1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <asm/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 struct nvmet_rdma_srq; 41 42 struct nvmet_rdma_cmd { 43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 44 struct ib_cqe cqe; 45 struct ib_recv_wr wr; 46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 47 struct nvme_command *nvme_cmd; 48 struct nvmet_rdma_queue *queue; 49 struct nvmet_rdma_srq *nsrq; 50 }; 51 52 enum { 53 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 54 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 55 }; 56 57 struct nvmet_rdma_rsp { 58 struct ib_sge send_sge; 59 struct ib_cqe send_cqe; 60 struct ib_send_wr send_wr; 61 62 struct nvmet_rdma_cmd *cmd; 63 struct nvmet_rdma_queue *queue; 64 65 struct ib_cqe read_cqe; 66 struct ib_cqe write_cqe; 67 struct rdma_rw_ctx rw; 68 69 struct nvmet_req req; 70 71 bool allocated; 72 u8 n_rdma; 73 u32 flags; 74 u32 invalidate_rkey; 75 76 struct list_head wait_list; 77 struct list_head free_list; 78 }; 79 80 enum nvmet_rdma_queue_state { 81 NVMET_RDMA_Q_CONNECTING, 82 NVMET_RDMA_Q_LIVE, 83 NVMET_RDMA_Q_DISCONNECTING, 84 }; 85 86 struct nvmet_rdma_queue { 87 struct rdma_cm_id *cm_id; 88 struct ib_qp *qp; 89 struct nvmet_port *port; 90 struct ib_cq *cq; 91 atomic_t sq_wr_avail; 92 struct nvmet_rdma_device *dev; 93 struct nvmet_rdma_srq *nsrq; 94 spinlock_t state_lock; 95 enum nvmet_rdma_queue_state state; 96 struct nvmet_cq nvme_cq; 97 struct nvmet_sq nvme_sq; 98 99 struct nvmet_rdma_rsp *rsps; 100 struct list_head free_rsps; 101 spinlock_t rsps_lock; 102 struct nvmet_rdma_cmd *cmds; 103 104 struct work_struct release_work; 105 struct list_head rsp_wait_list; 106 struct list_head rsp_wr_wait_list; 107 spinlock_t rsp_wr_wait_lock; 108 109 int idx; 110 int host_qid; 111 int comp_vector; 112 int recv_queue_size; 113 int send_queue_size; 114 115 struct list_head queue_list; 116 }; 117 118 struct nvmet_rdma_port { 119 struct nvmet_port *nport; 120 struct sockaddr_storage addr; 121 struct rdma_cm_id *cm_id; 122 struct delayed_work repair_work; 123 }; 124 125 struct nvmet_rdma_srq { 126 struct ib_srq *srq; 127 struct nvmet_rdma_cmd *cmds; 128 struct nvmet_rdma_device *ndev; 129 }; 130 131 struct nvmet_rdma_device { 132 struct ib_device *device; 133 struct ib_pd *pd; 134 struct nvmet_rdma_srq **srqs; 135 int srq_count; 136 size_t srq_size; 137 struct kref ref; 138 struct list_head entry; 139 int inline_data_size; 140 int inline_page_count; 141 }; 142 143 static bool nvmet_rdma_use_srq; 144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 145 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 146 147 static int srq_size_set(const char *val, const struct kernel_param *kp); 148 static const struct kernel_param_ops srq_size_ops = { 149 .set = srq_size_set, 150 .get = param_get_int, 151 }; 152 153 static int nvmet_rdma_srq_size = 1024; 154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 156 157 static DEFINE_IDA(nvmet_rdma_queue_ida); 158 static LIST_HEAD(nvmet_rdma_queue_list); 159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 160 161 static LIST_HEAD(device_list); 162 static DEFINE_MUTEX(device_list_mutex); 163 164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 172 struct nvmet_rdma_rsp *r); 173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 174 struct nvmet_rdma_rsp *r); 175 176 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 177 178 static int srq_size_set(const char *val, const struct kernel_param *kp) 179 { 180 int n = 0, ret; 181 182 ret = kstrtoint(val, 10, &n); 183 if (ret != 0 || n < 256) 184 return -EINVAL; 185 186 return param_set_int(val, kp); 187 } 188 189 static int num_pages(int len) 190 { 191 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 192 } 193 194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 195 { 196 return nvme_is_write(rsp->req.cmd) && 197 rsp->req.transfer_len && 198 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 199 } 200 201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 202 { 203 return !nvme_is_write(rsp->req.cmd) && 204 rsp->req.transfer_len && 205 !rsp->req.cqe->status && 206 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 207 } 208 209 static inline struct nvmet_rdma_rsp * 210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 211 { 212 struct nvmet_rdma_rsp *rsp; 213 unsigned long flags; 214 215 spin_lock_irqsave(&queue->rsps_lock, flags); 216 rsp = list_first_entry_or_null(&queue->free_rsps, 217 struct nvmet_rdma_rsp, free_list); 218 if (likely(rsp)) 219 list_del(&rsp->free_list); 220 spin_unlock_irqrestore(&queue->rsps_lock, flags); 221 222 if (unlikely(!rsp)) { 223 int ret; 224 225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 226 if (unlikely(!rsp)) 227 return NULL; 228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 229 if (unlikely(ret)) { 230 kfree(rsp); 231 return NULL; 232 } 233 234 rsp->allocated = true; 235 } 236 237 return rsp; 238 } 239 240 static inline void 241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 242 { 243 unsigned long flags; 244 245 if (unlikely(rsp->allocated)) { 246 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 247 kfree(rsp); 248 return; 249 } 250 251 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 252 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 253 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 254 } 255 256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 257 struct nvmet_rdma_cmd *c) 258 { 259 struct scatterlist *sg; 260 struct ib_sge *sge; 261 int i; 262 263 if (!ndev->inline_data_size) 264 return; 265 266 sg = c->inline_sg; 267 sge = &c->sge[1]; 268 269 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 270 if (sge->length) 271 ib_dma_unmap_page(ndev->device, sge->addr, 272 sge->length, DMA_FROM_DEVICE); 273 if (sg_page(sg)) 274 __free_page(sg_page(sg)); 275 } 276 } 277 278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 279 struct nvmet_rdma_cmd *c) 280 { 281 struct scatterlist *sg; 282 struct ib_sge *sge; 283 struct page *pg; 284 int len; 285 int i; 286 287 if (!ndev->inline_data_size) 288 return 0; 289 290 sg = c->inline_sg; 291 sg_init_table(sg, ndev->inline_page_count); 292 sge = &c->sge[1]; 293 len = ndev->inline_data_size; 294 295 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 296 pg = alloc_page(GFP_KERNEL); 297 if (!pg) 298 goto out_err; 299 sg_assign_page(sg, pg); 300 sge->addr = ib_dma_map_page(ndev->device, 301 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 302 if (ib_dma_mapping_error(ndev->device, sge->addr)) 303 goto out_err; 304 sge->length = min_t(int, len, PAGE_SIZE); 305 sge->lkey = ndev->pd->local_dma_lkey; 306 len -= sge->length; 307 } 308 309 return 0; 310 out_err: 311 for (; i >= 0; i--, sg--, sge--) { 312 if (sge->length) 313 ib_dma_unmap_page(ndev->device, sge->addr, 314 sge->length, DMA_FROM_DEVICE); 315 if (sg_page(sg)) 316 __free_page(sg_page(sg)); 317 } 318 return -ENOMEM; 319 } 320 321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 322 struct nvmet_rdma_cmd *c, bool admin) 323 { 324 /* NVMe command / RDMA RECV */ 325 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 326 if (!c->nvme_cmd) 327 goto out; 328 329 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 330 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 331 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 332 goto out_free_cmd; 333 334 c->sge[0].length = sizeof(*c->nvme_cmd); 335 c->sge[0].lkey = ndev->pd->local_dma_lkey; 336 337 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 338 goto out_unmap_cmd; 339 340 c->cqe.done = nvmet_rdma_recv_done; 341 342 c->wr.wr_cqe = &c->cqe; 343 c->wr.sg_list = c->sge; 344 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 345 346 return 0; 347 348 out_unmap_cmd: 349 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 350 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 351 out_free_cmd: 352 kfree(c->nvme_cmd); 353 354 out: 355 return -ENOMEM; 356 } 357 358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 359 struct nvmet_rdma_cmd *c, bool admin) 360 { 361 if (!admin) 362 nvmet_rdma_free_inline_pages(ndev, c); 363 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 364 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 365 kfree(c->nvme_cmd); 366 } 367 368 static struct nvmet_rdma_cmd * 369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 370 int nr_cmds, bool admin) 371 { 372 struct nvmet_rdma_cmd *cmds; 373 int ret = -EINVAL, i; 374 375 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 376 if (!cmds) 377 goto out; 378 379 for (i = 0; i < nr_cmds; i++) { 380 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 381 if (ret) 382 goto out_free; 383 } 384 385 return cmds; 386 387 out_free: 388 while (--i >= 0) 389 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 390 kfree(cmds); 391 out: 392 return ERR_PTR(ret); 393 } 394 395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 396 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 397 { 398 int i; 399 400 for (i = 0; i < nr_cmds; i++) 401 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 402 kfree(cmds); 403 } 404 405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 406 struct nvmet_rdma_rsp *r) 407 { 408 /* NVMe CQE / RDMA SEND */ 409 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 410 if (!r->req.cqe) 411 goto out; 412 413 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 414 sizeof(*r->req.cqe), DMA_TO_DEVICE); 415 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 416 goto out_free_rsp; 417 418 if (!ib_uses_virt_dma(ndev->device)) 419 r->req.p2p_client = &ndev->device->dev; 420 r->send_sge.length = sizeof(*r->req.cqe); 421 r->send_sge.lkey = ndev->pd->local_dma_lkey; 422 423 r->send_cqe.done = nvmet_rdma_send_done; 424 425 r->send_wr.wr_cqe = &r->send_cqe; 426 r->send_wr.sg_list = &r->send_sge; 427 r->send_wr.num_sge = 1; 428 r->send_wr.send_flags = IB_SEND_SIGNALED; 429 430 /* Data In / RDMA READ */ 431 r->read_cqe.done = nvmet_rdma_read_data_done; 432 /* Data Out / RDMA WRITE */ 433 r->write_cqe.done = nvmet_rdma_write_data_done; 434 435 return 0; 436 437 out_free_rsp: 438 kfree(r->req.cqe); 439 out: 440 return -ENOMEM; 441 } 442 443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 444 struct nvmet_rdma_rsp *r) 445 { 446 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 447 sizeof(*r->req.cqe), DMA_TO_DEVICE); 448 kfree(r->req.cqe); 449 } 450 451 static int 452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 453 { 454 struct nvmet_rdma_device *ndev = queue->dev; 455 int nr_rsps = queue->recv_queue_size * 2; 456 int ret = -EINVAL, i; 457 458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 459 GFP_KERNEL); 460 if (!queue->rsps) 461 goto out; 462 463 for (i = 0; i < nr_rsps; i++) { 464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 465 466 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 467 if (ret) 468 goto out_free; 469 470 list_add_tail(&rsp->free_list, &queue->free_rsps); 471 } 472 473 return 0; 474 475 out_free: 476 while (--i >= 0) { 477 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 478 479 list_del(&rsp->free_list); 480 nvmet_rdma_free_rsp(ndev, rsp); 481 } 482 kfree(queue->rsps); 483 out: 484 return ret; 485 } 486 487 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 488 { 489 struct nvmet_rdma_device *ndev = queue->dev; 490 int i, nr_rsps = queue->recv_queue_size * 2; 491 492 for (i = 0; i < nr_rsps; i++) { 493 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 494 495 list_del(&rsp->free_list); 496 nvmet_rdma_free_rsp(ndev, rsp); 497 } 498 kfree(queue->rsps); 499 } 500 501 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 502 struct nvmet_rdma_cmd *cmd) 503 { 504 int ret; 505 506 ib_dma_sync_single_for_device(ndev->device, 507 cmd->sge[0].addr, cmd->sge[0].length, 508 DMA_FROM_DEVICE); 509 510 if (cmd->nsrq) 511 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 512 else 513 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 514 515 if (unlikely(ret)) 516 pr_err("post_recv cmd failed\n"); 517 518 return ret; 519 } 520 521 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 522 { 523 spin_lock(&queue->rsp_wr_wait_lock); 524 while (!list_empty(&queue->rsp_wr_wait_list)) { 525 struct nvmet_rdma_rsp *rsp; 526 bool ret; 527 528 rsp = list_entry(queue->rsp_wr_wait_list.next, 529 struct nvmet_rdma_rsp, wait_list); 530 list_del(&rsp->wait_list); 531 532 spin_unlock(&queue->rsp_wr_wait_lock); 533 ret = nvmet_rdma_execute_command(rsp); 534 spin_lock(&queue->rsp_wr_wait_lock); 535 536 if (!ret) { 537 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 538 break; 539 } 540 } 541 spin_unlock(&queue->rsp_wr_wait_lock); 542 } 543 544 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 545 { 546 struct ib_mr_status mr_status; 547 int ret; 548 u16 status = 0; 549 550 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 551 if (ret) { 552 pr_err("ib_check_mr_status failed, ret %d\n", ret); 553 return NVME_SC_INVALID_PI; 554 } 555 556 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 557 switch (mr_status.sig_err.err_type) { 558 case IB_SIG_BAD_GUARD: 559 status = NVME_SC_GUARD_CHECK; 560 break; 561 case IB_SIG_BAD_REFTAG: 562 status = NVME_SC_REFTAG_CHECK; 563 break; 564 case IB_SIG_BAD_APPTAG: 565 status = NVME_SC_APPTAG_CHECK; 566 break; 567 } 568 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 569 mr_status.sig_err.err_type, 570 mr_status.sig_err.expected, 571 mr_status.sig_err.actual); 572 } 573 574 return status; 575 } 576 577 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 578 struct nvme_command *cmd, struct ib_sig_domain *domain, 579 u16 control, u8 pi_type) 580 { 581 domain->sig_type = IB_SIG_TYPE_T10_DIF; 582 domain->sig.dif.bg_type = IB_T10DIF_CRC; 583 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 584 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 585 if (control & NVME_RW_PRINFO_PRCHK_REF) 586 domain->sig.dif.ref_remap = true; 587 588 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 589 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 590 domain->sig.dif.app_escape = true; 591 if (pi_type == NVME_NS_DPS_PI_TYPE3) 592 domain->sig.dif.ref_escape = true; 593 } 594 595 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 596 struct ib_sig_attrs *sig_attrs) 597 { 598 struct nvme_command *cmd = req->cmd; 599 u16 control = le16_to_cpu(cmd->rw.control); 600 u8 pi_type = req->ns->pi_type; 601 struct blk_integrity *bi; 602 603 bi = bdev_get_integrity(req->ns->bdev); 604 605 memset(sig_attrs, 0, sizeof(*sig_attrs)); 606 607 if (control & NVME_RW_PRINFO_PRACT) { 608 /* for WRITE_INSERT/READ_STRIP no wire domain */ 609 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 610 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 611 pi_type); 612 /* Clear the PRACT bit since HCA will generate/verify the PI */ 613 control &= ~NVME_RW_PRINFO_PRACT; 614 cmd->rw.control = cpu_to_le16(control); 615 /* PI is added by the HW */ 616 req->transfer_len += req->metadata_len; 617 } else { 618 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 619 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 620 pi_type); 621 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 622 pi_type); 623 } 624 625 if (control & NVME_RW_PRINFO_PRCHK_REF) 626 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 627 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 628 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 629 if (control & NVME_RW_PRINFO_PRCHK_APP) 630 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 631 } 632 633 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 634 struct ib_sig_attrs *sig_attrs) 635 { 636 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 637 struct nvmet_req *req = &rsp->req; 638 int ret; 639 640 if (req->metadata_len) 641 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 642 cm_id->port_num, req->sg, req->sg_cnt, 643 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 644 addr, key, nvmet_data_dir(req)); 645 else 646 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 647 req->sg, req->sg_cnt, 0, addr, key, 648 nvmet_data_dir(req)); 649 650 return ret; 651 } 652 653 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 654 { 655 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 656 struct nvmet_req *req = &rsp->req; 657 658 if (req->metadata_len) 659 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 660 cm_id->port_num, req->sg, req->sg_cnt, 661 req->metadata_sg, req->metadata_sg_cnt, 662 nvmet_data_dir(req)); 663 else 664 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 665 req->sg, req->sg_cnt, nvmet_data_dir(req)); 666 } 667 668 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 669 { 670 struct nvmet_rdma_queue *queue = rsp->queue; 671 672 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 673 674 if (rsp->n_rdma) 675 nvmet_rdma_rw_ctx_destroy(rsp); 676 677 if (rsp->req.sg != rsp->cmd->inline_sg) 678 nvmet_req_free_sgls(&rsp->req); 679 680 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 681 nvmet_rdma_process_wr_wait_list(queue); 682 683 nvmet_rdma_put_rsp(rsp); 684 } 685 686 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 687 { 688 if (queue->nvme_sq.ctrl) { 689 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 690 } else { 691 /* 692 * we didn't setup the controller yet in case 693 * of admin connect error, just disconnect and 694 * cleanup the queue 695 */ 696 nvmet_rdma_queue_disconnect(queue); 697 } 698 } 699 700 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 701 { 702 struct nvmet_rdma_rsp *rsp = 703 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 704 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 705 706 nvmet_rdma_release_rsp(rsp); 707 708 if (unlikely(wc->status != IB_WC_SUCCESS && 709 wc->status != IB_WC_WR_FLUSH_ERR)) { 710 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 711 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 712 nvmet_rdma_error_comp(queue); 713 } 714 } 715 716 static void nvmet_rdma_queue_response(struct nvmet_req *req) 717 { 718 struct nvmet_rdma_rsp *rsp = 719 container_of(req, struct nvmet_rdma_rsp, req); 720 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 721 struct ib_send_wr *first_wr; 722 723 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 724 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 725 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 726 } else { 727 rsp->send_wr.opcode = IB_WR_SEND; 728 } 729 730 if (nvmet_rdma_need_data_out(rsp)) { 731 if (rsp->req.metadata_len) 732 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 733 cm_id->port_num, &rsp->write_cqe, NULL); 734 else 735 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 736 cm_id->port_num, NULL, &rsp->send_wr); 737 } else { 738 first_wr = &rsp->send_wr; 739 } 740 741 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 742 743 ib_dma_sync_single_for_device(rsp->queue->dev->device, 744 rsp->send_sge.addr, rsp->send_sge.length, 745 DMA_TO_DEVICE); 746 747 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 748 pr_err("sending cmd response failed\n"); 749 nvmet_rdma_release_rsp(rsp); 750 } 751 } 752 753 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 754 { 755 struct nvmet_rdma_rsp *rsp = 756 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 757 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 758 u16 status = 0; 759 760 WARN_ON(rsp->n_rdma <= 0); 761 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 762 rsp->n_rdma = 0; 763 764 if (unlikely(wc->status != IB_WC_SUCCESS)) { 765 nvmet_rdma_rw_ctx_destroy(rsp); 766 nvmet_req_uninit(&rsp->req); 767 nvmet_rdma_release_rsp(rsp); 768 if (wc->status != IB_WC_WR_FLUSH_ERR) { 769 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 770 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 771 nvmet_rdma_error_comp(queue); 772 } 773 return; 774 } 775 776 if (rsp->req.metadata_len) 777 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 778 nvmet_rdma_rw_ctx_destroy(rsp); 779 780 if (unlikely(status)) 781 nvmet_req_complete(&rsp->req, status); 782 else 783 rsp->req.execute(&rsp->req); 784 } 785 786 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 787 { 788 struct nvmet_rdma_rsp *rsp = 789 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 790 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 791 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 792 u16 status; 793 794 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 795 return; 796 797 WARN_ON(rsp->n_rdma <= 0); 798 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 799 rsp->n_rdma = 0; 800 801 if (unlikely(wc->status != IB_WC_SUCCESS)) { 802 nvmet_rdma_rw_ctx_destroy(rsp); 803 nvmet_req_uninit(&rsp->req); 804 nvmet_rdma_release_rsp(rsp); 805 if (wc->status != IB_WC_WR_FLUSH_ERR) { 806 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 807 ib_wc_status_msg(wc->status), wc->status); 808 nvmet_rdma_error_comp(queue); 809 } 810 return; 811 } 812 813 /* 814 * Upon RDMA completion check the signature status 815 * - if succeeded send good NVMe response 816 * - if failed send bad NVMe response with appropriate error 817 */ 818 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 819 if (unlikely(status)) 820 rsp->req.cqe->status = cpu_to_le16(status << 1); 821 nvmet_rdma_rw_ctx_destroy(rsp); 822 823 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 824 pr_err("sending cmd response failed\n"); 825 nvmet_rdma_release_rsp(rsp); 826 } 827 } 828 829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 830 u64 off) 831 { 832 int sg_count = num_pages(len); 833 struct scatterlist *sg; 834 int i; 835 836 sg = rsp->cmd->inline_sg; 837 for (i = 0; i < sg_count; i++, sg++) { 838 if (i < sg_count - 1) 839 sg_unmark_end(sg); 840 else 841 sg_mark_end(sg); 842 sg->offset = off; 843 sg->length = min_t(int, len, PAGE_SIZE - off); 844 len -= sg->length; 845 if (!i) 846 off = 0; 847 } 848 849 rsp->req.sg = rsp->cmd->inline_sg; 850 rsp->req.sg_cnt = sg_count; 851 } 852 853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 854 { 855 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 856 u64 off = le64_to_cpu(sgl->addr); 857 u32 len = le32_to_cpu(sgl->length); 858 859 if (!nvme_is_write(rsp->req.cmd)) { 860 rsp->req.error_loc = 861 offsetof(struct nvme_common_command, opcode); 862 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 863 } 864 865 if (off + len > rsp->queue->dev->inline_data_size) { 866 pr_err("invalid inline data offset!\n"); 867 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 868 } 869 870 /* no data command? */ 871 if (!len) 872 return 0; 873 874 nvmet_rdma_use_inline_sg(rsp, len, off); 875 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 876 rsp->req.transfer_len += len; 877 return 0; 878 } 879 880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 881 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 882 { 883 u64 addr = le64_to_cpu(sgl->addr); 884 u32 key = get_unaligned_le32(sgl->key); 885 struct ib_sig_attrs sig_attrs; 886 int ret; 887 888 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 889 890 /* no data command? */ 891 if (!rsp->req.transfer_len) 892 return 0; 893 894 if (rsp->req.metadata_len) 895 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 896 897 ret = nvmet_req_alloc_sgls(&rsp->req); 898 if (unlikely(ret < 0)) 899 goto error_out; 900 901 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 902 if (unlikely(ret < 0)) 903 goto error_out; 904 rsp->n_rdma += ret; 905 906 if (invalidate) { 907 rsp->invalidate_rkey = key; 908 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 909 } 910 911 return 0; 912 913 error_out: 914 rsp->req.transfer_len = 0; 915 return NVME_SC_INTERNAL; 916 } 917 918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 919 { 920 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 921 922 switch (sgl->type >> 4) { 923 case NVME_SGL_FMT_DATA_DESC: 924 switch (sgl->type & 0xf) { 925 case NVME_SGL_FMT_OFFSET: 926 return nvmet_rdma_map_sgl_inline(rsp); 927 default: 928 pr_err("invalid SGL subtype: %#x\n", sgl->type); 929 rsp->req.error_loc = 930 offsetof(struct nvme_common_command, dptr); 931 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 932 } 933 case NVME_KEY_SGL_FMT_DATA_DESC: 934 switch (sgl->type & 0xf) { 935 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 936 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 937 case NVME_SGL_FMT_ADDRESS: 938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 939 default: 940 pr_err("invalid SGL subtype: %#x\n", sgl->type); 941 rsp->req.error_loc = 942 offsetof(struct nvme_common_command, dptr); 943 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 944 } 945 default: 946 pr_err("invalid SGL type: %#x\n", sgl->type); 947 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 948 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 949 } 950 } 951 952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 953 { 954 struct nvmet_rdma_queue *queue = rsp->queue; 955 956 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 957 &queue->sq_wr_avail) < 0)) { 958 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 959 1 + rsp->n_rdma, queue->idx, 960 queue->nvme_sq.ctrl->cntlid); 961 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 962 return false; 963 } 964 965 if (nvmet_rdma_need_data_in(rsp)) { 966 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 967 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 968 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 969 } else { 970 rsp->req.execute(&rsp->req); 971 } 972 973 return true; 974 } 975 976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 977 struct nvmet_rdma_rsp *cmd) 978 { 979 u16 status; 980 981 ib_dma_sync_single_for_cpu(queue->dev->device, 982 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 983 DMA_FROM_DEVICE); 984 ib_dma_sync_single_for_cpu(queue->dev->device, 985 cmd->send_sge.addr, cmd->send_sge.length, 986 DMA_TO_DEVICE); 987 988 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 989 &queue->nvme_sq, &nvmet_rdma_ops)) 990 return; 991 992 status = nvmet_rdma_map_sgl(cmd); 993 if (status) 994 goto out_err; 995 996 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 997 spin_lock(&queue->rsp_wr_wait_lock); 998 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 999 spin_unlock(&queue->rsp_wr_wait_lock); 1000 } 1001 1002 return; 1003 1004 out_err: 1005 nvmet_req_complete(&cmd->req, status); 1006 } 1007 1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1009 { 1010 struct nvmet_rdma_cmd *cmd = 1011 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1012 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1013 struct nvmet_rdma_rsp *rsp; 1014 1015 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1016 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1017 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1018 wc->wr_cqe, ib_wc_status_msg(wc->status), 1019 wc->status); 1020 nvmet_rdma_error_comp(queue); 1021 } 1022 return; 1023 } 1024 1025 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1026 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1027 nvmet_rdma_error_comp(queue); 1028 return; 1029 } 1030 1031 cmd->queue = queue; 1032 rsp = nvmet_rdma_get_rsp(queue); 1033 if (unlikely(!rsp)) { 1034 /* 1035 * we get here only under memory pressure, 1036 * silently drop and have the host retry 1037 * as we can't even fail it. 1038 */ 1039 nvmet_rdma_post_recv(queue->dev, cmd); 1040 return; 1041 } 1042 rsp->queue = queue; 1043 rsp->cmd = cmd; 1044 rsp->flags = 0; 1045 rsp->req.cmd = cmd->nvme_cmd; 1046 rsp->req.port = queue->port; 1047 rsp->n_rdma = 0; 1048 1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1050 unsigned long flags; 1051 1052 spin_lock_irqsave(&queue->state_lock, flags); 1053 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1055 else 1056 nvmet_rdma_put_rsp(rsp); 1057 spin_unlock_irqrestore(&queue->state_lock, flags); 1058 return; 1059 } 1060 1061 nvmet_rdma_handle_command(queue, rsp); 1062 } 1063 1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1065 { 1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1067 false); 1068 ib_destroy_srq(nsrq->srq); 1069 1070 kfree(nsrq); 1071 } 1072 1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1074 { 1075 int i; 1076 1077 if (!ndev->srqs) 1078 return; 1079 1080 for (i = 0; i < ndev->srq_count; i++) 1081 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1082 1083 kfree(ndev->srqs); 1084 } 1085 1086 static struct nvmet_rdma_srq * 1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1088 { 1089 struct ib_srq_init_attr srq_attr = { NULL, }; 1090 size_t srq_size = ndev->srq_size; 1091 struct nvmet_rdma_srq *nsrq; 1092 struct ib_srq *srq; 1093 int ret, i; 1094 1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1096 if (!nsrq) 1097 return ERR_PTR(-ENOMEM); 1098 1099 srq_attr.attr.max_wr = srq_size; 1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1101 srq_attr.attr.srq_limit = 0; 1102 srq_attr.srq_type = IB_SRQT_BASIC; 1103 srq = ib_create_srq(ndev->pd, &srq_attr); 1104 if (IS_ERR(srq)) { 1105 ret = PTR_ERR(srq); 1106 goto out_free; 1107 } 1108 1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1110 if (IS_ERR(nsrq->cmds)) { 1111 ret = PTR_ERR(nsrq->cmds); 1112 goto out_destroy_srq; 1113 } 1114 1115 nsrq->srq = srq; 1116 nsrq->ndev = ndev; 1117 1118 for (i = 0; i < srq_size; i++) { 1119 nsrq->cmds[i].nsrq = nsrq; 1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1121 if (ret) 1122 goto out_free_cmds; 1123 } 1124 1125 return nsrq; 1126 1127 out_free_cmds: 1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1129 out_destroy_srq: 1130 ib_destroy_srq(srq); 1131 out_free: 1132 kfree(nsrq); 1133 return ERR_PTR(ret); 1134 } 1135 1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1137 { 1138 int i, ret; 1139 1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1141 /* 1142 * If SRQs aren't supported we just go ahead and use normal 1143 * non-shared receive queues. 1144 */ 1145 pr_info("SRQ requested but not supported.\n"); 1146 return 0; 1147 } 1148 1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1150 nvmet_rdma_srq_size); 1151 ndev->srq_count = min(ndev->device->num_comp_vectors, 1152 ndev->device->attrs.max_srq); 1153 1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1155 if (!ndev->srqs) 1156 return -ENOMEM; 1157 1158 for (i = 0; i < ndev->srq_count; i++) { 1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1160 if (IS_ERR(ndev->srqs[i])) { 1161 ret = PTR_ERR(ndev->srqs[i]); 1162 goto err_srq; 1163 } 1164 } 1165 1166 return 0; 1167 1168 err_srq: 1169 while (--i >= 0) 1170 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1171 kfree(ndev->srqs); 1172 return ret; 1173 } 1174 1175 static void nvmet_rdma_free_dev(struct kref *ref) 1176 { 1177 struct nvmet_rdma_device *ndev = 1178 container_of(ref, struct nvmet_rdma_device, ref); 1179 1180 mutex_lock(&device_list_mutex); 1181 list_del(&ndev->entry); 1182 mutex_unlock(&device_list_mutex); 1183 1184 nvmet_rdma_destroy_srqs(ndev); 1185 ib_dealloc_pd(ndev->pd); 1186 1187 kfree(ndev); 1188 } 1189 1190 static struct nvmet_rdma_device * 1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1192 { 1193 struct nvmet_rdma_port *port = cm_id->context; 1194 struct nvmet_port *nport = port->nport; 1195 struct nvmet_rdma_device *ndev; 1196 int inline_page_count; 1197 int inline_sge_count; 1198 int ret; 1199 1200 mutex_lock(&device_list_mutex); 1201 list_for_each_entry(ndev, &device_list, entry) { 1202 if (ndev->device->node_guid == cm_id->device->node_guid && 1203 kref_get_unless_zero(&ndev->ref)) 1204 goto out_unlock; 1205 } 1206 1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1208 if (!ndev) 1209 goto out_err; 1210 1211 inline_page_count = num_pages(nport->inline_data_size); 1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1213 cm_id->device->attrs.max_recv_sge) - 1; 1214 if (inline_page_count > inline_sge_count) { 1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1216 nport->inline_data_size, cm_id->device->name, 1217 inline_sge_count * PAGE_SIZE); 1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1219 inline_page_count = inline_sge_count; 1220 } 1221 ndev->inline_data_size = nport->inline_data_size; 1222 ndev->inline_page_count = inline_page_count; 1223 1224 if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags & 1225 IB_DEVICE_INTEGRITY_HANDOVER)) { 1226 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1227 cm_id->device->name); 1228 nport->pi_enable = false; 1229 } 1230 1231 ndev->device = cm_id->device; 1232 kref_init(&ndev->ref); 1233 1234 ndev->pd = ib_alloc_pd(ndev->device, 0); 1235 if (IS_ERR(ndev->pd)) 1236 goto out_free_dev; 1237 1238 if (nvmet_rdma_use_srq) { 1239 ret = nvmet_rdma_init_srqs(ndev); 1240 if (ret) 1241 goto out_free_pd; 1242 } 1243 1244 list_add(&ndev->entry, &device_list); 1245 out_unlock: 1246 mutex_unlock(&device_list_mutex); 1247 pr_debug("added %s.\n", ndev->device->name); 1248 return ndev; 1249 1250 out_free_pd: 1251 ib_dealloc_pd(ndev->pd); 1252 out_free_dev: 1253 kfree(ndev); 1254 out_err: 1255 mutex_unlock(&device_list_mutex); 1256 return NULL; 1257 } 1258 1259 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1260 { 1261 struct ib_qp_init_attr qp_attr = { }; 1262 struct nvmet_rdma_device *ndev = queue->dev; 1263 int nr_cqe, ret, i, factor; 1264 1265 /* 1266 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1267 */ 1268 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1269 1270 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1271 queue->comp_vector, IB_POLL_WORKQUEUE); 1272 if (IS_ERR(queue->cq)) { 1273 ret = PTR_ERR(queue->cq); 1274 pr_err("failed to create CQ cqe= %d ret= %d\n", 1275 nr_cqe + 1, ret); 1276 goto out; 1277 } 1278 1279 qp_attr.qp_context = queue; 1280 qp_attr.event_handler = nvmet_rdma_qp_event; 1281 qp_attr.send_cq = queue->cq; 1282 qp_attr.recv_cq = queue->cq; 1283 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1284 qp_attr.qp_type = IB_QPT_RC; 1285 /* +1 for drain */ 1286 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1287 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1288 1 << NVMET_RDMA_MAX_MDTS); 1289 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1290 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1291 ndev->device->attrs.max_send_sge); 1292 1293 if (queue->nsrq) { 1294 qp_attr.srq = queue->nsrq->srq; 1295 } else { 1296 /* +1 for drain */ 1297 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1298 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1299 } 1300 1301 if (queue->port->pi_enable && queue->host_qid) 1302 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1303 1304 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1305 if (ret) { 1306 pr_err("failed to create_qp ret= %d\n", ret); 1307 goto err_destroy_cq; 1308 } 1309 queue->qp = queue->cm_id->qp; 1310 1311 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1312 1313 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1314 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1315 qp_attr.cap.max_send_wr, queue->cm_id); 1316 1317 if (!queue->nsrq) { 1318 for (i = 0; i < queue->recv_queue_size; i++) { 1319 queue->cmds[i].queue = queue; 1320 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1321 if (ret) 1322 goto err_destroy_qp; 1323 } 1324 } 1325 1326 out: 1327 return ret; 1328 1329 err_destroy_qp: 1330 rdma_destroy_qp(queue->cm_id); 1331 err_destroy_cq: 1332 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1333 goto out; 1334 } 1335 1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1337 { 1338 ib_drain_qp(queue->qp); 1339 if (queue->cm_id) 1340 rdma_destroy_id(queue->cm_id); 1341 ib_destroy_qp(queue->qp); 1342 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1343 queue->send_queue_size + 1); 1344 } 1345 1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1347 { 1348 pr_debug("freeing queue %d\n", queue->idx); 1349 1350 nvmet_sq_destroy(&queue->nvme_sq); 1351 1352 nvmet_rdma_destroy_queue_ib(queue); 1353 if (!queue->nsrq) { 1354 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1355 queue->recv_queue_size, 1356 !queue->host_qid); 1357 } 1358 nvmet_rdma_free_rsps(queue); 1359 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1360 kfree(queue); 1361 } 1362 1363 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1364 { 1365 struct nvmet_rdma_queue *queue = 1366 container_of(w, struct nvmet_rdma_queue, release_work); 1367 struct nvmet_rdma_device *dev = queue->dev; 1368 1369 nvmet_rdma_free_queue(queue); 1370 1371 kref_put(&dev->ref, nvmet_rdma_free_dev); 1372 } 1373 1374 static int 1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1376 struct nvmet_rdma_queue *queue) 1377 { 1378 struct nvme_rdma_cm_req *req; 1379 1380 req = (struct nvme_rdma_cm_req *)conn->private_data; 1381 if (!req || conn->private_data_len == 0) 1382 return NVME_RDMA_CM_INVALID_LEN; 1383 1384 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1385 return NVME_RDMA_CM_INVALID_RECFMT; 1386 1387 queue->host_qid = le16_to_cpu(req->qid); 1388 1389 /* 1390 * req->hsqsize corresponds to our recv queue size plus 1 1391 * req->hrqsize corresponds to our send queue size 1392 */ 1393 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1394 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1395 1396 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1397 return NVME_RDMA_CM_INVALID_HSQSIZE; 1398 1399 /* XXX: Should we enforce some kind of max for IO queues? */ 1400 1401 return 0; 1402 } 1403 1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1405 enum nvme_rdma_cm_status status) 1406 { 1407 struct nvme_rdma_cm_rej rej; 1408 1409 pr_debug("rejecting connect request: status %d (%s)\n", 1410 status, nvme_rdma_cm_msg(status)); 1411 1412 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1413 rej.sts = cpu_to_le16(status); 1414 1415 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1416 IB_CM_REJ_CONSUMER_DEFINED); 1417 } 1418 1419 static struct nvmet_rdma_queue * 1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1421 struct rdma_cm_id *cm_id, 1422 struct rdma_cm_event *event) 1423 { 1424 struct nvmet_rdma_port *port = cm_id->context; 1425 struct nvmet_rdma_queue *queue; 1426 int ret; 1427 1428 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1429 if (!queue) { 1430 ret = NVME_RDMA_CM_NO_RSC; 1431 goto out_reject; 1432 } 1433 1434 ret = nvmet_sq_init(&queue->nvme_sq); 1435 if (ret) { 1436 ret = NVME_RDMA_CM_NO_RSC; 1437 goto out_free_queue; 1438 } 1439 1440 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1441 if (ret) 1442 goto out_destroy_sq; 1443 1444 /* 1445 * Schedules the actual release because calling rdma_destroy_id from 1446 * inside a CM callback would trigger a deadlock. (great API design..) 1447 */ 1448 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1449 queue->dev = ndev; 1450 queue->cm_id = cm_id; 1451 queue->port = port->nport; 1452 1453 spin_lock_init(&queue->state_lock); 1454 queue->state = NVMET_RDMA_Q_CONNECTING; 1455 INIT_LIST_HEAD(&queue->rsp_wait_list); 1456 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1457 spin_lock_init(&queue->rsp_wr_wait_lock); 1458 INIT_LIST_HEAD(&queue->free_rsps); 1459 spin_lock_init(&queue->rsps_lock); 1460 INIT_LIST_HEAD(&queue->queue_list); 1461 1462 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1463 if (queue->idx < 0) { 1464 ret = NVME_RDMA_CM_NO_RSC; 1465 goto out_destroy_sq; 1466 } 1467 1468 /* 1469 * Spread the io queues across completion vectors, 1470 * but still keep all admin queues on vector 0. 1471 */ 1472 queue->comp_vector = !queue->host_qid ? 0 : 1473 queue->idx % ndev->device->num_comp_vectors; 1474 1475 1476 ret = nvmet_rdma_alloc_rsps(queue); 1477 if (ret) { 1478 ret = NVME_RDMA_CM_NO_RSC; 1479 goto out_ida_remove; 1480 } 1481 1482 if (ndev->srqs) { 1483 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1484 } else { 1485 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1486 queue->recv_queue_size, 1487 !queue->host_qid); 1488 if (IS_ERR(queue->cmds)) { 1489 ret = NVME_RDMA_CM_NO_RSC; 1490 goto out_free_responses; 1491 } 1492 } 1493 1494 ret = nvmet_rdma_create_queue_ib(queue); 1495 if (ret) { 1496 pr_err("%s: creating RDMA queue failed (%d).\n", 1497 __func__, ret); 1498 ret = NVME_RDMA_CM_NO_RSC; 1499 goto out_free_cmds; 1500 } 1501 1502 return queue; 1503 1504 out_free_cmds: 1505 if (!queue->nsrq) { 1506 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1507 queue->recv_queue_size, 1508 !queue->host_qid); 1509 } 1510 out_free_responses: 1511 nvmet_rdma_free_rsps(queue); 1512 out_ida_remove: 1513 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1514 out_destroy_sq: 1515 nvmet_sq_destroy(&queue->nvme_sq); 1516 out_free_queue: 1517 kfree(queue); 1518 out_reject: 1519 nvmet_rdma_cm_reject(cm_id, ret); 1520 return NULL; 1521 } 1522 1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1524 { 1525 struct nvmet_rdma_queue *queue = priv; 1526 1527 switch (event->event) { 1528 case IB_EVENT_COMM_EST: 1529 rdma_notify(queue->cm_id, event->event); 1530 break; 1531 case IB_EVENT_QP_LAST_WQE_REACHED: 1532 pr_debug("received last WQE reached event for queue=0x%p\n", 1533 queue); 1534 break; 1535 default: 1536 pr_err("received IB QP event: %s (%d)\n", 1537 ib_event_msg(event->event), event->event); 1538 break; 1539 } 1540 } 1541 1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1543 struct nvmet_rdma_queue *queue, 1544 struct rdma_conn_param *p) 1545 { 1546 struct rdma_conn_param param = { }; 1547 struct nvme_rdma_cm_rep priv = { }; 1548 int ret = -ENOMEM; 1549 1550 param.rnr_retry_count = 7; 1551 param.flow_control = 1; 1552 param.initiator_depth = min_t(u8, p->initiator_depth, 1553 queue->dev->device->attrs.max_qp_init_rd_atom); 1554 param.private_data = &priv; 1555 param.private_data_len = sizeof(priv); 1556 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1557 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1558 1559 ret = rdma_accept(cm_id, ¶m); 1560 if (ret) 1561 pr_err("rdma_accept failed (error code = %d)\n", ret); 1562 1563 return ret; 1564 } 1565 1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1567 struct rdma_cm_event *event) 1568 { 1569 struct nvmet_rdma_device *ndev; 1570 struct nvmet_rdma_queue *queue; 1571 int ret = -EINVAL; 1572 1573 ndev = nvmet_rdma_find_get_device(cm_id); 1574 if (!ndev) { 1575 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1576 return -ECONNREFUSED; 1577 } 1578 1579 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1580 if (!queue) { 1581 ret = -ENOMEM; 1582 goto put_device; 1583 } 1584 1585 if (queue->host_qid == 0) { 1586 /* Let inflight controller teardown complete */ 1587 flush_scheduled_work(); 1588 } 1589 1590 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1591 if (ret) { 1592 /* 1593 * Don't destroy the cm_id in free path, as we implicitly 1594 * destroy the cm_id here with non-zero ret code. 1595 */ 1596 queue->cm_id = NULL; 1597 goto free_queue; 1598 } 1599 1600 mutex_lock(&nvmet_rdma_queue_mutex); 1601 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1602 mutex_unlock(&nvmet_rdma_queue_mutex); 1603 1604 return 0; 1605 1606 free_queue: 1607 nvmet_rdma_free_queue(queue); 1608 put_device: 1609 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1610 1611 return ret; 1612 } 1613 1614 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1615 { 1616 unsigned long flags; 1617 1618 spin_lock_irqsave(&queue->state_lock, flags); 1619 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1620 pr_warn("trying to establish a connected queue\n"); 1621 goto out_unlock; 1622 } 1623 queue->state = NVMET_RDMA_Q_LIVE; 1624 1625 while (!list_empty(&queue->rsp_wait_list)) { 1626 struct nvmet_rdma_rsp *cmd; 1627 1628 cmd = list_first_entry(&queue->rsp_wait_list, 1629 struct nvmet_rdma_rsp, wait_list); 1630 list_del(&cmd->wait_list); 1631 1632 spin_unlock_irqrestore(&queue->state_lock, flags); 1633 nvmet_rdma_handle_command(queue, cmd); 1634 spin_lock_irqsave(&queue->state_lock, flags); 1635 } 1636 1637 out_unlock: 1638 spin_unlock_irqrestore(&queue->state_lock, flags); 1639 } 1640 1641 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1642 { 1643 bool disconnect = false; 1644 unsigned long flags; 1645 1646 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1647 1648 spin_lock_irqsave(&queue->state_lock, flags); 1649 switch (queue->state) { 1650 case NVMET_RDMA_Q_CONNECTING: 1651 while (!list_empty(&queue->rsp_wait_list)) { 1652 struct nvmet_rdma_rsp *rsp; 1653 1654 rsp = list_first_entry(&queue->rsp_wait_list, 1655 struct nvmet_rdma_rsp, 1656 wait_list); 1657 list_del(&rsp->wait_list); 1658 nvmet_rdma_put_rsp(rsp); 1659 } 1660 fallthrough; 1661 case NVMET_RDMA_Q_LIVE: 1662 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1663 disconnect = true; 1664 break; 1665 case NVMET_RDMA_Q_DISCONNECTING: 1666 break; 1667 } 1668 spin_unlock_irqrestore(&queue->state_lock, flags); 1669 1670 if (disconnect) { 1671 rdma_disconnect(queue->cm_id); 1672 schedule_work(&queue->release_work); 1673 } 1674 } 1675 1676 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1677 { 1678 bool disconnect = false; 1679 1680 mutex_lock(&nvmet_rdma_queue_mutex); 1681 if (!list_empty(&queue->queue_list)) { 1682 list_del_init(&queue->queue_list); 1683 disconnect = true; 1684 } 1685 mutex_unlock(&nvmet_rdma_queue_mutex); 1686 1687 if (disconnect) 1688 __nvmet_rdma_queue_disconnect(queue); 1689 } 1690 1691 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1692 struct nvmet_rdma_queue *queue) 1693 { 1694 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1695 1696 mutex_lock(&nvmet_rdma_queue_mutex); 1697 if (!list_empty(&queue->queue_list)) 1698 list_del_init(&queue->queue_list); 1699 mutex_unlock(&nvmet_rdma_queue_mutex); 1700 1701 pr_err("failed to connect queue %d\n", queue->idx); 1702 schedule_work(&queue->release_work); 1703 } 1704 1705 /** 1706 * nvme_rdma_device_removal() - Handle RDMA device removal 1707 * @cm_id: rdma_cm id, used for nvmet port 1708 * @queue: nvmet rdma queue (cm id qp_context) 1709 * 1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1711 * to unplug. Note that this event can be generated on a normal 1712 * queue cm_id and/or a device bound listener cm_id (where in this 1713 * case queue will be null). 1714 * 1715 * We registered an ib_client to handle device removal for queues, 1716 * so we only need to handle the listening port cm_ids. In this case 1717 * we nullify the priv to prevent double cm_id destruction and destroying 1718 * the cm_id implicitely by returning a non-zero rc to the callout. 1719 */ 1720 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1721 struct nvmet_rdma_queue *queue) 1722 { 1723 struct nvmet_rdma_port *port; 1724 1725 if (queue) { 1726 /* 1727 * This is a queue cm_id. we have registered 1728 * an ib_client to handle queues removal 1729 * so don't interfear and just return. 1730 */ 1731 return 0; 1732 } 1733 1734 port = cm_id->context; 1735 1736 /* 1737 * This is a listener cm_id. Make sure that 1738 * future remove_port won't invoke a double 1739 * cm_id destroy. use atomic xchg to make sure 1740 * we don't compete with remove_port. 1741 */ 1742 if (xchg(&port->cm_id, NULL) != cm_id) 1743 return 0; 1744 1745 /* 1746 * We need to return 1 so that the core will destroy 1747 * it's own ID. What a great API design.. 1748 */ 1749 return 1; 1750 } 1751 1752 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1753 struct rdma_cm_event *event) 1754 { 1755 struct nvmet_rdma_queue *queue = NULL; 1756 int ret = 0; 1757 1758 if (cm_id->qp) 1759 queue = cm_id->qp->qp_context; 1760 1761 pr_debug("%s (%d): status %d id %p\n", 1762 rdma_event_msg(event->event), event->event, 1763 event->status, cm_id); 1764 1765 switch (event->event) { 1766 case RDMA_CM_EVENT_CONNECT_REQUEST: 1767 ret = nvmet_rdma_queue_connect(cm_id, event); 1768 break; 1769 case RDMA_CM_EVENT_ESTABLISHED: 1770 nvmet_rdma_queue_established(queue); 1771 break; 1772 case RDMA_CM_EVENT_ADDR_CHANGE: 1773 if (!queue) { 1774 struct nvmet_rdma_port *port = cm_id->context; 1775 1776 schedule_delayed_work(&port->repair_work, 0); 1777 break; 1778 } 1779 fallthrough; 1780 case RDMA_CM_EVENT_DISCONNECTED: 1781 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1782 nvmet_rdma_queue_disconnect(queue); 1783 break; 1784 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1785 ret = nvmet_rdma_device_removal(cm_id, queue); 1786 break; 1787 case RDMA_CM_EVENT_REJECTED: 1788 pr_debug("Connection rejected: %s\n", 1789 rdma_reject_msg(cm_id, event->status)); 1790 fallthrough; 1791 case RDMA_CM_EVENT_UNREACHABLE: 1792 case RDMA_CM_EVENT_CONNECT_ERROR: 1793 nvmet_rdma_queue_connect_fail(cm_id, queue); 1794 break; 1795 default: 1796 pr_err("received unrecognized RDMA CM event %d\n", 1797 event->event); 1798 break; 1799 } 1800 1801 return ret; 1802 } 1803 1804 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1805 { 1806 struct nvmet_rdma_queue *queue; 1807 1808 restart: 1809 mutex_lock(&nvmet_rdma_queue_mutex); 1810 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1811 if (queue->nvme_sq.ctrl == ctrl) { 1812 list_del_init(&queue->queue_list); 1813 mutex_unlock(&nvmet_rdma_queue_mutex); 1814 1815 __nvmet_rdma_queue_disconnect(queue); 1816 goto restart; 1817 } 1818 } 1819 mutex_unlock(&nvmet_rdma_queue_mutex); 1820 } 1821 1822 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1823 { 1824 struct nvmet_rdma_queue *queue, *tmp; 1825 struct nvmet_port *nport = port->nport; 1826 1827 mutex_lock(&nvmet_rdma_queue_mutex); 1828 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1829 queue_list) { 1830 if (queue->port != nport) 1831 continue; 1832 1833 list_del_init(&queue->queue_list); 1834 __nvmet_rdma_queue_disconnect(queue); 1835 } 1836 mutex_unlock(&nvmet_rdma_queue_mutex); 1837 } 1838 1839 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1840 { 1841 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1842 1843 if (cm_id) 1844 rdma_destroy_id(cm_id); 1845 1846 /* 1847 * Destroy the remaining queues, which are not belong to any 1848 * controller yet. Do it here after the RDMA-CM was destroyed 1849 * guarantees that no new queue will be created. 1850 */ 1851 nvmet_rdma_destroy_port_queues(port); 1852 } 1853 1854 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1855 { 1856 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1857 struct rdma_cm_id *cm_id; 1858 int ret; 1859 1860 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1861 RDMA_PS_TCP, IB_QPT_RC); 1862 if (IS_ERR(cm_id)) { 1863 pr_err("CM ID creation failed\n"); 1864 return PTR_ERR(cm_id); 1865 } 1866 1867 /* 1868 * Allow both IPv4 and IPv6 sockets to bind a single port 1869 * at the same time. 1870 */ 1871 ret = rdma_set_afonly(cm_id, 1); 1872 if (ret) { 1873 pr_err("rdma_set_afonly failed (%d)\n", ret); 1874 goto out_destroy_id; 1875 } 1876 1877 ret = rdma_bind_addr(cm_id, addr); 1878 if (ret) { 1879 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1880 goto out_destroy_id; 1881 } 1882 1883 ret = rdma_listen(cm_id, 128); 1884 if (ret) { 1885 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1886 goto out_destroy_id; 1887 } 1888 1889 port->cm_id = cm_id; 1890 return 0; 1891 1892 out_destroy_id: 1893 rdma_destroy_id(cm_id); 1894 return ret; 1895 } 1896 1897 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1898 { 1899 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1900 struct nvmet_rdma_port, repair_work); 1901 int ret; 1902 1903 nvmet_rdma_disable_port(port); 1904 ret = nvmet_rdma_enable_port(port); 1905 if (ret) 1906 schedule_delayed_work(&port->repair_work, 5 * HZ); 1907 } 1908 1909 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1910 { 1911 struct nvmet_rdma_port *port; 1912 __kernel_sa_family_t af; 1913 int ret; 1914 1915 port = kzalloc(sizeof(*port), GFP_KERNEL); 1916 if (!port) 1917 return -ENOMEM; 1918 1919 nport->priv = port; 1920 port->nport = nport; 1921 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1922 1923 switch (nport->disc_addr.adrfam) { 1924 case NVMF_ADDR_FAMILY_IP4: 1925 af = AF_INET; 1926 break; 1927 case NVMF_ADDR_FAMILY_IP6: 1928 af = AF_INET6; 1929 break; 1930 default: 1931 pr_err("address family %d not supported\n", 1932 nport->disc_addr.adrfam); 1933 ret = -EINVAL; 1934 goto out_free_port; 1935 } 1936 1937 if (nport->inline_data_size < 0) { 1938 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1939 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1940 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1941 nport->inline_data_size, 1942 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1943 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1944 } 1945 1946 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1947 nport->disc_addr.trsvcid, &port->addr); 1948 if (ret) { 1949 pr_err("malformed ip/port passed: %s:%s\n", 1950 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1951 goto out_free_port; 1952 } 1953 1954 ret = nvmet_rdma_enable_port(port); 1955 if (ret) 1956 goto out_free_port; 1957 1958 pr_info("enabling port %d (%pISpcs)\n", 1959 le16_to_cpu(nport->disc_addr.portid), 1960 (struct sockaddr *)&port->addr); 1961 1962 return 0; 1963 1964 out_free_port: 1965 kfree(port); 1966 return ret; 1967 } 1968 1969 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1970 { 1971 struct nvmet_rdma_port *port = nport->priv; 1972 1973 cancel_delayed_work_sync(&port->repair_work); 1974 nvmet_rdma_disable_port(port); 1975 kfree(port); 1976 } 1977 1978 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1979 struct nvmet_port *nport, char *traddr) 1980 { 1981 struct nvmet_rdma_port *port = nport->priv; 1982 struct rdma_cm_id *cm_id = port->cm_id; 1983 1984 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1985 struct nvmet_rdma_rsp *rsp = 1986 container_of(req, struct nvmet_rdma_rsp, req); 1987 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1988 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1989 1990 sprintf(traddr, "%pISc", addr); 1991 } else { 1992 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1993 } 1994 } 1995 1996 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 1997 { 1998 if (ctrl->pi_support) 1999 return NVMET_RDMA_MAX_METADATA_MDTS; 2000 return NVMET_RDMA_MAX_MDTS; 2001 } 2002 2003 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 2004 { 2005 return NVME_RDMA_MAX_QUEUE_SIZE; 2006 } 2007 2008 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2009 .owner = THIS_MODULE, 2010 .type = NVMF_TRTYPE_RDMA, 2011 .msdbd = 1, 2012 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2013 .add_port = nvmet_rdma_add_port, 2014 .remove_port = nvmet_rdma_remove_port, 2015 .queue_response = nvmet_rdma_queue_response, 2016 .delete_ctrl = nvmet_rdma_delete_ctrl, 2017 .disc_traddr = nvmet_rdma_disc_port_addr, 2018 .get_mdts = nvmet_rdma_get_mdts, 2019 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2020 }; 2021 2022 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2023 { 2024 struct nvmet_rdma_queue *queue, *tmp; 2025 struct nvmet_rdma_device *ndev; 2026 bool found = false; 2027 2028 mutex_lock(&device_list_mutex); 2029 list_for_each_entry(ndev, &device_list, entry) { 2030 if (ndev->device == ib_device) { 2031 found = true; 2032 break; 2033 } 2034 } 2035 mutex_unlock(&device_list_mutex); 2036 2037 if (!found) 2038 return; 2039 2040 /* 2041 * IB Device that is used by nvmet controllers is being removed, 2042 * delete all queues using this device. 2043 */ 2044 mutex_lock(&nvmet_rdma_queue_mutex); 2045 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2046 queue_list) { 2047 if (queue->dev->device != ib_device) 2048 continue; 2049 2050 pr_info("Removing queue %d\n", queue->idx); 2051 list_del_init(&queue->queue_list); 2052 __nvmet_rdma_queue_disconnect(queue); 2053 } 2054 mutex_unlock(&nvmet_rdma_queue_mutex); 2055 2056 flush_scheduled_work(); 2057 } 2058 2059 static struct ib_client nvmet_rdma_ib_client = { 2060 .name = "nvmet_rdma", 2061 .remove = nvmet_rdma_remove_one 2062 }; 2063 2064 static int __init nvmet_rdma_init(void) 2065 { 2066 int ret; 2067 2068 ret = ib_register_client(&nvmet_rdma_ib_client); 2069 if (ret) 2070 return ret; 2071 2072 ret = nvmet_register_transport(&nvmet_rdma_ops); 2073 if (ret) 2074 goto err_ib_client; 2075 2076 return 0; 2077 2078 err_ib_client: 2079 ib_unregister_client(&nvmet_rdma_ib_client); 2080 return ret; 2081 } 2082 2083 static void __exit nvmet_rdma_exit(void) 2084 { 2085 nvmet_unregister_transport(&nvmet_rdma_ops); 2086 ib_unregister_client(&nvmet_rdma_ib_client); 2087 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2088 ida_destroy(&nvmet_rdma_queue_ida); 2089 } 2090 2091 module_init(nvmet_rdma_init); 2092 module_exit(nvmet_rdma_exit); 2093 2094 MODULE_LICENSE("GPL v2"); 2095 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2096