1 /* 2 * NVMe over Fabrics RDMA target. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/atomic.h> 16 #include <linux/ctype.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/nvme.h> 22 #include <linux/slab.h> 23 #include <linux/string.h> 24 #include <linux/wait.h> 25 #include <linux/inet.h> 26 #include <asm/unaligned.h> 27 28 #include <rdma/ib_verbs.h> 29 #include <rdma/rdma_cm.h> 30 #include <rdma/rw.h> 31 32 #include <linux/nvme-rdma.h> 33 #include "nvmet.h" 34 35 /* 36 * We allow up to a page of inline data to go with the SQE 37 */ 38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE 39 40 struct nvmet_rdma_cmd { 41 struct ib_sge sge[2]; 42 struct ib_cqe cqe; 43 struct ib_recv_wr wr; 44 struct scatterlist inline_sg; 45 struct page *inline_page; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 }; 49 50 enum { 51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 53 }; 54 55 struct nvmet_rdma_rsp { 56 struct ib_sge send_sge; 57 struct ib_cqe send_cqe; 58 struct ib_send_wr send_wr; 59 60 struct nvmet_rdma_cmd *cmd; 61 struct nvmet_rdma_queue *queue; 62 63 struct ib_cqe read_cqe; 64 struct rdma_rw_ctx rw; 65 66 struct nvmet_req req; 67 68 u8 n_rdma; 69 u32 flags; 70 u32 invalidate_rkey; 71 72 struct list_head wait_list; 73 struct list_head free_list; 74 }; 75 76 enum nvmet_rdma_queue_state { 77 NVMET_RDMA_Q_CONNECTING, 78 NVMET_RDMA_Q_LIVE, 79 NVMET_RDMA_Q_DISCONNECTING, 80 NVMET_RDMA_IN_DEVICE_REMOVAL, 81 }; 82 83 struct nvmet_rdma_queue { 84 struct rdma_cm_id *cm_id; 85 struct nvmet_port *port; 86 struct ib_cq *cq; 87 atomic_t sq_wr_avail; 88 struct nvmet_rdma_device *dev; 89 spinlock_t state_lock; 90 enum nvmet_rdma_queue_state state; 91 struct nvmet_cq nvme_cq; 92 struct nvmet_sq nvme_sq; 93 94 struct nvmet_rdma_rsp *rsps; 95 struct list_head free_rsps; 96 spinlock_t rsps_lock; 97 struct nvmet_rdma_cmd *cmds; 98 99 struct work_struct release_work; 100 struct list_head rsp_wait_list; 101 struct list_head rsp_wr_wait_list; 102 spinlock_t rsp_wr_wait_lock; 103 104 int idx; 105 int host_qid; 106 int recv_queue_size; 107 int send_queue_size; 108 109 struct list_head queue_list; 110 }; 111 112 struct nvmet_rdma_device { 113 struct ib_device *device; 114 struct ib_pd *pd; 115 struct ib_srq *srq; 116 struct nvmet_rdma_cmd *srq_cmds; 117 size_t srq_size; 118 struct kref ref; 119 struct list_head entry; 120 }; 121 122 static bool nvmet_rdma_use_srq; 123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 124 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 125 126 static DEFINE_IDA(nvmet_rdma_queue_ida); 127 static LIST_HEAD(nvmet_rdma_queue_list); 128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 129 130 static LIST_HEAD(device_list); 131 static DEFINE_MUTEX(device_list_mutex); 132 133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 139 140 static struct nvmet_fabrics_ops nvmet_rdma_ops; 141 142 /* XXX: really should move to a generic header sooner or later.. */ 143 static inline u32 get_unaligned_le24(const u8 *p) 144 { 145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; 146 } 147 148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 149 { 150 return nvme_is_write(rsp->req.cmd) && 151 rsp->req.data_len && 152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 153 } 154 155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 156 { 157 return !nvme_is_write(rsp->req.cmd) && 158 rsp->req.data_len && 159 !rsp->req.rsp->status && 160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 161 } 162 163 static inline struct nvmet_rdma_rsp * 164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 165 { 166 struct nvmet_rdma_rsp *rsp; 167 unsigned long flags; 168 169 spin_lock_irqsave(&queue->rsps_lock, flags); 170 rsp = list_first_entry(&queue->free_rsps, 171 struct nvmet_rdma_rsp, free_list); 172 list_del(&rsp->free_list); 173 spin_unlock_irqrestore(&queue->rsps_lock, flags); 174 175 return rsp; 176 } 177 178 static inline void 179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 180 { 181 unsigned long flags; 182 183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 186 } 187 188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents) 189 { 190 struct scatterlist *sg; 191 int count; 192 193 if (!sgl || !nents) 194 return; 195 196 for_each_sg(sgl, sg, nents, count) 197 __free_page(sg_page(sg)); 198 kfree(sgl); 199 } 200 201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, 202 u32 length) 203 { 204 struct scatterlist *sg; 205 struct page *page; 206 unsigned int nent; 207 int i = 0; 208 209 nent = DIV_ROUND_UP(length, PAGE_SIZE); 210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 211 if (!sg) 212 goto out; 213 214 sg_init_table(sg, nent); 215 216 while (length) { 217 u32 page_len = min_t(u32, length, PAGE_SIZE); 218 219 page = alloc_page(GFP_KERNEL); 220 if (!page) 221 goto out_free_pages; 222 223 sg_set_page(&sg[i], page, page_len, 0); 224 length -= page_len; 225 i++; 226 } 227 *sgl = sg; 228 *nents = nent; 229 return 0; 230 231 out_free_pages: 232 while (i > 0) { 233 i--; 234 __free_page(sg_page(&sg[i])); 235 } 236 kfree(sg); 237 out: 238 return NVME_SC_INTERNAL; 239 } 240 241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 242 struct nvmet_rdma_cmd *c, bool admin) 243 { 244 /* NVMe command / RDMA RECV */ 245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 246 if (!c->nvme_cmd) 247 goto out; 248 249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 252 goto out_free_cmd; 253 254 c->sge[0].length = sizeof(*c->nvme_cmd); 255 c->sge[0].lkey = ndev->pd->local_dma_lkey; 256 257 if (!admin) { 258 c->inline_page = alloc_pages(GFP_KERNEL, 259 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 260 if (!c->inline_page) 261 goto out_unmap_cmd; 262 c->sge[1].addr = ib_dma_map_page(ndev->device, 263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE, 264 DMA_FROM_DEVICE); 265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr)) 266 goto out_free_inline_page; 267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE; 268 c->sge[1].lkey = ndev->pd->local_dma_lkey; 269 } 270 271 c->cqe.done = nvmet_rdma_recv_done; 272 273 c->wr.wr_cqe = &c->cqe; 274 c->wr.sg_list = c->sge; 275 c->wr.num_sge = admin ? 1 : 2; 276 277 return 0; 278 279 out_free_inline_page: 280 if (!admin) { 281 __free_pages(c->inline_page, 282 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 283 } 284 out_unmap_cmd: 285 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 287 out_free_cmd: 288 kfree(c->nvme_cmd); 289 290 out: 291 return -ENOMEM; 292 } 293 294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 295 struct nvmet_rdma_cmd *c, bool admin) 296 { 297 if (!admin) { 298 ib_dma_unmap_page(ndev->device, c->sge[1].addr, 299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); 300 __free_pages(c->inline_page, 301 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 302 } 303 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 305 kfree(c->nvme_cmd); 306 } 307 308 static struct nvmet_rdma_cmd * 309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 310 int nr_cmds, bool admin) 311 { 312 struct nvmet_rdma_cmd *cmds; 313 int ret = -EINVAL, i; 314 315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 316 if (!cmds) 317 goto out; 318 319 for (i = 0; i < nr_cmds; i++) { 320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 321 if (ret) 322 goto out_free; 323 } 324 325 return cmds; 326 327 out_free: 328 while (--i >= 0) 329 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 330 kfree(cmds); 331 out: 332 return ERR_PTR(ret); 333 } 334 335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 337 { 338 int i; 339 340 for (i = 0; i < nr_cmds; i++) 341 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 342 kfree(cmds); 343 } 344 345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 346 struct nvmet_rdma_rsp *r) 347 { 348 /* NVMe CQE / RDMA SEND */ 349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); 350 if (!r->req.rsp) 351 goto out; 352 353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, 354 sizeof(*r->req.rsp), DMA_TO_DEVICE); 355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 356 goto out_free_rsp; 357 358 r->send_sge.length = sizeof(*r->req.rsp); 359 r->send_sge.lkey = ndev->pd->local_dma_lkey; 360 361 r->send_cqe.done = nvmet_rdma_send_done; 362 363 r->send_wr.wr_cqe = &r->send_cqe; 364 r->send_wr.sg_list = &r->send_sge; 365 r->send_wr.num_sge = 1; 366 r->send_wr.send_flags = IB_SEND_SIGNALED; 367 368 /* Data In / RDMA READ */ 369 r->read_cqe.done = nvmet_rdma_read_data_done; 370 return 0; 371 372 out_free_rsp: 373 kfree(r->req.rsp); 374 out: 375 return -ENOMEM; 376 } 377 378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 379 struct nvmet_rdma_rsp *r) 380 { 381 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 382 sizeof(*r->req.rsp), DMA_TO_DEVICE); 383 kfree(r->req.rsp); 384 } 385 386 static int 387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 388 { 389 struct nvmet_rdma_device *ndev = queue->dev; 390 int nr_rsps = queue->recv_queue_size * 2; 391 int ret = -EINVAL, i; 392 393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 394 GFP_KERNEL); 395 if (!queue->rsps) 396 goto out; 397 398 for (i = 0; i < nr_rsps; i++) { 399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 400 401 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 402 if (ret) 403 goto out_free; 404 405 list_add_tail(&rsp->free_list, &queue->free_rsps); 406 } 407 408 return 0; 409 410 out_free: 411 while (--i >= 0) { 412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 413 414 list_del(&rsp->free_list); 415 nvmet_rdma_free_rsp(ndev, rsp); 416 } 417 kfree(queue->rsps); 418 out: 419 return ret; 420 } 421 422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 423 { 424 struct nvmet_rdma_device *ndev = queue->dev; 425 int i, nr_rsps = queue->recv_queue_size * 2; 426 427 for (i = 0; i < nr_rsps; i++) { 428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 429 430 list_del(&rsp->free_list); 431 nvmet_rdma_free_rsp(ndev, rsp); 432 } 433 kfree(queue->rsps); 434 } 435 436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 437 struct nvmet_rdma_cmd *cmd) 438 { 439 struct ib_recv_wr *bad_wr; 440 441 ib_dma_sync_single_for_device(ndev->device, 442 cmd->sge[0].addr, cmd->sge[0].length, 443 DMA_FROM_DEVICE); 444 445 if (ndev->srq) 446 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr); 447 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr); 448 } 449 450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 451 { 452 spin_lock(&queue->rsp_wr_wait_lock); 453 while (!list_empty(&queue->rsp_wr_wait_list)) { 454 struct nvmet_rdma_rsp *rsp; 455 bool ret; 456 457 rsp = list_entry(queue->rsp_wr_wait_list.next, 458 struct nvmet_rdma_rsp, wait_list); 459 list_del(&rsp->wait_list); 460 461 spin_unlock(&queue->rsp_wr_wait_lock); 462 ret = nvmet_rdma_execute_command(rsp); 463 spin_lock(&queue->rsp_wr_wait_lock); 464 465 if (!ret) { 466 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 467 break; 468 } 469 } 470 spin_unlock(&queue->rsp_wr_wait_lock); 471 } 472 473 474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 475 { 476 struct nvmet_rdma_queue *queue = rsp->queue; 477 478 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 479 480 if (rsp->n_rdma) { 481 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 482 queue->cm_id->port_num, rsp->req.sg, 483 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 484 } 485 486 if (rsp->req.sg != &rsp->cmd->inline_sg) 487 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt); 488 489 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 490 nvmet_rdma_process_wr_wait_list(queue); 491 492 nvmet_rdma_put_rsp(rsp); 493 } 494 495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 496 { 497 if (queue->nvme_sq.ctrl) { 498 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 499 } else { 500 /* 501 * we didn't setup the controller yet in case 502 * of admin connect error, just disconnect and 503 * cleanup the queue 504 */ 505 nvmet_rdma_queue_disconnect(queue); 506 } 507 } 508 509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 510 { 511 struct nvmet_rdma_rsp *rsp = 512 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 513 514 nvmet_rdma_release_rsp(rsp); 515 516 if (unlikely(wc->status != IB_WC_SUCCESS && 517 wc->status != IB_WC_WR_FLUSH_ERR)) { 518 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 519 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 520 nvmet_rdma_error_comp(rsp->queue); 521 } 522 } 523 524 static void nvmet_rdma_queue_response(struct nvmet_req *req) 525 { 526 struct nvmet_rdma_rsp *rsp = 527 container_of(req, struct nvmet_rdma_rsp, req); 528 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 529 struct ib_send_wr *first_wr, *bad_wr; 530 531 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 532 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 533 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 534 } else { 535 rsp->send_wr.opcode = IB_WR_SEND; 536 } 537 538 if (nvmet_rdma_need_data_out(rsp)) 539 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 540 cm_id->port_num, NULL, &rsp->send_wr); 541 else 542 first_wr = &rsp->send_wr; 543 544 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 545 546 ib_dma_sync_single_for_device(rsp->queue->dev->device, 547 rsp->send_sge.addr, rsp->send_sge.length, 548 DMA_TO_DEVICE); 549 550 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) { 551 pr_err("sending cmd response failed\n"); 552 nvmet_rdma_release_rsp(rsp); 553 } 554 } 555 556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 557 { 558 struct nvmet_rdma_rsp *rsp = 559 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 560 struct nvmet_rdma_queue *queue = cq->cq_context; 561 562 WARN_ON(rsp->n_rdma <= 0); 563 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 564 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 565 queue->cm_id->port_num, rsp->req.sg, 566 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 567 rsp->n_rdma = 0; 568 569 if (unlikely(wc->status != IB_WC_SUCCESS)) { 570 nvmet_req_uninit(&rsp->req); 571 nvmet_rdma_release_rsp(rsp); 572 if (wc->status != IB_WC_WR_FLUSH_ERR) { 573 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 574 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 575 nvmet_rdma_error_comp(queue); 576 } 577 return; 578 } 579 580 rsp->req.execute(&rsp->req); 581 } 582 583 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 584 u64 off) 585 { 586 sg_init_table(&rsp->cmd->inline_sg, 1); 587 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off); 588 rsp->req.sg = &rsp->cmd->inline_sg; 589 rsp->req.sg_cnt = 1; 590 } 591 592 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 593 { 594 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 595 u64 off = le64_to_cpu(sgl->addr); 596 u32 len = le32_to_cpu(sgl->length); 597 598 if (!nvme_is_write(rsp->req.cmd)) 599 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 600 601 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) { 602 pr_err("invalid inline data offset!\n"); 603 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 604 } 605 606 /* no data command? */ 607 if (!len) 608 return 0; 609 610 nvmet_rdma_use_inline_sg(rsp, len, off); 611 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 612 return 0; 613 } 614 615 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 616 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 617 { 618 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 619 u64 addr = le64_to_cpu(sgl->addr); 620 u32 len = get_unaligned_le24(sgl->length); 621 u32 key = get_unaligned_le32(sgl->key); 622 int ret; 623 u16 status; 624 625 /* no data command? */ 626 if (!len) 627 return 0; 628 629 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt, 630 len); 631 if (status) 632 return status; 633 634 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 635 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 636 nvmet_data_dir(&rsp->req)); 637 if (ret < 0) 638 return NVME_SC_INTERNAL; 639 rsp->n_rdma += ret; 640 641 if (invalidate) { 642 rsp->invalidate_rkey = key; 643 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 644 } 645 646 return 0; 647 } 648 649 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 650 { 651 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 652 653 switch (sgl->type >> 4) { 654 case NVME_SGL_FMT_DATA_DESC: 655 switch (sgl->type & 0xf) { 656 case NVME_SGL_FMT_OFFSET: 657 return nvmet_rdma_map_sgl_inline(rsp); 658 default: 659 pr_err("invalid SGL subtype: %#x\n", sgl->type); 660 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 661 } 662 case NVME_KEY_SGL_FMT_DATA_DESC: 663 switch (sgl->type & 0xf) { 664 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 665 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 666 case NVME_SGL_FMT_ADDRESS: 667 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 668 default: 669 pr_err("invalid SGL subtype: %#x\n", sgl->type); 670 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 671 } 672 default: 673 pr_err("invalid SGL type: %#x\n", sgl->type); 674 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 675 } 676 } 677 678 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 679 { 680 struct nvmet_rdma_queue *queue = rsp->queue; 681 682 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 683 &queue->sq_wr_avail) < 0)) { 684 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 685 1 + rsp->n_rdma, queue->idx, 686 queue->nvme_sq.ctrl->cntlid); 687 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 688 return false; 689 } 690 691 if (nvmet_rdma_need_data_in(rsp)) { 692 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, 693 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 694 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 695 } else { 696 rsp->req.execute(&rsp->req); 697 } 698 699 return true; 700 } 701 702 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 703 struct nvmet_rdma_rsp *cmd) 704 { 705 u16 status; 706 707 ib_dma_sync_single_for_cpu(queue->dev->device, 708 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 709 DMA_FROM_DEVICE); 710 ib_dma_sync_single_for_cpu(queue->dev->device, 711 cmd->send_sge.addr, cmd->send_sge.length, 712 DMA_TO_DEVICE); 713 714 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 715 &queue->nvme_sq, &nvmet_rdma_ops)) 716 return; 717 718 status = nvmet_rdma_map_sgl(cmd); 719 if (status) 720 goto out_err; 721 722 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 723 spin_lock(&queue->rsp_wr_wait_lock); 724 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 725 spin_unlock(&queue->rsp_wr_wait_lock); 726 } 727 728 return; 729 730 out_err: 731 nvmet_req_complete(&cmd->req, status); 732 } 733 734 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 735 { 736 struct nvmet_rdma_cmd *cmd = 737 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 738 struct nvmet_rdma_queue *queue = cq->cq_context; 739 struct nvmet_rdma_rsp *rsp; 740 741 if (unlikely(wc->status != IB_WC_SUCCESS)) { 742 if (wc->status != IB_WC_WR_FLUSH_ERR) { 743 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 744 wc->wr_cqe, ib_wc_status_msg(wc->status), 745 wc->status); 746 nvmet_rdma_error_comp(queue); 747 } 748 return; 749 } 750 751 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 752 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 753 nvmet_rdma_error_comp(queue); 754 return; 755 } 756 757 cmd->queue = queue; 758 rsp = nvmet_rdma_get_rsp(queue); 759 rsp->queue = queue; 760 rsp->cmd = cmd; 761 rsp->flags = 0; 762 rsp->req.cmd = cmd->nvme_cmd; 763 rsp->req.port = queue->port; 764 rsp->n_rdma = 0; 765 766 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 767 unsigned long flags; 768 769 spin_lock_irqsave(&queue->state_lock, flags); 770 if (queue->state == NVMET_RDMA_Q_CONNECTING) 771 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 772 else 773 nvmet_rdma_put_rsp(rsp); 774 spin_unlock_irqrestore(&queue->state_lock, flags); 775 return; 776 } 777 778 nvmet_rdma_handle_command(queue, rsp); 779 } 780 781 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 782 { 783 if (!ndev->srq) 784 return; 785 786 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 787 ib_destroy_srq(ndev->srq); 788 } 789 790 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 791 { 792 struct ib_srq_init_attr srq_attr = { NULL, }; 793 struct ib_srq *srq; 794 size_t srq_size; 795 int ret, i; 796 797 srq_size = 4095; /* XXX: tune */ 798 799 srq_attr.attr.max_wr = srq_size; 800 srq_attr.attr.max_sge = 2; 801 srq_attr.attr.srq_limit = 0; 802 srq_attr.srq_type = IB_SRQT_BASIC; 803 srq = ib_create_srq(ndev->pd, &srq_attr); 804 if (IS_ERR(srq)) { 805 /* 806 * If SRQs aren't supported we just go ahead and use normal 807 * non-shared receive queues. 808 */ 809 pr_info("SRQ requested but not supported.\n"); 810 return 0; 811 } 812 813 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 814 if (IS_ERR(ndev->srq_cmds)) { 815 ret = PTR_ERR(ndev->srq_cmds); 816 goto out_destroy_srq; 817 } 818 819 ndev->srq = srq; 820 ndev->srq_size = srq_size; 821 822 for (i = 0; i < srq_size; i++) 823 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 824 825 return 0; 826 827 out_destroy_srq: 828 ib_destroy_srq(srq); 829 return ret; 830 } 831 832 static void nvmet_rdma_free_dev(struct kref *ref) 833 { 834 struct nvmet_rdma_device *ndev = 835 container_of(ref, struct nvmet_rdma_device, ref); 836 837 mutex_lock(&device_list_mutex); 838 list_del(&ndev->entry); 839 mutex_unlock(&device_list_mutex); 840 841 nvmet_rdma_destroy_srq(ndev); 842 ib_dealloc_pd(ndev->pd); 843 844 kfree(ndev); 845 } 846 847 static struct nvmet_rdma_device * 848 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 849 { 850 struct nvmet_rdma_device *ndev; 851 int ret; 852 853 mutex_lock(&device_list_mutex); 854 list_for_each_entry(ndev, &device_list, entry) { 855 if (ndev->device->node_guid == cm_id->device->node_guid && 856 kref_get_unless_zero(&ndev->ref)) 857 goto out_unlock; 858 } 859 860 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 861 if (!ndev) 862 goto out_err; 863 864 ndev->device = cm_id->device; 865 kref_init(&ndev->ref); 866 867 ndev->pd = ib_alloc_pd(ndev->device, 0); 868 if (IS_ERR(ndev->pd)) 869 goto out_free_dev; 870 871 if (nvmet_rdma_use_srq) { 872 ret = nvmet_rdma_init_srq(ndev); 873 if (ret) 874 goto out_free_pd; 875 } 876 877 list_add(&ndev->entry, &device_list); 878 out_unlock: 879 mutex_unlock(&device_list_mutex); 880 pr_debug("added %s.\n", ndev->device->name); 881 return ndev; 882 883 out_free_pd: 884 ib_dealloc_pd(ndev->pd); 885 out_free_dev: 886 kfree(ndev); 887 out_err: 888 mutex_unlock(&device_list_mutex); 889 return NULL; 890 } 891 892 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 893 { 894 struct ib_qp_init_attr qp_attr; 895 struct nvmet_rdma_device *ndev = queue->dev; 896 int comp_vector, nr_cqe, ret, i; 897 898 /* 899 * Spread the io queues across completion vectors, 900 * but still keep all admin queues on vector 0. 901 */ 902 comp_vector = !queue->host_qid ? 0 : 903 queue->idx % ndev->device->num_comp_vectors; 904 905 /* 906 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 907 */ 908 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 909 910 queue->cq = ib_alloc_cq(ndev->device, queue, 911 nr_cqe + 1, comp_vector, 912 IB_POLL_WORKQUEUE); 913 if (IS_ERR(queue->cq)) { 914 ret = PTR_ERR(queue->cq); 915 pr_err("failed to create CQ cqe= %d ret= %d\n", 916 nr_cqe + 1, ret); 917 goto out; 918 } 919 920 memset(&qp_attr, 0, sizeof(qp_attr)); 921 qp_attr.qp_context = queue; 922 qp_attr.event_handler = nvmet_rdma_qp_event; 923 qp_attr.send_cq = queue->cq; 924 qp_attr.recv_cq = queue->cq; 925 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 926 qp_attr.qp_type = IB_QPT_RC; 927 /* +1 for drain */ 928 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 929 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; 930 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 931 ndev->device->attrs.max_sge); 932 933 if (ndev->srq) { 934 qp_attr.srq = ndev->srq; 935 } else { 936 /* +1 for drain */ 937 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 938 qp_attr.cap.max_recv_sge = 2; 939 } 940 941 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 942 if (ret) { 943 pr_err("failed to create_qp ret= %d\n", ret); 944 goto err_destroy_cq; 945 } 946 947 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 948 949 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 950 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 951 qp_attr.cap.max_send_wr, queue->cm_id); 952 953 if (!ndev->srq) { 954 for (i = 0; i < queue->recv_queue_size; i++) { 955 queue->cmds[i].queue = queue; 956 nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 957 } 958 } 959 960 out: 961 return ret; 962 963 err_destroy_cq: 964 ib_free_cq(queue->cq); 965 goto out; 966 } 967 968 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 969 { 970 ib_drain_qp(queue->cm_id->qp); 971 rdma_destroy_qp(queue->cm_id); 972 ib_free_cq(queue->cq); 973 } 974 975 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 976 { 977 pr_info("freeing queue %d\n", queue->idx); 978 979 nvmet_sq_destroy(&queue->nvme_sq); 980 981 nvmet_rdma_destroy_queue_ib(queue); 982 if (!queue->dev->srq) { 983 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 984 queue->recv_queue_size, 985 !queue->host_qid); 986 } 987 nvmet_rdma_free_rsps(queue); 988 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 989 kfree(queue); 990 } 991 992 static void nvmet_rdma_release_queue_work(struct work_struct *w) 993 { 994 struct nvmet_rdma_queue *queue = 995 container_of(w, struct nvmet_rdma_queue, release_work); 996 struct rdma_cm_id *cm_id = queue->cm_id; 997 struct nvmet_rdma_device *dev = queue->dev; 998 enum nvmet_rdma_queue_state state = queue->state; 999 1000 nvmet_rdma_free_queue(queue); 1001 1002 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL) 1003 rdma_destroy_id(cm_id); 1004 1005 kref_put(&dev->ref, nvmet_rdma_free_dev); 1006 } 1007 1008 static int 1009 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1010 struct nvmet_rdma_queue *queue) 1011 { 1012 struct nvme_rdma_cm_req *req; 1013 1014 req = (struct nvme_rdma_cm_req *)conn->private_data; 1015 if (!req || conn->private_data_len == 0) 1016 return NVME_RDMA_CM_INVALID_LEN; 1017 1018 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1019 return NVME_RDMA_CM_INVALID_RECFMT; 1020 1021 queue->host_qid = le16_to_cpu(req->qid); 1022 1023 /* 1024 * req->hsqsize corresponds to our recv queue size plus 1 1025 * req->hrqsize corresponds to our send queue size 1026 */ 1027 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1028 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1029 1030 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH) 1031 return NVME_RDMA_CM_INVALID_HSQSIZE; 1032 1033 /* XXX: Should we enforce some kind of max for IO queues? */ 1034 1035 return 0; 1036 } 1037 1038 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1039 enum nvme_rdma_cm_status status) 1040 { 1041 struct nvme_rdma_cm_rej rej; 1042 1043 pr_debug("rejecting connect request: status %d (%s)\n", 1044 status, nvme_rdma_cm_msg(status)); 1045 1046 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1047 rej.sts = cpu_to_le16(status); 1048 1049 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1050 } 1051 1052 static struct nvmet_rdma_queue * 1053 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1054 struct rdma_cm_id *cm_id, 1055 struct rdma_cm_event *event) 1056 { 1057 struct nvmet_rdma_queue *queue; 1058 int ret; 1059 1060 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1061 if (!queue) { 1062 ret = NVME_RDMA_CM_NO_RSC; 1063 goto out_reject; 1064 } 1065 1066 ret = nvmet_sq_init(&queue->nvme_sq); 1067 if (ret) { 1068 ret = NVME_RDMA_CM_NO_RSC; 1069 goto out_free_queue; 1070 } 1071 1072 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1073 if (ret) 1074 goto out_destroy_sq; 1075 1076 /* 1077 * Schedules the actual release because calling rdma_destroy_id from 1078 * inside a CM callback would trigger a deadlock. (great API design..) 1079 */ 1080 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1081 queue->dev = ndev; 1082 queue->cm_id = cm_id; 1083 1084 spin_lock_init(&queue->state_lock); 1085 queue->state = NVMET_RDMA_Q_CONNECTING; 1086 INIT_LIST_HEAD(&queue->rsp_wait_list); 1087 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1088 spin_lock_init(&queue->rsp_wr_wait_lock); 1089 INIT_LIST_HEAD(&queue->free_rsps); 1090 spin_lock_init(&queue->rsps_lock); 1091 INIT_LIST_HEAD(&queue->queue_list); 1092 1093 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1094 if (queue->idx < 0) { 1095 ret = NVME_RDMA_CM_NO_RSC; 1096 goto out_destroy_sq; 1097 } 1098 1099 ret = nvmet_rdma_alloc_rsps(queue); 1100 if (ret) { 1101 ret = NVME_RDMA_CM_NO_RSC; 1102 goto out_ida_remove; 1103 } 1104 1105 if (!ndev->srq) { 1106 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1107 queue->recv_queue_size, 1108 !queue->host_qid); 1109 if (IS_ERR(queue->cmds)) { 1110 ret = NVME_RDMA_CM_NO_RSC; 1111 goto out_free_responses; 1112 } 1113 } 1114 1115 ret = nvmet_rdma_create_queue_ib(queue); 1116 if (ret) { 1117 pr_err("%s: creating RDMA queue failed (%d).\n", 1118 __func__, ret); 1119 ret = NVME_RDMA_CM_NO_RSC; 1120 goto out_free_cmds; 1121 } 1122 1123 return queue; 1124 1125 out_free_cmds: 1126 if (!ndev->srq) { 1127 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1128 queue->recv_queue_size, 1129 !queue->host_qid); 1130 } 1131 out_free_responses: 1132 nvmet_rdma_free_rsps(queue); 1133 out_ida_remove: 1134 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1135 out_destroy_sq: 1136 nvmet_sq_destroy(&queue->nvme_sq); 1137 out_free_queue: 1138 kfree(queue); 1139 out_reject: 1140 nvmet_rdma_cm_reject(cm_id, ret); 1141 return NULL; 1142 } 1143 1144 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1145 { 1146 struct nvmet_rdma_queue *queue = priv; 1147 1148 switch (event->event) { 1149 case IB_EVENT_COMM_EST: 1150 rdma_notify(queue->cm_id, event->event); 1151 break; 1152 default: 1153 pr_err("received IB QP event: %s (%d)\n", 1154 ib_event_msg(event->event), event->event); 1155 break; 1156 } 1157 } 1158 1159 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1160 struct nvmet_rdma_queue *queue, 1161 struct rdma_conn_param *p) 1162 { 1163 struct rdma_conn_param param = { }; 1164 struct nvme_rdma_cm_rep priv = { }; 1165 int ret = -ENOMEM; 1166 1167 param.rnr_retry_count = 7; 1168 param.flow_control = 1; 1169 param.initiator_depth = min_t(u8, p->initiator_depth, 1170 queue->dev->device->attrs.max_qp_init_rd_atom); 1171 param.private_data = &priv; 1172 param.private_data_len = sizeof(priv); 1173 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1174 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1175 1176 ret = rdma_accept(cm_id, ¶m); 1177 if (ret) 1178 pr_err("rdma_accept failed (error code = %d)\n", ret); 1179 1180 return ret; 1181 } 1182 1183 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1184 struct rdma_cm_event *event) 1185 { 1186 struct nvmet_rdma_device *ndev; 1187 struct nvmet_rdma_queue *queue; 1188 int ret = -EINVAL; 1189 1190 ndev = nvmet_rdma_find_get_device(cm_id); 1191 if (!ndev) { 1192 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1193 return -ECONNREFUSED; 1194 } 1195 1196 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1197 if (!queue) { 1198 ret = -ENOMEM; 1199 goto put_device; 1200 } 1201 queue->port = cm_id->context; 1202 1203 if (queue->host_qid == 0) { 1204 /* Let inflight controller teardown complete */ 1205 flush_scheduled_work(); 1206 } 1207 1208 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1209 if (ret) 1210 goto release_queue; 1211 1212 mutex_lock(&nvmet_rdma_queue_mutex); 1213 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1214 mutex_unlock(&nvmet_rdma_queue_mutex); 1215 1216 return 0; 1217 1218 release_queue: 1219 nvmet_rdma_free_queue(queue); 1220 put_device: 1221 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1222 1223 return ret; 1224 } 1225 1226 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1227 { 1228 unsigned long flags; 1229 1230 spin_lock_irqsave(&queue->state_lock, flags); 1231 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1232 pr_warn("trying to establish a connected queue\n"); 1233 goto out_unlock; 1234 } 1235 queue->state = NVMET_RDMA_Q_LIVE; 1236 1237 while (!list_empty(&queue->rsp_wait_list)) { 1238 struct nvmet_rdma_rsp *cmd; 1239 1240 cmd = list_first_entry(&queue->rsp_wait_list, 1241 struct nvmet_rdma_rsp, wait_list); 1242 list_del(&cmd->wait_list); 1243 1244 spin_unlock_irqrestore(&queue->state_lock, flags); 1245 nvmet_rdma_handle_command(queue, cmd); 1246 spin_lock_irqsave(&queue->state_lock, flags); 1247 } 1248 1249 out_unlock: 1250 spin_unlock_irqrestore(&queue->state_lock, flags); 1251 } 1252 1253 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1254 { 1255 bool disconnect = false; 1256 unsigned long flags; 1257 1258 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1259 1260 spin_lock_irqsave(&queue->state_lock, flags); 1261 switch (queue->state) { 1262 case NVMET_RDMA_Q_CONNECTING: 1263 case NVMET_RDMA_Q_LIVE: 1264 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1265 case NVMET_RDMA_IN_DEVICE_REMOVAL: 1266 disconnect = true; 1267 break; 1268 case NVMET_RDMA_Q_DISCONNECTING: 1269 break; 1270 } 1271 spin_unlock_irqrestore(&queue->state_lock, flags); 1272 1273 if (disconnect) { 1274 rdma_disconnect(queue->cm_id); 1275 schedule_work(&queue->release_work); 1276 } 1277 } 1278 1279 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1280 { 1281 bool disconnect = false; 1282 1283 mutex_lock(&nvmet_rdma_queue_mutex); 1284 if (!list_empty(&queue->queue_list)) { 1285 list_del_init(&queue->queue_list); 1286 disconnect = true; 1287 } 1288 mutex_unlock(&nvmet_rdma_queue_mutex); 1289 1290 if (disconnect) 1291 __nvmet_rdma_queue_disconnect(queue); 1292 } 1293 1294 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1295 struct nvmet_rdma_queue *queue) 1296 { 1297 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1298 1299 mutex_lock(&nvmet_rdma_queue_mutex); 1300 if (!list_empty(&queue->queue_list)) 1301 list_del_init(&queue->queue_list); 1302 mutex_unlock(&nvmet_rdma_queue_mutex); 1303 1304 pr_err("failed to connect queue %d\n", queue->idx); 1305 schedule_work(&queue->release_work); 1306 } 1307 1308 /** 1309 * nvme_rdma_device_removal() - Handle RDMA device removal 1310 * @queue: nvmet rdma queue (cm id qp_context) 1311 * @addr: nvmet address (cm_id context) 1312 * 1313 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1314 * to unplug so we should take care of destroying our RDMA resources. 1315 * This event will be generated for each allocated cm_id. 1316 * 1317 * Note that this event can be generated on a normal queue cm_id 1318 * and/or a device bound listener cm_id (where in this case 1319 * queue will be null). 1320 * 1321 * we claim ownership on destroying the cm_id. For queues we move 1322 * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port 1323 * we nullify the priv to prevent double cm_id destruction and destroying 1324 * the cm_id implicitely by returning a non-zero rc to the callout. 1325 */ 1326 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1327 struct nvmet_rdma_queue *queue) 1328 { 1329 unsigned long flags; 1330 1331 if (!queue) { 1332 struct nvmet_port *port = cm_id->context; 1333 1334 /* 1335 * This is a listener cm_id. Make sure that 1336 * future remove_port won't invoke a double 1337 * cm_id destroy. use atomic xchg to make sure 1338 * we don't compete with remove_port. 1339 */ 1340 if (xchg(&port->priv, NULL) != cm_id) 1341 return 0; 1342 } else { 1343 /* 1344 * This is a queue cm_id. Make sure that 1345 * release queue will not destroy the cm_id 1346 * and schedule all ctrl queues removal (only 1347 * if the queue is not disconnecting already). 1348 */ 1349 spin_lock_irqsave(&queue->state_lock, flags); 1350 if (queue->state != NVMET_RDMA_Q_DISCONNECTING) 1351 queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL; 1352 spin_unlock_irqrestore(&queue->state_lock, flags); 1353 nvmet_rdma_queue_disconnect(queue); 1354 flush_scheduled_work(); 1355 } 1356 1357 /* 1358 * We need to return 1 so that the core will destroy 1359 * it's own ID. What a great API design.. 1360 */ 1361 return 1; 1362 } 1363 1364 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1365 struct rdma_cm_event *event) 1366 { 1367 struct nvmet_rdma_queue *queue = NULL; 1368 int ret = 0; 1369 1370 if (cm_id->qp) 1371 queue = cm_id->qp->qp_context; 1372 1373 pr_debug("%s (%d): status %d id %p\n", 1374 rdma_event_msg(event->event), event->event, 1375 event->status, cm_id); 1376 1377 switch (event->event) { 1378 case RDMA_CM_EVENT_CONNECT_REQUEST: 1379 ret = nvmet_rdma_queue_connect(cm_id, event); 1380 break; 1381 case RDMA_CM_EVENT_ESTABLISHED: 1382 nvmet_rdma_queue_established(queue); 1383 break; 1384 case RDMA_CM_EVENT_ADDR_CHANGE: 1385 case RDMA_CM_EVENT_DISCONNECTED: 1386 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1387 /* 1388 * We might end up here when we already freed the qp 1389 * which means queue release sequence is in progress, 1390 * so don't get in the way... 1391 */ 1392 if (queue) 1393 nvmet_rdma_queue_disconnect(queue); 1394 break; 1395 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1396 ret = nvmet_rdma_device_removal(cm_id, queue); 1397 break; 1398 case RDMA_CM_EVENT_REJECTED: 1399 pr_debug("Connection rejected: %s\n", 1400 rdma_reject_msg(cm_id, event->status)); 1401 /* FALLTHROUGH */ 1402 case RDMA_CM_EVENT_UNREACHABLE: 1403 case RDMA_CM_EVENT_CONNECT_ERROR: 1404 nvmet_rdma_queue_connect_fail(cm_id, queue); 1405 break; 1406 default: 1407 pr_err("received unrecognized RDMA CM event %d\n", 1408 event->event); 1409 break; 1410 } 1411 1412 return ret; 1413 } 1414 1415 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1416 { 1417 struct nvmet_rdma_queue *queue; 1418 1419 restart: 1420 mutex_lock(&nvmet_rdma_queue_mutex); 1421 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1422 if (queue->nvme_sq.ctrl == ctrl) { 1423 list_del_init(&queue->queue_list); 1424 mutex_unlock(&nvmet_rdma_queue_mutex); 1425 1426 __nvmet_rdma_queue_disconnect(queue); 1427 goto restart; 1428 } 1429 } 1430 mutex_unlock(&nvmet_rdma_queue_mutex); 1431 } 1432 1433 static int nvmet_rdma_add_port(struct nvmet_port *port) 1434 { 1435 struct rdma_cm_id *cm_id; 1436 struct sockaddr_storage addr = { }; 1437 __kernel_sa_family_t af; 1438 int ret; 1439 1440 switch (port->disc_addr.adrfam) { 1441 case NVMF_ADDR_FAMILY_IP4: 1442 af = AF_INET; 1443 break; 1444 case NVMF_ADDR_FAMILY_IP6: 1445 af = AF_INET6; 1446 break; 1447 default: 1448 pr_err("address family %d not supported\n", 1449 port->disc_addr.adrfam); 1450 return -EINVAL; 1451 } 1452 1453 ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr, 1454 port->disc_addr.trsvcid, &addr); 1455 if (ret) { 1456 pr_err("malformed ip/port passed: %s:%s\n", 1457 port->disc_addr.traddr, port->disc_addr.trsvcid); 1458 return ret; 1459 } 1460 1461 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1462 RDMA_PS_TCP, IB_QPT_RC); 1463 if (IS_ERR(cm_id)) { 1464 pr_err("CM ID creation failed\n"); 1465 return PTR_ERR(cm_id); 1466 } 1467 1468 /* 1469 * Allow both IPv4 and IPv6 sockets to bind a single port 1470 * at the same time. 1471 */ 1472 ret = rdma_set_afonly(cm_id, 1); 1473 if (ret) { 1474 pr_err("rdma_set_afonly failed (%d)\n", ret); 1475 goto out_destroy_id; 1476 } 1477 1478 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr); 1479 if (ret) { 1480 pr_err("binding CM ID to %pISpcs failed (%d)\n", 1481 (struct sockaddr *)&addr, ret); 1482 goto out_destroy_id; 1483 } 1484 1485 ret = rdma_listen(cm_id, 128); 1486 if (ret) { 1487 pr_err("listening to %pISpcs failed (%d)\n", 1488 (struct sockaddr *)&addr, ret); 1489 goto out_destroy_id; 1490 } 1491 1492 pr_info("enabling port %d (%pISpcs)\n", 1493 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr); 1494 port->priv = cm_id; 1495 return 0; 1496 1497 out_destroy_id: 1498 rdma_destroy_id(cm_id); 1499 return ret; 1500 } 1501 1502 static void nvmet_rdma_remove_port(struct nvmet_port *port) 1503 { 1504 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); 1505 1506 if (cm_id) 1507 rdma_destroy_id(cm_id); 1508 } 1509 1510 static struct nvmet_fabrics_ops nvmet_rdma_ops = { 1511 .owner = THIS_MODULE, 1512 .type = NVMF_TRTYPE_RDMA, 1513 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE, 1514 .msdbd = 1, 1515 .has_keyed_sgls = 1, 1516 .add_port = nvmet_rdma_add_port, 1517 .remove_port = nvmet_rdma_remove_port, 1518 .queue_response = nvmet_rdma_queue_response, 1519 .delete_ctrl = nvmet_rdma_delete_ctrl, 1520 }; 1521 1522 static int __init nvmet_rdma_init(void) 1523 { 1524 return nvmet_register_transport(&nvmet_rdma_ops); 1525 } 1526 1527 static void __exit nvmet_rdma_exit(void) 1528 { 1529 struct nvmet_rdma_queue *queue; 1530 1531 nvmet_unregister_transport(&nvmet_rdma_ops); 1532 1533 flush_scheduled_work(); 1534 1535 mutex_lock(&nvmet_rdma_queue_mutex); 1536 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list, 1537 struct nvmet_rdma_queue, queue_list))) { 1538 list_del_init(&queue->queue_list); 1539 1540 mutex_unlock(&nvmet_rdma_queue_mutex); 1541 __nvmet_rdma_queue_disconnect(queue); 1542 mutex_lock(&nvmet_rdma_queue_mutex); 1543 } 1544 mutex_unlock(&nvmet_rdma_queue_mutex); 1545 1546 flush_scheduled_work(); 1547 ida_destroy(&nvmet_rdma_queue_ida); 1548 } 1549 1550 module_init(nvmet_rdma_init); 1551 module_exit(nvmet_rdma_exit); 1552 1553 MODULE_LICENSE("GPL v2"); 1554 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1555