xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19 
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
26 
27 /*
28  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29  */
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE		4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33 
34 /* Assume mpsmin == device_page_size == 4KB */
35 #define NVMET_RDMA_MAX_MDTS			8
36 
37 struct nvmet_rdma_cmd {
38 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
39 	struct ib_cqe		cqe;
40 	struct ib_recv_wr	wr;
41 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
42 	struct nvme_command     *nvme_cmd;
43 	struct nvmet_rdma_queue	*queue;
44 };
45 
46 enum {
47 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
48 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
49 };
50 
51 struct nvmet_rdma_rsp {
52 	struct ib_sge		send_sge;
53 	struct ib_cqe		send_cqe;
54 	struct ib_send_wr	send_wr;
55 
56 	struct nvmet_rdma_cmd	*cmd;
57 	struct nvmet_rdma_queue	*queue;
58 
59 	struct ib_cqe		read_cqe;
60 	struct rdma_rw_ctx	rw;
61 
62 	struct nvmet_req	req;
63 
64 	bool			allocated;
65 	u8			n_rdma;
66 	u32			flags;
67 	u32			invalidate_rkey;
68 
69 	struct list_head	wait_list;
70 	struct list_head	free_list;
71 };
72 
73 enum nvmet_rdma_queue_state {
74 	NVMET_RDMA_Q_CONNECTING,
75 	NVMET_RDMA_Q_LIVE,
76 	NVMET_RDMA_Q_DISCONNECTING,
77 };
78 
79 struct nvmet_rdma_queue {
80 	struct rdma_cm_id	*cm_id;
81 	struct ib_qp		*qp;
82 	struct nvmet_port	*port;
83 	struct ib_cq		*cq;
84 	atomic_t		sq_wr_avail;
85 	struct nvmet_rdma_device *dev;
86 	spinlock_t		state_lock;
87 	enum nvmet_rdma_queue_state state;
88 	struct nvmet_cq		nvme_cq;
89 	struct nvmet_sq		nvme_sq;
90 
91 	struct nvmet_rdma_rsp	*rsps;
92 	struct list_head	free_rsps;
93 	spinlock_t		rsps_lock;
94 	struct nvmet_rdma_cmd	*cmds;
95 
96 	struct work_struct	release_work;
97 	struct list_head	rsp_wait_list;
98 	struct list_head	rsp_wr_wait_list;
99 	spinlock_t		rsp_wr_wait_lock;
100 
101 	int			idx;
102 	int			host_qid;
103 	int			recv_queue_size;
104 	int			send_queue_size;
105 
106 	struct list_head	queue_list;
107 };
108 
109 struct nvmet_rdma_port {
110 	struct nvmet_port	*nport;
111 	struct sockaddr_storage addr;
112 	struct rdma_cm_id	*cm_id;
113 	struct delayed_work	repair_work;
114 };
115 
116 struct nvmet_rdma_device {
117 	struct ib_device	*device;
118 	struct ib_pd		*pd;
119 	struct ib_srq		*srq;
120 	struct nvmet_rdma_cmd	*srq_cmds;
121 	size_t			srq_size;
122 	struct kref		ref;
123 	struct list_head	entry;
124 	int			inline_data_size;
125 	int			inline_page_count;
126 };
127 
128 static bool nvmet_rdma_use_srq;
129 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
130 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
131 
132 static DEFINE_IDA(nvmet_rdma_queue_ida);
133 static LIST_HEAD(nvmet_rdma_queue_list);
134 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
135 
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138 
139 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
140 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
141 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
142 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
143 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
144 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
145 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
146 				struct nvmet_rdma_rsp *r);
147 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
148 				struct nvmet_rdma_rsp *r);
149 
150 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
151 
152 static int num_pages(int len)
153 {
154 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
155 }
156 
157 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
158 {
159 	return nvme_is_write(rsp->req.cmd) &&
160 		rsp->req.transfer_len &&
161 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
162 }
163 
164 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
165 {
166 	return !nvme_is_write(rsp->req.cmd) &&
167 		rsp->req.transfer_len &&
168 		!rsp->req.cqe->status &&
169 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
170 }
171 
172 static inline struct nvmet_rdma_rsp *
173 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
174 {
175 	struct nvmet_rdma_rsp *rsp;
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(&queue->rsps_lock, flags);
179 	rsp = list_first_entry_or_null(&queue->free_rsps,
180 				struct nvmet_rdma_rsp, free_list);
181 	if (likely(rsp))
182 		list_del(&rsp->free_list);
183 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
184 
185 	if (unlikely(!rsp)) {
186 		int ret;
187 
188 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
189 		if (unlikely(!rsp))
190 			return NULL;
191 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
192 		if (unlikely(ret)) {
193 			kfree(rsp);
194 			return NULL;
195 		}
196 
197 		rsp->allocated = true;
198 	}
199 
200 	return rsp;
201 }
202 
203 static inline void
204 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
205 {
206 	unsigned long flags;
207 
208 	if (unlikely(rsp->allocated)) {
209 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
210 		kfree(rsp);
211 		return;
212 	}
213 
214 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
215 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
216 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
217 }
218 
219 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
220 				struct nvmet_rdma_cmd *c)
221 {
222 	struct scatterlist *sg;
223 	struct ib_sge *sge;
224 	int i;
225 
226 	if (!ndev->inline_data_size)
227 		return;
228 
229 	sg = c->inline_sg;
230 	sge = &c->sge[1];
231 
232 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
233 		if (sge->length)
234 			ib_dma_unmap_page(ndev->device, sge->addr,
235 					sge->length, DMA_FROM_DEVICE);
236 		if (sg_page(sg))
237 			__free_page(sg_page(sg));
238 	}
239 }
240 
241 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
242 				struct nvmet_rdma_cmd *c)
243 {
244 	struct scatterlist *sg;
245 	struct ib_sge *sge;
246 	struct page *pg;
247 	int len;
248 	int i;
249 
250 	if (!ndev->inline_data_size)
251 		return 0;
252 
253 	sg = c->inline_sg;
254 	sg_init_table(sg, ndev->inline_page_count);
255 	sge = &c->sge[1];
256 	len = ndev->inline_data_size;
257 
258 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
259 		pg = alloc_page(GFP_KERNEL);
260 		if (!pg)
261 			goto out_err;
262 		sg_assign_page(sg, pg);
263 		sge->addr = ib_dma_map_page(ndev->device,
264 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
265 		if (ib_dma_mapping_error(ndev->device, sge->addr))
266 			goto out_err;
267 		sge->length = min_t(int, len, PAGE_SIZE);
268 		sge->lkey = ndev->pd->local_dma_lkey;
269 		len -= sge->length;
270 	}
271 
272 	return 0;
273 out_err:
274 	for (; i >= 0; i--, sg--, sge--) {
275 		if (sge->length)
276 			ib_dma_unmap_page(ndev->device, sge->addr,
277 					sge->length, DMA_FROM_DEVICE);
278 		if (sg_page(sg))
279 			__free_page(sg_page(sg));
280 	}
281 	return -ENOMEM;
282 }
283 
284 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
285 			struct nvmet_rdma_cmd *c, bool admin)
286 {
287 	/* NVMe command / RDMA RECV */
288 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
289 	if (!c->nvme_cmd)
290 		goto out;
291 
292 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
293 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
294 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
295 		goto out_free_cmd;
296 
297 	c->sge[0].length = sizeof(*c->nvme_cmd);
298 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
299 
300 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
301 		goto out_unmap_cmd;
302 
303 	c->cqe.done = nvmet_rdma_recv_done;
304 
305 	c->wr.wr_cqe = &c->cqe;
306 	c->wr.sg_list = c->sge;
307 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
308 
309 	return 0;
310 
311 out_unmap_cmd:
312 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
313 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
314 out_free_cmd:
315 	kfree(c->nvme_cmd);
316 
317 out:
318 	return -ENOMEM;
319 }
320 
321 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
322 		struct nvmet_rdma_cmd *c, bool admin)
323 {
324 	if (!admin)
325 		nvmet_rdma_free_inline_pages(ndev, c);
326 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
327 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
328 	kfree(c->nvme_cmd);
329 }
330 
331 static struct nvmet_rdma_cmd *
332 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
333 		int nr_cmds, bool admin)
334 {
335 	struct nvmet_rdma_cmd *cmds;
336 	int ret = -EINVAL, i;
337 
338 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
339 	if (!cmds)
340 		goto out;
341 
342 	for (i = 0; i < nr_cmds; i++) {
343 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
344 		if (ret)
345 			goto out_free;
346 	}
347 
348 	return cmds;
349 
350 out_free:
351 	while (--i >= 0)
352 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
353 	kfree(cmds);
354 out:
355 	return ERR_PTR(ret);
356 }
357 
358 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
359 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
360 {
361 	int i;
362 
363 	for (i = 0; i < nr_cmds; i++)
364 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
365 	kfree(cmds);
366 }
367 
368 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
369 		struct nvmet_rdma_rsp *r)
370 {
371 	/* NVMe CQE / RDMA SEND */
372 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
373 	if (!r->req.cqe)
374 		goto out;
375 
376 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
377 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
378 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
379 		goto out_free_rsp;
380 
381 	r->req.p2p_client = &ndev->device->dev;
382 	r->send_sge.length = sizeof(*r->req.cqe);
383 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
384 
385 	r->send_cqe.done = nvmet_rdma_send_done;
386 
387 	r->send_wr.wr_cqe = &r->send_cqe;
388 	r->send_wr.sg_list = &r->send_sge;
389 	r->send_wr.num_sge = 1;
390 	r->send_wr.send_flags = IB_SEND_SIGNALED;
391 
392 	/* Data In / RDMA READ */
393 	r->read_cqe.done = nvmet_rdma_read_data_done;
394 	return 0;
395 
396 out_free_rsp:
397 	kfree(r->req.cqe);
398 out:
399 	return -ENOMEM;
400 }
401 
402 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
403 		struct nvmet_rdma_rsp *r)
404 {
405 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
406 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
407 	kfree(r->req.cqe);
408 }
409 
410 static int
411 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
412 {
413 	struct nvmet_rdma_device *ndev = queue->dev;
414 	int nr_rsps = queue->recv_queue_size * 2;
415 	int ret = -EINVAL, i;
416 
417 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
418 			GFP_KERNEL);
419 	if (!queue->rsps)
420 		goto out;
421 
422 	for (i = 0; i < nr_rsps; i++) {
423 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
424 
425 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
426 		if (ret)
427 			goto out_free;
428 
429 		list_add_tail(&rsp->free_list, &queue->free_rsps);
430 	}
431 
432 	return 0;
433 
434 out_free:
435 	while (--i >= 0) {
436 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
437 
438 		list_del(&rsp->free_list);
439 		nvmet_rdma_free_rsp(ndev, rsp);
440 	}
441 	kfree(queue->rsps);
442 out:
443 	return ret;
444 }
445 
446 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
447 {
448 	struct nvmet_rdma_device *ndev = queue->dev;
449 	int i, nr_rsps = queue->recv_queue_size * 2;
450 
451 	for (i = 0; i < nr_rsps; i++) {
452 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
453 
454 		list_del(&rsp->free_list);
455 		nvmet_rdma_free_rsp(ndev, rsp);
456 	}
457 	kfree(queue->rsps);
458 }
459 
460 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
461 		struct nvmet_rdma_cmd *cmd)
462 {
463 	int ret;
464 
465 	ib_dma_sync_single_for_device(ndev->device,
466 		cmd->sge[0].addr, cmd->sge[0].length,
467 		DMA_FROM_DEVICE);
468 
469 	if (ndev->srq)
470 		ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
471 	else
472 		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
473 
474 	if (unlikely(ret))
475 		pr_err("post_recv cmd failed\n");
476 
477 	return ret;
478 }
479 
480 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
481 {
482 	spin_lock(&queue->rsp_wr_wait_lock);
483 	while (!list_empty(&queue->rsp_wr_wait_list)) {
484 		struct nvmet_rdma_rsp *rsp;
485 		bool ret;
486 
487 		rsp = list_entry(queue->rsp_wr_wait_list.next,
488 				struct nvmet_rdma_rsp, wait_list);
489 		list_del(&rsp->wait_list);
490 
491 		spin_unlock(&queue->rsp_wr_wait_lock);
492 		ret = nvmet_rdma_execute_command(rsp);
493 		spin_lock(&queue->rsp_wr_wait_lock);
494 
495 		if (!ret) {
496 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
497 			break;
498 		}
499 	}
500 	spin_unlock(&queue->rsp_wr_wait_lock);
501 }
502 
503 
504 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
505 {
506 	struct nvmet_rdma_queue *queue = rsp->queue;
507 
508 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
509 
510 	if (rsp->n_rdma) {
511 		rdma_rw_ctx_destroy(&rsp->rw, queue->qp,
512 				queue->cm_id->port_num, rsp->req.sg,
513 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
514 	}
515 
516 	if (rsp->req.sg != rsp->cmd->inline_sg)
517 		nvmet_req_free_sgl(&rsp->req);
518 
519 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
520 		nvmet_rdma_process_wr_wait_list(queue);
521 
522 	nvmet_rdma_put_rsp(rsp);
523 }
524 
525 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
526 {
527 	if (queue->nvme_sq.ctrl) {
528 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
529 	} else {
530 		/*
531 		 * we didn't setup the controller yet in case
532 		 * of admin connect error, just disconnect and
533 		 * cleanup the queue
534 		 */
535 		nvmet_rdma_queue_disconnect(queue);
536 	}
537 }
538 
539 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
540 {
541 	struct nvmet_rdma_rsp *rsp =
542 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
543 	struct nvmet_rdma_queue *queue = cq->cq_context;
544 
545 	nvmet_rdma_release_rsp(rsp);
546 
547 	if (unlikely(wc->status != IB_WC_SUCCESS &&
548 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
549 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
550 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
551 		nvmet_rdma_error_comp(queue);
552 	}
553 }
554 
555 static void nvmet_rdma_queue_response(struct nvmet_req *req)
556 {
557 	struct nvmet_rdma_rsp *rsp =
558 		container_of(req, struct nvmet_rdma_rsp, req);
559 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
560 	struct ib_send_wr *first_wr;
561 
562 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
563 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
564 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
565 	} else {
566 		rsp->send_wr.opcode = IB_WR_SEND;
567 	}
568 
569 	if (nvmet_rdma_need_data_out(rsp))
570 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
571 				cm_id->port_num, NULL, &rsp->send_wr);
572 	else
573 		first_wr = &rsp->send_wr;
574 
575 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
576 
577 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
578 		rsp->send_sge.addr, rsp->send_sge.length,
579 		DMA_TO_DEVICE);
580 
581 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
582 		pr_err("sending cmd response failed\n");
583 		nvmet_rdma_release_rsp(rsp);
584 	}
585 }
586 
587 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
588 {
589 	struct nvmet_rdma_rsp *rsp =
590 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
591 	struct nvmet_rdma_queue *queue = cq->cq_context;
592 
593 	WARN_ON(rsp->n_rdma <= 0);
594 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
595 	rdma_rw_ctx_destroy(&rsp->rw, queue->qp,
596 			queue->cm_id->port_num, rsp->req.sg,
597 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
598 	rsp->n_rdma = 0;
599 
600 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
601 		nvmet_req_uninit(&rsp->req);
602 		nvmet_rdma_release_rsp(rsp);
603 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
604 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
605 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
606 			nvmet_rdma_error_comp(queue);
607 		}
608 		return;
609 	}
610 
611 	rsp->req.execute(&rsp->req);
612 }
613 
614 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
615 		u64 off)
616 {
617 	int sg_count = num_pages(len);
618 	struct scatterlist *sg;
619 	int i;
620 
621 	sg = rsp->cmd->inline_sg;
622 	for (i = 0; i < sg_count; i++, sg++) {
623 		if (i < sg_count - 1)
624 			sg_unmark_end(sg);
625 		else
626 			sg_mark_end(sg);
627 		sg->offset = off;
628 		sg->length = min_t(int, len, PAGE_SIZE - off);
629 		len -= sg->length;
630 		if (!i)
631 			off = 0;
632 	}
633 
634 	rsp->req.sg = rsp->cmd->inline_sg;
635 	rsp->req.sg_cnt = sg_count;
636 }
637 
638 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
639 {
640 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
641 	u64 off = le64_to_cpu(sgl->addr);
642 	u32 len = le32_to_cpu(sgl->length);
643 
644 	if (!nvme_is_write(rsp->req.cmd)) {
645 		rsp->req.error_loc =
646 			offsetof(struct nvme_common_command, opcode);
647 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
648 	}
649 
650 	if (off + len > rsp->queue->dev->inline_data_size) {
651 		pr_err("invalid inline data offset!\n");
652 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
653 	}
654 
655 	/* no data command? */
656 	if (!len)
657 		return 0;
658 
659 	nvmet_rdma_use_inline_sg(rsp, len, off);
660 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
661 	rsp->req.transfer_len += len;
662 	return 0;
663 }
664 
665 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
666 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
667 {
668 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
669 	u64 addr = le64_to_cpu(sgl->addr);
670 	u32 key = get_unaligned_le32(sgl->key);
671 	int ret;
672 
673 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
674 
675 	/* no data command? */
676 	if (!rsp->req.transfer_len)
677 		return 0;
678 
679 	ret = nvmet_req_alloc_sgl(&rsp->req);
680 	if (unlikely(ret < 0))
681 		goto error_out;
682 
683 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
684 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
685 			nvmet_data_dir(&rsp->req));
686 	if (unlikely(ret < 0))
687 		goto error_out;
688 	rsp->n_rdma += ret;
689 
690 	if (invalidate) {
691 		rsp->invalidate_rkey = key;
692 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
693 	}
694 
695 	return 0;
696 
697 error_out:
698 	rsp->req.transfer_len = 0;
699 	return NVME_SC_INTERNAL;
700 }
701 
702 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
703 {
704 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
705 
706 	switch (sgl->type >> 4) {
707 	case NVME_SGL_FMT_DATA_DESC:
708 		switch (sgl->type & 0xf) {
709 		case NVME_SGL_FMT_OFFSET:
710 			return nvmet_rdma_map_sgl_inline(rsp);
711 		default:
712 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
713 			rsp->req.error_loc =
714 				offsetof(struct nvme_common_command, dptr);
715 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
716 		}
717 	case NVME_KEY_SGL_FMT_DATA_DESC:
718 		switch (sgl->type & 0xf) {
719 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
720 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
721 		case NVME_SGL_FMT_ADDRESS:
722 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
723 		default:
724 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
725 			rsp->req.error_loc =
726 				offsetof(struct nvme_common_command, dptr);
727 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
728 		}
729 	default:
730 		pr_err("invalid SGL type: %#x\n", sgl->type);
731 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
732 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
733 	}
734 }
735 
736 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
737 {
738 	struct nvmet_rdma_queue *queue = rsp->queue;
739 
740 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
741 			&queue->sq_wr_avail) < 0)) {
742 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
743 				1 + rsp->n_rdma, queue->idx,
744 				queue->nvme_sq.ctrl->cntlid);
745 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
746 		return false;
747 	}
748 
749 	if (nvmet_rdma_need_data_in(rsp)) {
750 		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
751 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
752 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
753 	} else {
754 		rsp->req.execute(&rsp->req);
755 	}
756 
757 	return true;
758 }
759 
760 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
761 		struct nvmet_rdma_rsp *cmd)
762 {
763 	u16 status;
764 
765 	ib_dma_sync_single_for_cpu(queue->dev->device,
766 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
767 		DMA_FROM_DEVICE);
768 	ib_dma_sync_single_for_cpu(queue->dev->device,
769 		cmd->send_sge.addr, cmd->send_sge.length,
770 		DMA_TO_DEVICE);
771 
772 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
773 			&queue->nvme_sq, &nvmet_rdma_ops))
774 		return;
775 
776 	status = nvmet_rdma_map_sgl(cmd);
777 	if (status)
778 		goto out_err;
779 
780 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
781 		spin_lock(&queue->rsp_wr_wait_lock);
782 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
783 		spin_unlock(&queue->rsp_wr_wait_lock);
784 	}
785 
786 	return;
787 
788 out_err:
789 	nvmet_req_complete(&cmd->req, status);
790 }
791 
792 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
793 {
794 	struct nvmet_rdma_cmd *cmd =
795 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
796 	struct nvmet_rdma_queue *queue = cq->cq_context;
797 	struct nvmet_rdma_rsp *rsp;
798 
799 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
800 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
801 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
802 				wc->wr_cqe, ib_wc_status_msg(wc->status),
803 				wc->status);
804 			nvmet_rdma_error_comp(queue);
805 		}
806 		return;
807 	}
808 
809 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
810 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
811 		nvmet_rdma_error_comp(queue);
812 		return;
813 	}
814 
815 	cmd->queue = queue;
816 	rsp = nvmet_rdma_get_rsp(queue);
817 	if (unlikely(!rsp)) {
818 		/*
819 		 * we get here only under memory pressure,
820 		 * silently drop and have the host retry
821 		 * as we can't even fail it.
822 		 */
823 		nvmet_rdma_post_recv(queue->dev, cmd);
824 		return;
825 	}
826 	rsp->queue = queue;
827 	rsp->cmd = cmd;
828 	rsp->flags = 0;
829 	rsp->req.cmd = cmd->nvme_cmd;
830 	rsp->req.port = queue->port;
831 	rsp->n_rdma = 0;
832 
833 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
834 		unsigned long flags;
835 
836 		spin_lock_irqsave(&queue->state_lock, flags);
837 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
838 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
839 		else
840 			nvmet_rdma_put_rsp(rsp);
841 		spin_unlock_irqrestore(&queue->state_lock, flags);
842 		return;
843 	}
844 
845 	nvmet_rdma_handle_command(queue, rsp);
846 }
847 
848 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
849 {
850 	if (!ndev->srq)
851 		return;
852 
853 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
854 	ib_destroy_srq(ndev->srq);
855 }
856 
857 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
858 {
859 	struct ib_srq_init_attr srq_attr = { NULL, };
860 	struct ib_srq *srq;
861 	size_t srq_size;
862 	int ret, i;
863 
864 	srq_size = 4095;	/* XXX: tune */
865 
866 	srq_attr.attr.max_wr = srq_size;
867 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
868 	srq_attr.attr.srq_limit = 0;
869 	srq_attr.srq_type = IB_SRQT_BASIC;
870 	srq = ib_create_srq(ndev->pd, &srq_attr);
871 	if (IS_ERR(srq)) {
872 		/*
873 		 * If SRQs aren't supported we just go ahead and use normal
874 		 * non-shared receive queues.
875 		 */
876 		pr_info("SRQ requested but not supported.\n");
877 		return 0;
878 	}
879 
880 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
881 	if (IS_ERR(ndev->srq_cmds)) {
882 		ret = PTR_ERR(ndev->srq_cmds);
883 		goto out_destroy_srq;
884 	}
885 
886 	ndev->srq = srq;
887 	ndev->srq_size = srq_size;
888 
889 	for (i = 0; i < srq_size; i++) {
890 		ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
891 		if (ret)
892 			goto out_free_cmds;
893 	}
894 
895 	return 0;
896 
897 out_free_cmds:
898 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
899 out_destroy_srq:
900 	ib_destroy_srq(srq);
901 	return ret;
902 }
903 
904 static void nvmet_rdma_free_dev(struct kref *ref)
905 {
906 	struct nvmet_rdma_device *ndev =
907 		container_of(ref, struct nvmet_rdma_device, ref);
908 
909 	mutex_lock(&device_list_mutex);
910 	list_del(&ndev->entry);
911 	mutex_unlock(&device_list_mutex);
912 
913 	nvmet_rdma_destroy_srq(ndev);
914 	ib_dealloc_pd(ndev->pd);
915 
916 	kfree(ndev);
917 }
918 
919 static struct nvmet_rdma_device *
920 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
921 {
922 	struct nvmet_rdma_port *port = cm_id->context;
923 	struct nvmet_port *nport = port->nport;
924 	struct nvmet_rdma_device *ndev;
925 	int inline_page_count;
926 	int inline_sge_count;
927 	int ret;
928 
929 	mutex_lock(&device_list_mutex);
930 	list_for_each_entry(ndev, &device_list, entry) {
931 		if (ndev->device->node_guid == cm_id->device->node_guid &&
932 		    kref_get_unless_zero(&ndev->ref))
933 			goto out_unlock;
934 	}
935 
936 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
937 	if (!ndev)
938 		goto out_err;
939 
940 	inline_page_count = num_pages(nport->inline_data_size);
941 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
942 				cm_id->device->attrs.max_recv_sge) - 1;
943 	if (inline_page_count > inline_sge_count) {
944 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
945 			nport->inline_data_size, cm_id->device->name,
946 			inline_sge_count * PAGE_SIZE);
947 		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
948 		inline_page_count = inline_sge_count;
949 	}
950 	ndev->inline_data_size = nport->inline_data_size;
951 	ndev->inline_page_count = inline_page_count;
952 	ndev->device = cm_id->device;
953 	kref_init(&ndev->ref);
954 
955 	ndev->pd = ib_alloc_pd(ndev->device, 0);
956 	if (IS_ERR(ndev->pd))
957 		goto out_free_dev;
958 
959 	if (nvmet_rdma_use_srq) {
960 		ret = nvmet_rdma_init_srq(ndev);
961 		if (ret)
962 			goto out_free_pd;
963 	}
964 
965 	list_add(&ndev->entry, &device_list);
966 out_unlock:
967 	mutex_unlock(&device_list_mutex);
968 	pr_debug("added %s.\n", ndev->device->name);
969 	return ndev;
970 
971 out_free_pd:
972 	ib_dealloc_pd(ndev->pd);
973 out_free_dev:
974 	kfree(ndev);
975 out_err:
976 	mutex_unlock(&device_list_mutex);
977 	return NULL;
978 }
979 
980 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
981 {
982 	struct ib_qp_init_attr qp_attr;
983 	struct nvmet_rdma_device *ndev = queue->dev;
984 	int comp_vector, nr_cqe, ret, i, factor;
985 
986 	/*
987 	 * Spread the io queues across completion vectors,
988 	 * but still keep all admin queues on vector 0.
989 	 */
990 	comp_vector = !queue->host_qid ? 0 :
991 		queue->idx % ndev->device->num_comp_vectors;
992 
993 	/*
994 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
995 	 */
996 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
997 
998 	queue->cq = ib_alloc_cq(ndev->device, queue,
999 			nr_cqe + 1, comp_vector,
1000 			IB_POLL_WORKQUEUE);
1001 	if (IS_ERR(queue->cq)) {
1002 		ret = PTR_ERR(queue->cq);
1003 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1004 		       nr_cqe + 1, ret);
1005 		goto out;
1006 	}
1007 
1008 	memset(&qp_attr, 0, sizeof(qp_attr));
1009 	qp_attr.qp_context = queue;
1010 	qp_attr.event_handler = nvmet_rdma_qp_event;
1011 	qp_attr.send_cq = queue->cq;
1012 	qp_attr.recv_cq = queue->cq;
1013 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1014 	qp_attr.qp_type = IB_QPT_RC;
1015 	/* +1 for drain */
1016 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1017 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1018 				   1 << NVMET_RDMA_MAX_MDTS);
1019 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1020 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1021 					ndev->device->attrs.max_send_sge);
1022 
1023 	if (ndev->srq) {
1024 		qp_attr.srq = ndev->srq;
1025 	} else {
1026 		/* +1 for drain */
1027 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1028 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1029 	}
1030 
1031 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1032 	if (ret) {
1033 		pr_err("failed to create_qp ret= %d\n", ret);
1034 		goto err_destroy_cq;
1035 	}
1036 	queue->qp = queue->cm_id->qp;
1037 
1038 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1039 
1040 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1041 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1042 		 qp_attr.cap.max_send_wr, queue->cm_id);
1043 
1044 	if (!ndev->srq) {
1045 		for (i = 0; i < queue->recv_queue_size; i++) {
1046 			queue->cmds[i].queue = queue;
1047 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1048 			if (ret)
1049 				goto err_destroy_qp;
1050 		}
1051 	}
1052 
1053 out:
1054 	return ret;
1055 
1056 err_destroy_qp:
1057 	rdma_destroy_qp(queue->cm_id);
1058 err_destroy_cq:
1059 	ib_free_cq(queue->cq);
1060 	goto out;
1061 }
1062 
1063 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1064 {
1065 	ib_drain_qp(queue->qp);
1066 	if (queue->cm_id)
1067 		rdma_destroy_id(queue->cm_id);
1068 	ib_destroy_qp(queue->qp);
1069 	ib_free_cq(queue->cq);
1070 }
1071 
1072 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1073 {
1074 	pr_debug("freeing queue %d\n", queue->idx);
1075 
1076 	nvmet_sq_destroy(&queue->nvme_sq);
1077 
1078 	nvmet_rdma_destroy_queue_ib(queue);
1079 	if (!queue->dev->srq) {
1080 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1081 				queue->recv_queue_size,
1082 				!queue->host_qid);
1083 	}
1084 	nvmet_rdma_free_rsps(queue);
1085 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1086 	kfree(queue);
1087 }
1088 
1089 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1090 {
1091 	struct nvmet_rdma_queue *queue =
1092 		container_of(w, struct nvmet_rdma_queue, release_work);
1093 	struct nvmet_rdma_device *dev = queue->dev;
1094 
1095 	nvmet_rdma_free_queue(queue);
1096 
1097 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1098 }
1099 
1100 static int
1101 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1102 				struct nvmet_rdma_queue *queue)
1103 {
1104 	struct nvme_rdma_cm_req *req;
1105 
1106 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1107 	if (!req || conn->private_data_len == 0)
1108 		return NVME_RDMA_CM_INVALID_LEN;
1109 
1110 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1111 		return NVME_RDMA_CM_INVALID_RECFMT;
1112 
1113 	queue->host_qid = le16_to_cpu(req->qid);
1114 
1115 	/*
1116 	 * req->hsqsize corresponds to our recv queue size plus 1
1117 	 * req->hrqsize corresponds to our send queue size
1118 	 */
1119 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1120 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1121 
1122 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1123 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1124 
1125 	/* XXX: Should we enforce some kind of max for IO queues? */
1126 
1127 	return 0;
1128 }
1129 
1130 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1131 				enum nvme_rdma_cm_status status)
1132 {
1133 	struct nvme_rdma_cm_rej rej;
1134 
1135 	pr_debug("rejecting connect request: status %d (%s)\n",
1136 		 status, nvme_rdma_cm_msg(status));
1137 
1138 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1139 	rej.sts = cpu_to_le16(status);
1140 
1141 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1142 }
1143 
1144 static struct nvmet_rdma_queue *
1145 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1146 		struct rdma_cm_id *cm_id,
1147 		struct rdma_cm_event *event)
1148 {
1149 	struct nvmet_rdma_queue *queue;
1150 	int ret;
1151 
1152 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1153 	if (!queue) {
1154 		ret = NVME_RDMA_CM_NO_RSC;
1155 		goto out_reject;
1156 	}
1157 
1158 	ret = nvmet_sq_init(&queue->nvme_sq);
1159 	if (ret) {
1160 		ret = NVME_RDMA_CM_NO_RSC;
1161 		goto out_free_queue;
1162 	}
1163 
1164 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1165 	if (ret)
1166 		goto out_destroy_sq;
1167 
1168 	/*
1169 	 * Schedules the actual release because calling rdma_destroy_id from
1170 	 * inside a CM callback would trigger a deadlock. (great API design..)
1171 	 */
1172 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1173 	queue->dev = ndev;
1174 	queue->cm_id = cm_id;
1175 
1176 	spin_lock_init(&queue->state_lock);
1177 	queue->state = NVMET_RDMA_Q_CONNECTING;
1178 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1179 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1180 	spin_lock_init(&queue->rsp_wr_wait_lock);
1181 	INIT_LIST_HEAD(&queue->free_rsps);
1182 	spin_lock_init(&queue->rsps_lock);
1183 	INIT_LIST_HEAD(&queue->queue_list);
1184 
1185 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1186 	if (queue->idx < 0) {
1187 		ret = NVME_RDMA_CM_NO_RSC;
1188 		goto out_destroy_sq;
1189 	}
1190 
1191 	ret = nvmet_rdma_alloc_rsps(queue);
1192 	if (ret) {
1193 		ret = NVME_RDMA_CM_NO_RSC;
1194 		goto out_ida_remove;
1195 	}
1196 
1197 	if (!ndev->srq) {
1198 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1199 				queue->recv_queue_size,
1200 				!queue->host_qid);
1201 		if (IS_ERR(queue->cmds)) {
1202 			ret = NVME_RDMA_CM_NO_RSC;
1203 			goto out_free_responses;
1204 		}
1205 	}
1206 
1207 	ret = nvmet_rdma_create_queue_ib(queue);
1208 	if (ret) {
1209 		pr_err("%s: creating RDMA queue failed (%d).\n",
1210 			__func__, ret);
1211 		ret = NVME_RDMA_CM_NO_RSC;
1212 		goto out_free_cmds;
1213 	}
1214 
1215 	return queue;
1216 
1217 out_free_cmds:
1218 	if (!ndev->srq) {
1219 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1220 				queue->recv_queue_size,
1221 				!queue->host_qid);
1222 	}
1223 out_free_responses:
1224 	nvmet_rdma_free_rsps(queue);
1225 out_ida_remove:
1226 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1227 out_destroy_sq:
1228 	nvmet_sq_destroy(&queue->nvme_sq);
1229 out_free_queue:
1230 	kfree(queue);
1231 out_reject:
1232 	nvmet_rdma_cm_reject(cm_id, ret);
1233 	return NULL;
1234 }
1235 
1236 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1237 {
1238 	struct nvmet_rdma_queue *queue = priv;
1239 
1240 	switch (event->event) {
1241 	case IB_EVENT_COMM_EST:
1242 		rdma_notify(queue->cm_id, event->event);
1243 		break;
1244 	default:
1245 		pr_err("received IB QP event: %s (%d)\n",
1246 		       ib_event_msg(event->event), event->event);
1247 		break;
1248 	}
1249 }
1250 
1251 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1252 		struct nvmet_rdma_queue *queue,
1253 		struct rdma_conn_param *p)
1254 {
1255 	struct rdma_conn_param  param = { };
1256 	struct nvme_rdma_cm_rep priv = { };
1257 	int ret = -ENOMEM;
1258 
1259 	param.rnr_retry_count = 7;
1260 	param.flow_control = 1;
1261 	param.initiator_depth = min_t(u8, p->initiator_depth,
1262 		queue->dev->device->attrs.max_qp_init_rd_atom);
1263 	param.private_data = &priv;
1264 	param.private_data_len = sizeof(priv);
1265 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1266 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1267 
1268 	ret = rdma_accept(cm_id, &param);
1269 	if (ret)
1270 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1271 
1272 	return ret;
1273 }
1274 
1275 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1276 		struct rdma_cm_event *event)
1277 {
1278 	struct nvmet_rdma_port *port = cm_id->context;
1279 	struct nvmet_rdma_device *ndev;
1280 	struct nvmet_rdma_queue *queue;
1281 	int ret = -EINVAL;
1282 
1283 	ndev = nvmet_rdma_find_get_device(cm_id);
1284 	if (!ndev) {
1285 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1286 		return -ECONNREFUSED;
1287 	}
1288 
1289 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1290 	if (!queue) {
1291 		ret = -ENOMEM;
1292 		goto put_device;
1293 	}
1294 	queue->port = port->nport;
1295 
1296 	if (queue->host_qid == 0) {
1297 		/* Let inflight controller teardown complete */
1298 		flush_scheduled_work();
1299 	}
1300 
1301 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1302 	if (ret) {
1303 		/*
1304 		 * Don't destroy the cm_id in free path, as we implicitly
1305 		 * destroy the cm_id here with non-zero ret code.
1306 		 */
1307 		queue->cm_id = NULL;
1308 		goto free_queue;
1309 	}
1310 
1311 	mutex_lock(&nvmet_rdma_queue_mutex);
1312 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1313 	mutex_unlock(&nvmet_rdma_queue_mutex);
1314 
1315 	return 0;
1316 
1317 free_queue:
1318 	nvmet_rdma_free_queue(queue);
1319 put_device:
1320 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1321 
1322 	return ret;
1323 }
1324 
1325 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1326 {
1327 	unsigned long flags;
1328 
1329 	spin_lock_irqsave(&queue->state_lock, flags);
1330 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1331 		pr_warn("trying to establish a connected queue\n");
1332 		goto out_unlock;
1333 	}
1334 	queue->state = NVMET_RDMA_Q_LIVE;
1335 
1336 	while (!list_empty(&queue->rsp_wait_list)) {
1337 		struct nvmet_rdma_rsp *cmd;
1338 
1339 		cmd = list_first_entry(&queue->rsp_wait_list,
1340 					struct nvmet_rdma_rsp, wait_list);
1341 		list_del(&cmd->wait_list);
1342 
1343 		spin_unlock_irqrestore(&queue->state_lock, flags);
1344 		nvmet_rdma_handle_command(queue, cmd);
1345 		spin_lock_irqsave(&queue->state_lock, flags);
1346 	}
1347 
1348 out_unlock:
1349 	spin_unlock_irqrestore(&queue->state_lock, flags);
1350 }
1351 
1352 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1353 {
1354 	bool disconnect = false;
1355 	unsigned long flags;
1356 
1357 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1358 
1359 	spin_lock_irqsave(&queue->state_lock, flags);
1360 	switch (queue->state) {
1361 	case NVMET_RDMA_Q_CONNECTING:
1362 	case NVMET_RDMA_Q_LIVE:
1363 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1364 		disconnect = true;
1365 		break;
1366 	case NVMET_RDMA_Q_DISCONNECTING:
1367 		break;
1368 	}
1369 	spin_unlock_irqrestore(&queue->state_lock, flags);
1370 
1371 	if (disconnect) {
1372 		rdma_disconnect(queue->cm_id);
1373 		schedule_work(&queue->release_work);
1374 	}
1375 }
1376 
1377 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1378 {
1379 	bool disconnect = false;
1380 
1381 	mutex_lock(&nvmet_rdma_queue_mutex);
1382 	if (!list_empty(&queue->queue_list)) {
1383 		list_del_init(&queue->queue_list);
1384 		disconnect = true;
1385 	}
1386 	mutex_unlock(&nvmet_rdma_queue_mutex);
1387 
1388 	if (disconnect)
1389 		__nvmet_rdma_queue_disconnect(queue);
1390 }
1391 
1392 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1393 		struct nvmet_rdma_queue *queue)
1394 {
1395 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1396 
1397 	mutex_lock(&nvmet_rdma_queue_mutex);
1398 	if (!list_empty(&queue->queue_list))
1399 		list_del_init(&queue->queue_list);
1400 	mutex_unlock(&nvmet_rdma_queue_mutex);
1401 
1402 	pr_err("failed to connect queue %d\n", queue->idx);
1403 	schedule_work(&queue->release_work);
1404 }
1405 
1406 /**
1407  * nvme_rdma_device_removal() - Handle RDMA device removal
1408  * @cm_id:	rdma_cm id, used for nvmet port
1409  * @queue:      nvmet rdma queue (cm id qp_context)
1410  *
1411  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1412  * to unplug. Note that this event can be generated on a normal
1413  * queue cm_id and/or a device bound listener cm_id (where in this
1414  * case queue will be null).
1415  *
1416  * We registered an ib_client to handle device removal for queues,
1417  * so we only need to handle the listening port cm_ids. In this case
1418  * we nullify the priv to prevent double cm_id destruction and destroying
1419  * the cm_id implicitely by returning a non-zero rc to the callout.
1420  */
1421 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1422 		struct nvmet_rdma_queue *queue)
1423 {
1424 	struct nvmet_rdma_port *port;
1425 
1426 	if (queue) {
1427 		/*
1428 		 * This is a queue cm_id. we have registered
1429 		 * an ib_client to handle queues removal
1430 		 * so don't interfear and just return.
1431 		 */
1432 		return 0;
1433 	}
1434 
1435 	port = cm_id->context;
1436 
1437 	/*
1438 	 * This is a listener cm_id. Make sure that
1439 	 * future remove_port won't invoke a double
1440 	 * cm_id destroy. use atomic xchg to make sure
1441 	 * we don't compete with remove_port.
1442 	 */
1443 	if (xchg(&port->cm_id, NULL) != cm_id)
1444 		return 0;
1445 
1446 	/*
1447 	 * We need to return 1 so that the core will destroy
1448 	 * it's own ID.  What a great API design..
1449 	 */
1450 	return 1;
1451 }
1452 
1453 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1454 		struct rdma_cm_event *event)
1455 {
1456 	struct nvmet_rdma_queue *queue = NULL;
1457 	int ret = 0;
1458 
1459 	if (cm_id->qp)
1460 		queue = cm_id->qp->qp_context;
1461 
1462 	pr_debug("%s (%d): status %d id %p\n",
1463 		rdma_event_msg(event->event), event->event,
1464 		event->status, cm_id);
1465 
1466 	switch (event->event) {
1467 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1468 		ret = nvmet_rdma_queue_connect(cm_id, event);
1469 		break;
1470 	case RDMA_CM_EVENT_ESTABLISHED:
1471 		nvmet_rdma_queue_established(queue);
1472 		break;
1473 	case RDMA_CM_EVENT_ADDR_CHANGE:
1474 		if (!queue) {
1475 			struct nvmet_rdma_port *port = cm_id->context;
1476 
1477 			schedule_delayed_work(&port->repair_work, 0);
1478 			break;
1479 		}
1480 		/* FALLTHROUGH */
1481 	case RDMA_CM_EVENT_DISCONNECTED:
1482 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1483 		nvmet_rdma_queue_disconnect(queue);
1484 		break;
1485 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1486 		ret = nvmet_rdma_device_removal(cm_id, queue);
1487 		break;
1488 	case RDMA_CM_EVENT_REJECTED:
1489 		pr_debug("Connection rejected: %s\n",
1490 			 rdma_reject_msg(cm_id, event->status));
1491 		/* FALLTHROUGH */
1492 	case RDMA_CM_EVENT_UNREACHABLE:
1493 	case RDMA_CM_EVENT_CONNECT_ERROR:
1494 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1495 		break;
1496 	default:
1497 		pr_err("received unrecognized RDMA CM event %d\n",
1498 			event->event);
1499 		break;
1500 	}
1501 
1502 	return ret;
1503 }
1504 
1505 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1506 {
1507 	struct nvmet_rdma_queue *queue;
1508 
1509 restart:
1510 	mutex_lock(&nvmet_rdma_queue_mutex);
1511 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1512 		if (queue->nvme_sq.ctrl == ctrl) {
1513 			list_del_init(&queue->queue_list);
1514 			mutex_unlock(&nvmet_rdma_queue_mutex);
1515 
1516 			__nvmet_rdma_queue_disconnect(queue);
1517 			goto restart;
1518 		}
1519 	}
1520 	mutex_unlock(&nvmet_rdma_queue_mutex);
1521 }
1522 
1523 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1524 {
1525 	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1526 
1527 	if (cm_id)
1528 		rdma_destroy_id(cm_id);
1529 }
1530 
1531 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1532 {
1533 	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1534 	struct rdma_cm_id *cm_id;
1535 	int ret;
1536 
1537 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1538 			RDMA_PS_TCP, IB_QPT_RC);
1539 	if (IS_ERR(cm_id)) {
1540 		pr_err("CM ID creation failed\n");
1541 		return PTR_ERR(cm_id);
1542 	}
1543 
1544 	/*
1545 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1546 	 * at the same time.
1547 	 */
1548 	ret = rdma_set_afonly(cm_id, 1);
1549 	if (ret) {
1550 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1551 		goto out_destroy_id;
1552 	}
1553 
1554 	ret = rdma_bind_addr(cm_id, addr);
1555 	if (ret) {
1556 		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1557 		goto out_destroy_id;
1558 	}
1559 
1560 	ret = rdma_listen(cm_id, 128);
1561 	if (ret) {
1562 		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1563 		goto out_destroy_id;
1564 	}
1565 
1566 	port->cm_id = cm_id;
1567 	return 0;
1568 
1569 out_destroy_id:
1570 	rdma_destroy_id(cm_id);
1571 	return ret;
1572 }
1573 
1574 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1575 {
1576 	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1577 			struct nvmet_rdma_port, repair_work);
1578 	int ret;
1579 
1580 	nvmet_rdma_disable_port(port);
1581 	ret = nvmet_rdma_enable_port(port);
1582 	if (ret)
1583 		schedule_delayed_work(&port->repair_work, 5 * HZ);
1584 }
1585 
1586 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1587 {
1588 	struct nvmet_rdma_port *port;
1589 	__kernel_sa_family_t af;
1590 	int ret;
1591 
1592 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1593 	if (!port)
1594 		return -ENOMEM;
1595 
1596 	nport->priv = port;
1597 	port->nport = nport;
1598 	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1599 
1600 	switch (nport->disc_addr.adrfam) {
1601 	case NVMF_ADDR_FAMILY_IP4:
1602 		af = AF_INET;
1603 		break;
1604 	case NVMF_ADDR_FAMILY_IP6:
1605 		af = AF_INET6;
1606 		break;
1607 	default:
1608 		pr_err("address family %d not supported\n",
1609 			nport->disc_addr.adrfam);
1610 		ret = -EINVAL;
1611 		goto out_free_port;
1612 	}
1613 
1614 	if (nport->inline_data_size < 0) {
1615 		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1616 	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1617 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1618 			nport->inline_data_size,
1619 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1620 		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1621 	}
1622 
1623 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1624 			nport->disc_addr.trsvcid, &port->addr);
1625 	if (ret) {
1626 		pr_err("malformed ip/port passed: %s:%s\n",
1627 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1628 		goto out_free_port;
1629 	}
1630 
1631 	ret = nvmet_rdma_enable_port(port);
1632 	if (ret)
1633 		goto out_free_port;
1634 
1635 	pr_info("enabling port %d (%pISpcs)\n",
1636 		le16_to_cpu(nport->disc_addr.portid),
1637 		(struct sockaddr *)&port->addr);
1638 
1639 	return 0;
1640 
1641 out_free_port:
1642 	kfree(port);
1643 	return ret;
1644 }
1645 
1646 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1647 {
1648 	struct nvmet_rdma_port *port = nport->priv;
1649 
1650 	cancel_delayed_work_sync(&port->repair_work);
1651 	nvmet_rdma_disable_port(port);
1652 	kfree(port);
1653 }
1654 
1655 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1656 		struct nvmet_port *nport, char *traddr)
1657 {
1658 	struct nvmet_rdma_port *port = nport->priv;
1659 	struct rdma_cm_id *cm_id = port->cm_id;
1660 
1661 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1662 		struct nvmet_rdma_rsp *rsp =
1663 			container_of(req, struct nvmet_rdma_rsp, req);
1664 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1665 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1666 
1667 		sprintf(traddr, "%pISc", addr);
1668 	} else {
1669 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1670 	}
1671 }
1672 
1673 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1674 {
1675 	return NVMET_RDMA_MAX_MDTS;
1676 }
1677 
1678 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1679 	.owner			= THIS_MODULE,
1680 	.type			= NVMF_TRTYPE_RDMA,
1681 	.msdbd			= 1,
1682 	.has_keyed_sgls		= 1,
1683 	.add_port		= nvmet_rdma_add_port,
1684 	.remove_port		= nvmet_rdma_remove_port,
1685 	.queue_response		= nvmet_rdma_queue_response,
1686 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1687 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1688 	.get_mdts		= nvmet_rdma_get_mdts,
1689 };
1690 
1691 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1692 {
1693 	struct nvmet_rdma_queue *queue, *tmp;
1694 	struct nvmet_rdma_device *ndev;
1695 	bool found = false;
1696 
1697 	mutex_lock(&device_list_mutex);
1698 	list_for_each_entry(ndev, &device_list, entry) {
1699 		if (ndev->device == ib_device) {
1700 			found = true;
1701 			break;
1702 		}
1703 	}
1704 	mutex_unlock(&device_list_mutex);
1705 
1706 	if (!found)
1707 		return;
1708 
1709 	/*
1710 	 * IB Device that is used by nvmet controllers is being removed,
1711 	 * delete all queues using this device.
1712 	 */
1713 	mutex_lock(&nvmet_rdma_queue_mutex);
1714 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1715 				 queue_list) {
1716 		if (queue->dev->device != ib_device)
1717 			continue;
1718 
1719 		pr_info("Removing queue %d\n", queue->idx);
1720 		list_del_init(&queue->queue_list);
1721 		__nvmet_rdma_queue_disconnect(queue);
1722 	}
1723 	mutex_unlock(&nvmet_rdma_queue_mutex);
1724 
1725 	flush_scheduled_work();
1726 }
1727 
1728 static struct ib_client nvmet_rdma_ib_client = {
1729 	.name   = "nvmet_rdma",
1730 	.remove = nvmet_rdma_remove_one
1731 };
1732 
1733 static int __init nvmet_rdma_init(void)
1734 {
1735 	int ret;
1736 
1737 	ret = ib_register_client(&nvmet_rdma_ib_client);
1738 	if (ret)
1739 		return ret;
1740 
1741 	ret = nvmet_register_transport(&nvmet_rdma_ops);
1742 	if (ret)
1743 		goto err_ib_client;
1744 
1745 	return 0;
1746 
1747 err_ib_client:
1748 	ib_unregister_client(&nvmet_rdma_ib_client);
1749 	return ret;
1750 }
1751 
1752 static void __exit nvmet_rdma_exit(void)
1753 {
1754 	nvmet_unregister_transport(&nvmet_rdma_ops);
1755 	ib_unregister_client(&nvmet_rdma_ib_client);
1756 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1757 	ida_destroy(&nvmet_rdma_queue_ida);
1758 }
1759 
1760 module_init(nvmet_rdma_init);
1761 module_exit(nvmet_rdma_exit);
1762 
1763 MODULE_LICENSE("GPL v2");
1764 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1765