xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19 
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
26 
27 /*
28  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29  */
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE		4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33 
34 /* Assume mpsmin == device_page_size == 4KB */
35 #define NVMET_RDMA_MAX_MDTS			8
36 #define NVMET_RDMA_MAX_METADATA_MDTS		5
37 
38 struct nvmet_rdma_srq;
39 
40 struct nvmet_rdma_cmd {
41 	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
42 	struct ib_cqe		cqe;
43 	struct ib_recv_wr	wr;
44 	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
45 	struct nvme_command     *nvme_cmd;
46 	struct nvmet_rdma_queue	*queue;
47 	struct nvmet_rdma_srq   *nsrq;
48 };
49 
50 enum {
51 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
52 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
53 };
54 
55 struct nvmet_rdma_rsp {
56 	struct ib_sge		send_sge;
57 	struct ib_cqe		send_cqe;
58 	struct ib_send_wr	send_wr;
59 
60 	struct nvmet_rdma_cmd	*cmd;
61 	struct nvmet_rdma_queue	*queue;
62 
63 	struct ib_cqe		read_cqe;
64 	struct ib_cqe		write_cqe;
65 	struct rdma_rw_ctx	rw;
66 
67 	struct nvmet_req	req;
68 
69 	bool			allocated;
70 	u8			n_rdma;
71 	u32			flags;
72 	u32			invalidate_rkey;
73 
74 	struct list_head	wait_list;
75 	struct list_head	free_list;
76 };
77 
78 enum nvmet_rdma_queue_state {
79 	NVMET_RDMA_Q_CONNECTING,
80 	NVMET_RDMA_Q_LIVE,
81 	NVMET_RDMA_Q_DISCONNECTING,
82 };
83 
84 struct nvmet_rdma_queue {
85 	struct rdma_cm_id	*cm_id;
86 	struct ib_qp		*qp;
87 	struct nvmet_port	*port;
88 	struct ib_cq		*cq;
89 	atomic_t		sq_wr_avail;
90 	struct nvmet_rdma_device *dev;
91 	struct nvmet_rdma_srq   *nsrq;
92 	spinlock_t		state_lock;
93 	enum nvmet_rdma_queue_state state;
94 	struct nvmet_cq		nvme_cq;
95 	struct nvmet_sq		nvme_sq;
96 
97 	struct nvmet_rdma_rsp	*rsps;
98 	struct list_head	free_rsps;
99 	spinlock_t		rsps_lock;
100 	struct nvmet_rdma_cmd	*cmds;
101 
102 	struct work_struct	release_work;
103 	struct list_head	rsp_wait_list;
104 	struct list_head	rsp_wr_wait_list;
105 	spinlock_t		rsp_wr_wait_lock;
106 
107 	int			idx;
108 	int			host_qid;
109 	int			comp_vector;
110 	int			recv_queue_size;
111 	int			send_queue_size;
112 
113 	struct list_head	queue_list;
114 };
115 
116 struct nvmet_rdma_port {
117 	struct nvmet_port	*nport;
118 	struct sockaddr_storage addr;
119 	struct rdma_cm_id	*cm_id;
120 	struct delayed_work	repair_work;
121 };
122 
123 struct nvmet_rdma_srq {
124 	struct ib_srq            *srq;
125 	struct nvmet_rdma_cmd    *cmds;
126 	struct nvmet_rdma_device *ndev;
127 };
128 
129 struct nvmet_rdma_device {
130 	struct ib_device	*device;
131 	struct ib_pd		*pd;
132 	struct nvmet_rdma_srq	**srqs;
133 	int			srq_count;
134 	size_t			srq_size;
135 	struct kref		ref;
136 	struct list_head	entry;
137 	int			inline_data_size;
138 	int			inline_page_count;
139 };
140 
141 static bool nvmet_rdma_use_srq;
142 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
143 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
144 
145 static int srq_size_set(const char *val, const struct kernel_param *kp);
146 static const struct kernel_param_ops srq_size_ops = {
147 	.set = srq_size_set,
148 	.get = param_get_int,
149 };
150 
151 static int nvmet_rdma_srq_size = 1024;
152 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
153 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
154 
155 static DEFINE_IDA(nvmet_rdma_queue_ida);
156 static LIST_HEAD(nvmet_rdma_queue_list);
157 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
158 
159 static LIST_HEAD(device_list);
160 static DEFINE_MUTEX(device_list_mutex);
161 
162 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
163 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
164 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
168 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
169 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
170 				struct nvmet_rdma_rsp *r);
171 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
172 				struct nvmet_rdma_rsp *r);
173 
174 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
175 
176 static int srq_size_set(const char *val, const struct kernel_param *kp)
177 {
178 	int n = 0, ret;
179 
180 	ret = kstrtoint(val, 10, &n);
181 	if (ret != 0 || n < 256)
182 		return -EINVAL;
183 
184 	return param_set_int(val, kp);
185 }
186 
187 static int num_pages(int len)
188 {
189 	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
190 }
191 
192 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
193 {
194 	return nvme_is_write(rsp->req.cmd) &&
195 		rsp->req.transfer_len &&
196 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
197 }
198 
199 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
200 {
201 	return !nvme_is_write(rsp->req.cmd) &&
202 		rsp->req.transfer_len &&
203 		!rsp->req.cqe->status &&
204 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
205 }
206 
207 static inline struct nvmet_rdma_rsp *
208 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
209 {
210 	struct nvmet_rdma_rsp *rsp;
211 	unsigned long flags;
212 
213 	spin_lock_irqsave(&queue->rsps_lock, flags);
214 	rsp = list_first_entry_or_null(&queue->free_rsps,
215 				struct nvmet_rdma_rsp, free_list);
216 	if (likely(rsp))
217 		list_del(&rsp->free_list);
218 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
219 
220 	if (unlikely(!rsp)) {
221 		int ret;
222 
223 		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
224 		if (unlikely(!rsp))
225 			return NULL;
226 		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
227 		if (unlikely(ret)) {
228 			kfree(rsp);
229 			return NULL;
230 		}
231 
232 		rsp->allocated = true;
233 	}
234 
235 	return rsp;
236 }
237 
238 static inline void
239 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
240 {
241 	unsigned long flags;
242 
243 	if (unlikely(rsp->allocated)) {
244 		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
245 		kfree(rsp);
246 		return;
247 	}
248 
249 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
250 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
251 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
252 }
253 
254 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
255 				struct nvmet_rdma_cmd *c)
256 {
257 	struct scatterlist *sg;
258 	struct ib_sge *sge;
259 	int i;
260 
261 	if (!ndev->inline_data_size)
262 		return;
263 
264 	sg = c->inline_sg;
265 	sge = &c->sge[1];
266 
267 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
268 		if (sge->length)
269 			ib_dma_unmap_page(ndev->device, sge->addr,
270 					sge->length, DMA_FROM_DEVICE);
271 		if (sg_page(sg))
272 			__free_page(sg_page(sg));
273 	}
274 }
275 
276 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
277 				struct nvmet_rdma_cmd *c)
278 {
279 	struct scatterlist *sg;
280 	struct ib_sge *sge;
281 	struct page *pg;
282 	int len;
283 	int i;
284 
285 	if (!ndev->inline_data_size)
286 		return 0;
287 
288 	sg = c->inline_sg;
289 	sg_init_table(sg, ndev->inline_page_count);
290 	sge = &c->sge[1];
291 	len = ndev->inline_data_size;
292 
293 	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
294 		pg = alloc_page(GFP_KERNEL);
295 		if (!pg)
296 			goto out_err;
297 		sg_assign_page(sg, pg);
298 		sge->addr = ib_dma_map_page(ndev->device,
299 			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
300 		if (ib_dma_mapping_error(ndev->device, sge->addr))
301 			goto out_err;
302 		sge->length = min_t(int, len, PAGE_SIZE);
303 		sge->lkey = ndev->pd->local_dma_lkey;
304 		len -= sge->length;
305 	}
306 
307 	return 0;
308 out_err:
309 	for (; i >= 0; i--, sg--, sge--) {
310 		if (sge->length)
311 			ib_dma_unmap_page(ndev->device, sge->addr,
312 					sge->length, DMA_FROM_DEVICE);
313 		if (sg_page(sg))
314 			__free_page(sg_page(sg));
315 	}
316 	return -ENOMEM;
317 }
318 
319 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
320 			struct nvmet_rdma_cmd *c, bool admin)
321 {
322 	/* NVMe command / RDMA RECV */
323 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
324 	if (!c->nvme_cmd)
325 		goto out;
326 
327 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
328 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
329 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
330 		goto out_free_cmd;
331 
332 	c->sge[0].length = sizeof(*c->nvme_cmd);
333 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
334 
335 	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
336 		goto out_unmap_cmd;
337 
338 	c->cqe.done = nvmet_rdma_recv_done;
339 
340 	c->wr.wr_cqe = &c->cqe;
341 	c->wr.sg_list = c->sge;
342 	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
343 
344 	return 0;
345 
346 out_unmap_cmd:
347 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
348 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
349 out_free_cmd:
350 	kfree(c->nvme_cmd);
351 
352 out:
353 	return -ENOMEM;
354 }
355 
356 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
357 		struct nvmet_rdma_cmd *c, bool admin)
358 {
359 	if (!admin)
360 		nvmet_rdma_free_inline_pages(ndev, c);
361 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
362 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
363 	kfree(c->nvme_cmd);
364 }
365 
366 static struct nvmet_rdma_cmd *
367 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
368 		int nr_cmds, bool admin)
369 {
370 	struct nvmet_rdma_cmd *cmds;
371 	int ret = -EINVAL, i;
372 
373 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
374 	if (!cmds)
375 		goto out;
376 
377 	for (i = 0; i < nr_cmds; i++) {
378 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
379 		if (ret)
380 			goto out_free;
381 	}
382 
383 	return cmds;
384 
385 out_free:
386 	while (--i >= 0)
387 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
388 	kfree(cmds);
389 out:
390 	return ERR_PTR(ret);
391 }
392 
393 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
394 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
395 {
396 	int i;
397 
398 	for (i = 0; i < nr_cmds; i++)
399 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
400 	kfree(cmds);
401 }
402 
403 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
404 		struct nvmet_rdma_rsp *r)
405 {
406 	/* NVMe CQE / RDMA SEND */
407 	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
408 	if (!r->req.cqe)
409 		goto out;
410 
411 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
412 			sizeof(*r->req.cqe), DMA_TO_DEVICE);
413 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
414 		goto out_free_rsp;
415 
416 	r->req.p2p_client = &ndev->device->dev;
417 	r->send_sge.length = sizeof(*r->req.cqe);
418 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
419 
420 	r->send_cqe.done = nvmet_rdma_send_done;
421 
422 	r->send_wr.wr_cqe = &r->send_cqe;
423 	r->send_wr.sg_list = &r->send_sge;
424 	r->send_wr.num_sge = 1;
425 	r->send_wr.send_flags = IB_SEND_SIGNALED;
426 
427 	/* Data In / RDMA READ */
428 	r->read_cqe.done = nvmet_rdma_read_data_done;
429 	/* Data Out / RDMA WRITE */
430 	r->write_cqe.done = nvmet_rdma_write_data_done;
431 
432 	return 0;
433 
434 out_free_rsp:
435 	kfree(r->req.cqe);
436 out:
437 	return -ENOMEM;
438 }
439 
440 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
441 		struct nvmet_rdma_rsp *r)
442 {
443 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
444 				sizeof(*r->req.cqe), DMA_TO_DEVICE);
445 	kfree(r->req.cqe);
446 }
447 
448 static int
449 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
450 {
451 	struct nvmet_rdma_device *ndev = queue->dev;
452 	int nr_rsps = queue->recv_queue_size * 2;
453 	int ret = -EINVAL, i;
454 
455 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
456 			GFP_KERNEL);
457 	if (!queue->rsps)
458 		goto out;
459 
460 	for (i = 0; i < nr_rsps; i++) {
461 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
462 
463 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
464 		if (ret)
465 			goto out_free;
466 
467 		list_add_tail(&rsp->free_list, &queue->free_rsps);
468 	}
469 
470 	return 0;
471 
472 out_free:
473 	while (--i >= 0) {
474 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
475 
476 		list_del(&rsp->free_list);
477 		nvmet_rdma_free_rsp(ndev, rsp);
478 	}
479 	kfree(queue->rsps);
480 out:
481 	return ret;
482 }
483 
484 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
485 {
486 	struct nvmet_rdma_device *ndev = queue->dev;
487 	int i, nr_rsps = queue->recv_queue_size * 2;
488 
489 	for (i = 0; i < nr_rsps; i++) {
490 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
491 
492 		list_del(&rsp->free_list);
493 		nvmet_rdma_free_rsp(ndev, rsp);
494 	}
495 	kfree(queue->rsps);
496 }
497 
498 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
499 		struct nvmet_rdma_cmd *cmd)
500 {
501 	int ret;
502 
503 	ib_dma_sync_single_for_device(ndev->device,
504 		cmd->sge[0].addr, cmd->sge[0].length,
505 		DMA_FROM_DEVICE);
506 
507 	if (cmd->nsrq)
508 		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
509 	else
510 		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
511 
512 	if (unlikely(ret))
513 		pr_err("post_recv cmd failed\n");
514 
515 	return ret;
516 }
517 
518 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
519 {
520 	spin_lock(&queue->rsp_wr_wait_lock);
521 	while (!list_empty(&queue->rsp_wr_wait_list)) {
522 		struct nvmet_rdma_rsp *rsp;
523 		bool ret;
524 
525 		rsp = list_entry(queue->rsp_wr_wait_list.next,
526 				struct nvmet_rdma_rsp, wait_list);
527 		list_del(&rsp->wait_list);
528 
529 		spin_unlock(&queue->rsp_wr_wait_lock);
530 		ret = nvmet_rdma_execute_command(rsp);
531 		spin_lock(&queue->rsp_wr_wait_lock);
532 
533 		if (!ret) {
534 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
535 			break;
536 		}
537 	}
538 	spin_unlock(&queue->rsp_wr_wait_lock);
539 }
540 
541 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
542 {
543 	struct ib_mr_status mr_status;
544 	int ret;
545 	u16 status = 0;
546 
547 	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
548 	if (ret) {
549 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
550 		return NVME_SC_INVALID_PI;
551 	}
552 
553 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
554 		switch (mr_status.sig_err.err_type) {
555 		case IB_SIG_BAD_GUARD:
556 			status = NVME_SC_GUARD_CHECK;
557 			break;
558 		case IB_SIG_BAD_REFTAG:
559 			status = NVME_SC_REFTAG_CHECK;
560 			break;
561 		case IB_SIG_BAD_APPTAG:
562 			status = NVME_SC_APPTAG_CHECK;
563 			break;
564 		}
565 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
566 		       mr_status.sig_err.err_type,
567 		       mr_status.sig_err.expected,
568 		       mr_status.sig_err.actual);
569 	}
570 
571 	return status;
572 }
573 
574 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
575 		struct nvme_command *cmd, struct ib_sig_domain *domain,
576 		u16 control, u8 pi_type)
577 {
578 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
579 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
580 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
581 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
582 	if (control & NVME_RW_PRINFO_PRCHK_REF)
583 		domain->sig.dif.ref_remap = true;
584 
585 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
586 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
587 	domain->sig.dif.app_escape = true;
588 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
589 		domain->sig.dif.ref_escape = true;
590 }
591 
592 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
593 				     struct ib_sig_attrs *sig_attrs)
594 {
595 	struct nvme_command *cmd = req->cmd;
596 	u16 control = le16_to_cpu(cmd->rw.control);
597 	u8 pi_type = req->ns->pi_type;
598 	struct blk_integrity *bi;
599 
600 	bi = bdev_get_integrity(req->ns->bdev);
601 
602 	memset(sig_attrs, 0, sizeof(*sig_attrs));
603 
604 	if (control & NVME_RW_PRINFO_PRACT) {
605 		/* for WRITE_INSERT/READ_STRIP no wire domain */
606 		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
607 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
608 					  pi_type);
609 		/* Clear the PRACT bit since HCA will generate/verify the PI */
610 		control &= ~NVME_RW_PRINFO_PRACT;
611 		cmd->rw.control = cpu_to_le16(control);
612 		/* PI is added by the HW */
613 		req->transfer_len += req->metadata_len;
614 	} else {
615 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
616 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
617 					  pi_type);
618 		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
619 					  pi_type);
620 	}
621 
622 	if (control & NVME_RW_PRINFO_PRCHK_REF)
623 		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
624 	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
625 		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
626 	if (control & NVME_RW_PRINFO_PRCHK_APP)
627 		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
628 }
629 
630 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
631 				  struct ib_sig_attrs *sig_attrs)
632 {
633 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
634 	struct nvmet_req *req = &rsp->req;
635 	int ret;
636 
637 	if (req->metadata_len)
638 		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
639 			cm_id->port_num, req->sg, req->sg_cnt,
640 			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
641 			addr, key, nvmet_data_dir(req));
642 	else
643 		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
644 				       req->sg, req->sg_cnt, 0, addr, key,
645 				       nvmet_data_dir(req));
646 
647 	return ret;
648 }
649 
650 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
651 {
652 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
653 	struct nvmet_req *req = &rsp->req;
654 
655 	if (req->metadata_len)
656 		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
657 			cm_id->port_num, req->sg, req->sg_cnt,
658 			req->metadata_sg, req->metadata_sg_cnt,
659 			nvmet_data_dir(req));
660 	else
661 		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
662 				    req->sg, req->sg_cnt, nvmet_data_dir(req));
663 }
664 
665 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
666 {
667 	struct nvmet_rdma_queue *queue = rsp->queue;
668 
669 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
670 
671 	if (rsp->n_rdma)
672 		nvmet_rdma_rw_ctx_destroy(rsp);
673 
674 	if (rsp->req.sg != rsp->cmd->inline_sg)
675 		nvmet_req_free_sgls(&rsp->req);
676 
677 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
678 		nvmet_rdma_process_wr_wait_list(queue);
679 
680 	nvmet_rdma_put_rsp(rsp);
681 }
682 
683 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
684 {
685 	if (queue->nvme_sq.ctrl) {
686 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
687 	} else {
688 		/*
689 		 * we didn't setup the controller yet in case
690 		 * of admin connect error, just disconnect and
691 		 * cleanup the queue
692 		 */
693 		nvmet_rdma_queue_disconnect(queue);
694 	}
695 }
696 
697 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
698 {
699 	struct nvmet_rdma_rsp *rsp =
700 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
701 	struct nvmet_rdma_queue *queue = cq->cq_context;
702 
703 	nvmet_rdma_release_rsp(rsp);
704 
705 	if (unlikely(wc->status != IB_WC_SUCCESS &&
706 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
707 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
708 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
709 		nvmet_rdma_error_comp(queue);
710 	}
711 }
712 
713 static void nvmet_rdma_queue_response(struct nvmet_req *req)
714 {
715 	struct nvmet_rdma_rsp *rsp =
716 		container_of(req, struct nvmet_rdma_rsp, req);
717 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
718 	struct ib_send_wr *first_wr;
719 
720 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
721 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
722 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
723 	} else {
724 		rsp->send_wr.opcode = IB_WR_SEND;
725 	}
726 
727 	if (nvmet_rdma_need_data_out(rsp)) {
728 		if (rsp->req.metadata_len)
729 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
730 					cm_id->port_num, &rsp->write_cqe, NULL);
731 		else
732 			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
733 					cm_id->port_num, NULL, &rsp->send_wr);
734 	} else {
735 		first_wr = &rsp->send_wr;
736 	}
737 
738 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
739 
740 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
741 		rsp->send_sge.addr, rsp->send_sge.length,
742 		DMA_TO_DEVICE);
743 
744 	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
745 		pr_err("sending cmd response failed\n");
746 		nvmet_rdma_release_rsp(rsp);
747 	}
748 }
749 
750 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
751 {
752 	struct nvmet_rdma_rsp *rsp =
753 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
754 	struct nvmet_rdma_queue *queue = cq->cq_context;
755 	u16 status = 0;
756 
757 	WARN_ON(rsp->n_rdma <= 0);
758 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
759 	rsp->n_rdma = 0;
760 
761 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
762 		nvmet_rdma_rw_ctx_destroy(rsp);
763 		nvmet_req_uninit(&rsp->req);
764 		nvmet_rdma_release_rsp(rsp);
765 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
766 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
767 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
768 			nvmet_rdma_error_comp(queue);
769 		}
770 		return;
771 	}
772 
773 	if (rsp->req.metadata_len)
774 		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
775 	nvmet_rdma_rw_ctx_destroy(rsp);
776 
777 	if (unlikely(status))
778 		nvmet_req_complete(&rsp->req, status);
779 	else
780 		rsp->req.execute(&rsp->req);
781 }
782 
783 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
784 {
785 	struct nvmet_rdma_rsp *rsp =
786 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
787 	struct nvmet_rdma_queue *queue = cq->cq_context;
788 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
789 	u16 status;
790 
791 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
792 		return;
793 
794 	WARN_ON(rsp->n_rdma <= 0);
795 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
796 	rsp->n_rdma = 0;
797 
798 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
799 		nvmet_rdma_rw_ctx_destroy(rsp);
800 		nvmet_req_uninit(&rsp->req);
801 		nvmet_rdma_release_rsp(rsp);
802 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
803 			pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
804 				wc->wr_cqe, ib_wc_status_msg(wc->status),
805 				wc->status);
806 			nvmet_rdma_error_comp(queue);
807 		}
808 		return;
809 	}
810 
811 	/*
812 	 * Upon RDMA completion check the signature status
813 	 * - if succeeded send good NVMe response
814 	 * - if failed send bad NVMe response with appropriate error
815 	 */
816 	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
817 	if (unlikely(status))
818 		rsp->req.cqe->status = cpu_to_le16(status << 1);
819 	nvmet_rdma_rw_ctx_destroy(rsp);
820 
821 	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
822 		pr_err("sending cmd response failed\n");
823 		nvmet_rdma_release_rsp(rsp);
824 	}
825 }
826 
827 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
828 		u64 off)
829 {
830 	int sg_count = num_pages(len);
831 	struct scatterlist *sg;
832 	int i;
833 
834 	sg = rsp->cmd->inline_sg;
835 	for (i = 0; i < sg_count; i++, sg++) {
836 		if (i < sg_count - 1)
837 			sg_unmark_end(sg);
838 		else
839 			sg_mark_end(sg);
840 		sg->offset = off;
841 		sg->length = min_t(int, len, PAGE_SIZE - off);
842 		len -= sg->length;
843 		if (!i)
844 			off = 0;
845 	}
846 
847 	rsp->req.sg = rsp->cmd->inline_sg;
848 	rsp->req.sg_cnt = sg_count;
849 }
850 
851 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
852 {
853 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
854 	u64 off = le64_to_cpu(sgl->addr);
855 	u32 len = le32_to_cpu(sgl->length);
856 
857 	if (!nvme_is_write(rsp->req.cmd)) {
858 		rsp->req.error_loc =
859 			offsetof(struct nvme_common_command, opcode);
860 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
861 	}
862 
863 	if (off + len > rsp->queue->dev->inline_data_size) {
864 		pr_err("invalid inline data offset!\n");
865 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
866 	}
867 
868 	/* no data command? */
869 	if (!len)
870 		return 0;
871 
872 	nvmet_rdma_use_inline_sg(rsp, len, off);
873 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
874 	rsp->req.transfer_len += len;
875 	return 0;
876 }
877 
878 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
879 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
880 {
881 	u64 addr = le64_to_cpu(sgl->addr);
882 	u32 key = get_unaligned_le32(sgl->key);
883 	struct ib_sig_attrs sig_attrs;
884 	int ret;
885 
886 	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
887 
888 	/* no data command? */
889 	if (!rsp->req.transfer_len)
890 		return 0;
891 
892 	if (rsp->req.metadata_len)
893 		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
894 
895 	ret = nvmet_req_alloc_sgls(&rsp->req);
896 	if (unlikely(ret < 0))
897 		goto error_out;
898 
899 	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
900 	if (unlikely(ret < 0))
901 		goto error_out;
902 	rsp->n_rdma += ret;
903 
904 	if (invalidate) {
905 		rsp->invalidate_rkey = key;
906 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
907 	}
908 
909 	return 0;
910 
911 error_out:
912 	rsp->req.transfer_len = 0;
913 	return NVME_SC_INTERNAL;
914 }
915 
916 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
917 {
918 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
919 
920 	switch (sgl->type >> 4) {
921 	case NVME_SGL_FMT_DATA_DESC:
922 		switch (sgl->type & 0xf) {
923 		case NVME_SGL_FMT_OFFSET:
924 			return nvmet_rdma_map_sgl_inline(rsp);
925 		default:
926 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
927 			rsp->req.error_loc =
928 				offsetof(struct nvme_common_command, dptr);
929 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
930 		}
931 	case NVME_KEY_SGL_FMT_DATA_DESC:
932 		switch (sgl->type & 0xf) {
933 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
934 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
935 		case NVME_SGL_FMT_ADDRESS:
936 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
937 		default:
938 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
939 			rsp->req.error_loc =
940 				offsetof(struct nvme_common_command, dptr);
941 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
942 		}
943 	default:
944 		pr_err("invalid SGL type: %#x\n", sgl->type);
945 		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
946 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
947 	}
948 }
949 
950 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
951 {
952 	struct nvmet_rdma_queue *queue = rsp->queue;
953 
954 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
955 			&queue->sq_wr_avail) < 0)) {
956 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
957 				1 + rsp->n_rdma, queue->idx,
958 				queue->nvme_sq.ctrl->cntlid);
959 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
960 		return false;
961 	}
962 
963 	if (nvmet_rdma_need_data_in(rsp)) {
964 		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
965 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
966 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
967 	} else {
968 		rsp->req.execute(&rsp->req);
969 	}
970 
971 	return true;
972 }
973 
974 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
975 		struct nvmet_rdma_rsp *cmd)
976 {
977 	u16 status;
978 
979 	ib_dma_sync_single_for_cpu(queue->dev->device,
980 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
981 		DMA_FROM_DEVICE);
982 	ib_dma_sync_single_for_cpu(queue->dev->device,
983 		cmd->send_sge.addr, cmd->send_sge.length,
984 		DMA_TO_DEVICE);
985 
986 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
987 			&queue->nvme_sq, &nvmet_rdma_ops))
988 		return;
989 
990 	status = nvmet_rdma_map_sgl(cmd);
991 	if (status)
992 		goto out_err;
993 
994 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
995 		spin_lock(&queue->rsp_wr_wait_lock);
996 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
997 		spin_unlock(&queue->rsp_wr_wait_lock);
998 	}
999 
1000 	return;
1001 
1002 out_err:
1003 	nvmet_req_complete(&cmd->req, status);
1004 }
1005 
1006 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1007 {
1008 	struct nvmet_rdma_cmd *cmd =
1009 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1010 	struct nvmet_rdma_queue *queue = cq->cq_context;
1011 	struct nvmet_rdma_rsp *rsp;
1012 
1013 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1014 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1015 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1016 				wc->wr_cqe, ib_wc_status_msg(wc->status),
1017 				wc->status);
1018 			nvmet_rdma_error_comp(queue);
1019 		}
1020 		return;
1021 	}
1022 
1023 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1024 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1025 		nvmet_rdma_error_comp(queue);
1026 		return;
1027 	}
1028 
1029 	cmd->queue = queue;
1030 	rsp = nvmet_rdma_get_rsp(queue);
1031 	if (unlikely(!rsp)) {
1032 		/*
1033 		 * we get here only under memory pressure,
1034 		 * silently drop and have the host retry
1035 		 * as we can't even fail it.
1036 		 */
1037 		nvmet_rdma_post_recv(queue->dev, cmd);
1038 		return;
1039 	}
1040 	rsp->queue = queue;
1041 	rsp->cmd = cmd;
1042 	rsp->flags = 0;
1043 	rsp->req.cmd = cmd->nvme_cmd;
1044 	rsp->req.port = queue->port;
1045 	rsp->n_rdma = 0;
1046 
1047 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1048 		unsigned long flags;
1049 
1050 		spin_lock_irqsave(&queue->state_lock, flags);
1051 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
1052 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1053 		else
1054 			nvmet_rdma_put_rsp(rsp);
1055 		spin_unlock_irqrestore(&queue->state_lock, flags);
1056 		return;
1057 	}
1058 
1059 	nvmet_rdma_handle_command(queue, rsp);
1060 }
1061 
1062 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1063 {
1064 	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1065 			     false);
1066 	ib_destroy_srq(nsrq->srq);
1067 
1068 	kfree(nsrq);
1069 }
1070 
1071 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1072 {
1073 	int i;
1074 
1075 	if (!ndev->srqs)
1076 		return;
1077 
1078 	for (i = 0; i < ndev->srq_count; i++)
1079 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1080 
1081 	kfree(ndev->srqs);
1082 }
1083 
1084 static struct nvmet_rdma_srq *
1085 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1086 {
1087 	struct ib_srq_init_attr srq_attr = { NULL, };
1088 	size_t srq_size = ndev->srq_size;
1089 	struct nvmet_rdma_srq *nsrq;
1090 	struct ib_srq *srq;
1091 	int ret, i;
1092 
1093 	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1094 	if (!nsrq)
1095 		return ERR_PTR(-ENOMEM);
1096 
1097 	srq_attr.attr.max_wr = srq_size;
1098 	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1099 	srq_attr.attr.srq_limit = 0;
1100 	srq_attr.srq_type = IB_SRQT_BASIC;
1101 	srq = ib_create_srq(ndev->pd, &srq_attr);
1102 	if (IS_ERR(srq)) {
1103 		ret = PTR_ERR(srq);
1104 		goto out_free;
1105 	}
1106 
1107 	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1108 	if (IS_ERR(nsrq->cmds)) {
1109 		ret = PTR_ERR(nsrq->cmds);
1110 		goto out_destroy_srq;
1111 	}
1112 
1113 	nsrq->srq = srq;
1114 	nsrq->ndev = ndev;
1115 
1116 	for (i = 0; i < srq_size; i++) {
1117 		nsrq->cmds[i].nsrq = nsrq;
1118 		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1119 		if (ret)
1120 			goto out_free_cmds;
1121 	}
1122 
1123 	return nsrq;
1124 
1125 out_free_cmds:
1126 	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1127 out_destroy_srq:
1128 	ib_destroy_srq(srq);
1129 out_free:
1130 	kfree(nsrq);
1131 	return ERR_PTR(ret);
1132 }
1133 
1134 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1135 {
1136 	int i, ret;
1137 
1138 	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1139 		/*
1140 		 * If SRQs aren't supported we just go ahead and use normal
1141 		 * non-shared receive queues.
1142 		 */
1143 		pr_info("SRQ requested but not supported.\n");
1144 		return 0;
1145 	}
1146 
1147 	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1148 			     nvmet_rdma_srq_size);
1149 	ndev->srq_count = min(ndev->device->num_comp_vectors,
1150 			      ndev->device->attrs.max_srq);
1151 
1152 	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1153 	if (!ndev->srqs)
1154 		return -ENOMEM;
1155 
1156 	for (i = 0; i < ndev->srq_count; i++) {
1157 		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1158 		if (IS_ERR(ndev->srqs[i])) {
1159 			ret = PTR_ERR(ndev->srqs[i]);
1160 			goto err_srq;
1161 		}
1162 	}
1163 
1164 	return 0;
1165 
1166 err_srq:
1167 	while (--i >= 0)
1168 		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1169 	kfree(ndev->srqs);
1170 	return ret;
1171 }
1172 
1173 static void nvmet_rdma_free_dev(struct kref *ref)
1174 {
1175 	struct nvmet_rdma_device *ndev =
1176 		container_of(ref, struct nvmet_rdma_device, ref);
1177 
1178 	mutex_lock(&device_list_mutex);
1179 	list_del(&ndev->entry);
1180 	mutex_unlock(&device_list_mutex);
1181 
1182 	nvmet_rdma_destroy_srqs(ndev);
1183 	ib_dealloc_pd(ndev->pd);
1184 
1185 	kfree(ndev);
1186 }
1187 
1188 static struct nvmet_rdma_device *
1189 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1190 {
1191 	struct nvmet_rdma_port *port = cm_id->context;
1192 	struct nvmet_port *nport = port->nport;
1193 	struct nvmet_rdma_device *ndev;
1194 	int inline_page_count;
1195 	int inline_sge_count;
1196 	int ret;
1197 
1198 	mutex_lock(&device_list_mutex);
1199 	list_for_each_entry(ndev, &device_list, entry) {
1200 		if (ndev->device->node_guid == cm_id->device->node_guid &&
1201 		    kref_get_unless_zero(&ndev->ref))
1202 			goto out_unlock;
1203 	}
1204 
1205 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1206 	if (!ndev)
1207 		goto out_err;
1208 
1209 	inline_page_count = num_pages(nport->inline_data_size);
1210 	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1211 				cm_id->device->attrs.max_recv_sge) - 1;
1212 	if (inline_page_count > inline_sge_count) {
1213 		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1214 			nport->inline_data_size, cm_id->device->name,
1215 			inline_sge_count * PAGE_SIZE);
1216 		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1217 		inline_page_count = inline_sge_count;
1218 	}
1219 	ndev->inline_data_size = nport->inline_data_size;
1220 	ndev->inline_page_count = inline_page_count;
1221 	ndev->device = cm_id->device;
1222 	kref_init(&ndev->ref);
1223 
1224 	ndev->pd = ib_alloc_pd(ndev->device, 0);
1225 	if (IS_ERR(ndev->pd))
1226 		goto out_free_dev;
1227 
1228 	if (nvmet_rdma_use_srq) {
1229 		ret = nvmet_rdma_init_srqs(ndev);
1230 		if (ret)
1231 			goto out_free_pd;
1232 	}
1233 
1234 	list_add(&ndev->entry, &device_list);
1235 out_unlock:
1236 	mutex_unlock(&device_list_mutex);
1237 	pr_debug("added %s.\n", ndev->device->name);
1238 	return ndev;
1239 
1240 out_free_pd:
1241 	ib_dealloc_pd(ndev->pd);
1242 out_free_dev:
1243 	kfree(ndev);
1244 out_err:
1245 	mutex_unlock(&device_list_mutex);
1246 	return NULL;
1247 }
1248 
1249 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1250 {
1251 	struct ib_qp_init_attr qp_attr;
1252 	struct nvmet_rdma_device *ndev = queue->dev;
1253 	int nr_cqe, ret, i, factor;
1254 
1255 	/*
1256 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1257 	 */
1258 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1259 
1260 	queue->cq = ib_alloc_cq(ndev->device, queue,
1261 			nr_cqe + 1, queue->comp_vector,
1262 			IB_POLL_WORKQUEUE);
1263 	if (IS_ERR(queue->cq)) {
1264 		ret = PTR_ERR(queue->cq);
1265 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1266 		       nr_cqe + 1, ret);
1267 		goto out;
1268 	}
1269 
1270 	memset(&qp_attr, 0, sizeof(qp_attr));
1271 	qp_attr.qp_context = queue;
1272 	qp_attr.event_handler = nvmet_rdma_qp_event;
1273 	qp_attr.send_cq = queue->cq;
1274 	qp_attr.recv_cq = queue->cq;
1275 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1276 	qp_attr.qp_type = IB_QPT_RC;
1277 	/* +1 for drain */
1278 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279 	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1280 				   1 << NVMET_RDMA_MAX_MDTS);
1281 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283 					ndev->device->attrs.max_send_sge);
1284 
1285 	if (queue->nsrq) {
1286 		qp_attr.srq = queue->nsrq->srq;
1287 	} else {
1288 		/* +1 for drain */
1289 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290 		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1291 	}
1292 
1293 	if (queue->port->pi_enable && queue->host_qid)
1294 		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1295 
1296 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1297 	if (ret) {
1298 		pr_err("failed to create_qp ret= %d\n", ret);
1299 		goto err_destroy_cq;
1300 	}
1301 	queue->qp = queue->cm_id->qp;
1302 
1303 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1304 
1305 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1306 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1307 		 qp_attr.cap.max_send_wr, queue->cm_id);
1308 
1309 	if (!queue->nsrq) {
1310 		for (i = 0; i < queue->recv_queue_size; i++) {
1311 			queue->cmds[i].queue = queue;
1312 			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1313 			if (ret)
1314 				goto err_destroy_qp;
1315 		}
1316 	}
1317 
1318 out:
1319 	return ret;
1320 
1321 err_destroy_qp:
1322 	rdma_destroy_qp(queue->cm_id);
1323 err_destroy_cq:
1324 	ib_free_cq(queue->cq);
1325 	goto out;
1326 }
1327 
1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1329 {
1330 	ib_drain_qp(queue->qp);
1331 	if (queue->cm_id)
1332 		rdma_destroy_id(queue->cm_id);
1333 	ib_destroy_qp(queue->qp);
1334 	ib_free_cq(queue->cq);
1335 }
1336 
1337 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1338 {
1339 	pr_debug("freeing queue %d\n", queue->idx);
1340 
1341 	nvmet_sq_destroy(&queue->nvme_sq);
1342 
1343 	nvmet_rdma_destroy_queue_ib(queue);
1344 	if (!queue->nsrq) {
1345 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1346 				queue->recv_queue_size,
1347 				!queue->host_qid);
1348 	}
1349 	nvmet_rdma_free_rsps(queue);
1350 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1351 	kfree(queue);
1352 }
1353 
1354 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1355 {
1356 	struct nvmet_rdma_queue *queue =
1357 		container_of(w, struct nvmet_rdma_queue, release_work);
1358 	struct nvmet_rdma_device *dev = queue->dev;
1359 
1360 	nvmet_rdma_free_queue(queue);
1361 
1362 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1363 }
1364 
1365 static int
1366 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1367 				struct nvmet_rdma_queue *queue)
1368 {
1369 	struct nvme_rdma_cm_req *req;
1370 
1371 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1372 	if (!req || conn->private_data_len == 0)
1373 		return NVME_RDMA_CM_INVALID_LEN;
1374 
1375 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1376 		return NVME_RDMA_CM_INVALID_RECFMT;
1377 
1378 	queue->host_qid = le16_to_cpu(req->qid);
1379 
1380 	/*
1381 	 * req->hsqsize corresponds to our recv queue size plus 1
1382 	 * req->hrqsize corresponds to our send queue size
1383 	 */
1384 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1385 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1386 
1387 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1388 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1389 
1390 	/* XXX: Should we enforce some kind of max for IO queues? */
1391 
1392 	return 0;
1393 }
1394 
1395 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1396 				enum nvme_rdma_cm_status status)
1397 {
1398 	struct nvme_rdma_cm_rej rej;
1399 
1400 	pr_debug("rejecting connect request: status %d (%s)\n",
1401 		 status, nvme_rdma_cm_msg(status));
1402 
1403 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1404 	rej.sts = cpu_to_le16(status);
1405 
1406 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1407 }
1408 
1409 static struct nvmet_rdma_queue *
1410 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1411 		struct rdma_cm_id *cm_id,
1412 		struct rdma_cm_event *event)
1413 {
1414 	struct nvmet_rdma_port *port = cm_id->context;
1415 	struct nvmet_rdma_queue *queue;
1416 	int ret;
1417 
1418 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1419 	if (!queue) {
1420 		ret = NVME_RDMA_CM_NO_RSC;
1421 		goto out_reject;
1422 	}
1423 
1424 	ret = nvmet_sq_init(&queue->nvme_sq);
1425 	if (ret) {
1426 		ret = NVME_RDMA_CM_NO_RSC;
1427 		goto out_free_queue;
1428 	}
1429 
1430 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1431 	if (ret)
1432 		goto out_destroy_sq;
1433 
1434 	/*
1435 	 * Schedules the actual release because calling rdma_destroy_id from
1436 	 * inside a CM callback would trigger a deadlock. (great API design..)
1437 	 */
1438 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1439 	queue->dev = ndev;
1440 	queue->cm_id = cm_id;
1441 	queue->port = port->nport;
1442 
1443 	spin_lock_init(&queue->state_lock);
1444 	queue->state = NVMET_RDMA_Q_CONNECTING;
1445 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1446 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1447 	spin_lock_init(&queue->rsp_wr_wait_lock);
1448 	INIT_LIST_HEAD(&queue->free_rsps);
1449 	spin_lock_init(&queue->rsps_lock);
1450 	INIT_LIST_HEAD(&queue->queue_list);
1451 
1452 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1453 	if (queue->idx < 0) {
1454 		ret = NVME_RDMA_CM_NO_RSC;
1455 		goto out_destroy_sq;
1456 	}
1457 
1458 	/*
1459 	 * Spread the io queues across completion vectors,
1460 	 * but still keep all admin queues on vector 0.
1461 	 */
1462 	queue->comp_vector = !queue->host_qid ? 0 :
1463 		queue->idx % ndev->device->num_comp_vectors;
1464 
1465 
1466 	ret = nvmet_rdma_alloc_rsps(queue);
1467 	if (ret) {
1468 		ret = NVME_RDMA_CM_NO_RSC;
1469 		goto out_ida_remove;
1470 	}
1471 
1472 	if (ndev->srqs) {
1473 		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1474 	} else {
1475 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1476 				queue->recv_queue_size,
1477 				!queue->host_qid);
1478 		if (IS_ERR(queue->cmds)) {
1479 			ret = NVME_RDMA_CM_NO_RSC;
1480 			goto out_free_responses;
1481 		}
1482 	}
1483 
1484 	ret = nvmet_rdma_create_queue_ib(queue);
1485 	if (ret) {
1486 		pr_err("%s: creating RDMA queue failed (%d).\n",
1487 			__func__, ret);
1488 		ret = NVME_RDMA_CM_NO_RSC;
1489 		goto out_free_cmds;
1490 	}
1491 
1492 	return queue;
1493 
1494 out_free_cmds:
1495 	if (!queue->nsrq) {
1496 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1497 				queue->recv_queue_size,
1498 				!queue->host_qid);
1499 	}
1500 out_free_responses:
1501 	nvmet_rdma_free_rsps(queue);
1502 out_ida_remove:
1503 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1504 out_destroy_sq:
1505 	nvmet_sq_destroy(&queue->nvme_sq);
1506 out_free_queue:
1507 	kfree(queue);
1508 out_reject:
1509 	nvmet_rdma_cm_reject(cm_id, ret);
1510 	return NULL;
1511 }
1512 
1513 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1514 {
1515 	struct nvmet_rdma_queue *queue = priv;
1516 
1517 	switch (event->event) {
1518 	case IB_EVENT_COMM_EST:
1519 		rdma_notify(queue->cm_id, event->event);
1520 		break;
1521 	case IB_EVENT_QP_LAST_WQE_REACHED:
1522 		pr_debug("received last WQE reached event for queue=0x%p\n",
1523 			 queue);
1524 		break;
1525 	default:
1526 		pr_err("received IB QP event: %s (%d)\n",
1527 		       ib_event_msg(event->event), event->event);
1528 		break;
1529 	}
1530 }
1531 
1532 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1533 		struct nvmet_rdma_queue *queue,
1534 		struct rdma_conn_param *p)
1535 {
1536 	struct rdma_conn_param  param = { };
1537 	struct nvme_rdma_cm_rep priv = { };
1538 	int ret = -ENOMEM;
1539 
1540 	param.rnr_retry_count = 7;
1541 	param.flow_control = 1;
1542 	param.initiator_depth = min_t(u8, p->initiator_depth,
1543 		queue->dev->device->attrs.max_qp_init_rd_atom);
1544 	param.private_data = &priv;
1545 	param.private_data_len = sizeof(priv);
1546 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1547 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1548 
1549 	ret = rdma_accept(cm_id, &param);
1550 	if (ret)
1551 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1552 
1553 	return ret;
1554 }
1555 
1556 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1557 		struct rdma_cm_event *event)
1558 {
1559 	struct nvmet_rdma_device *ndev;
1560 	struct nvmet_rdma_queue *queue;
1561 	int ret = -EINVAL;
1562 
1563 	ndev = nvmet_rdma_find_get_device(cm_id);
1564 	if (!ndev) {
1565 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1566 		return -ECONNREFUSED;
1567 	}
1568 
1569 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1570 	if (!queue) {
1571 		ret = -ENOMEM;
1572 		goto put_device;
1573 	}
1574 
1575 	if (queue->host_qid == 0) {
1576 		/* Let inflight controller teardown complete */
1577 		flush_scheduled_work();
1578 	}
1579 
1580 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1581 	if (ret) {
1582 		/*
1583 		 * Don't destroy the cm_id in free path, as we implicitly
1584 		 * destroy the cm_id here with non-zero ret code.
1585 		 */
1586 		queue->cm_id = NULL;
1587 		goto free_queue;
1588 	}
1589 
1590 	mutex_lock(&nvmet_rdma_queue_mutex);
1591 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1592 	mutex_unlock(&nvmet_rdma_queue_mutex);
1593 
1594 	return 0;
1595 
1596 free_queue:
1597 	nvmet_rdma_free_queue(queue);
1598 put_device:
1599 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1600 
1601 	return ret;
1602 }
1603 
1604 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1605 {
1606 	unsigned long flags;
1607 
1608 	spin_lock_irqsave(&queue->state_lock, flags);
1609 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1610 		pr_warn("trying to establish a connected queue\n");
1611 		goto out_unlock;
1612 	}
1613 	queue->state = NVMET_RDMA_Q_LIVE;
1614 
1615 	while (!list_empty(&queue->rsp_wait_list)) {
1616 		struct nvmet_rdma_rsp *cmd;
1617 
1618 		cmd = list_first_entry(&queue->rsp_wait_list,
1619 					struct nvmet_rdma_rsp, wait_list);
1620 		list_del(&cmd->wait_list);
1621 
1622 		spin_unlock_irqrestore(&queue->state_lock, flags);
1623 		nvmet_rdma_handle_command(queue, cmd);
1624 		spin_lock_irqsave(&queue->state_lock, flags);
1625 	}
1626 
1627 out_unlock:
1628 	spin_unlock_irqrestore(&queue->state_lock, flags);
1629 }
1630 
1631 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1632 {
1633 	bool disconnect = false;
1634 	unsigned long flags;
1635 
1636 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1637 
1638 	spin_lock_irqsave(&queue->state_lock, flags);
1639 	switch (queue->state) {
1640 	case NVMET_RDMA_Q_CONNECTING:
1641 	case NVMET_RDMA_Q_LIVE:
1642 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1643 		disconnect = true;
1644 		break;
1645 	case NVMET_RDMA_Q_DISCONNECTING:
1646 		break;
1647 	}
1648 	spin_unlock_irqrestore(&queue->state_lock, flags);
1649 
1650 	if (disconnect) {
1651 		rdma_disconnect(queue->cm_id);
1652 		schedule_work(&queue->release_work);
1653 	}
1654 }
1655 
1656 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1657 {
1658 	bool disconnect = false;
1659 
1660 	mutex_lock(&nvmet_rdma_queue_mutex);
1661 	if (!list_empty(&queue->queue_list)) {
1662 		list_del_init(&queue->queue_list);
1663 		disconnect = true;
1664 	}
1665 	mutex_unlock(&nvmet_rdma_queue_mutex);
1666 
1667 	if (disconnect)
1668 		__nvmet_rdma_queue_disconnect(queue);
1669 }
1670 
1671 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1672 		struct nvmet_rdma_queue *queue)
1673 {
1674 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1675 
1676 	mutex_lock(&nvmet_rdma_queue_mutex);
1677 	if (!list_empty(&queue->queue_list))
1678 		list_del_init(&queue->queue_list);
1679 	mutex_unlock(&nvmet_rdma_queue_mutex);
1680 
1681 	pr_err("failed to connect queue %d\n", queue->idx);
1682 	schedule_work(&queue->release_work);
1683 }
1684 
1685 /**
1686  * nvme_rdma_device_removal() - Handle RDMA device removal
1687  * @cm_id:	rdma_cm id, used for nvmet port
1688  * @queue:      nvmet rdma queue (cm id qp_context)
1689  *
1690  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1691  * to unplug. Note that this event can be generated on a normal
1692  * queue cm_id and/or a device bound listener cm_id (where in this
1693  * case queue will be null).
1694  *
1695  * We registered an ib_client to handle device removal for queues,
1696  * so we only need to handle the listening port cm_ids. In this case
1697  * we nullify the priv to prevent double cm_id destruction and destroying
1698  * the cm_id implicitely by returning a non-zero rc to the callout.
1699  */
1700 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1701 		struct nvmet_rdma_queue *queue)
1702 {
1703 	struct nvmet_rdma_port *port;
1704 
1705 	if (queue) {
1706 		/*
1707 		 * This is a queue cm_id. we have registered
1708 		 * an ib_client to handle queues removal
1709 		 * so don't interfear and just return.
1710 		 */
1711 		return 0;
1712 	}
1713 
1714 	port = cm_id->context;
1715 
1716 	/*
1717 	 * This is a listener cm_id. Make sure that
1718 	 * future remove_port won't invoke a double
1719 	 * cm_id destroy. use atomic xchg to make sure
1720 	 * we don't compete with remove_port.
1721 	 */
1722 	if (xchg(&port->cm_id, NULL) != cm_id)
1723 		return 0;
1724 
1725 	/*
1726 	 * We need to return 1 so that the core will destroy
1727 	 * it's own ID.  What a great API design..
1728 	 */
1729 	return 1;
1730 }
1731 
1732 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1733 		struct rdma_cm_event *event)
1734 {
1735 	struct nvmet_rdma_queue *queue = NULL;
1736 	int ret = 0;
1737 
1738 	if (cm_id->qp)
1739 		queue = cm_id->qp->qp_context;
1740 
1741 	pr_debug("%s (%d): status %d id %p\n",
1742 		rdma_event_msg(event->event), event->event,
1743 		event->status, cm_id);
1744 
1745 	switch (event->event) {
1746 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1747 		ret = nvmet_rdma_queue_connect(cm_id, event);
1748 		break;
1749 	case RDMA_CM_EVENT_ESTABLISHED:
1750 		nvmet_rdma_queue_established(queue);
1751 		break;
1752 	case RDMA_CM_EVENT_ADDR_CHANGE:
1753 		if (!queue) {
1754 			struct nvmet_rdma_port *port = cm_id->context;
1755 
1756 			schedule_delayed_work(&port->repair_work, 0);
1757 			break;
1758 		}
1759 		/* FALLTHROUGH */
1760 	case RDMA_CM_EVENT_DISCONNECTED:
1761 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1762 		nvmet_rdma_queue_disconnect(queue);
1763 		break;
1764 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1765 		ret = nvmet_rdma_device_removal(cm_id, queue);
1766 		break;
1767 	case RDMA_CM_EVENT_REJECTED:
1768 		pr_debug("Connection rejected: %s\n",
1769 			 rdma_reject_msg(cm_id, event->status));
1770 		/* FALLTHROUGH */
1771 	case RDMA_CM_EVENT_UNREACHABLE:
1772 	case RDMA_CM_EVENT_CONNECT_ERROR:
1773 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1774 		break;
1775 	default:
1776 		pr_err("received unrecognized RDMA CM event %d\n",
1777 			event->event);
1778 		break;
1779 	}
1780 
1781 	return ret;
1782 }
1783 
1784 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1785 {
1786 	struct nvmet_rdma_queue *queue;
1787 
1788 restart:
1789 	mutex_lock(&nvmet_rdma_queue_mutex);
1790 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1791 		if (queue->nvme_sq.ctrl == ctrl) {
1792 			list_del_init(&queue->queue_list);
1793 			mutex_unlock(&nvmet_rdma_queue_mutex);
1794 
1795 			__nvmet_rdma_queue_disconnect(queue);
1796 			goto restart;
1797 		}
1798 	}
1799 	mutex_unlock(&nvmet_rdma_queue_mutex);
1800 }
1801 
1802 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1803 {
1804 	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1805 
1806 	if (cm_id)
1807 		rdma_destroy_id(cm_id);
1808 }
1809 
1810 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1811 {
1812 	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1813 	struct rdma_cm_id *cm_id;
1814 	int ret;
1815 
1816 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1817 			RDMA_PS_TCP, IB_QPT_RC);
1818 	if (IS_ERR(cm_id)) {
1819 		pr_err("CM ID creation failed\n");
1820 		return PTR_ERR(cm_id);
1821 	}
1822 
1823 	/*
1824 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1825 	 * at the same time.
1826 	 */
1827 	ret = rdma_set_afonly(cm_id, 1);
1828 	if (ret) {
1829 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1830 		goto out_destroy_id;
1831 	}
1832 
1833 	ret = rdma_bind_addr(cm_id, addr);
1834 	if (ret) {
1835 		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1836 		goto out_destroy_id;
1837 	}
1838 
1839 	ret = rdma_listen(cm_id, 128);
1840 	if (ret) {
1841 		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1842 		goto out_destroy_id;
1843 	}
1844 
1845 	if (port->nport->pi_enable &&
1846 	    !(cm_id->device->attrs.device_cap_flags &
1847 	      IB_DEVICE_INTEGRITY_HANDOVER)) {
1848 		pr_err("T10-PI is not supported for %pISpcs\n", addr);
1849 		ret = -EINVAL;
1850 		goto out_destroy_id;
1851 	}
1852 
1853 	port->cm_id = cm_id;
1854 	return 0;
1855 
1856 out_destroy_id:
1857 	rdma_destroy_id(cm_id);
1858 	return ret;
1859 }
1860 
1861 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1862 {
1863 	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1864 			struct nvmet_rdma_port, repair_work);
1865 	int ret;
1866 
1867 	nvmet_rdma_disable_port(port);
1868 	ret = nvmet_rdma_enable_port(port);
1869 	if (ret)
1870 		schedule_delayed_work(&port->repair_work, 5 * HZ);
1871 }
1872 
1873 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1874 {
1875 	struct nvmet_rdma_port *port;
1876 	__kernel_sa_family_t af;
1877 	int ret;
1878 
1879 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1880 	if (!port)
1881 		return -ENOMEM;
1882 
1883 	nport->priv = port;
1884 	port->nport = nport;
1885 	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1886 
1887 	switch (nport->disc_addr.adrfam) {
1888 	case NVMF_ADDR_FAMILY_IP4:
1889 		af = AF_INET;
1890 		break;
1891 	case NVMF_ADDR_FAMILY_IP6:
1892 		af = AF_INET6;
1893 		break;
1894 	default:
1895 		pr_err("address family %d not supported\n",
1896 			nport->disc_addr.adrfam);
1897 		ret = -EINVAL;
1898 		goto out_free_port;
1899 	}
1900 
1901 	if (nport->inline_data_size < 0) {
1902 		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1903 	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1904 		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1905 			nport->inline_data_size,
1906 			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1907 		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1908 	}
1909 
1910 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1911 			nport->disc_addr.trsvcid, &port->addr);
1912 	if (ret) {
1913 		pr_err("malformed ip/port passed: %s:%s\n",
1914 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1915 		goto out_free_port;
1916 	}
1917 
1918 	ret = nvmet_rdma_enable_port(port);
1919 	if (ret)
1920 		goto out_free_port;
1921 
1922 	pr_info("enabling port %d (%pISpcs)\n",
1923 		le16_to_cpu(nport->disc_addr.portid),
1924 		(struct sockaddr *)&port->addr);
1925 
1926 	return 0;
1927 
1928 out_free_port:
1929 	kfree(port);
1930 	return ret;
1931 }
1932 
1933 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1934 {
1935 	struct nvmet_rdma_port *port = nport->priv;
1936 
1937 	cancel_delayed_work_sync(&port->repair_work);
1938 	nvmet_rdma_disable_port(port);
1939 	kfree(port);
1940 }
1941 
1942 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1943 		struct nvmet_port *nport, char *traddr)
1944 {
1945 	struct nvmet_rdma_port *port = nport->priv;
1946 	struct rdma_cm_id *cm_id = port->cm_id;
1947 
1948 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1949 		struct nvmet_rdma_rsp *rsp =
1950 			container_of(req, struct nvmet_rdma_rsp, req);
1951 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1952 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1953 
1954 		sprintf(traddr, "%pISc", addr);
1955 	} else {
1956 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1957 	}
1958 }
1959 
1960 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1961 {
1962 	if (ctrl->pi_support)
1963 		return NVMET_RDMA_MAX_METADATA_MDTS;
1964 	return NVMET_RDMA_MAX_MDTS;
1965 }
1966 
1967 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1968 	.owner			= THIS_MODULE,
1969 	.type			= NVMF_TRTYPE_RDMA,
1970 	.msdbd			= 1,
1971 	.has_keyed_sgls		= 1,
1972 	.metadata_support	= 1,
1973 	.add_port		= nvmet_rdma_add_port,
1974 	.remove_port		= nvmet_rdma_remove_port,
1975 	.queue_response		= nvmet_rdma_queue_response,
1976 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1977 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1978 	.get_mdts		= nvmet_rdma_get_mdts,
1979 };
1980 
1981 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1982 {
1983 	struct nvmet_rdma_queue *queue, *tmp;
1984 	struct nvmet_rdma_device *ndev;
1985 	bool found = false;
1986 
1987 	mutex_lock(&device_list_mutex);
1988 	list_for_each_entry(ndev, &device_list, entry) {
1989 		if (ndev->device == ib_device) {
1990 			found = true;
1991 			break;
1992 		}
1993 	}
1994 	mutex_unlock(&device_list_mutex);
1995 
1996 	if (!found)
1997 		return;
1998 
1999 	/*
2000 	 * IB Device that is used by nvmet controllers is being removed,
2001 	 * delete all queues using this device.
2002 	 */
2003 	mutex_lock(&nvmet_rdma_queue_mutex);
2004 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2005 				 queue_list) {
2006 		if (queue->dev->device != ib_device)
2007 			continue;
2008 
2009 		pr_info("Removing queue %d\n", queue->idx);
2010 		list_del_init(&queue->queue_list);
2011 		__nvmet_rdma_queue_disconnect(queue);
2012 	}
2013 	mutex_unlock(&nvmet_rdma_queue_mutex);
2014 
2015 	flush_scheduled_work();
2016 }
2017 
2018 static struct ib_client nvmet_rdma_ib_client = {
2019 	.name   = "nvmet_rdma",
2020 	.remove = nvmet_rdma_remove_one
2021 };
2022 
2023 static int __init nvmet_rdma_init(void)
2024 {
2025 	int ret;
2026 
2027 	ret = ib_register_client(&nvmet_rdma_ib_client);
2028 	if (ret)
2029 		return ret;
2030 
2031 	ret = nvmet_register_transport(&nvmet_rdma_ops);
2032 	if (ret)
2033 		goto err_ib_client;
2034 
2035 	return 0;
2036 
2037 err_ib_client:
2038 	ib_unregister_client(&nvmet_rdma_ib_client);
2039 	return ret;
2040 }
2041 
2042 static void __exit nvmet_rdma_exit(void)
2043 {
2044 	nvmet_unregister_transport(&nvmet_rdma_ops);
2045 	ib_unregister_client(&nvmet_rdma_ib_client);
2046 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2047 	ida_destroy(&nvmet_rdma_queue_ida);
2048 }
2049 
2050 module_init(nvmet_rdma_init);
2051 module_exit(nvmet_rdma_exit);
2052 
2053 MODULE_LICENSE("GPL v2");
2054 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2055