1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/nvme.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/wait.h> 17 #include <linux/inet.h> 18 #include <asm/unaligned.h> 19 20 #include <rdma/ib_verbs.h> 21 #include <rdma/rdma_cm.h> 22 #include <rdma/rw.h> 23 24 #include <linux/nvme-rdma.h> 25 #include "nvmet.h" 26 27 /* 28 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 29 */ 30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 31 #define NVMET_RDMA_MAX_INLINE_SGE 4 32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 33 34 /* Assume mpsmin == device_page_size == 4KB */ 35 #define NVMET_RDMA_MAX_MDTS 8 36 37 struct nvmet_rdma_cmd { 38 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 39 struct ib_cqe cqe; 40 struct ib_recv_wr wr; 41 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 42 struct nvme_command *nvme_cmd; 43 struct nvmet_rdma_queue *queue; 44 }; 45 46 enum { 47 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 48 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 49 }; 50 51 struct nvmet_rdma_rsp { 52 struct ib_sge send_sge; 53 struct ib_cqe send_cqe; 54 struct ib_send_wr send_wr; 55 56 struct nvmet_rdma_cmd *cmd; 57 struct nvmet_rdma_queue *queue; 58 59 struct ib_cqe read_cqe; 60 struct rdma_rw_ctx rw; 61 62 struct nvmet_req req; 63 64 bool allocated; 65 u8 n_rdma; 66 u32 flags; 67 u32 invalidate_rkey; 68 69 struct list_head wait_list; 70 struct list_head free_list; 71 }; 72 73 enum nvmet_rdma_queue_state { 74 NVMET_RDMA_Q_CONNECTING, 75 NVMET_RDMA_Q_LIVE, 76 NVMET_RDMA_Q_DISCONNECTING, 77 }; 78 79 struct nvmet_rdma_queue { 80 struct rdma_cm_id *cm_id; 81 struct ib_qp *qp; 82 struct nvmet_port *port; 83 struct ib_cq *cq; 84 atomic_t sq_wr_avail; 85 struct nvmet_rdma_device *dev; 86 spinlock_t state_lock; 87 enum nvmet_rdma_queue_state state; 88 struct nvmet_cq nvme_cq; 89 struct nvmet_sq nvme_sq; 90 91 struct nvmet_rdma_rsp *rsps; 92 struct list_head free_rsps; 93 spinlock_t rsps_lock; 94 struct nvmet_rdma_cmd *cmds; 95 96 struct work_struct release_work; 97 struct list_head rsp_wait_list; 98 struct list_head rsp_wr_wait_list; 99 spinlock_t rsp_wr_wait_lock; 100 101 int idx; 102 int host_qid; 103 int recv_queue_size; 104 int send_queue_size; 105 106 struct list_head queue_list; 107 }; 108 109 struct nvmet_rdma_port { 110 struct nvmet_port *nport; 111 struct sockaddr_storage addr; 112 struct rdma_cm_id *cm_id; 113 struct delayed_work repair_work; 114 }; 115 116 struct nvmet_rdma_device { 117 struct ib_device *device; 118 struct ib_pd *pd; 119 struct ib_srq *srq; 120 struct nvmet_rdma_cmd *srq_cmds; 121 size_t srq_size; 122 struct kref ref; 123 struct list_head entry; 124 int inline_data_size; 125 int inline_page_count; 126 }; 127 128 static bool nvmet_rdma_use_srq; 129 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 130 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 131 132 static DEFINE_IDA(nvmet_rdma_queue_ida); 133 static LIST_HEAD(nvmet_rdma_queue_list); 134 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 135 136 static LIST_HEAD(device_list); 137 static DEFINE_MUTEX(device_list_mutex); 138 139 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 140 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 141 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 142 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 143 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 144 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 145 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 146 struct nvmet_rdma_rsp *r); 147 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 148 struct nvmet_rdma_rsp *r); 149 150 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 151 152 static int num_pages(int len) 153 { 154 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 155 } 156 157 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 158 { 159 return nvme_is_write(rsp->req.cmd) && 160 rsp->req.transfer_len && 161 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 162 } 163 164 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 165 { 166 return !nvme_is_write(rsp->req.cmd) && 167 rsp->req.transfer_len && 168 !rsp->req.cqe->status && 169 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 170 } 171 172 static inline struct nvmet_rdma_rsp * 173 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 174 { 175 struct nvmet_rdma_rsp *rsp; 176 unsigned long flags; 177 178 spin_lock_irqsave(&queue->rsps_lock, flags); 179 rsp = list_first_entry_or_null(&queue->free_rsps, 180 struct nvmet_rdma_rsp, free_list); 181 if (likely(rsp)) 182 list_del(&rsp->free_list); 183 spin_unlock_irqrestore(&queue->rsps_lock, flags); 184 185 if (unlikely(!rsp)) { 186 int ret; 187 188 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 189 if (unlikely(!rsp)) 190 return NULL; 191 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 192 if (unlikely(ret)) { 193 kfree(rsp); 194 return NULL; 195 } 196 197 rsp->allocated = true; 198 } 199 200 return rsp; 201 } 202 203 static inline void 204 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 205 { 206 unsigned long flags; 207 208 if (unlikely(rsp->allocated)) { 209 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 210 kfree(rsp); 211 return; 212 } 213 214 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 215 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 216 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 217 } 218 219 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 220 struct nvmet_rdma_cmd *c) 221 { 222 struct scatterlist *sg; 223 struct ib_sge *sge; 224 int i; 225 226 if (!ndev->inline_data_size) 227 return; 228 229 sg = c->inline_sg; 230 sge = &c->sge[1]; 231 232 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 233 if (sge->length) 234 ib_dma_unmap_page(ndev->device, sge->addr, 235 sge->length, DMA_FROM_DEVICE); 236 if (sg_page(sg)) 237 __free_page(sg_page(sg)); 238 } 239 } 240 241 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 242 struct nvmet_rdma_cmd *c) 243 { 244 struct scatterlist *sg; 245 struct ib_sge *sge; 246 struct page *pg; 247 int len; 248 int i; 249 250 if (!ndev->inline_data_size) 251 return 0; 252 253 sg = c->inline_sg; 254 sg_init_table(sg, ndev->inline_page_count); 255 sge = &c->sge[1]; 256 len = ndev->inline_data_size; 257 258 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 259 pg = alloc_page(GFP_KERNEL); 260 if (!pg) 261 goto out_err; 262 sg_assign_page(sg, pg); 263 sge->addr = ib_dma_map_page(ndev->device, 264 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 265 if (ib_dma_mapping_error(ndev->device, sge->addr)) 266 goto out_err; 267 sge->length = min_t(int, len, PAGE_SIZE); 268 sge->lkey = ndev->pd->local_dma_lkey; 269 len -= sge->length; 270 } 271 272 return 0; 273 out_err: 274 for (; i >= 0; i--, sg--, sge--) { 275 if (sge->length) 276 ib_dma_unmap_page(ndev->device, sge->addr, 277 sge->length, DMA_FROM_DEVICE); 278 if (sg_page(sg)) 279 __free_page(sg_page(sg)); 280 } 281 return -ENOMEM; 282 } 283 284 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 285 struct nvmet_rdma_cmd *c, bool admin) 286 { 287 /* NVMe command / RDMA RECV */ 288 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 289 if (!c->nvme_cmd) 290 goto out; 291 292 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 293 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 294 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 295 goto out_free_cmd; 296 297 c->sge[0].length = sizeof(*c->nvme_cmd); 298 c->sge[0].lkey = ndev->pd->local_dma_lkey; 299 300 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 301 goto out_unmap_cmd; 302 303 c->cqe.done = nvmet_rdma_recv_done; 304 305 c->wr.wr_cqe = &c->cqe; 306 c->wr.sg_list = c->sge; 307 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 308 309 return 0; 310 311 out_unmap_cmd: 312 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 313 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 314 out_free_cmd: 315 kfree(c->nvme_cmd); 316 317 out: 318 return -ENOMEM; 319 } 320 321 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 322 struct nvmet_rdma_cmd *c, bool admin) 323 { 324 if (!admin) 325 nvmet_rdma_free_inline_pages(ndev, c); 326 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 327 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 328 kfree(c->nvme_cmd); 329 } 330 331 static struct nvmet_rdma_cmd * 332 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 333 int nr_cmds, bool admin) 334 { 335 struct nvmet_rdma_cmd *cmds; 336 int ret = -EINVAL, i; 337 338 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 339 if (!cmds) 340 goto out; 341 342 for (i = 0; i < nr_cmds; i++) { 343 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 344 if (ret) 345 goto out_free; 346 } 347 348 return cmds; 349 350 out_free: 351 while (--i >= 0) 352 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 353 kfree(cmds); 354 out: 355 return ERR_PTR(ret); 356 } 357 358 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 359 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 360 { 361 int i; 362 363 for (i = 0; i < nr_cmds; i++) 364 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 365 kfree(cmds); 366 } 367 368 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 369 struct nvmet_rdma_rsp *r) 370 { 371 /* NVMe CQE / RDMA SEND */ 372 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 373 if (!r->req.cqe) 374 goto out; 375 376 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 377 sizeof(*r->req.cqe), DMA_TO_DEVICE); 378 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 379 goto out_free_rsp; 380 381 r->req.p2p_client = &ndev->device->dev; 382 r->send_sge.length = sizeof(*r->req.cqe); 383 r->send_sge.lkey = ndev->pd->local_dma_lkey; 384 385 r->send_cqe.done = nvmet_rdma_send_done; 386 387 r->send_wr.wr_cqe = &r->send_cqe; 388 r->send_wr.sg_list = &r->send_sge; 389 r->send_wr.num_sge = 1; 390 r->send_wr.send_flags = IB_SEND_SIGNALED; 391 392 /* Data In / RDMA READ */ 393 r->read_cqe.done = nvmet_rdma_read_data_done; 394 return 0; 395 396 out_free_rsp: 397 kfree(r->req.cqe); 398 out: 399 return -ENOMEM; 400 } 401 402 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 403 struct nvmet_rdma_rsp *r) 404 { 405 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 406 sizeof(*r->req.cqe), DMA_TO_DEVICE); 407 kfree(r->req.cqe); 408 } 409 410 static int 411 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 412 { 413 struct nvmet_rdma_device *ndev = queue->dev; 414 int nr_rsps = queue->recv_queue_size * 2; 415 int ret = -EINVAL, i; 416 417 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 418 GFP_KERNEL); 419 if (!queue->rsps) 420 goto out; 421 422 for (i = 0; i < nr_rsps; i++) { 423 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 424 425 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 426 if (ret) 427 goto out_free; 428 429 list_add_tail(&rsp->free_list, &queue->free_rsps); 430 } 431 432 return 0; 433 434 out_free: 435 while (--i >= 0) { 436 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 437 438 list_del(&rsp->free_list); 439 nvmet_rdma_free_rsp(ndev, rsp); 440 } 441 kfree(queue->rsps); 442 out: 443 return ret; 444 } 445 446 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 447 { 448 struct nvmet_rdma_device *ndev = queue->dev; 449 int i, nr_rsps = queue->recv_queue_size * 2; 450 451 for (i = 0; i < nr_rsps; i++) { 452 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 453 454 list_del(&rsp->free_list); 455 nvmet_rdma_free_rsp(ndev, rsp); 456 } 457 kfree(queue->rsps); 458 } 459 460 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 461 struct nvmet_rdma_cmd *cmd) 462 { 463 int ret; 464 465 ib_dma_sync_single_for_device(ndev->device, 466 cmd->sge[0].addr, cmd->sge[0].length, 467 DMA_FROM_DEVICE); 468 469 if (ndev->srq) 470 ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL); 471 else 472 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 473 474 if (unlikely(ret)) 475 pr_err("post_recv cmd failed\n"); 476 477 return ret; 478 } 479 480 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 481 { 482 spin_lock(&queue->rsp_wr_wait_lock); 483 while (!list_empty(&queue->rsp_wr_wait_list)) { 484 struct nvmet_rdma_rsp *rsp; 485 bool ret; 486 487 rsp = list_entry(queue->rsp_wr_wait_list.next, 488 struct nvmet_rdma_rsp, wait_list); 489 list_del(&rsp->wait_list); 490 491 spin_unlock(&queue->rsp_wr_wait_lock); 492 ret = nvmet_rdma_execute_command(rsp); 493 spin_lock(&queue->rsp_wr_wait_lock); 494 495 if (!ret) { 496 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 497 break; 498 } 499 } 500 spin_unlock(&queue->rsp_wr_wait_lock); 501 } 502 503 504 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 505 { 506 struct nvmet_rdma_queue *queue = rsp->queue; 507 508 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 509 510 if (rsp->n_rdma) { 511 rdma_rw_ctx_destroy(&rsp->rw, queue->qp, 512 queue->cm_id->port_num, rsp->req.sg, 513 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 514 } 515 516 if (rsp->req.sg != rsp->cmd->inline_sg) 517 nvmet_req_free_sgl(&rsp->req); 518 519 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 520 nvmet_rdma_process_wr_wait_list(queue); 521 522 nvmet_rdma_put_rsp(rsp); 523 } 524 525 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 526 { 527 if (queue->nvme_sq.ctrl) { 528 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 529 } else { 530 /* 531 * we didn't setup the controller yet in case 532 * of admin connect error, just disconnect and 533 * cleanup the queue 534 */ 535 nvmet_rdma_queue_disconnect(queue); 536 } 537 } 538 539 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 540 { 541 struct nvmet_rdma_rsp *rsp = 542 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 543 struct nvmet_rdma_queue *queue = cq->cq_context; 544 545 nvmet_rdma_release_rsp(rsp); 546 547 if (unlikely(wc->status != IB_WC_SUCCESS && 548 wc->status != IB_WC_WR_FLUSH_ERR)) { 549 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 550 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 551 nvmet_rdma_error_comp(queue); 552 } 553 } 554 555 static void nvmet_rdma_queue_response(struct nvmet_req *req) 556 { 557 struct nvmet_rdma_rsp *rsp = 558 container_of(req, struct nvmet_rdma_rsp, req); 559 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 560 struct ib_send_wr *first_wr; 561 562 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 563 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 564 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 565 } else { 566 rsp->send_wr.opcode = IB_WR_SEND; 567 } 568 569 if (nvmet_rdma_need_data_out(rsp)) 570 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 571 cm_id->port_num, NULL, &rsp->send_wr); 572 else 573 first_wr = &rsp->send_wr; 574 575 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 576 577 ib_dma_sync_single_for_device(rsp->queue->dev->device, 578 rsp->send_sge.addr, rsp->send_sge.length, 579 DMA_TO_DEVICE); 580 581 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 582 pr_err("sending cmd response failed\n"); 583 nvmet_rdma_release_rsp(rsp); 584 } 585 } 586 587 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 588 { 589 struct nvmet_rdma_rsp *rsp = 590 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 591 struct nvmet_rdma_queue *queue = cq->cq_context; 592 593 WARN_ON(rsp->n_rdma <= 0); 594 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 595 rdma_rw_ctx_destroy(&rsp->rw, queue->qp, 596 queue->cm_id->port_num, rsp->req.sg, 597 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 598 rsp->n_rdma = 0; 599 600 if (unlikely(wc->status != IB_WC_SUCCESS)) { 601 nvmet_req_uninit(&rsp->req); 602 nvmet_rdma_release_rsp(rsp); 603 if (wc->status != IB_WC_WR_FLUSH_ERR) { 604 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 605 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 606 nvmet_rdma_error_comp(queue); 607 } 608 return; 609 } 610 611 rsp->req.execute(&rsp->req); 612 } 613 614 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 615 u64 off) 616 { 617 int sg_count = num_pages(len); 618 struct scatterlist *sg; 619 int i; 620 621 sg = rsp->cmd->inline_sg; 622 for (i = 0; i < sg_count; i++, sg++) { 623 if (i < sg_count - 1) 624 sg_unmark_end(sg); 625 else 626 sg_mark_end(sg); 627 sg->offset = off; 628 sg->length = min_t(int, len, PAGE_SIZE - off); 629 len -= sg->length; 630 if (!i) 631 off = 0; 632 } 633 634 rsp->req.sg = rsp->cmd->inline_sg; 635 rsp->req.sg_cnt = sg_count; 636 } 637 638 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 639 { 640 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 641 u64 off = le64_to_cpu(sgl->addr); 642 u32 len = le32_to_cpu(sgl->length); 643 644 if (!nvme_is_write(rsp->req.cmd)) { 645 rsp->req.error_loc = 646 offsetof(struct nvme_common_command, opcode); 647 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 648 } 649 650 if (off + len > rsp->queue->dev->inline_data_size) { 651 pr_err("invalid inline data offset!\n"); 652 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 653 } 654 655 /* no data command? */ 656 if (!len) 657 return 0; 658 659 nvmet_rdma_use_inline_sg(rsp, len, off); 660 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 661 rsp->req.transfer_len += len; 662 return 0; 663 } 664 665 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 666 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 667 { 668 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 669 u64 addr = le64_to_cpu(sgl->addr); 670 u32 key = get_unaligned_le32(sgl->key); 671 int ret; 672 673 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 674 675 /* no data command? */ 676 if (!rsp->req.transfer_len) 677 return 0; 678 679 ret = nvmet_req_alloc_sgl(&rsp->req); 680 if (unlikely(ret < 0)) 681 goto error_out; 682 683 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 684 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 685 nvmet_data_dir(&rsp->req)); 686 if (unlikely(ret < 0)) 687 goto error_out; 688 rsp->n_rdma += ret; 689 690 if (invalidate) { 691 rsp->invalidate_rkey = key; 692 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 693 } 694 695 return 0; 696 697 error_out: 698 rsp->req.transfer_len = 0; 699 return NVME_SC_INTERNAL; 700 } 701 702 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 703 { 704 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 705 706 switch (sgl->type >> 4) { 707 case NVME_SGL_FMT_DATA_DESC: 708 switch (sgl->type & 0xf) { 709 case NVME_SGL_FMT_OFFSET: 710 return nvmet_rdma_map_sgl_inline(rsp); 711 default: 712 pr_err("invalid SGL subtype: %#x\n", sgl->type); 713 rsp->req.error_loc = 714 offsetof(struct nvme_common_command, dptr); 715 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 716 } 717 case NVME_KEY_SGL_FMT_DATA_DESC: 718 switch (sgl->type & 0xf) { 719 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 720 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 721 case NVME_SGL_FMT_ADDRESS: 722 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 723 default: 724 pr_err("invalid SGL subtype: %#x\n", sgl->type); 725 rsp->req.error_loc = 726 offsetof(struct nvme_common_command, dptr); 727 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 728 } 729 default: 730 pr_err("invalid SGL type: %#x\n", sgl->type); 731 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 732 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 733 } 734 } 735 736 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 737 { 738 struct nvmet_rdma_queue *queue = rsp->queue; 739 740 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 741 &queue->sq_wr_avail) < 0)) { 742 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 743 1 + rsp->n_rdma, queue->idx, 744 queue->nvme_sq.ctrl->cntlid); 745 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 746 return false; 747 } 748 749 if (nvmet_rdma_need_data_in(rsp)) { 750 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 751 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 752 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 753 } else { 754 rsp->req.execute(&rsp->req); 755 } 756 757 return true; 758 } 759 760 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 761 struct nvmet_rdma_rsp *cmd) 762 { 763 u16 status; 764 765 ib_dma_sync_single_for_cpu(queue->dev->device, 766 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 767 DMA_FROM_DEVICE); 768 ib_dma_sync_single_for_cpu(queue->dev->device, 769 cmd->send_sge.addr, cmd->send_sge.length, 770 DMA_TO_DEVICE); 771 772 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 773 &queue->nvme_sq, &nvmet_rdma_ops)) 774 return; 775 776 status = nvmet_rdma_map_sgl(cmd); 777 if (status) 778 goto out_err; 779 780 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 781 spin_lock(&queue->rsp_wr_wait_lock); 782 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 783 spin_unlock(&queue->rsp_wr_wait_lock); 784 } 785 786 return; 787 788 out_err: 789 nvmet_req_complete(&cmd->req, status); 790 } 791 792 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 793 { 794 struct nvmet_rdma_cmd *cmd = 795 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 796 struct nvmet_rdma_queue *queue = cq->cq_context; 797 struct nvmet_rdma_rsp *rsp; 798 799 if (unlikely(wc->status != IB_WC_SUCCESS)) { 800 if (wc->status != IB_WC_WR_FLUSH_ERR) { 801 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 802 wc->wr_cqe, ib_wc_status_msg(wc->status), 803 wc->status); 804 nvmet_rdma_error_comp(queue); 805 } 806 return; 807 } 808 809 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 810 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 811 nvmet_rdma_error_comp(queue); 812 return; 813 } 814 815 cmd->queue = queue; 816 rsp = nvmet_rdma_get_rsp(queue); 817 if (unlikely(!rsp)) { 818 /* 819 * we get here only under memory pressure, 820 * silently drop and have the host retry 821 * as we can't even fail it. 822 */ 823 nvmet_rdma_post_recv(queue->dev, cmd); 824 return; 825 } 826 rsp->queue = queue; 827 rsp->cmd = cmd; 828 rsp->flags = 0; 829 rsp->req.cmd = cmd->nvme_cmd; 830 rsp->req.port = queue->port; 831 rsp->n_rdma = 0; 832 833 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 834 unsigned long flags; 835 836 spin_lock_irqsave(&queue->state_lock, flags); 837 if (queue->state == NVMET_RDMA_Q_CONNECTING) 838 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 839 else 840 nvmet_rdma_put_rsp(rsp); 841 spin_unlock_irqrestore(&queue->state_lock, flags); 842 return; 843 } 844 845 nvmet_rdma_handle_command(queue, rsp); 846 } 847 848 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 849 { 850 if (!ndev->srq) 851 return; 852 853 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 854 ib_destroy_srq(ndev->srq); 855 } 856 857 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 858 { 859 struct ib_srq_init_attr srq_attr = { NULL, }; 860 struct ib_srq *srq; 861 size_t srq_size; 862 int ret, i; 863 864 srq_size = 4095; /* XXX: tune */ 865 866 srq_attr.attr.max_wr = srq_size; 867 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 868 srq_attr.attr.srq_limit = 0; 869 srq_attr.srq_type = IB_SRQT_BASIC; 870 srq = ib_create_srq(ndev->pd, &srq_attr); 871 if (IS_ERR(srq)) { 872 /* 873 * If SRQs aren't supported we just go ahead and use normal 874 * non-shared receive queues. 875 */ 876 pr_info("SRQ requested but not supported.\n"); 877 return 0; 878 } 879 880 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 881 if (IS_ERR(ndev->srq_cmds)) { 882 ret = PTR_ERR(ndev->srq_cmds); 883 goto out_destroy_srq; 884 } 885 886 ndev->srq = srq; 887 ndev->srq_size = srq_size; 888 889 for (i = 0; i < srq_size; i++) { 890 ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 891 if (ret) 892 goto out_free_cmds; 893 } 894 895 return 0; 896 897 out_free_cmds: 898 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 899 out_destroy_srq: 900 ib_destroy_srq(srq); 901 return ret; 902 } 903 904 static void nvmet_rdma_free_dev(struct kref *ref) 905 { 906 struct nvmet_rdma_device *ndev = 907 container_of(ref, struct nvmet_rdma_device, ref); 908 909 mutex_lock(&device_list_mutex); 910 list_del(&ndev->entry); 911 mutex_unlock(&device_list_mutex); 912 913 nvmet_rdma_destroy_srq(ndev); 914 ib_dealloc_pd(ndev->pd); 915 916 kfree(ndev); 917 } 918 919 static struct nvmet_rdma_device * 920 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 921 { 922 struct nvmet_rdma_port *port = cm_id->context; 923 struct nvmet_port *nport = port->nport; 924 struct nvmet_rdma_device *ndev; 925 int inline_page_count; 926 int inline_sge_count; 927 int ret; 928 929 mutex_lock(&device_list_mutex); 930 list_for_each_entry(ndev, &device_list, entry) { 931 if (ndev->device->node_guid == cm_id->device->node_guid && 932 kref_get_unless_zero(&ndev->ref)) 933 goto out_unlock; 934 } 935 936 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 937 if (!ndev) 938 goto out_err; 939 940 inline_page_count = num_pages(nport->inline_data_size); 941 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 942 cm_id->device->attrs.max_recv_sge) - 1; 943 if (inline_page_count > inline_sge_count) { 944 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 945 nport->inline_data_size, cm_id->device->name, 946 inline_sge_count * PAGE_SIZE); 947 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 948 inline_page_count = inline_sge_count; 949 } 950 ndev->inline_data_size = nport->inline_data_size; 951 ndev->inline_page_count = inline_page_count; 952 ndev->device = cm_id->device; 953 kref_init(&ndev->ref); 954 955 ndev->pd = ib_alloc_pd(ndev->device, 0); 956 if (IS_ERR(ndev->pd)) 957 goto out_free_dev; 958 959 if (nvmet_rdma_use_srq) { 960 ret = nvmet_rdma_init_srq(ndev); 961 if (ret) 962 goto out_free_pd; 963 } 964 965 list_add(&ndev->entry, &device_list); 966 out_unlock: 967 mutex_unlock(&device_list_mutex); 968 pr_debug("added %s.\n", ndev->device->name); 969 return ndev; 970 971 out_free_pd: 972 ib_dealloc_pd(ndev->pd); 973 out_free_dev: 974 kfree(ndev); 975 out_err: 976 mutex_unlock(&device_list_mutex); 977 return NULL; 978 } 979 980 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 981 { 982 struct ib_qp_init_attr qp_attr; 983 struct nvmet_rdma_device *ndev = queue->dev; 984 int comp_vector, nr_cqe, ret, i, factor; 985 986 /* 987 * Spread the io queues across completion vectors, 988 * but still keep all admin queues on vector 0. 989 */ 990 comp_vector = !queue->host_qid ? 0 : 991 queue->idx % ndev->device->num_comp_vectors; 992 993 /* 994 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 995 */ 996 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 997 998 queue->cq = ib_alloc_cq(ndev->device, queue, 999 nr_cqe + 1, comp_vector, 1000 IB_POLL_WORKQUEUE); 1001 if (IS_ERR(queue->cq)) { 1002 ret = PTR_ERR(queue->cq); 1003 pr_err("failed to create CQ cqe= %d ret= %d\n", 1004 nr_cqe + 1, ret); 1005 goto out; 1006 } 1007 1008 memset(&qp_attr, 0, sizeof(qp_attr)); 1009 qp_attr.qp_context = queue; 1010 qp_attr.event_handler = nvmet_rdma_qp_event; 1011 qp_attr.send_cq = queue->cq; 1012 qp_attr.recv_cq = queue->cq; 1013 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1014 qp_attr.qp_type = IB_QPT_RC; 1015 /* +1 for drain */ 1016 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1017 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1018 1 << NVMET_RDMA_MAX_MDTS); 1019 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1020 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1021 ndev->device->attrs.max_send_sge); 1022 1023 if (ndev->srq) { 1024 qp_attr.srq = ndev->srq; 1025 } else { 1026 /* +1 for drain */ 1027 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1028 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1029 } 1030 1031 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1032 if (ret) { 1033 pr_err("failed to create_qp ret= %d\n", ret); 1034 goto err_destroy_cq; 1035 } 1036 queue->qp = queue->cm_id->qp; 1037 1038 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1039 1040 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1041 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1042 qp_attr.cap.max_send_wr, queue->cm_id); 1043 1044 if (!ndev->srq) { 1045 for (i = 0; i < queue->recv_queue_size; i++) { 1046 queue->cmds[i].queue = queue; 1047 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1048 if (ret) 1049 goto err_destroy_qp; 1050 } 1051 } 1052 1053 out: 1054 return ret; 1055 1056 err_destroy_qp: 1057 rdma_destroy_qp(queue->cm_id); 1058 err_destroy_cq: 1059 ib_free_cq(queue->cq); 1060 goto out; 1061 } 1062 1063 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1064 { 1065 ib_drain_qp(queue->qp); 1066 if (queue->cm_id) 1067 rdma_destroy_id(queue->cm_id); 1068 ib_destroy_qp(queue->qp); 1069 ib_free_cq(queue->cq); 1070 } 1071 1072 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1073 { 1074 pr_debug("freeing queue %d\n", queue->idx); 1075 1076 nvmet_sq_destroy(&queue->nvme_sq); 1077 1078 nvmet_rdma_destroy_queue_ib(queue); 1079 if (!queue->dev->srq) { 1080 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1081 queue->recv_queue_size, 1082 !queue->host_qid); 1083 } 1084 nvmet_rdma_free_rsps(queue); 1085 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1086 kfree(queue); 1087 } 1088 1089 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1090 { 1091 struct nvmet_rdma_queue *queue = 1092 container_of(w, struct nvmet_rdma_queue, release_work); 1093 struct nvmet_rdma_device *dev = queue->dev; 1094 1095 nvmet_rdma_free_queue(queue); 1096 1097 kref_put(&dev->ref, nvmet_rdma_free_dev); 1098 } 1099 1100 static int 1101 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1102 struct nvmet_rdma_queue *queue) 1103 { 1104 struct nvme_rdma_cm_req *req; 1105 1106 req = (struct nvme_rdma_cm_req *)conn->private_data; 1107 if (!req || conn->private_data_len == 0) 1108 return NVME_RDMA_CM_INVALID_LEN; 1109 1110 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1111 return NVME_RDMA_CM_INVALID_RECFMT; 1112 1113 queue->host_qid = le16_to_cpu(req->qid); 1114 1115 /* 1116 * req->hsqsize corresponds to our recv queue size plus 1 1117 * req->hrqsize corresponds to our send queue size 1118 */ 1119 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1120 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1121 1122 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1123 return NVME_RDMA_CM_INVALID_HSQSIZE; 1124 1125 /* XXX: Should we enforce some kind of max for IO queues? */ 1126 1127 return 0; 1128 } 1129 1130 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1131 enum nvme_rdma_cm_status status) 1132 { 1133 struct nvme_rdma_cm_rej rej; 1134 1135 pr_debug("rejecting connect request: status %d (%s)\n", 1136 status, nvme_rdma_cm_msg(status)); 1137 1138 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1139 rej.sts = cpu_to_le16(status); 1140 1141 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1142 } 1143 1144 static struct nvmet_rdma_queue * 1145 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1146 struct rdma_cm_id *cm_id, 1147 struct rdma_cm_event *event) 1148 { 1149 struct nvmet_rdma_queue *queue; 1150 int ret; 1151 1152 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1153 if (!queue) { 1154 ret = NVME_RDMA_CM_NO_RSC; 1155 goto out_reject; 1156 } 1157 1158 ret = nvmet_sq_init(&queue->nvme_sq); 1159 if (ret) { 1160 ret = NVME_RDMA_CM_NO_RSC; 1161 goto out_free_queue; 1162 } 1163 1164 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1165 if (ret) 1166 goto out_destroy_sq; 1167 1168 /* 1169 * Schedules the actual release because calling rdma_destroy_id from 1170 * inside a CM callback would trigger a deadlock. (great API design..) 1171 */ 1172 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1173 queue->dev = ndev; 1174 queue->cm_id = cm_id; 1175 1176 spin_lock_init(&queue->state_lock); 1177 queue->state = NVMET_RDMA_Q_CONNECTING; 1178 INIT_LIST_HEAD(&queue->rsp_wait_list); 1179 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1180 spin_lock_init(&queue->rsp_wr_wait_lock); 1181 INIT_LIST_HEAD(&queue->free_rsps); 1182 spin_lock_init(&queue->rsps_lock); 1183 INIT_LIST_HEAD(&queue->queue_list); 1184 1185 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1186 if (queue->idx < 0) { 1187 ret = NVME_RDMA_CM_NO_RSC; 1188 goto out_destroy_sq; 1189 } 1190 1191 ret = nvmet_rdma_alloc_rsps(queue); 1192 if (ret) { 1193 ret = NVME_RDMA_CM_NO_RSC; 1194 goto out_ida_remove; 1195 } 1196 1197 if (!ndev->srq) { 1198 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1199 queue->recv_queue_size, 1200 !queue->host_qid); 1201 if (IS_ERR(queue->cmds)) { 1202 ret = NVME_RDMA_CM_NO_RSC; 1203 goto out_free_responses; 1204 } 1205 } 1206 1207 ret = nvmet_rdma_create_queue_ib(queue); 1208 if (ret) { 1209 pr_err("%s: creating RDMA queue failed (%d).\n", 1210 __func__, ret); 1211 ret = NVME_RDMA_CM_NO_RSC; 1212 goto out_free_cmds; 1213 } 1214 1215 return queue; 1216 1217 out_free_cmds: 1218 if (!ndev->srq) { 1219 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1220 queue->recv_queue_size, 1221 !queue->host_qid); 1222 } 1223 out_free_responses: 1224 nvmet_rdma_free_rsps(queue); 1225 out_ida_remove: 1226 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1227 out_destroy_sq: 1228 nvmet_sq_destroy(&queue->nvme_sq); 1229 out_free_queue: 1230 kfree(queue); 1231 out_reject: 1232 nvmet_rdma_cm_reject(cm_id, ret); 1233 return NULL; 1234 } 1235 1236 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1237 { 1238 struct nvmet_rdma_queue *queue = priv; 1239 1240 switch (event->event) { 1241 case IB_EVENT_COMM_EST: 1242 rdma_notify(queue->cm_id, event->event); 1243 break; 1244 default: 1245 pr_err("received IB QP event: %s (%d)\n", 1246 ib_event_msg(event->event), event->event); 1247 break; 1248 } 1249 } 1250 1251 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1252 struct nvmet_rdma_queue *queue, 1253 struct rdma_conn_param *p) 1254 { 1255 struct rdma_conn_param param = { }; 1256 struct nvme_rdma_cm_rep priv = { }; 1257 int ret = -ENOMEM; 1258 1259 param.rnr_retry_count = 7; 1260 param.flow_control = 1; 1261 param.initiator_depth = min_t(u8, p->initiator_depth, 1262 queue->dev->device->attrs.max_qp_init_rd_atom); 1263 param.private_data = &priv; 1264 param.private_data_len = sizeof(priv); 1265 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1266 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1267 1268 ret = rdma_accept(cm_id, ¶m); 1269 if (ret) 1270 pr_err("rdma_accept failed (error code = %d)\n", ret); 1271 1272 return ret; 1273 } 1274 1275 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1276 struct rdma_cm_event *event) 1277 { 1278 struct nvmet_rdma_port *port = cm_id->context; 1279 struct nvmet_rdma_device *ndev; 1280 struct nvmet_rdma_queue *queue; 1281 int ret = -EINVAL; 1282 1283 ndev = nvmet_rdma_find_get_device(cm_id); 1284 if (!ndev) { 1285 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1286 return -ECONNREFUSED; 1287 } 1288 1289 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1290 if (!queue) { 1291 ret = -ENOMEM; 1292 goto put_device; 1293 } 1294 queue->port = port->nport; 1295 1296 if (queue->host_qid == 0) { 1297 /* Let inflight controller teardown complete */ 1298 flush_scheduled_work(); 1299 } 1300 1301 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1302 if (ret) { 1303 /* 1304 * Don't destroy the cm_id in free path, as we implicitly 1305 * destroy the cm_id here with non-zero ret code. 1306 */ 1307 queue->cm_id = NULL; 1308 goto free_queue; 1309 } 1310 1311 mutex_lock(&nvmet_rdma_queue_mutex); 1312 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1313 mutex_unlock(&nvmet_rdma_queue_mutex); 1314 1315 return 0; 1316 1317 free_queue: 1318 nvmet_rdma_free_queue(queue); 1319 put_device: 1320 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1321 1322 return ret; 1323 } 1324 1325 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1326 { 1327 unsigned long flags; 1328 1329 spin_lock_irqsave(&queue->state_lock, flags); 1330 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1331 pr_warn("trying to establish a connected queue\n"); 1332 goto out_unlock; 1333 } 1334 queue->state = NVMET_RDMA_Q_LIVE; 1335 1336 while (!list_empty(&queue->rsp_wait_list)) { 1337 struct nvmet_rdma_rsp *cmd; 1338 1339 cmd = list_first_entry(&queue->rsp_wait_list, 1340 struct nvmet_rdma_rsp, wait_list); 1341 list_del(&cmd->wait_list); 1342 1343 spin_unlock_irqrestore(&queue->state_lock, flags); 1344 nvmet_rdma_handle_command(queue, cmd); 1345 spin_lock_irqsave(&queue->state_lock, flags); 1346 } 1347 1348 out_unlock: 1349 spin_unlock_irqrestore(&queue->state_lock, flags); 1350 } 1351 1352 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1353 { 1354 bool disconnect = false; 1355 unsigned long flags; 1356 1357 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1358 1359 spin_lock_irqsave(&queue->state_lock, flags); 1360 switch (queue->state) { 1361 case NVMET_RDMA_Q_CONNECTING: 1362 case NVMET_RDMA_Q_LIVE: 1363 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1364 disconnect = true; 1365 break; 1366 case NVMET_RDMA_Q_DISCONNECTING: 1367 break; 1368 } 1369 spin_unlock_irqrestore(&queue->state_lock, flags); 1370 1371 if (disconnect) { 1372 rdma_disconnect(queue->cm_id); 1373 schedule_work(&queue->release_work); 1374 } 1375 } 1376 1377 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1378 { 1379 bool disconnect = false; 1380 1381 mutex_lock(&nvmet_rdma_queue_mutex); 1382 if (!list_empty(&queue->queue_list)) { 1383 list_del_init(&queue->queue_list); 1384 disconnect = true; 1385 } 1386 mutex_unlock(&nvmet_rdma_queue_mutex); 1387 1388 if (disconnect) 1389 __nvmet_rdma_queue_disconnect(queue); 1390 } 1391 1392 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1393 struct nvmet_rdma_queue *queue) 1394 { 1395 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1396 1397 mutex_lock(&nvmet_rdma_queue_mutex); 1398 if (!list_empty(&queue->queue_list)) 1399 list_del_init(&queue->queue_list); 1400 mutex_unlock(&nvmet_rdma_queue_mutex); 1401 1402 pr_err("failed to connect queue %d\n", queue->idx); 1403 schedule_work(&queue->release_work); 1404 } 1405 1406 /** 1407 * nvme_rdma_device_removal() - Handle RDMA device removal 1408 * @cm_id: rdma_cm id, used for nvmet port 1409 * @queue: nvmet rdma queue (cm id qp_context) 1410 * 1411 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1412 * to unplug. Note that this event can be generated on a normal 1413 * queue cm_id and/or a device bound listener cm_id (where in this 1414 * case queue will be null). 1415 * 1416 * We registered an ib_client to handle device removal for queues, 1417 * so we only need to handle the listening port cm_ids. In this case 1418 * we nullify the priv to prevent double cm_id destruction and destroying 1419 * the cm_id implicitely by returning a non-zero rc to the callout. 1420 */ 1421 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1422 struct nvmet_rdma_queue *queue) 1423 { 1424 struct nvmet_rdma_port *port; 1425 1426 if (queue) { 1427 /* 1428 * This is a queue cm_id. we have registered 1429 * an ib_client to handle queues removal 1430 * so don't interfear and just return. 1431 */ 1432 return 0; 1433 } 1434 1435 port = cm_id->context; 1436 1437 /* 1438 * This is a listener cm_id. Make sure that 1439 * future remove_port won't invoke a double 1440 * cm_id destroy. use atomic xchg to make sure 1441 * we don't compete with remove_port. 1442 */ 1443 if (xchg(&port->cm_id, NULL) != cm_id) 1444 return 0; 1445 1446 /* 1447 * We need to return 1 so that the core will destroy 1448 * it's own ID. What a great API design.. 1449 */ 1450 return 1; 1451 } 1452 1453 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1454 struct rdma_cm_event *event) 1455 { 1456 struct nvmet_rdma_queue *queue = NULL; 1457 int ret = 0; 1458 1459 if (cm_id->qp) 1460 queue = cm_id->qp->qp_context; 1461 1462 pr_debug("%s (%d): status %d id %p\n", 1463 rdma_event_msg(event->event), event->event, 1464 event->status, cm_id); 1465 1466 switch (event->event) { 1467 case RDMA_CM_EVENT_CONNECT_REQUEST: 1468 ret = nvmet_rdma_queue_connect(cm_id, event); 1469 break; 1470 case RDMA_CM_EVENT_ESTABLISHED: 1471 nvmet_rdma_queue_established(queue); 1472 break; 1473 case RDMA_CM_EVENT_ADDR_CHANGE: 1474 if (!queue) { 1475 struct nvmet_rdma_port *port = cm_id->context; 1476 1477 schedule_delayed_work(&port->repair_work, 0); 1478 break; 1479 } 1480 /* FALLTHROUGH */ 1481 case RDMA_CM_EVENT_DISCONNECTED: 1482 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1483 nvmet_rdma_queue_disconnect(queue); 1484 break; 1485 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1486 ret = nvmet_rdma_device_removal(cm_id, queue); 1487 break; 1488 case RDMA_CM_EVENT_REJECTED: 1489 pr_debug("Connection rejected: %s\n", 1490 rdma_reject_msg(cm_id, event->status)); 1491 /* FALLTHROUGH */ 1492 case RDMA_CM_EVENT_UNREACHABLE: 1493 case RDMA_CM_EVENT_CONNECT_ERROR: 1494 nvmet_rdma_queue_connect_fail(cm_id, queue); 1495 break; 1496 default: 1497 pr_err("received unrecognized RDMA CM event %d\n", 1498 event->event); 1499 break; 1500 } 1501 1502 return ret; 1503 } 1504 1505 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1506 { 1507 struct nvmet_rdma_queue *queue; 1508 1509 restart: 1510 mutex_lock(&nvmet_rdma_queue_mutex); 1511 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1512 if (queue->nvme_sq.ctrl == ctrl) { 1513 list_del_init(&queue->queue_list); 1514 mutex_unlock(&nvmet_rdma_queue_mutex); 1515 1516 __nvmet_rdma_queue_disconnect(queue); 1517 goto restart; 1518 } 1519 } 1520 mutex_unlock(&nvmet_rdma_queue_mutex); 1521 } 1522 1523 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1524 { 1525 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1526 1527 if (cm_id) 1528 rdma_destroy_id(cm_id); 1529 } 1530 1531 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1532 { 1533 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1534 struct rdma_cm_id *cm_id; 1535 int ret; 1536 1537 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1538 RDMA_PS_TCP, IB_QPT_RC); 1539 if (IS_ERR(cm_id)) { 1540 pr_err("CM ID creation failed\n"); 1541 return PTR_ERR(cm_id); 1542 } 1543 1544 /* 1545 * Allow both IPv4 and IPv6 sockets to bind a single port 1546 * at the same time. 1547 */ 1548 ret = rdma_set_afonly(cm_id, 1); 1549 if (ret) { 1550 pr_err("rdma_set_afonly failed (%d)\n", ret); 1551 goto out_destroy_id; 1552 } 1553 1554 ret = rdma_bind_addr(cm_id, addr); 1555 if (ret) { 1556 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1557 goto out_destroy_id; 1558 } 1559 1560 ret = rdma_listen(cm_id, 128); 1561 if (ret) { 1562 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1563 goto out_destroy_id; 1564 } 1565 1566 port->cm_id = cm_id; 1567 return 0; 1568 1569 out_destroy_id: 1570 rdma_destroy_id(cm_id); 1571 return ret; 1572 } 1573 1574 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1575 { 1576 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1577 struct nvmet_rdma_port, repair_work); 1578 int ret; 1579 1580 nvmet_rdma_disable_port(port); 1581 ret = nvmet_rdma_enable_port(port); 1582 if (ret) 1583 schedule_delayed_work(&port->repair_work, 5 * HZ); 1584 } 1585 1586 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1587 { 1588 struct nvmet_rdma_port *port; 1589 __kernel_sa_family_t af; 1590 int ret; 1591 1592 port = kzalloc(sizeof(*port), GFP_KERNEL); 1593 if (!port) 1594 return -ENOMEM; 1595 1596 nport->priv = port; 1597 port->nport = nport; 1598 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1599 1600 switch (nport->disc_addr.adrfam) { 1601 case NVMF_ADDR_FAMILY_IP4: 1602 af = AF_INET; 1603 break; 1604 case NVMF_ADDR_FAMILY_IP6: 1605 af = AF_INET6; 1606 break; 1607 default: 1608 pr_err("address family %d not supported\n", 1609 nport->disc_addr.adrfam); 1610 ret = -EINVAL; 1611 goto out_free_port; 1612 } 1613 1614 if (nport->inline_data_size < 0) { 1615 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1616 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1617 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1618 nport->inline_data_size, 1619 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1620 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1621 } 1622 1623 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1624 nport->disc_addr.trsvcid, &port->addr); 1625 if (ret) { 1626 pr_err("malformed ip/port passed: %s:%s\n", 1627 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1628 goto out_free_port; 1629 } 1630 1631 ret = nvmet_rdma_enable_port(port); 1632 if (ret) 1633 goto out_free_port; 1634 1635 pr_info("enabling port %d (%pISpcs)\n", 1636 le16_to_cpu(nport->disc_addr.portid), 1637 (struct sockaddr *)&port->addr); 1638 1639 return 0; 1640 1641 out_free_port: 1642 kfree(port); 1643 return ret; 1644 } 1645 1646 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1647 { 1648 struct nvmet_rdma_port *port = nport->priv; 1649 1650 cancel_delayed_work_sync(&port->repair_work); 1651 nvmet_rdma_disable_port(port); 1652 kfree(port); 1653 } 1654 1655 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1656 struct nvmet_port *nport, char *traddr) 1657 { 1658 struct nvmet_rdma_port *port = nport->priv; 1659 struct rdma_cm_id *cm_id = port->cm_id; 1660 1661 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1662 struct nvmet_rdma_rsp *rsp = 1663 container_of(req, struct nvmet_rdma_rsp, req); 1664 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1665 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1666 1667 sprintf(traddr, "%pISc", addr); 1668 } else { 1669 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1670 } 1671 } 1672 1673 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 1674 { 1675 return NVMET_RDMA_MAX_MDTS; 1676 } 1677 1678 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 1679 .owner = THIS_MODULE, 1680 .type = NVMF_TRTYPE_RDMA, 1681 .msdbd = 1, 1682 .has_keyed_sgls = 1, 1683 .add_port = nvmet_rdma_add_port, 1684 .remove_port = nvmet_rdma_remove_port, 1685 .queue_response = nvmet_rdma_queue_response, 1686 .delete_ctrl = nvmet_rdma_delete_ctrl, 1687 .disc_traddr = nvmet_rdma_disc_port_addr, 1688 .get_mdts = nvmet_rdma_get_mdts, 1689 }; 1690 1691 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1692 { 1693 struct nvmet_rdma_queue *queue, *tmp; 1694 struct nvmet_rdma_device *ndev; 1695 bool found = false; 1696 1697 mutex_lock(&device_list_mutex); 1698 list_for_each_entry(ndev, &device_list, entry) { 1699 if (ndev->device == ib_device) { 1700 found = true; 1701 break; 1702 } 1703 } 1704 mutex_unlock(&device_list_mutex); 1705 1706 if (!found) 1707 return; 1708 1709 /* 1710 * IB Device that is used by nvmet controllers is being removed, 1711 * delete all queues using this device. 1712 */ 1713 mutex_lock(&nvmet_rdma_queue_mutex); 1714 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1715 queue_list) { 1716 if (queue->dev->device != ib_device) 1717 continue; 1718 1719 pr_info("Removing queue %d\n", queue->idx); 1720 list_del_init(&queue->queue_list); 1721 __nvmet_rdma_queue_disconnect(queue); 1722 } 1723 mutex_unlock(&nvmet_rdma_queue_mutex); 1724 1725 flush_scheduled_work(); 1726 } 1727 1728 static struct ib_client nvmet_rdma_ib_client = { 1729 .name = "nvmet_rdma", 1730 .remove = nvmet_rdma_remove_one 1731 }; 1732 1733 static int __init nvmet_rdma_init(void) 1734 { 1735 int ret; 1736 1737 ret = ib_register_client(&nvmet_rdma_ib_client); 1738 if (ret) 1739 return ret; 1740 1741 ret = nvmet_register_transport(&nvmet_rdma_ops); 1742 if (ret) 1743 goto err_ib_client; 1744 1745 return 0; 1746 1747 err_ib_client: 1748 ib_unregister_client(&nvmet_rdma_ib_client); 1749 return ret; 1750 } 1751 1752 static void __exit nvmet_rdma_exit(void) 1753 { 1754 nvmet_unregister_transport(&nvmet_rdma_ops); 1755 ib_unregister_client(&nvmet_rdma_ib_client); 1756 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 1757 ida_destroy(&nvmet_rdma_queue_ida); 1758 } 1759 1760 module_init(nvmet_rdma_init); 1761 module_exit(nvmet_rdma_exit); 1762 1763 MODULE_LICENSE("GPL v2"); 1764 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1765