
625 	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
626 		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
627 	if (control & NVME_RW_PRINFO_PRCHK_APP)
628 		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
629 }
630 
631 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
632 				  struct ib_sig_attrs *sig_attrs)
633 {
634 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
635 	struct nvmet_req *req = &rsp->req;
636 	int ret;
637 
638 	if (req->metadata_len)
639 		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
640 			cm_id->port_num, req->sg, req->sg_cnt,
641 			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
642 			addr, key, nvmet_data_dir(req));
643 	else
644 		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
645 				       req->sg, req->sg_cnt, 0, addr, key,
646 				       nvmet_data_dir(req));
647 
648 	return ret;
649 }
650 
651 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
652 {
653 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
654 	struct nvmet_req *req = &rsp->req;
655 
656 	if (req->metadata_len)
657 		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
658 			cm_id->port_num, req->sg, req->sg_cnt,
659 			req->metadata_sg, req->metadata_sg_cnt,
660 			nvmet_data_dir(req));
661 	else
662 		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
663 				    req->sg, req->sg_cnt, nvmet_data_dir(req));
664 }
665 
666 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
667 {
668 	struct nvmet_rdma_queue *queue = rsp->queue;
669 
670 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
671 
672 	if (rsp->n_rdma)
673 		nvmet_rdma_rw_ctx_destroy(rsp);
674 
675 	if (rsp->req.sg != rsp->cmd->inline_sg)
676 		nvmet_req_free_sgls(&rsp->req);
677 
678 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
679 		nvmet_rdma_process_wr_wait_list(queue);
680 
681 	nvmet_rdma_put_rsp(rsp);
682 }
683 
684 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
685 {
686 	if (queue->nvme_sq.ctrl) {
687 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
688 	} else {
689 		/*
690 		 * we didn't setup the controller yet in case
691 		 * of admin connect error, just disconnect and
692 		 * cleanup the queue
693 		 */
694 		nvmet_rdma_queue_disconnect(queue);
695 	}
696 }
697 
698 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
699 {
700 	struct nvmet_rdma_rsp *rsp =
701 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
702 	struct nvmet_rdma_queue *queue = cq->cq_context;
703 
704 	nvmet_rdma_release_rsp(rsp);
705 
706 	if (unlikely(wc->status != IB_WC_SUCCESS &&
707 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
708 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
709 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
710 		nvmet_rdma_error_comp(queue);
711 	}
712 }
713 
714 static void nvmet_rdma_queue_response(struct nvmet_req *req)
715 {
716 	struct nvmet_rdma_rsp *rsp =
717 		container_of(req, struct nvmet_rdma_rsp, req);
718 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
719 	struct ib_send_wr *first_wr;
720 
721 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
722 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
723 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
724 	} else {
725 		rsp->send_wr.opcode = IB_WR_SEND;
726 	}
727 
728 	if (nvmet_rdma_need_data_out(rsp)) {
729 		if (rsp->req.metadata_len)
730 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
731 					cm_id->port_num, &rsp->write_cqe, NULL);
732 		else
733 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
734 					cm_id->port_num, NULL, &rsp->send_wr);
735 	} else {
736 		first_wr = &rsp->send_wr;
737 	}
738 
739 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
740 
741 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
742 		rsp->send_sge.addr, rsp->send_sge.length,
743 		DMA_TO_DEVICE);
744 
745 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
746 		pr_err("sending cmd response failed\n");
747 		nvmet_rdma_release_rsp(rsp);
748 	}
749 }
750 
751 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
752 {
753 	struct nvmet_rdma_rsp *rsp =
754 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
755 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
756 	u16 status = 0;
757 
758 	WARN_ON(rsp->n_rdma <= 0);
759 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
760 	rsp->n_rdma = 0;
761 
762 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
763 		nvmet_rdma_rw_ctx_destroy(rsp);
764 		nvmet_req_uninit(&rsp->req);
765 		nvmet_rdma_release_rsp(rsp);
766 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
767 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
768 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
769 			nvmet_rdma_error_comp(queue);
770 		}
771 		return;
772 	}
773 
774 	if (rsp->req.metadata_len)
775 		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
776 	nvmet_rdma_rw_ctx_destroy(rsp);
777 
778 	if (unlikely(status))
779 		nvmet_req_complete(&rsp->req, status);
780 	else
781 		rsp->req.execute(&rsp->req);
782 }
783 
784 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
785 {
786 	struct nvmet_rdma_rsp *rsp =
787 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
788 	struct nvmet_rdma_queue *queue = cq->cq_context;
789 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
790 	u16 status;
791 
792 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
793 		return;
794 
795 	WARN_ON(rsp->n_rdma <= 0);
796 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
797 	rsp->n_rdma = 0;
798 
799 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
800 		nvmet_rdma_rw_ctx_destroy(rsp);
801 		nvmet_req_uninit(&rsp->req);
802 		nvmet_rdma_release_rsp(rsp);
803 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
804 			pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
805 				wc->wr_cqe, ib_wc_status_msg(wc->status),
806 				wc->status);
807 			nvmet_rdma_error_comp(queue);
808 		}
809 		return;
810 	}
811 
812 	/*
813 	 * Upon RDMA completion check the signature status
814 	 * - if succeeded send good NVMe response
815 	 * - if failed send bad NVMe response with appropriate error
816 	 */
817 	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
818 	if (unlikely(status))
819 		rsp->req.cqe->status = cpu_to_le16(status << 1);
820 	nvmet_rdma_rw_ctx_destroy(rsp);
821 
822 	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
823 		pr_err("sending cmd response failed\n");
824 		nvmet_rdma_release_rsp(rsp);
825 	}
826 }
827 
828 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
829 		u64 off)
830 {
831 	int sg_count = num_pages(len);
832 	struct scatterlist *sg;
833 	int i;
834 
835 	sg = rsp->cmd->inline_sg;
836 	for (i = 0; i < sg_count; i++, sg++) {
837 		if (i < sg_count - 1)
838 			sg_unmark_end(sg);
839 		else
840 			sg_mark_end(sg);
841 		sg->offset = off;
842 		sg->length = min_t(int, len, PAGE_SIZE - off);
843 		len -= sg->length;
844 		if (!i)
845 			off = 0;
846 	}
847 
848 	rsp->req.sg = rsp->cmd->inline_sg;
849 	rsp->req.sg_cnt = sg_count;
850 }
851 
852 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
853 {
854 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
855 	u64 off = le64_to_cpu(sgl->addr);
856 	u32 len = le32_to_cpu(sgl->length);
857 
858 	if (!nvme_is_write(rsp->req.cmd)) {
859 		rsp->req.error_loc =
860 			offsetof(struct nvme_common_command, opcode);
861 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
862 	}
863 
864 	if (off + len > rsp->queue->dev->inline_data_size) {
865 		pr_err("invalid inline data offset!\n");
866 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
867 	}
868 
869 	/* no data command? */
870 	if (!len)
871 		return 0;
872 
873 	nvmet_rdma_use_inline_sg(rsp, len, off);
874 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
875 	rsp->req.transfer_len += len;
876 	return 0;
877 }
878 
879 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
880 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
881 {
882 	u64 addr = le64_to_cpu(sgl->addr);
883 	u32 key = get_unaligned_le32(sgl->key);
884 	struct ib_sig_attrs sig_attrs;
885 	int ret;
886 
887 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
888 
889 	/* no data command? */
890 	if (!rsp->req.transfer_len)
891 		return 0;
892 
893 	if (rsp->req.metadata_len)
894 		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
895 
896 	ret = nvmet_req_alloc_sgls(&rsp->req);
897 	if (unlikely(ret < 0))
898 		goto error_out;
899 
900 	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
901 	if (unlikely(ret < 0))
902 		goto error_out;
903 	rsp->n_rdma += ret;
904 
905 	if (invalidate) {
906 		rsp->invalidate_rkey = key;
907 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
908 	}
909 
910 	return 0;
911 
912 error_out:
913 	rsp->req.transfer_len = 0;
914 	return NVME_SC_INTERNAL;
915 }
916 
917 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
918 {
919 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
920 
921 	switch (sgl->type >> 4) {
922 	case NVME_SGL_FMT_DATA_DESC:
923 		switch (sgl->type & 0xf) {
924 		case NVME_SGL_FMT_OFFSET:
925 			return nvmet_rdma_map_sgl_inline(rsp);
926 		default:
927 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
928 			rsp->req.error_loc =
929 				offsetof(struct nvme_common_command, dptr);
930 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931 		}
932 	case NVME_KEY_SGL_FMT_DATA_DESC:
933 		switch (sgl->type & 0xf) {
934 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
935 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
936 		case NVME_SGL_FMT_ADDRESS:
937 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
938 		default:
939 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
940 			rsp->req.error_loc =
941 				offsetof(struct nvme_common_command, dptr);
942 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943 		}
944 	default:
945 		pr_err("invalid SGL type: %#x\n", sgl->type);
946 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
947 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
948 	}
949 }
950 
951 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
952 {
953 	struct nvmet_rdma_queue *queue = rsp->queue;
954 
955 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
956 			&queue->sq_wr_avail) < 0)) {
957 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
958 				1 + rsp->n_rdma, queue->idx,
959 				queue->nvme_sq.ctrl->cntlid);
960 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
961 		return false;
962 	}
963 
964 	if (nvmet_rdma_need_data_in(rsp)) {
965 		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
966 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
967 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
968 	} else {
969 		rsp->req.execute(&rsp->req);
970 	}
971 
972 	return true;
973 }
974 
975 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
976 		struct nvmet_rdma_rsp *cmd)
977 {
978 	u16 status;
979 
980 	ib_dma_sync_single_for_cpu(queue->dev->device,
981 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
982 		DMA_FROM_DEVICE);
983 	ib_dma_sync_single_for_cpu(queue->dev->device,
984 		cmd->send_sge.addr, cmd->send_sge.length,
985 		DMA_TO_DEVICE);
986 
987 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
988 			&queue->nvme_sq, &nvmet_rdma_ops))
989 		return;
990 
991 	status = nvmet_rdma_map_sgl(cmd);
992 	if (status)
993 		goto out_err;
994 
995 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
996 		spin_lock(&queue->rsp_wr_wait_lock);
997 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
998 		spin_unlock(&queue->rsp_wr_wait_lock);
999 	}
1000 
1001 	return;
1002 
1003 out_err:
1004 	nvmet_req_complete(&cmd->req, status);
1005 }
1006 
1007 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008 {
1009 	struct nvmet_rdma_cmd *cmd =
1010 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011 	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012 	struct nvmet_rdma_rsp *rsp;
1013 
1014 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017 				wc->wr_cqe, ib_wc_status_msg(wc->status),
1018 				wc->status);
1019 			nvmet_rdma_error_comp(queue);
1020 		}
1021 		return;
1022 	}
1023 
1024 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026 		nvmet_rdma_error_comp(queue);
1027 		return;
1028 	}
1029 
1030 	cmd->queue = queue;
1031 	rsp = nvmet_rdma_get_rsp(queue);
1032 	if (unlikely(!rsp)) {
1033 		/*
1034 		 * we get here only under memory pressure,
1035 		 * silently drop and have the host retry
1036 		 * as we can't even fail it.
1037 		 */
1038 		nvmet_rdma_post_recv(queue->dev, cmd);
1039 		return;
1040 	}
1041 	rsp->queue = queue;
1042 	rsp->cmd = cmd;
1043 	rsp->flags = 0;
1044 	rsp->req.cmd = cmd->nvme_cmd;
1045 	rsp->req.port = queue->port;
1046 	rsp->n_rdma = 0;
1047 
1048 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049 		unsigned long flags;
1050 
1051 		spin_lock_irqsave(&queue->state_lock, flags);
1052 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054 		else
1055 			nvmet_rdma_put_rsp(rsp);
1056 		spin_unlock_irqrestore(&queue->state_lock, flags);
1057 		return;
1058 	}
1059 
1060 	nvmet_rdma_handle_command(queue, rsp);
1061 }
1062 
1063 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064 {
1065 	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066 			     false);
1067 	ib_destroy_srq(nsrq->srq);
1068 
1069 	kfree(nsrq);
1070 }
1071 
1072 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073 {
1074 	int i;
1075 
1076 	if (!ndev->srqs)
1077 		return;
1078 
1079 	for (i = 0; i < ndev->srq_count; i++)
1080 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081 
1082 	kfree(ndev->srqs);
1083 }
1084 
1085 static struct nvmet_rdma_srq *
1086 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087 {
1088 	struct ib_srq_init_attr srq_attr = { NULL, };
1089 	size_t srq_size = ndev->srq_size;
1090 	struct nvmet_rdma_srq *nsrq;
1091 	struct ib_srq *srq;
1092 	int ret, i;
1093 
1094 	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095 	if (!nsrq)
1096 		return ERR_PTR(-ENOMEM);
1097 
1098 	srq_attr.attr.max_wr = srq_size;
1099 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100 	srq_attr.attr.srq_limit = 0;
1101 	srq_attr.srq_type = IB_SRQT_BASIC;
1102 	srq = ib_create_srq(ndev->pd, &srq_attr);
1103 	if (IS_ERR(srq)) {
1104 		ret = PTR_ERR(srq);
1105 		goto out_free;
1106 	}
1107 
1108 	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109 	if (IS_ERR(nsrq->cmds)) {
1110 		ret = PTR_ERR(nsrq->cmds);
1111 		goto out_destroy_srq;
1112 	}
1113 
1114 	nsrq->srq = srq;
1115 	nsrq->ndev = ndev;
1116 
1117 	for (i = 0; i < srq_size; i++) {
1118 		nsrq->cmds[i].nsrq = nsrq;
1119 		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120 		if (ret)
1121 			goto out_free_cmds;
1122 	}
1123 
1124 	return nsrq;
1125 
1126 out_free_cmds:
1127 	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128 out_destroy_srq:
1129 	ib_destroy_srq(srq);
1130 out_free:
1131 	kfree(nsrq);
1132 	return ERR_PTR(ret);
1133 }
1134 
1135 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136 {
1137 	int i, ret;
1138 
1139 	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140 		/*
1141 		 * If SRQs aren't supported we just go ahead and use normal
1142 		 * non-shared receive queues.
1143 		 */
1144 		pr_info("SRQ requested but not supported.\n");
1145 		return 0;
1146 	}
1147 
1148 	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149 			     nvmet_rdma_srq_size);
1150 	ndev->srq_count = min(ndev->device->num_comp_vectors,
1151 			      ndev->device->attrs.max_srq);
1152 
1153 	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154 	if (!ndev->srqs)
1155 		return -ENOMEM;
1156 
1157 	for (i = 0; i < ndev->srq_count; i++) {
1158 		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159 		if (IS_ERR(ndev->srqs[i])) {
1160 			ret = PTR_ERR(ndev->srqs[i]);
1161 			goto err_srq;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 
1167 err_srq:
1168 	while (--i >= 0)
1169 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170 	kfree(ndev->srqs);
1171 	return ret;
1172 }
1173 
1174 static void nvmet_rdma_free_dev(struct kref *ref)
1175 {
1176 	struct nvmet_rdma_device *ndev =
1177 		container_of(ref, struct nvmet_rdma_device, ref);
1178 
1179 	mutex_lock(&device_list_mutex);
1180 	list_del(&ndev->entry);
1181 	mutex_unlock(&device_list_mutex);
1182 
1183 	nvmet_rdma_destroy_srqs(ndev);
1184 	ib_dealloc_pd(ndev->pd);
1185 
1186 	kfree(ndev);
1187 }
1188 
1189 static struct nvmet_rdma_device *
1190 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191 {
1192 	struct nvmet_rdma_port *port = cm_id->context;
1193 	struct nvmet_port *nport = port->nport;
1194 	struct nvmet_rdma_device *ndev;
1195 	int inline_page_count;
1196 	int inline_sge_count;
1197 	int ret;
1198 
1199 	mutex_lock(&device_list_mutex);
1200 	list_for_each_entry(ndev, &device_list, entry) {
1201 		if (ndev->device->node_guid == cm_id->device->node_guid &&
1202 		    kref_get_unless_zero(&ndev->ref))
1203 			goto out_unlock;
1204 	}
1205 
1206 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207 	if (!ndev)
1208 		goto out_err;
1209 
1210 	inline_page_count = num_pages(nport->inline_data_size);
1211 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212 				cm_id->device->attrs.max_recv_sge) - 1;
1213 	if (inline_page_count > inline_sge_count) {
1214 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215 			nport->inline_data_size, cm_id->device->name,
1216 			inline_sge_count * PAGE_SIZE);
1217 		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218 		inline_page_count = inline_sge_count;
1219 	}
1220 	ndev->inline_data_size = nport->inline_data_size;
1221 	ndev->inline_page_count = inline_page_count;
1222 	ndev->device = cm_id->device;
1223 	kref_init(&ndev->ref);
1224 
1225 	ndev->pd = ib_alloc_pd(ndev->device, 0);
1226 	if (IS_ERR(ndev->pd))
1227 		goto out_free_dev;
1228 
1229 	if (nvmet_rdma_use_srq) {
1230 		ret = nvmet_rdma_init_srqs(ndev);
1231 		if (ret)
1232 			goto out_free_pd;
1233 	}
1234 
1235 	list_add(&ndev->entry, &device_list);
1236 out_unlock:
1237 	mutex_unlock(&device_list_mutex);
1238 	pr_debug("added %s.\n", ndev->device->name);
1239 	return ndev;
1240 
1241 out_free_pd:
1242 	ib_dealloc_pd(ndev->pd);
1243 out_free_dev:
1244 	kfree(ndev);
1245 out_err:
1246 	mutex_unlock(&device_list_mutex);
1247 	return NULL;
1248 }
1249 
1250 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1251 {
1252 	struct ib_qp_init_attr qp_attr;
1253 	struct nvmet_rdma_device *ndev = queue->dev;
1254 	int nr_cqe, ret, i, factor;
1255 
1256 	/*
1257 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1258 	 */
1259 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1260 
1261 	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1262 				   queue->comp_vector, IB_POLL_WORKQUEUE);
1263 	if (IS_ERR(queue->cq)) {
1264 		ret = PTR_ERR(queue->cq);
1265 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1266 		       nr_cqe + 1, ret);
1267 		goto out;
1268 	}
1269 
1270 	memset(&qp_attr, 0, sizeof(qp_attr));
1271 	qp_attr.qp_context = queue;
1272 	qp_attr.event_handler = nvmet_rdma_qp_event;
1273 	qp_attr.send_cq = queue->cq;
1274 	qp_attr.recv_cq = queue->cq;
1275 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1276 	qp_attr.qp_type = IB_QPT_RC;
1277 	/* +1 for drain */
1278 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1280 				   1 << NVMET_RDMA_MAX_MDTS);
1281 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283 					ndev->device->attrs.max_send_sge);
1284 
1285 	if (queue->nsrq) {
1286 		qp_attr.srq = queue->nsrq->srq;
1287 	} else {
1288 		/* +1 for drain */
1289 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1291 	}
1292 
1293 	if (queue->port->pi_enable && queue->host_qid)
1294 		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1295 
1296 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1297 	if (ret) {
1298 		pr_err("failed to create_qp ret= %d\n", ret);
1299 		goto err_destroy_cq;
1300 	}
1301 	queue->qp = queue->cm_id->qp;
1302 
1303 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1304 
1305 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1306 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1307 		 qp_attr.cap.max_send_wr, queue->cm_id);
1308 
1309 	if (!queue->nsrq) {
1310 		for (i = 0; i < queue->recv_queue_size; i++) {
1311 			queue->cmds[i].queue = queue;
1312 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1313 			if (ret)
1314 				goto err_destroy_qp;
1315 		}
1316 	}
1317 
1318 out:
1319 	return ret;
1320 
1321 err_destroy_qp:
1322 	rdma_destroy_qp(queue->cm_id);
1323 err_destroy_cq:
1324 	ib_cq_pool_put(queue->cq, nr_cqe + 1);
1325 	goto out;
1326 }
1327 
1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1329 {
1330 	ib_drain_qp(queue->qp);
1331 	if (queue->cm_id)
1332 		rdma_destroy_id(queue->cm_id);
1333 	ib_destroy_qp(queue->qp);
1334 	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1335 		       queue->send_queue_size + 1);
1336 }
1337 
1338 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1339 {
1340 	pr_debug("freeing queue %d\n", queue->idx);
1341 
1342 	nvmet_sq_destroy(&queue->nvme_sq);
1343 
1344 	nvmet_rdma_destroy_queue_ib(queue);
1345 	if (!queue->nsrq) {
1346 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1347 				queue->recv_queue_size,
1348 				!queue->host_qid);
1349 	}
1350 	nvmet_rdma_free_rsps(queue);
1351 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1352 	kfree(queue);
1353 }
1354 
1355 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1356 {
1357 	struct nvmet_rdma_queue *queue =
1358 		container_of(w, struct nvmet_rdma_queue, release_work);
1359 	struct nvmet_rdma_device *dev = queue->dev;
1360 
1361 	nvmet_rdma_free_queue(queue);
1362 
1363 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1364 }
1365 
1366 static int
1367 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1368 				struct nvmet_rdma_queue *queue)
1369 {
1370 	struct nvme_rdma_cm_req *req;
1371 
1372 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1373 	if (!req || conn->private_data_len == 0)
1374 		return NVME_RDMA_CM_INVALID_LEN;
1375 
1376 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1377 		return NVME_RDMA_CM_INVALID_RECFMT;
1378 
1379 	queue->host_qid = le16_to_cpu(req->qid);
1380 
1381 	/*
1382 	 * req->hsqsize corresponds to our recv queue size plus 1
1383 	 * req->hrqsize corresponds to our send queue size
1384 	 */
1385 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1386 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1387 
1388 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1389 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1390 
1391 	/* XXX: Should we enforce some kind of max for IO queues? */
1392 
1393 	return 0;
1394 }
1395 
1396 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1397 				enum nvme_rdma_cm_status status)
1398 {
1399 	struct nvme_rdma_cm_rej rej;
1400 
1401 	pr_debug("rejecting connect request: status %d (%s)\n",
1402 		 status, nvme_rdma_cm_msg(status));
1403 
1404 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1405 	rej.sts = cpu_to_le16(status);
1406 
1407 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1408 			   IB_CM_REJ_CONSUMER_DEFINED);
1409 }
1410 
1411 static struct nvmet_rdma_queue *
1412 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1413 		struct rdma_cm_id *cm_id,
1414 		struct rdma_cm_event *event)
1415 {
1416 	struct nvmet_rdma_port *port = cm_id->context;
1417 	struct nvmet_rdma_queue *queue;
1418 	int ret;
1419 
1420 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1421 	if (!queue) {
1422 		ret = NVME_RDMA_CM_NO_RSC;
1423 		goto out_reject;
1424 	}
1425 
1426 	ret = nvmet_sq_init(&queue->nvme_sq);
1427 	if (ret) {
1428 		ret = NVME_RDMA_CM_NO_RSC;
1429 		goto out_free_queue;
1430 	}
1431 
1432 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1433 	if (ret)
1434 		goto out_destroy_sq;
1435 
1436 	/*
1437 	 * Schedules the actual release because calling rdma_destroy_id from
1438 	 * inside a CM callback would trigger a deadlock. (great API design..)
1439 	 */
1440 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1441 	queue->dev = ndev;
1442 	queue->cm_id = cm_id;
1443 	queue->port = port->nport;
1444 
1445 	spin_lock_init(&queue->state_lock);
1446 	queue->state = NVMET_RDMA_Q_CONNECTING;
1447 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1448 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1449 	spin_lock_init(&queue->rsp_wr_wait_lock);
1450 	INIT_LIST_HEAD(&queue->free_rsps);
1451 	spin_lock_init(&queue->rsps_lock);
1452 	INIT_LIST_HEAD(&queue->queue_list);
1453 
1454 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1455 	if (queue->idx < 0) {
1456 		ret = NVME_RDMA_CM_NO_RSC;
1457 		goto out_destroy_sq;
1458 	}
1459 
1460 	/*
1461 	 * Spread the io queues across completion vectors,
1462 	 * but still keep all admin queues on vector 0.
1463 	 */
1464 	queue->comp_vector = !queue->host_qid ? 0 :
1465 		queue->idx % ndev->device->num_comp_vectors;
1466 
1467 
1468 	ret = nvmet_rdma_alloc_rsps(queue);
1469 	if (ret) {
1470 		ret = NVME_RDMA_CM_NO_RSC;
1471 		goto out_ida_remove;
1472 	}
1473 
1474 	if (ndev->srqs) {
1475 		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1476 	} else {
1477 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1478 				queue->recv_queue_size,
1479 				!queue->host_qid);
1480 		if (IS_ERR(queue->cmds)) {
1481 			ret = NVME_RDMA_CM_NO_RSC;
1482 			goto out_free_responses;
1483 		}
1484 	}
1485 
1486 	ret = nvmet_rdma_create_queue_ib(queue);
1487 	if (ret) {
1488 		pr_err("%s: creating RDMA queue failed (%d).\n",
1489 			__func__, ret);
1490 		ret = NVME_RDMA_CM_NO_RSC;
1491 		goto out_free_cmds;
1492 	}
1493 
1494 	return queue;
1495 
1496 out_free_cmds:
1497 	if (!queue->nsrq) {
1498 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1499 				queue->recv_queue_size,
1500 				!queue->host_qid);
1501 	}
1502 out_free_responses:
1503 	nvmet_rdma_free_rsps(queue);
1504 out_ida_remove:
1505 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1506 out_destroy_sq:
1507 	nvmet_sq_destroy(&queue->nvme_sq);
1508 out_free_queue:
1509 	kfree(queue);
1510 out_reject:
1511 	nvmet_rdma_cm_reject(cm_id, ret);
1512 	return NULL;
1513 }
1514 
1515 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1516 {
1517 	struct nvmet_rdma_queue *queue = priv;
1518 
1519 	switch (event->event) {
1520 	case IB_EVENT_COMM_EST:
1521 		rdma_notify(queue->cm_id, event->event);
1522 		break;
1523 	case IB_EVENT_QP_LAST_WQE_REACHED:
1524 		pr_debug("received last WQE reached event for queue=0x%p\n",
1525 			 queue);
1526 		break;
1527 	default:
1528 		pr_err("received IB QP event: %s (%d)\n",
1529 		       ib_event_msg(event->event), event->event);
1530 		break;
1531 	}
1532 }
1533 
1534 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1535 		struct nvmet_rdma_queue *queue,
1536 		struct rdma_conn_param *p)
1537 {
1538 	struct rdma_conn_param  param = { };
1539 	struct nvme_rdma_cm_rep priv = { };
1540 	int ret = -ENOMEM;
1541 
1542 	param.rnr_retry_count = 7;
1543 	param.flow_control = 1;
1544 	param.initiator_depth = min_t(u8, p->initiator_depth,
1545 		queue->dev->device->attrs.max_qp_init_rd_atom);
1546 	param.private_data = &priv;
1547 	param.private_data_len = sizeof(priv);
1548 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1549 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1550 
1551 	ret = rdma_accept(cm_id, &param);
1552 	if (ret)
1553 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1554 
1555 	return ret;
1556 }
1557 
1558 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1559 		struct rdma_cm_event *event)
1560 {
1561 	struct nvmet_rdma_device *ndev;
1562 	struct nvmet_rdma_queue *queue;
1563 	int ret = -EINVAL;
1564 
1565 	ndev = nvmet_rdma_find_get_device(cm_id);
1566 	if (!ndev) {
1567 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1568 		return -ECONNREFUSED;
1569 	}
1570 
1571 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1572 	if (!queue) {
1573 		ret = -ENOMEM;
1574 		goto put_device;
1575 	}
1576 
1577 	if (queue->host_qid == 0) {
1578 		/* Let inflight controller teardown complete */
1579 		flush_scheduled_work();
1580 	}
1581 
1582 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1583 	if (ret) {
1584 		/*
1585 		 * Don't destroy the cm_id in free path, as we implicitly
1586 		 * destroy the cm_id here with non-zero ret code.
1587 		 */
1588 		queue->cm_id = NULL;
1589 		goto free_queue;
1590 	}
1591 
1592 	mutex_lock(&nvmet_rdma_queue_mutex);
1593 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1594 	mutex_unlock(&nvmet_rdma_queue_mutex);
1595 
1596 	return 0;
1597 
1598 free_queue:
1599 	nvmet_rdma_free_queue(queue);
1600 put_device:
1601 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1602 
1603 	return ret;
1604 }
1605 
1606 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1607 {
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&queue->state_lock, flags);
1611 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1612 		pr_warn("trying to establish a connected queue\n");
1613 		goto out_unlock;
1614 	}
1615 	queue->state = NVMET_RDMA_Q_LIVE;
1616 
1617 	while (!list_empty(&queue->rsp_wait_list)) {
1618 		struct nvmet_rdma_rsp *cmd;
1619 
1620 		cmd = list_first_entry(&queue->rsp_wait_list,
1621 					struct nvmet_rdma_rsp, wait_list);
1622 		list_del(&cmd->wait_list);
1623 
1624 		spin_unlock_irqrestore(&queue->state_lock, flags);
1625 		nvmet_rdma_handle_command(queue, cmd);
1626 		spin_lock_irqsave(&queue->state_lock, flags);
1627 	}
1628 
1629 out_unlock:
1630 	spin_unlock_irqrestore(&queue->state_lock, flags);
1631 }
1632 
1633 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1634 {
1635 	bool disconnect = false;
1636 	unsigned long flags;
1637 
1638 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1639 
1640 	spin_lock_irqsave(&queue->state_lock, flags);
1641 	switch (queue->state) {
1642 	case NVMET_RDMA_Q_CONNECTING:
1643 	case NVMET_RDMA_Q_LIVE:
1644 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1645 		disconnect = true;
1646 		break;
1647 	case NVMET_RDMA_Q_DISCONNECTING:
1648 		break;
1649 	}
1650 	spin_unlock_irqrestore(&queue->state_lock, flags);
1651 
1652 	if (disconnect) {
1653 		rdma_disconnect(queue->cm_id);
1654 		schedule_work(&queue->release_work);
1655 	}
1656 }
1657 
1658 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1659 {
1660 	bool disconnect = false;
1661 
1662 	mutex_lock(&nvmet_rdma_queue_mutex);
1663 	if (!list_empty(&queue->queue_list)) {
1664 		list_del_init(&queue->queue_list);
1665 		disconnect = true;
1666 	}
1667 	mutex_unlock(&nvmet_rdma_queue_mutex);
1668 
1669 	if (disconnect)
1670 		__nvmet_rdma_queue_disconnect(queue);
1671 }
1672 
1673 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1674 		struct nvmet_rdma_queue *queue)
1675 {
1676 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1677 
1678 	mutex_lock(&nvmet_rdma_queue_mutex);
1679 	if (!list_empty(&queue->queue_list))
1680 		list_del_init(&queue->queue_list);
1681 	mutex_unlock(&nvmet_rdma_queue_mutex);
1682 
1683 	pr_err("failed to connect queue %d\n", queue->idx);
1684 	schedule_work(&queue->release_work);
1685 }
1686 
1687 /**
1688  * nvme_rdma_device_removal() - Handle RDMA device removal
1689  * @cm_id:	rdma_cm id, used for nvmet port
1690  * @queue:      nvmet rdma queue (cm id qp_context)
1691  *
1692  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1693  * to unplug. Note that this event can be generated on a normal
1694  * queue cm_id and/or a device bound listener cm_id (where in this
1695  * case queue will be null).
1696  *
1697  * We registered an ib_client to handle device removal for queues,
1698  * so we only need to handle the listening port cm_ids. In this case
1699  * we nullify the priv to prevent double cm_id destruction and destroying
1700  * the cm_id implicitely by returning a non-zero rc to the callout.
1701  */
1702 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1703 		struct nvmet_rdma_queue *queue)
1704 {
1705 	struct nvmet_rdma_port *port;
1706 
1707 	if (queue) {
1708 		/*
1709 		 * This is a queue cm_id. we have registered
1710 		 * an ib_client to handle queues removal
1711 		 * so don't interfear and just return.
1712 		 */
1713 		return 0;
1714 	}
1715 
1716 	port = cm_id->context;
1717 
1718 	/*
1719 	 * This is a listener cm_id. Make sure that
1720 	 * future remove_port won't invoke a double
1721 	 * cm_id destroy. use atomic xchg to make sure
1722 	 * we don't compete with remove_port.
1723 	 */
1724 	if (xchg(&port->cm_id, NULL) != cm_id)
1725 		return 0;
1726 
1727 	/*
1728 	 * We need to return 1 so that the core will destroy
1729 	 * it's own ID.  What a great API design..
1730 	 */
1731 	return 1;
1732 }
1733 
1734 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1735 		struct rdma_cm_event *event)
1736 {
1737 	struct nvmet_rdma_queue *queue = NULL;
1738 	int ret = 0;
1739 
1740 	if (cm_id->qp)
1741 		queue = cm_id->qp->qp_context;
1742 
1743 	pr_debug("%s (%d): status %d id %p\n",
1744 		rdma_event_msg(event->event), event->event,
1745 		event->status, cm_id);
1746 
1747 	switch (event->event) {
1748 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1749 		ret = nvmet_rdma_queue_connect(cm_id, event);
1750 		break;
1751 	case RDMA_CM_EVENT_ESTABLISHED:
1752 		nvmet_rdma_queue_established(queue);
1753 		break;
1754 	case RDMA_CM_EVENT_ADDR_CHANGE:
1755 		if (!queue) {
1756 			struct nvmet_rdma_port *port = cm_id->context;
1757 
1758 			schedule_delayed_work(&port->repair_work, 0);
1759 			break;
1760 		}
1761 		fallthrough;
1762 	case RDMA_CM_EVENT_DISCONNECTED:
1763 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1764 		nvmet_rdma_queue_disconnect(queue);
1765 		break;
1766 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1767 		ret = nvmet_rdma_device_removal(cm_id, queue);
1768 		break;
1769 	case RDMA_CM_EVENT_REJECTED:
1770 		pr_debug("Connection rejected: %s\n",
1771 			 rdma_reject_msg(cm_id, event->status));
1772 		fallthrough;
1773 	case RDMA_CM_EVENT_UNREACHABLE:
1774 	case RDMA_CM_EVENT_CONNECT_ERROR:
1775 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1776 		break;
1777 	default:
1778 		pr_err("received unrecognized RDMA CM event %d\n",
1779 			event->event);
1780 		break;
1781 	}
1782 
1783 	return ret;
1784 }
1785 
1786 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1787 {
1788 	struct nvmet_rdma_queue *queue;
1789 
1790 restart:
1791 	mutex_lock(&nvmet_rdma_queue_mutex);
1792 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1793 		if (queue->nvme_sq.ctrl == ctrl) {
1794 			list_del_init(&queue->queue_list);
1795 			mutex_unlock(&nvmet_rdma_queue_mutex);
1796 
1797 			__nvmet_rdma_queue_disconnect(queue);
1798 			goto restart;
1799 		}
1800 	}
1801 	mutex_unlock(&nvmet_rdma_queue_mutex);
1802 }
1803 
1804 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1805 {
1806 	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1807 
1808 	if (cm_id)
1809 		rdma_destroy_id(cm_id);
1810 }
1811 
1812 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1813 {
1814 	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1815 	struct rdma_cm_id *cm_id;
1816 	int ret;
1817 
1818 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1819 			RDMA_PS_TCP, IB_QPT_RC);
1820 	if (IS_ERR(cm_id)) {
1821 		pr_err("CM ID creation failed\n");
1822 		return PTR_ERR(cm_id);
1823 	}
1824 
1825 	/*
1826 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1827 	 * at the same time.
1828 	 */
1829 	ret = rdma_set_afonly(cm_id, 1);
1830 	if (ret) {
1831 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1832 		goto out_destroy_id;
1833 	}
1834 
1835 	ret = rdma_bind_addr(cm_id, addr);
1836 	if (ret) {
1837 		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1838 		goto out_destroy_id;
1839 	}
1840 
1841 	ret = rdma_listen(cm_id, 128);
1842 	if (ret) {
1843 		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1844 		goto out_destroy_id;
1845 	}
1846 
1847 	if (port->nport->pi_enable &&
1848 	    !(cm_id->device->attrs.device_cap_flags &
1849 	      IB_DEVICE_INTEGRITY_HANDOVER)) {
1850 		pr_err("T10-PI is not supported for %pISpcs\n", addr);
1851 		ret = -EINVAL;
1852 		goto out_destroy_id;
1853 	}
1854 
1855 	port->cm_id = cm_id;
1856 	return 0;
1857 
1858 out_destroy_id:
1859 	rdma_destroy_id(cm_id);
1860 	return ret;
1861 }
1862 
1863 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1864 {
1865 	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1866 			struct nvmet_rdma_port, repair_work);
1867 	int ret;
1868 
1869 	nvmet_rdma_disable_port(port);
1870 	ret = nvmet_rdma_enable_port(port);
1871 	if (ret)
1872 		schedule_delayed_work(&port->repair_work, 5 * HZ);
1873 }
1874 
1875 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1876 {
1877 	struct nvmet_rdma_port *port;
1878 	__kernel_sa_family_t af;
1879 	int ret;
1880 
1881 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1882 	if (!port)
1883 		return -ENOMEM;
1884 
1885 	nport->priv = port;
1886 	port->nport = nport;
1887 	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1888 
1889 	switch (nport->disc_addr.adrfam) {
1890 	case NVMF_ADDR_FAMILY_IP4:
1891 		af = AF_INET;
1892 		break;
1893 	case NVMF_ADDR_FAMILY_IP6:
1894 		af = AF_INET6;
1895 		break;
1896 	default:
1897 		pr_err("address family %d not supported\n",
1898 			nport->disc_addr.adrfam);
1899 		ret = -EINVAL;
1900 		goto out_free_port;
1901 	}
1902 
1903 	if (nport->inline_data_size < 0) {
1904 		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1905 	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1906 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1907 			nport->inline_data_size,
1908 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1909 		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1910 	}
1911 
1912 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1913 			nport->disc_addr.trsvcid, &port->addr);
1914 	if (ret) {
1915 		pr_err("malformed ip/port passed: %s:%s\n",
1916 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1917 		goto out_free_port;
1918 	}
1919 
1920 	ret = nvmet_rdma_enable_port(port);
1921 	if (ret)
1922 		goto out_free_port;
1923 
1924 	pr_info("enabling port %d (%pISpcs)\n",
1925 		le16_to_cpu(nport->disc_addr.portid),
1926 		(struct sockaddr *)&port->addr);
1927 
1928 	return 0;
1929 
1930 out_free_port:
1931 	kfree(port);
1932 	return ret;
1933 }
1934 
1935 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1936 {
1937 	struct nvmet_rdma_port *port = nport->priv;
1938 
1939 	cancel_delayed_work_sync(&port->repair_work);
1940 	nvmet_rdma_disable_port(port);
1941 	kfree(port);
1942 }
1943 
1944 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1945 		struct nvmet_port *nport, char *traddr)
1946 {
1947 	struct nvmet_rdma_port *port = nport->priv;
1948 	struct rdma_cm_id *cm_id = port->cm_id;
1949 
1950 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1951 		struct nvmet_rdma_rsp *rsp =
1952 			container_of(req, struct nvmet_rdma_rsp, req);
1953 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1954 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1955 
1956 		sprintf(traddr, "%pISc", addr);
1957 	} else {
1958 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1959 	}
1960 }
1961 
1962 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1963 {
1964 	if (ctrl->pi_support)
1965 		return NVMET_RDMA_MAX_METADATA_MDTS;
1966 	return NVMET_RDMA_MAX_MDTS;
1967 }
1968 
1969 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1970 	.owner			= THIS_MODULE,
1971 	.type			= NVMF_TRTYPE_RDMA,
1972 	.msdbd			= 1,
1973 	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1974 	.add_port		= nvmet_rdma_add_port,
1975 	.remove_port		= nvmet_rdma_remove_port,
1976 	.queue_response		= nvmet_rdma_queue_response,
1977 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1978 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1979 	.get_mdts		= nvmet_rdma_get_mdts,
1980 };
1981 
1982 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1983 {
1984 	struct nvmet_rdma_queue *queue, *tmp;
1985 	struct nvmet_rdma_device *ndev;
1986 	bool found = false;
1987 
1988 	mutex_lock(&device_list_mutex);
1989 	list_for_each_entry(ndev, &device_list, entry) {
1990 		if (ndev->device == ib_device) {
1991 			found = true;
1992 			break;
1993 		}
1994 	}
1995 	mutex_unlock(&device_list_mutex);
1996 
1997 	if (!found)
1998 		return;
1999 
2000 	/*
2001 	 * IB Device that is used by nvmet controllers is being removed,
2002 	 * delete all queues using this device.
2003 	 */
2004 	mutex_lock(&nvmet_rdma_queue_mutex);
2005 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2006 				 queue_list) {
2007 		if (queue->dev->device != ib_device)
2008 			continue;
2009 
2010 		pr_info("Removing queue %d\n", queue->idx);
2011 		list_del_init(&queue->queue_list);
2012 		__nvmet_rdma_queue_disconnect(queue);
2013 	}
2014 	mutex_unlock(&nvmet_rdma_queue_mutex);
2015 
2016 	flush_scheduled_work();
2017 }
2018 
2019 static struct ib_client nvmet_rdma_ib_client = {
2020 	.name   = "nvmet_rdma",
2021 	.remove = nvmet_rdma_remove_one
2022 };
2023 
2024 static int __init nvmet_rdma_init(void)
2025 {
2026 	int ret;
2027 
2028 	ret = ib_register_client(&nvmet_rdma_ib_client);
2029 	if (ret)
2030 		return ret;
2031 
2032 	ret = nvmet_register_transport(&nvmet_rdma_ops);
2033 	if (ret)
2034 		goto err_ib_client;
2035 
2036 	return 0;
2037 
2038 err_ib_client:
2039 	ib_unregister_client(&nvmet_rdma_ib_client);
2040 	return ret;
2041 }
2042 
2043 static void __exit nvmet_rdma_exit(void)
2044 {
2045 	nvmet_unregister_transport(&nvmet_rdma_ops);
2046 	ib_unregister_client(&nvmet_rdma_ib_client);
2047 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2048 	ida_destroy(&nvmet_rdma_queue_ida);
2049 }
2050 
2051 module_init(nvmet_rdma_init);
2052 module_exit(nvmet_rdma_exit);
2053 
2054 MODULE_LICENSE("GPL v2");
2055 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2056