1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/nvme.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/wait.h> 17 #include <linux/inet.h> 18 #include <asm/unaligned.h> 19 20 #include <rdma/ib_verbs.h> 21 #include <rdma/rdma_cm.h> 22 #include <rdma/rw.h> 23 #include <rdma/ib_cm.h> 24 25 #include <linux/nvme-rdma.h> 26 #include "nvmet.h" 27 28 /* 29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 30 */ 31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 32 #define NVMET_RDMA_MAX_INLINE_SGE 4 33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 34 35 /* Assume mpsmin == device_page_size == 4KB */ 36 #define NVMET_RDMA_MAX_MDTS 8 37 #define NVMET_RDMA_MAX_METADATA_MDTS 5 38 39 struct nvmet_rdma_srq; 40 41 struct nvmet_rdma_cmd { 42 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 43 struct ib_cqe cqe; 44 struct ib_recv_wr wr; 45 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 struct nvmet_rdma_srq *nsrq; 49 }; 50 51 enum { 52 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 53 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 54 }; 55 56 struct nvmet_rdma_rsp { 57 struct ib_sge send_sge; 58 struct ib_cqe send_cqe; 59 struct ib_send_wr send_wr; 60 61 struct nvmet_rdma_cmd *cmd; 62 struct nvmet_rdma_queue *queue; 63 64 struct ib_cqe read_cqe; 65 struct ib_cqe write_cqe; 66 struct rdma_rw_ctx rw; 67 68 struct nvmet_req req; 69 70 bool allocated; 71 u8 n_rdma; 72 u32 flags; 73 u32 invalidate_rkey; 74 75 struct list_head wait_list; 76 struct list_head free_list; 77 }; 78 79 enum nvmet_rdma_queue_state { 80 NVMET_RDMA_Q_CONNECTING, 81 NVMET_RDMA_Q_LIVE, 82 NVMET_RDMA_Q_DISCONNECTING, 83 }; 84 85 struct nvmet_rdma_queue { 86 struct rdma_cm_id *cm_id; 87 struct ib_qp *qp; 88 struct nvmet_port *port; 89 struct ib_cq *cq; 90 atomic_t sq_wr_avail; 91 struct nvmet_rdma_device *dev; 92 struct nvmet_rdma_srq *nsrq; 93 spinlock_t state_lock; 94 enum nvmet_rdma_queue_state state; 95 struct nvmet_cq nvme_cq; 96 struct nvmet_sq nvme_sq; 97 98 struct nvmet_rdma_rsp *rsps; 99 struct list_head free_rsps; 100 spinlock_t rsps_lock; 101 struct nvmet_rdma_cmd *cmds; 102 103 struct work_struct release_work; 104 struct list_head rsp_wait_list; 105 struct list_head rsp_wr_wait_list; 106 spinlock_t rsp_wr_wait_lock; 107 108 int idx; 109 int host_qid; 110 int comp_vector; 111 int recv_queue_size; 112 int send_queue_size; 113 114 struct list_head queue_list; 115 }; 116 117 struct nvmet_rdma_port { 118 struct nvmet_port *nport; 119 struct sockaddr_storage addr; 120 struct rdma_cm_id *cm_id; 121 struct delayed_work repair_work; 122 }; 123 124 struct nvmet_rdma_srq { 125 struct ib_srq *srq; 126 struct nvmet_rdma_cmd *cmds; 127 struct nvmet_rdma_device *ndev; 128 }; 129 130 struct nvmet_rdma_device { 131 struct ib_device *device; 132 struct ib_pd *pd; 133 struct nvmet_rdma_srq **srqs; 134 int srq_count; 135 size_t srq_size; 136 struct kref ref; 137 struct list_head entry; 138 int inline_data_size; 139 int inline_page_count; 140 }; 141 142 static bool nvmet_rdma_use_srq; 143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 144 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 145 146 static int srq_size_set(const char *val, const struct kernel_param *kp); 147 static const struct kernel_param_ops srq_size_ops = { 148 .set = srq_size_set, 149 .get = param_get_int, 150 }; 151 152 static int nvmet_rdma_srq_size = 1024; 153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 155 156 static DEFINE_IDA(nvmet_rdma_queue_ida); 157 static LIST_HEAD(nvmet_rdma_queue_list); 158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 159 160 static LIST_HEAD(device_list); 161 static DEFINE_MUTEX(device_list_mutex); 162 163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 171 struct nvmet_rdma_rsp *r); 172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 173 struct nvmet_rdma_rsp *r); 174 175 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 176 177 static int srq_size_set(const char *val, const struct kernel_param *kp) 178 { 179 int n = 0, ret; 180 181 ret = kstrtoint(val, 10, &n); 182 if (ret != 0 || n < 256) 183 return -EINVAL; 184 185 return param_set_int(val, kp); 186 } 187 188 static int num_pages(int len) 189 { 190 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 191 } 192 193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 194 { 195 return nvme_is_write(rsp->req.cmd) && 196 rsp->req.transfer_len && 197 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 198 } 199 200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 201 { 202 return !nvme_is_write(rsp->req.cmd) && 203 rsp->req.transfer_len && 204 !rsp->req.cqe->status && 205 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 206 } 207 208 static inline struct nvmet_rdma_rsp * 209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 210 { 211 struct nvmet_rdma_rsp *rsp; 212 unsigned long flags; 213 214 spin_lock_irqsave(&queue->rsps_lock, flags); 215 rsp = list_first_entry_or_null(&queue->free_rsps, 216 struct nvmet_rdma_rsp, free_list); 217 if (likely(rsp)) 218 list_del(&rsp->free_list); 219 spin_unlock_irqrestore(&queue->rsps_lock, flags); 220 221 if (unlikely(!rsp)) { 222 int ret; 223 224 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 225 if (unlikely(!rsp)) 226 return NULL; 227 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 228 if (unlikely(ret)) { 229 kfree(rsp); 230 return NULL; 231 } 232 233 rsp->allocated = true; 234 } 235 236 return rsp; 237 } 238 239 static inline void 240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 241 { 242 unsigned long flags; 243 244 if (unlikely(rsp->allocated)) { 245 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 246 kfree(rsp); 247 return; 248 } 249 250 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 251 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 252 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 253 } 254 255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 256 struct nvmet_rdma_cmd *c) 257 { 258 struct scatterlist *sg; 259 struct ib_sge *sge; 260 int i; 261 262 if (!ndev->inline_data_size) 263 return; 264 265 sg = c->inline_sg; 266 sge = &c->sge[1]; 267 268 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 269 if (sge->length) 270 ib_dma_unmap_page(ndev->device, sge->addr, 271 sge->length, DMA_FROM_DEVICE); 272 if (sg_page(sg)) 273 __free_page(sg_page(sg)); 274 } 275 } 276 277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 278 struct nvmet_rdma_cmd *c) 279 { 280 struct scatterlist *sg; 281 struct ib_sge *sge; 282 struct page *pg; 283 int len; 284 int i; 285 286 if (!ndev->inline_data_size) 287 return 0; 288 289 sg = c->inline_sg; 290 sg_init_table(sg, ndev->inline_page_count); 291 sge = &c->sge[1]; 292 len = ndev->inline_data_size; 293 294 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 295 pg = alloc_page(GFP_KERNEL); 296 if (!pg) 297 goto out_err; 298 sg_assign_page(sg, pg); 299 sge->addr = ib_dma_map_page(ndev->device, 300 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 301 if (ib_dma_mapping_error(ndev->device, sge->addr)) 302 goto out_err; 303 sge->length = min_t(int, len, PAGE_SIZE); 304 sge->lkey = ndev->pd->local_dma_lkey; 305 len -= sge->length; 306 } 307 308 return 0; 309 out_err: 310 for (; i >= 0; i--, sg--, sge--) { 311 if (sge->length) 312 ib_dma_unmap_page(ndev->device, sge->addr, 313 sge->length, DMA_FROM_DEVICE); 314 if (sg_page(sg)) 315 __free_page(sg_page(sg)); 316 } 317 return -ENOMEM; 318 } 319 320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 321 struct nvmet_rdma_cmd *c, bool admin) 322 { 323 /* NVMe command / RDMA RECV */ 324 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 325 if (!c->nvme_cmd) 326 goto out; 327 328 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 329 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 330 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 331 goto out_free_cmd; 332 333 c->sge[0].length = sizeof(*c->nvme_cmd); 334 c->sge[0].lkey = ndev->pd->local_dma_lkey; 335 336 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 337 goto out_unmap_cmd; 338 339 c->cqe.done = nvmet_rdma_recv_done; 340 341 c->wr.wr_cqe = &c->cqe; 342 c->wr.sg_list = c->sge; 343 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 344 345 return 0; 346 347 out_unmap_cmd: 348 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 349 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 350 out_free_cmd: 351 kfree(c->nvme_cmd); 352 353 out: 354 return -ENOMEM; 355 } 356 357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 358 struct nvmet_rdma_cmd *c, bool admin) 359 { 360 if (!admin) 361 nvmet_rdma_free_inline_pages(ndev, c); 362 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 363 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 364 kfree(c->nvme_cmd); 365 } 366 367 static struct nvmet_rdma_cmd * 368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 369 int nr_cmds, bool admin) 370 { 371 struct nvmet_rdma_cmd *cmds; 372 int ret = -EINVAL, i; 373 374 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 375 if (!cmds) 376 goto out; 377 378 for (i = 0; i < nr_cmds; i++) { 379 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 380 if (ret) 381 goto out_free; 382 } 383 384 return cmds; 385 386 out_free: 387 while (--i >= 0) 388 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 389 kfree(cmds); 390 out: 391 return ERR_PTR(ret); 392 } 393 394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 395 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 396 { 397 int i; 398 399 for (i = 0; i < nr_cmds; i++) 400 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 401 kfree(cmds); 402 } 403 404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 405 struct nvmet_rdma_rsp *r) 406 { 407 /* NVMe CQE / RDMA SEND */ 408 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 409 if (!r->req.cqe) 410 goto out; 411 412 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 413 sizeof(*r->req.cqe), DMA_TO_DEVICE); 414 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 415 goto out_free_rsp; 416 417 if (!ib_uses_virt_dma(ndev->device)) 418 r->req.p2p_client = &ndev->device->dev; 419 r->send_sge.length = sizeof(*r->req.cqe); 420 r->send_sge.lkey = ndev->pd->local_dma_lkey; 421 422 r->send_cqe.done = nvmet_rdma_send_done; 423 424 r->send_wr.wr_cqe = &r->send_cqe; 425 r->send_wr.sg_list = &r->send_sge; 426 r->send_wr.num_sge = 1; 427 r->send_wr.send_flags = IB_SEND_SIGNALED; 428 429 /* Data In / RDMA READ */ 430 r->read_cqe.done = nvmet_rdma_read_data_done; 431 /* Data Out / RDMA WRITE */ 432 r->write_cqe.done = nvmet_rdma_write_data_done; 433 434 return 0; 435 436 out_free_rsp: 437 kfree(r->req.cqe); 438 out: 439 return -ENOMEM; 440 } 441 442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 443 struct nvmet_rdma_rsp *r) 444 { 445 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 446 sizeof(*r->req.cqe), DMA_TO_DEVICE); 447 kfree(r->req.cqe); 448 } 449 450 static int 451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 452 { 453 struct nvmet_rdma_device *ndev = queue->dev; 454 int nr_rsps = queue->recv_queue_size * 2; 455 int ret = -EINVAL, i; 456 457 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 458 GFP_KERNEL); 459 if (!queue->rsps) 460 goto out; 461 462 for (i = 0; i < nr_rsps; i++) { 463 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 464 465 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 466 if (ret) 467 goto out_free; 468 469 list_add_tail(&rsp->free_list, &queue->free_rsps); 470 } 471 472 return 0; 473 474 out_free: 475 while (--i >= 0) { 476 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 477 478 list_del(&rsp->free_list); 479 nvmet_rdma_free_rsp(ndev, rsp); 480 } 481 kfree(queue->rsps); 482 out: 483 return ret; 484 } 485 486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 487 { 488 struct nvmet_rdma_device *ndev = queue->dev; 489 int i, nr_rsps = queue->recv_queue_size * 2; 490 491 for (i = 0; i < nr_rsps; i++) { 492 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 493 494 list_del(&rsp->free_list); 495 nvmet_rdma_free_rsp(ndev, rsp); 496 } 497 kfree(queue->rsps); 498 } 499 500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 501 struct nvmet_rdma_cmd *cmd) 502 { 503 int ret; 504 505 ib_dma_sync_single_for_device(ndev->device, 506 cmd->sge[0].addr, cmd->sge[0].length, 507 DMA_FROM_DEVICE); 508 509 if (cmd->nsrq) 510 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 511 else 512 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 513 514 if (unlikely(ret)) 515 pr_err("post_recv cmd failed\n"); 516 517 return ret; 518 } 519 520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 521 { 522 spin_lock(&queue->rsp_wr_wait_lock); 523 while (!list_empty(&queue->rsp_wr_wait_list)) { 524 struct nvmet_rdma_rsp *rsp; 525 bool ret; 526 527 rsp = list_entry(queue->rsp_wr_wait_list.next, 528 struct nvmet_rdma_rsp, wait_list); 529 list_del(&rsp->wait_list); 530 531 spin_unlock(&queue->rsp_wr_wait_lock); 532 ret = nvmet_rdma_execute_command(rsp); 533 spin_lock(&queue->rsp_wr_wait_lock); 534 535 if (!ret) { 536 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 537 break; 538 } 539 } 540 spin_unlock(&queue->rsp_wr_wait_lock); 541 } 542 543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 544 { 545 struct ib_mr_status mr_status; 546 int ret; 547 u16 status = 0; 548 549 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 550 if (ret) { 551 pr_err("ib_check_mr_status failed, ret %d\n", ret); 552 return NVME_SC_INVALID_PI; 553 } 554 555 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 556 switch (mr_status.sig_err.err_type) { 557 case IB_SIG_BAD_GUARD: 558 status = NVME_SC_GUARD_CHECK; 559 break; 560 case IB_SIG_BAD_REFTAG: 561 status = NVME_SC_REFTAG_CHECK; 562 break; 563 case IB_SIG_BAD_APPTAG: 564 status = NVME_SC_APPTAG_CHECK; 565 break; 566 } 567 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 568 mr_status.sig_err.err_type, 569 mr_status.sig_err.expected, 570 mr_status.sig_err.actual); 571 } 572 573 return status; 574 } 575 576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 577 struct nvme_command *cmd, struct ib_sig_domain *domain, 578 u16 control, u8 pi_type) 579 { 580 domain->sig_type = IB_SIG_TYPE_T10_DIF; 581 domain->sig.dif.bg_type = IB_T10DIF_CRC; 582 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 583 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 584 if (control & NVME_RW_PRINFO_PRCHK_REF) 585 domain->sig.dif.ref_remap = true; 586 587 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 588 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 589 domain->sig.dif.app_escape = true; 590 if (pi_type == NVME_NS_DPS_PI_TYPE3) 591 domain->sig.dif.ref_escape = true; 592 } 593 594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 595 struct ib_sig_attrs *sig_attrs) 596 { 597 struct nvme_command *cmd = req->cmd; 598 u16 control = le16_to_cpu(cmd->rw.control); 599 u8 pi_type = req->ns->pi_type; 600 struct blk_integrity *bi; 601 602 bi = bdev_get_integrity(req->ns->bdev); 603 604 memset(sig_attrs, 0, sizeof(*sig_attrs)); 605 606 if (control & NVME_RW_PRINFO_PRACT) { 607 /* for WRITE_INSERT/READ_STRIP no wire domain */ 608 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 609 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 610 pi_type); 611 /* Clear the PRACT bit since HCA will generate/verify the PI */ 612 control &= ~NVME_RW_PRINFO_PRACT; 613 cmd->rw.control = cpu_to_le16(control); 614 /* PI is added by the HW */ 615 req->transfer_len += req->metadata_len; 616 } else { 617 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 618 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 619 pi_type); 620 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 621 pi_type); 622 } 623 624 if (control & NVME_RW_PRINFO_PRCHK_REF) 625 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 626 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 627 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 628 if (control & NVME_RW_PRINFO_PRCHK_APP) 629 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 630 } 631 632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 633 struct ib_sig_attrs *sig_attrs) 634 { 635 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 636 struct nvmet_req *req = &rsp->req; 637 int ret; 638 639 if (req->metadata_len) 640 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 641 cm_id->port_num, req->sg, req->sg_cnt, 642 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 643 addr, key, nvmet_data_dir(req)); 644 else 645 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 646 req->sg, req->sg_cnt, 0, addr, key, 647 nvmet_data_dir(req)); 648 649 return ret; 650 } 651 652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 653 { 654 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 655 struct nvmet_req *req = &rsp->req; 656 657 if (req->metadata_len) 658 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 659 cm_id->port_num, req->sg, req->sg_cnt, 660 req->metadata_sg, req->metadata_sg_cnt, 661 nvmet_data_dir(req)); 662 else 663 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 664 req->sg, req->sg_cnt, nvmet_data_dir(req)); 665 } 666 667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 668 { 669 struct nvmet_rdma_queue *queue = rsp->queue; 670 671 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 672 673 if (rsp->n_rdma) 674 nvmet_rdma_rw_ctx_destroy(rsp); 675 676 if (rsp->req.sg != rsp->cmd->inline_sg) 677 nvmet_req_free_sgls(&rsp->req); 678 679 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 680 nvmet_rdma_process_wr_wait_list(queue); 681 682 nvmet_rdma_put_rsp(rsp); 683 } 684 685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 686 { 687 if (queue->nvme_sq.ctrl) { 688 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 689 } else { 690 /* 691 * we didn't setup the controller yet in case 692 * of admin connect error, just disconnect and 693 * cleanup the queue 694 */ 695 nvmet_rdma_queue_disconnect(queue); 696 } 697 } 698 699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 700 { 701 struct nvmet_rdma_rsp *rsp = 702 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 703 struct nvmet_rdma_queue *queue = cq->cq_context; 704 705 nvmet_rdma_release_rsp(rsp); 706 707 if (unlikely(wc->status != IB_WC_SUCCESS && 708 wc->status != IB_WC_WR_FLUSH_ERR)) { 709 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 710 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 711 nvmet_rdma_error_comp(queue); 712 } 713 } 714 715 static void nvmet_rdma_queue_response(struct nvmet_req *req) 716 { 717 struct nvmet_rdma_rsp *rsp = 718 container_of(req, struct nvmet_rdma_rsp, req); 719 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 720 struct ib_send_wr *first_wr; 721 722 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 723 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 724 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 725 } else { 726 rsp->send_wr.opcode = IB_WR_SEND; 727 } 728 729 if (nvmet_rdma_need_data_out(rsp)) { 730 if (rsp->req.metadata_len) 731 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 732 cm_id->port_num, &rsp->write_cqe, NULL); 733 else 734 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 735 cm_id->port_num, NULL, &rsp->send_wr); 736 } else { 737 first_wr = &rsp->send_wr; 738 } 739 740 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 741 742 ib_dma_sync_single_for_device(rsp->queue->dev->device, 743 rsp->send_sge.addr, rsp->send_sge.length, 744 DMA_TO_DEVICE); 745 746 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 747 pr_err("sending cmd response failed\n"); 748 nvmet_rdma_release_rsp(rsp); 749 } 750 } 751 752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 753 { 754 struct nvmet_rdma_rsp *rsp = 755 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 756 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 757 u16 status = 0; 758 759 WARN_ON(rsp->n_rdma <= 0); 760 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 761 rsp->n_rdma = 0; 762 763 if (unlikely(wc->status != IB_WC_SUCCESS)) { 764 nvmet_rdma_rw_ctx_destroy(rsp); 765 nvmet_req_uninit(&rsp->req); 766 nvmet_rdma_release_rsp(rsp); 767 if (wc->status != IB_WC_WR_FLUSH_ERR) { 768 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 769 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 770 nvmet_rdma_error_comp(queue); 771 } 772 return; 773 } 774 775 if (rsp->req.metadata_len) 776 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 777 nvmet_rdma_rw_ctx_destroy(rsp); 778 779 if (unlikely(status)) 780 nvmet_req_complete(&rsp->req, status); 781 else 782 rsp->req.execute(&rsp->req); 783 } 784 785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 786 { 787 struct nvmet_rdma_rsp *rsp = 788 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 789 struct nvmet_rdma_queue *queue = cq->cq_context; 790 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 791 u16 status; 792 793 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 794 return; 795 796 WARN_ON(rsp->n_rdma <= 0); 797 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 798 rsp->n_rdma = 0; 799 800 if (unlikely(wc->status != IB_WC_SUCCESS)) { 801 nvmet_rdma_rw_ctx_destroy(rsp); 802 nvmet_req_uninit(&rsp->req); 803 nvmet_rdma_release_rsp(rsp); 804 if (wc->status != IB_WC_WR_FLUSH_ERR) { 805 pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n", 806 wc->wr_cqe, ib_wc_status_msg(wc->status), 807 wc->status); 808 nvmet_rdma_error_comp(queue); 809 } 810 return; 811 } 812 813 /* 814 * Upon RDMA completion check the signature status 815 * - if succeeded send good NVMe response 816 * - if failed send bad NVMe response with appropriate error 817 */ 818 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 819 if (unlikely(status)) 820 rsp->req.cqe->status = cpu_to_le16(status << 1); 821 nvmet_rdma_rw_ctx_destroy(rsp); 822 823 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 824 pr_err("sending cmd response failed\n"); 825 nvmet_rdma_release_rsp(rsp); 826 } 827 } 828 829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 830 u64 off) 831 { 832 int sg_count = num_pages(len); 833 struct scatterlist *sg; 834 int i; 835 836 sg = rsp->cmd->inline_sg; 837 for (i = 0; i < sg_count; i++, sg++) { 838 if (i < sg_count - 1) 839 sg_unmark_end(sg); 840 else 841 sg_mark_end(sg); 842 sg->offset = off; 843 sg->length = min_t(int, len, PAGE_SIZE - off); 844 len -= sg->length; 845 if (!i) 846 off = 0; 847 } 848 849 rsp->req.sg = rsp->cmd->inline_sg; 850 rsp->req.sg_cnt = sg_count; 851 } 852 853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 854 { 855 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 856 u64 off = le64_to_cpu(sgl->addr); 857 u32 len = le32_to_cpu(sgl->length); 858 859 if (!nvme_is_write(rsp->req.cmd)) { 860 rsp->req.error_loc = 861 offsetof(struct nvme_common_command, opcode); 862 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 863 } 864 865 if (off + len > rsp->queue->dev->inline_data_size) { 866 pr_err("invalid inline data offset!\n"); 867 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 868 } 869 870 /* no data command? */ 871 if (!len) 872 return 0; 873 874 nvmet_rdma_use_inline_sg(rsp, len, off); 875 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 876 rsp->req.transfer_len += len; 877 return 0; 878 } 879 880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 881 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 882 { 883 u64 addr = le64_to_cpu(sgl->addr); 884 u32 key = get_unaligned_le32(sgl->key); 885 struct ib_sig_attrs sig_attrs; 886 int ret; 887 888 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 889 890 /* no data command? */ 891 if (!rsp->req.transfer_len) 892 return 0; 893 894 if (rsp->req.metadata_len) 895 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 896 897 ret = nvmet_req_alloc_sgls(&rsp->req); 898 if (unlikely(ret < 0)) 899 goto error_out; 900 901 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 902 if (unlikely(ret < 0)) 903 goto error_out; 904 rsp->n_rdma += ret; 905 906 if (invalidate) { 907 rsp->invalidate_rkey = key; 908 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 909 } 910 911 return 0; 912 913 error_out: 914 rsp->req.transfer_len = 0; 915 return NVME_SC_INTERNAL; 916 } 917 918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 919 { 920 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 921 922 switch (sgl->type >> 4) { 923 case NVME_SGL_FMT_DATA_DESC: 924 switch (sgl->type & 0xf) { 925 case NVME_SGL_FMT_OFFSET: 926 return nvmet_rdma_map_sgl_inline(rsp); 927 default: 928 pr_err("invalid SGL subtype: %#x\n", sgl->type); 929 rsp->req.error_loc = 930 offsetof(struct nvme_common_command, dptr); 931 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 932 } 933 case NVME_KEY_SGL_FMT_DATA_DESC: 934 switch (sgl->type & 0xf) { 935 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 936 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 937 case NVME_SGL_FMT_ADDRESS: 938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 939 default: 940 pr_err("invalid SGL subtype: %#x\n", sgl->type); 941 rsp->req.error_loc = 942 offsetof(struct nvme_common_command, dptr); 943 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 944 } 945 default: 946 pr_err("invalid SGL type: %#x\n", sgl->type); 947 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 948 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 949 } 950 } 951 952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 953 { 954 struct nvmet_rdma_queue *queue = rsp->queue; 955 956 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 957 &queue->sq_wr_avail) < 0)) { 958 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 959 1 + rsp->n_rdma, queue->idx, 960 queue->nvme_sq.ctrl->cntlid); 961 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 962 return false; 963 } 964 965 if (nvmet_rdma_need_data_in(rsp)) { 966 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 967 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 968 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 969 } else { 970 rsp->req.execute(&rsp->req); 971 } 972 973 return true; 974 } 975 976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 977 struct nvmet_rdma_rsp *cmd) 978 { 979 u16 status; 980 981 ib_dma_sync_single_for_cpu(queue->dev->device, 982 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 983 DMA_FROM_DEVICE); 984 ib_dma_sync_single_for_cpu(queue->dev->device, 985 cmd->send_sge.addr, cmd->send_sge.length, 986 DMA_TO_DEVICE); 987 988 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 989 &queue->nvme_sq, &nvmet_rdma_ops)) 990 return; 991 992 status = nvmet_rdma_map_sgl(cmd); 993 if (status) 994 goto out_err; 995 996 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 997 spin_lock(&queue->rsp_wr_wait_lock); 998 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 999 spin_unlock(&queue->rsp_wr_wait_lock); 1000 } 1001 1002 return; 1003 1004 out_err: 1005 nvmet_req_complete(&cmd->req, status); 1006 } 1007 1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1009 { 1010 struct nvmet_rdma_cmd *cmd = 1011 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1012 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1013 struct nvmet_rdma_rsp *rsp; 1014 1015 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1016 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1017 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1018 wc->wr_cqe, ib_wc_status_msg(wc->status), 1019 wc->status); 1020 nvmet_rdma_error_comp(queue); 1021 } 1022 return; 1023 } 1024 1025 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1026 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1027 nvmet_rdma_error_comp(queue); 1028 return; 1029 } 1030 1031 cmd->queue = queue; 1032 rsp = nvmet_rdma_get_rsp(queue); 1033 if (unlikely(!rsp)) { 1034 /* 1035 * we get here only under memory pressure, 1036 * silently drop and have the host retry 1037 * as we can't even fail it. 1038 */ 1039 nvmet_rdma_post_recv(queue->dev, cmd); 1040 return; 1041 } 1042 rsp->queue = queue; 1043 rsp->cmd = cmd; 1044 rsp->flags = 0; 1045 rsp->req.cmd = cmd->nvme_cmd; 1046 rsp->req.port = queue->port; 1047 rsp->n_rdma = 0; 1048 1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1050 unsigned long flags; 1051 1052 spin_lock_irqsave(&queue->state_lock, flags); 1053 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1055 else 1056 nvmet_rdma_put_rsp(rsp); 1057 spin_unlock_irqrestore(&queue->state_lock, flags); 1058 return; 1059 } 1060 1061 nvmet_rdma_handle_command(queue, rsp); 1062 } 1063 1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1065 { 1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1067 false); 1068 ib_destroy_srq(nsrq->srq); 1069 1070 kfree(nsrq); 1071 } 1072 1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1074 { 1075 int i; 1076 1077 if (!ndev->srqs) 1078 return; 1079 1080 for (i = 0; i < ndev->srq_count; i++) 1081 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1082 1083 kfree(ndev->srqs); 1084 } 1085 1086 static struct nvmet_rdma_srq * 1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1088 { 1089 struct ib_srq_init_attr srq_attr = { NULL, }; 1090 size_t srq_size = ndev->srq_size; 1091 struct nvmet_rdma_srq *nsrq; 1092 struct ib_srq *srq; 1093 int ret, i; 1094 1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1096 if (!nsrq) 1097 return ERR_PTR(-ENOMEM); 1098 1099 srq_attr.attr.max_wr = srq_size; 1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1101 srq_attr.attr.srq_limit = 0; 1102 srq_attr.srq_type = IB_SRQT_BASIC; 1103 srq = ib_create_srq(ndev->pd, &srq_attr); 1104 if (IS_ERR(srq)) { 1105 ret = PTR_ERR(srq); 1106 goto out_free; 1107 } 1108 1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1110 if (IS_ERR(nsrq->cmds)) { 1111 ret = PTR_ERR(nsrq->cmds); 1112 goto out_destroy_srq; 1113 } 1114 1115 nsrq->srq = srq; 1116 nsrq->ndev = ndev; 1117 1118 for (i = 0; i < srq_size; i++) { 1119 nsrq->cmds[i].nsrq = nsrq; 1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1121 if (ret) 1122 goto out_free_cmds; 1123 } 1124 1125 return nsrq; 1126 1127 out_free_cmds: 1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1129 out_destroy_srq: 1130 ib_destroy_srq(srq); 1131 out_free: 1132 kfree(nsrq); 1133 return ERR_PTR(ret); 1134 } 1135 1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1137 { 1138 int i, ret; 1139 1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1141 /* 1142 * If SRQs aren't supported we just go ahead and use normal 1143 * non-shared receive queues. 1144 */ 1145 pr_info("SRQ requested but not supported.\n"); 1146 return 0; 1147 } 1148 1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1150 nvmet_rdma_srq_size); 1151 ndev->srq_count = min(ndev->device->num_comp_vectors, 1152 ndev->device->attrs.max_srq); 1153 1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1155 if (!ndev->srqs) 1156 return -ENOMEM; 1157 1158 for (i = 0; i < ndev->srq_count; i++) { 1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1160 if (IS_ERR(ndev->srqs[i])) { 1161 ret = PTR_ERR(ndev->srqs[i]); 1162 goto err_srq; 1163 } 1164 } 1165 1166 return 0; 1167 1168 err_srq: 1169 while (--i >= 0) 1170 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1171 kfree(ndev->srqs); 1172 return ret; 1173 } 1174 1175 static void nvmet_rdma_free_dev(struct kref *ref) 1176 { 1177 struct nvmet_rdma_device *ndev = 1178 container_of(ref, struct nvmet_rdma_device, ref); 1179 1180 mutex_lock(&device_list_mutex); 1181 list_del(&ndev->entry); 1182 mutex_unlock(&device_list_mutex); 1183 1184 nvmet_rdma_destroy_srqs(ndev); 1185 ib_dealloc_pd(ndev->pd); 1186 1187 kfree(ndev); 1188 } 1189 1190 static struct nvmet_rdma_device * 1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1192 { 1193 struct nvmet_rdma_port *port = cm_id->context; 1194 struct nvmet_port *nport = port->nport; 1195 struct nvmet_rdma_device *ndev; 1196 int inline_page_count; 1197 int inline_sge_count; 1198 int ret; 1199 1200 mutex_lock(&device_list_mutex); 1201 list_for_each_entry(ndev, &device_list, entry) { 1202 if (ndev->device->node_guid == cm_id->device->node_guid && 1203 kref_get_unless_zero(&ndev->ref)) 1204 goto out_unlock; 1205 } 1206 1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1208 if (!ndev) 1209 goto out_err; 1210 1211 inline_page_count = num_pages(nport->inline_data_size); 1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1213 cm_id->device->attrs.max_recv_sge) - 1; 1214 if (inline_page_count > inline_sge_count) { 1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1216 nport->inline_data_size, cm_id->device->name, 1217 inline_sge_count * PAGE_SIZE); 1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1219 inline_page_count = inline_sge_count; 1220 } 1221 ndev->inline_data_size = nport->inline_data_size; 1222 ndev->inline_page_count = inline_page_count; 1223 ndev->device = cm_id->device; 1224 kref_init(&ndev->ref); 1225 1226 ndev->pd = ib_alloc_pd(ndev->device, 0); 1227 if (IS_ERR(ndev->pd)) 1228 goto out_free_dev; 1229 1230 if (nvmet_rdma_use_srq) { 1231 ret = nvmet_rdma_init_srqs(ndev); 1232 if (ret) 1233 goto out_free_pd; 1234 } 1235 1236 list_add(&ndev->entry, &device_list); 1237 out_unlock: 1238 mutex_unlock(&device_list_mutex); 1239 pr_debug("added %s.\n", ndev->device->name); 1240 return ndev; 1241 1242 out_free_pd: 1243 ib_dealloc_pd(ndev->pd); 1244 out_free_dev: 1245 kfree(ndev); 1246 out_err: 1247 mutex_unlock(&device_list_mutex); 1248 return NULL; 1249 } 1250 1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1252 { 1253 struct ib_qp_init_attr qp_attr; 1254 struct nvmet_rdma_device *ndev = queue->dev; 1255 int nr_cqe, ret, i, factor; 1256 1257 /* 1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1259 */ 1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1261 1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1263 queue->comp_vector, IB_POLL_WORKQUEUE); 1264 if (IS_ERR(queue->cq)) { 1265 ret = PTR_ERR(queue->cq); 1266 pr_err("failed to create CQ cqe= %d ret= %d\n", 1267 nr_cqe + 1, ret); 1268 goto out; 1269 } 1270 1271 memset(&qp_attr, 0, sizeof(qp_attr)); 1272 qp_attr.qp_context = queue; 1273 qp_attr.event_handler = nvmet_rdma_qp_event; 1274 qp_attr.send_cq = queue->cq; 1275 qp_attr.recv_cq = queue->cq; 1276 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1277 qp_attr.qp_type = IB_QPT_RC; 1278 /* +1 for drain */ 1279 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1280 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1281 1 << NVMET_RDMA_MAX_MDTS); 1282 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1283 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1284 ndev->device->attrs.max_send_sge); 1285 1286 if (queue->nsrq) { 1287 qp_attr.srq = queue->nsrq->srq; 1288 } else { 1289 /* +1 for drain */ 1290 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1291 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1292 } 1293 1294 if (queue->port->pi_enable && queue->host_qid) 1295 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1296 1297 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1298 if (ret) { 1299 pr_err("failed to create_qp ret= %d\n", ret); 1300 goto err_destroy_cq; 1301 } 1302 queue->qp = queue->cm_id->qp; 1303 1304 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1305 1306 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1307 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1308 qp_attr.cap.max_send_wr, queue->cm_id); 1309 1310 if (!queue->nsrq) { 1311 for (i = 0; i < queue->recv_queue_size; i++) { 1312 queue->cmds[i].queue = queue; 1313 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1314 if (ret) 1315 goto err_destroy_qp; 1316 } 1317 } 1318 1319 out: 1320 return ret; 1321 1322 err_destroy_qp: 1323 rdma_destroy_qp(queue->cm_id); 1324 err_destroy_cq: 1325 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1326 goto out; 1327 } 1328 1329 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1330 { 1331 ib_drain_qp(queue->qp); 1332 if (queue->cm_id) 1333 rdma_destroy_id(queue->cm_id); 1334 ib_destroy_qp(queue->qp); 1335 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1336 queue->send_queue_size + 1); 1337 } 1338 1339 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1340 { 1341 pr_debug("freeing queue %d\n", queue->idx); 1342 1343 nvmet_sq_destroy(&queue->nvme_sq); 1344 1345 nvmet_rdma_destroy_queue_ib(queue); 1346 if (!queue->nsrq) { 1347 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1348 queue->recv_queue_size, 1349 !queue->host_qid); 1350 } 1351 nvmet_rdma_free_rsps(queue); 1352 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1353 kfree(queue); 1354 } 1355 1356 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1357 { 1358 struct nvmet_rdma_queue *queue = 1359 container_of(w, struct nvmet_rdma_queue, release_work); 1360 struct nvmet_rdma_device *dev = queue->dev; 1361 1362 nvmet_rdma_free_queue(queue); 1363 1364 kref_put(&dev->ref, nvmet_rdma_free_dev); 1365 } 1366 1367 static int 1368 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1369 struct nvmet_rdma_queue *queue) 1370 { 1371 struct nvme_rdma_cm_req *req; 1372 1373 req = (struct nvme_rdma_cm_req *)conn->private_data; 1374 if (!req || conn->private_data_len == 0) 1375 return NVME_RDMA_CM_INVALID_LEN; 1376 1377 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1378 return NVME_RDMA_CM_INVALID_RECFMT; 1379 1380 queue->host_qid = le16_to_cpu(req->qid); 1381 1382 /* 1383 * req->hsqsize corresponds to our recv queue size plus 1 1384 * req->hrqsize corresponds to our send queue size 1385 */ 1386 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1387 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1388 1389 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1390 return NVME_RDMA_CM_INVALID_HSQSIZE; 1391 1392 /* XXX: Should we enforce some kind of max for IO queues? */ 1393 1394 return 0; 1395 } 1396 1397 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1398 enum nvme_rdma_cm_status status) 1399 { 1400 struct nvme_rdma_cm_rej rej; 1401 1402 pr_debug("rejecting connect request: status %d (%s)\n", 1403 status, nvme_rdma_cm_msg(status)); 1404 1405 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1406 rej.sts = cpu_to_le16(status); 1407 1408 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1409 IB_CM_REJ_CONSUMER_DEFINED); 1410 } 1411 1412 static struct nvmet_rdma_queue * 1413 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1414 struct rdma_cm_id *cm_id, 1415 struct rdma_cm_event *event) 1416 { 1417 struct nvmet_rdma_port *port = cm_id->context; 1418 struct nvmet_rdma_queue *queue; 1419 int ret; 1420 1421 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1422 if (!queue) { 1423 ret = NVME_RDMA_CM_NO_RSC; 1424 goto out_reject; 1425 } 1426 1427 ret = nvmet_sq_init(&queue->nvme_sq); 1428 if (ret) { 1429 ret = NVME_RDMA_CM_NO_RSC; 1430 goto out_free_queue; 1431 } 1432 1433 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1434 if (ret) 1435 goto out_destroy_sq; 1436 1437 /* 1438 * Schedules the actual release because calling rdma_destroy_id from 1439 * inside a CM callback would trigger a deadlock. (great API design..) 1440 */ 1441 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1442 queue->dev = ndev; 1443 queue->cm_id = cm_id; 1444 queue->port = port->nport; 1445 1446 spin_lock_init(&queue->state_lock); 1447 queue->state = NVMET_RDMA_Q_CONNECTING; 1448 INIT_LIST_HEAD(&queue->rsp_wait_list); 1449 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1450 spin_lock_init(&queue->rsp_wr_wait_lock); 1451 INIT_LIST_HEAD(&queue->free_rsps); 1452 spin_lock_init(&queue->rsps_lock); 1453 INIT_LIST_HEAD(&queue->queue_list); 1454 1455 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1456 if (queue->idx < 0) { 1457 ret = NVME_RDMA_CM_NO_RSC; 1458 goto out_destroy_sq; 1459 } 1460 1461 /* 1462 * Spread the io queues across completion vectors, 1463 * but still keep all admin queues on vector 0. 1464 */ 1465 queue->comp_vector = !queue->host_qid ? 0 : 1466 queue->idx % ndev->device->num_comp_vectors; 1467 1468 1469 ret = nvmet_rdma_alloc_rsps(queue); 1470 if (ret) { 1471 ret = NVME_RDMA_CM_NO_RSC; 1472 goto out_ida_remove; 1473 } 1474 1475 if (ndev->srqs) { 1476 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1477 } else { 1478 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1479 queue->recv_queue_size, 1480 !queue->host_qid); 1481 if (IS_ERR(queue->cmds)) { 1482 ret = NVME_RDMA_CM_NO_RSC; 1483 goto out_free_responses; 1484 } 1485 } 1486 1487 ret = nvmet_rdma_create_queue_ib(queue); 1488 if (ret) { 1489 pr_err("%s: creating RDMA queue failed (%d).\n", 1490 __func__, ret); 1491 ret = NVME_RDMA_CM_NO_RSC; 1492 goto out_free_cmds; 1493 } 1494 1495 return queue; 1496 1497 out_free_cmds: 1498 if (!queue->nsrq) { 1499 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1500 queue->recv_queue_size, 1501 !queue->host_qid); 1502 } 1503 out_free_responses: 1504 nvmet_rdma_free_rsps(queue); 1505 out_ida_remove: 1506 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1507 out_destroy_sq: 1508 nvmet_sq_destroy(&queue->nvme_sq); 1509 out_free_queue: 1510 kfree(queue); 1511 out_reject: 1512 nvmet_rdma_cm_reject(cm_id, ret); 1513 return NULL; 1514 } 1515 1516 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1517 { 1518 struct nvmet_rdma_queue *queue = priv; 1519 1520 switch (event->event) { 1521 case IB_EVENT_COMM_EST: 1522 rdma_notify(queue->cm_id, event->event); 1523 break; 1524 case IB_EVENT_QP_LAST_WQE_REACHED: 1525 pr_debug("received last WQE reached event for queue=0x%p\n", 1526 queue); 1527 break; 1528 default: 1529 pr_err("received IB QP event: %s (%d)\n", 1530 ib_event_msg(event->event), event->event); 1531 break; 1532 } 1533 } 1534 1535 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1536 struct nvmet_rdma_queue *queue, 1537 struct rdma_conn_param *p) 1538 { 1539 struct rdma_conn_param param = { }; 1540 struct nvme_rdma_cm_rep priv = { }; 1541 int ret = -ENOMEM; 1542 1543 param.rnr_retry_count = 7; 1544 param.flow_control = 1; 1545 param.initiator_depth = min_t(u8, p->initiator_depth, 1546 queue->dev->device->attrs.max_qp_init_rd_atom); 1547 param.private_data = &priv; 1548 param.private_data_len = sizeof(priv); 1549 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1550 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1551 1552 ret = rdma_accept(cm_id, ¶m); 1553 if (ret) 1554 pr_err("rdma_accept failed (error code = %d)\n", ret); 1555 1556 return ret; 1557 } 1558 1559 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1560 struct rdma_cm_event *event) 1561 { 1562 struct nvmet_rdma_device *ndev; 1563 struct nvmet_rdma_queue *queue; 1564 int ret = -EINVAL; 1565 1566 ndev = nvmet_rdma_find_get_device(cm_id); 1567 if (!ndev) { 1568 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1569 return -ECONNREFUSED; 1570 } 1571 1572 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1573 if (!queue) { 1574 ret = -ENOMEM; 1575 goto put_device; 1576 } 1577 1578 if (queue->host_qid == 0) { 1579 /* Let inflight controller teardown complete */ 1580 flush_scheduled_work(); 1581 } 1582 1583 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1584 if (ret) { 1585 /* 1586 * Don't destroy the cm_id in free path, as we implicitly 1587 * destroy the cm_id here with non-zero ret code. 1588 */ 1589 queue->cm_id = NULL; 1590 goto free_queue; 1591 } 1592 1593 mutex_lock(&nvmet_rdma_queue_mutex); 1594 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1595 mutex_unlock(&nvmet_rdma_queue_mutex); 1596 1597 return 0; 1598 1599 free_queue: 1600 nvmet_rdma_free_queue(queue); 1601 put_device: 1602 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1603 1604 return ret; 1605 } 1606 1607 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1608 { 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&queue->state_lock, flags); 1612 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1613 pr_warn("trying to establish a connected queue\n"); 1614 goto out_unlock; 1615 } 1616 queue->state = NVMET_RDMA_Q_LIVE; 1617 1618 while (!list_empty(&queue->rsp_wait_list)) { 1619 struct nvmet_rdma_rsp *cmd; 1620 1621 cmd = list_first_entry(&queue->rsp_wait_list, 1622 struct nvmet_rdma_rsp, wait_list); 1623 list_del(&cmd->wait_list); 1624 1625 spin_unlock_irqrestore(&queue->state_lock, flags); 1626 nvmet_rdma_handle_command(queue, cmd); 1627 spin_lock_irqsave(&queue->state_lock, flags); 1628 } 1629 1630 out_unlock: 1631 spin_unlock_irqrestore(&queue->state_lock, flags); 1632 } 1633 1634 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1635 { 1636 bool disconnect = false; 1637 unsigned long flags; 1638 1639 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1640 1641 spin_lock_irqsave(&queue->state_lock, flags); 1642 switch (queue->state) { 1643 case NVMET_RDMA_Q_CONNECTING: 1644 case NVMET_RDMA_Q_LIVE: 1645 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1646 disconnect = true; 1647 break; 1648 case NVMET_RDMA_Q_DISCONNECTING: 1649 break; 1650 } 1651 spin_unlock_irqrestore(&queue->state_lock, flags); 1652 1653 if (disconnect) { 1654 rdma_disconnect(queue->cm_id); 1655 schedule_work(&queue->release_work); 1656 } 1657 } 1658 1659 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1660 { 1661 bool disconnect = false; 1662 1663 mutex_lock(&nvmet_rdma_queue_mutex); 1664 if (!list_empty(&queue->queue_list)) { 1665 list_del_init(&queue->queue_list); 1666 disconnect = true; 1667 } 1668 mutex_unlock(&nvmet_rdma_queue_mutex); 1669 1670 if (disconnect) 1671 __nvmet_rdma_queue_disconnect(queue); 1672 } 1673 1674 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1675 struct nvmet_rdma_queue *queue) 1676 { 1677 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1678 1679 mutex_lock(&nvmet_rdma_queue_mutex); 1680 if (!list_empty(&queue->queue_list)) 1681 list_del_init(&queue->queue_list); 1682 mutex_unlock(&nvmet_rdma_queue_mutex); 1683 1684 pr_err("failed to connect queue %d\n", queue->idx); 1685 schedule_work(&queue->release_work); 1686 } 1687 1688 /** 1689 * nvme_rdma_device_removal() - Handle RDMA device removal 1690 * @cm_id: rdma_cm id, used for nvmet port 1691 * @queue: nvmet rdma queue (cm id qp_context) 1692 * 1693 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1694 * to unplug. Note that this event can be generated on a normal 1695 * queue cm_id and/or a device bound listener cm_id (where in this 1696 * case queue will be null). 1697 * 1698 * We registered an ib_client to handle device removal for queues, 1699 * so we only need to handle the listening port cm_ids. In this case 1700 * we nullify the priv to prevent double cm_id destruction and destroying 1701 * the cm_id implicitely by returning a non-zero rc to the callout. 1702 */ 1703 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1704 struct nvmet_rdma_queue *queue) 1705 { 1706 struct nvmet_rdma_port *port; 1707 1708 if (queue) { 1709 /* 1710 * This is a queue cm_id. we have registered 1711 * an ib_client to handle queues removal 1712 * so don't interfear and just return. 1713 */ 1714 return 0; 1715 } 1716 1717 port = cm_id->context; 1718 1719 /* 1720 * This is a listener cm_id. Make sure that 1721 * future remove_port won't invoke a double 1722 * cm_id destroy. use atomic xchg to make sure 1723 * we don't compete with remove_port. 1724 */ 1725 if (xchg(&port->cm_id, NULL) != cm_id) 1726 return 0; 1727 1728 /* 1729 * We need to return 1 so that the core will destroy 1730 * it's own ID. What a great API design.. 1731 */ 1732 return 1; 1733 } 1734 1735 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1736 struct rdma_cm_event *event) 1737 { 1738 struct nvmet_rdma_queue *queue = NULL; 1739 int ret = 0; 1740 1741 if (cm_id->qp) 1742 queue = cm_id->qp->qp_context; 1743 1744 pr_debug("%s (%d): status %d id %p\n", 1745 rdma_event_msg(event->event), event->event, 1746 event->status, cm_id); 1747 1748 switch (event->event) { 1749 case RDMA_CM_EVENT_CONNECT_REQUEST: 1750 ret = nvmet_rdma_queue_connect(cm_id, event); 1751 break; 1752 case RDMA_CM_EVENT_ESTABLISHED: 1753 nvmet_rdma_queue_established(queue); 1754 break; 1755 case RDMA_CM_EVENT_ADDR_CHANGE: 1756 if (!queue) { 1757 struct nvmet_rdma_port *port = cm_id->context; 1758 1759 schedule_delayed_work(&port->repair_work, 0); 1760 break; 1761 } 1762 fallthrough; 1763 case RDMA_CM_EVENT_DISCONNECTED: 1764 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1765 nvmet_rdma_queue_disconnect(queue); 1766 break; 1767 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1768 ret = nvmet_rdma_device_removal(cm_id, queue); 1769 break; 1770 case RDMA_CM_EVENT_REJECTED: 1771 pr_debug("Connection rejected: %s\n", 1772 rdma_reject_msg(cm_id, event->status)); 1773 fallthrough; 1774 case RDMA_CM_EVENT_UNREACHABLE: 1775 case RDMA_CM_EVENT_CONNECT_ERROR: 1776 nvmet_rdma_queue_connect_fail(cm_id, queue); 1777 break; 1778 default: 1779 pr_err("received unrecognized RDMA CM event %d\n", 1780 event->event); 1781 break; 1782 } 1783 1784 return ret; 1785 } 1786 1787 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1788 { 1789 struct nvmet_rdma_queue *queue; 1790 1791 restart: 1792 mutex_lock(&nvmet_rdma_queue_mutex); 1793 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1794 if (queue->nvme_sq.ctrl == ctrl) { 1795 list_del_init(&queue->queue_list); 1796 mutex_unlock(&nvmet_rdma_queue_mutex); 1797 1798 __nvmet_rdma_queue_disconnect(queue); 1799 goto restart; 1800 } 1801 } 1802 mutex_unlock(&nvmet_rdma_queue_mutex); 1803 } 1804 1805 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1806 { 1807 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1808 1809 if (cm_id) 1810 rdma_destroy_id(cm_id); 1811 } 1812 1813 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1814 { 1815 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1816 struct rdma_cm_id *cm_id; 1817 int ret; 1818 1819 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1820 RDMA_PS_TCP, IB_QPT_RC); 1821 if (IS_ERR(cm_id)) { 1822 pr_err("CM ID creation failed\n"); 1823 return PTR_ERR(cm_id); 1824 } 1825 1826 /* 1827 * Allow both IPv4 and IPv6 sockets to bind a single port 1828 * at the same time. 1829 */ 1830 ret = rdma_set_afonly(cm_id, 1); 1831 if (ret) { 1832 pr_err("rdma_set_afonly failed (%d)\n", ret); 1833 goto out_destroy_id; 1834 } 1835 1836 ret = rdma_bind_addr(cm_id, addr); 1837 if (ret) { 1838 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1839 goto out_destroy_id; 1840 } 1841 1842 ret = rdma_listen(cm_id, 128); 1843 if (ret) { 1844 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1845 goto out_destroy_id; 1846 } 1847 1848 if (port->nport->pi_enable && 1849 !(cm_id->device->attrs.device_cap_flags & 1850 IB_DEVICE_INTEGRITY_HANDOVER)) { 1851 pr_err("T10-PI is not supported for %pISpcs\n", addr); 1852 ret = -EINVAL; 1853 goto out_destroy_id; 1854 } 1855 1856 port->cm_id = cm_id; 1857 return 0; 1858 1859 out_destroy_id: 1860 rdma_destroy_id(cm_id); 1861 return ret; 1862 } 1863 1864 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1865 { 1866 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1867 struct nvmet_rdma_port, repair_work); 1868 int ret; 1869 1870 nvmet_rdma_disable_port(port); 1871 ret = nvmet_rdma_enable_port(port); 1872 if (ret) 1873 schedule_delayed_work(&port->repair_work, 5 * HZ); 1874 } 1875 1876 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1877 { 1878 struct nvmet_rdma_port *port; 1879 __kernel_sa_family_t af; 1880 int ret; 1881 1882 port = kzalloc(sizeof(*port), GFP_KERNEL); 1883 if (!port) 1884 return -ENOMEM; 1885 1886 nport->priv = port; 1887 port->nport = nport; 1888 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1889 1890 switch (nport->disc_addr.adrfam) { 1891 case NVMF_ADDR_FAMILY_IP4: 1892 af = AF_INET; 1893 break; 1894 case NVMF_ADDR_FAMILY_IP6: 1895 af = AF_INET6; 1896 break; 1897 default: 1898 pr_err("address family %d not supported\n", 1899 nport->disc_addr.adrfam); 1900 ret = -EINVAL; 1901 goto out_free_port; 1902 } 1903 1904 if (nport->inline_data_size < 0) { 1905 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1906 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1907 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1908 nport->inline_data_size, 1909 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1910 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1911 } 1912 1913 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1914 nport->disc_addr.trsvcid, &port->addr); 1915 if (ret) { 1916 pr_err("malformed ip/port passed: %s:%s\n", 1917 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1918 goto out_free_port; 1919 } 1920 1921 ret = nvmet_rdma_enable_port(port); 1922 if (ret) 1923 goto out_free_port; 1924 1925 pr_info("enabling port %d (%pISpcs)\n", 1926 le16_to_cpu(nport->disc_addr.portid), 1927 (struct sockaddr *)&port->addr); 1928 1929 return 0; 1930 1931 out_free_port: 1932 kfree(port); 1933 return ret; 1934 } 1935 1936 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1937 { 1938 struct nvmet_rdma_port *port = nport->priv; 1939 1940 cancel_delayed_work_sync(&port->repair_work); 1941 nvmet_rdma_disable_port(port); 1942 kfree(port); 1943 } 1944 1945 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1946 struct nvmet_port *nport, char *traddr) 1947 { 1948 struct nvmet_rdma_port *port = nport->priv; 1949 struct rdma_cm_id *cm_id = port->cm_id; 1950 1951 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1952 struct nvmet_rdma_rsp *rsp = 1953 container_of(req, struct nvmet_rdma_rsp, req); 1954 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1955 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1956 1957 sprintf(traddr, "%pISc", addr); 1958 } else { 1959 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1960 } 1961 } 1962 1963 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 1964 { 1965 if (ctrl->pi_support) 1966 return NVMET_RDMA_MAX_METADATA_MDTS; 1967 return NVMET_RDMA_MAX_MDTS; 1968 } 1969 1970 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 1971 .owner = THIS_MODULE, 1972 .type = NVMF_TRTYPE_RDMA, 1973 .msdbd = 1, 1974 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 1975 .add_port = nvmet_rdma_add_port, 1976 .remove_port = nvmet_rdma_remove_port, 1977 .queue_response = nvmet_rdma_queue_response, 1978 .delete_ctrl = nvmet_rdma_delete_ctrl, 1979 .disc_traddr = nvmet_rdma_disc_port_addr, 1980 .get_mdts = nvmet_rdma_get_mdts, 1981 }; 1982 1983 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1984 { 1985 struct nvmet_rdma_queue *queue, *tmp; 1986 struct nvmet_rdma_device *ndev; 1987 bool found = false; 1988 1989 mutex_lock(&device_list_mutex); 1990 list_for_each_entry(ndev, &device_list, entry) { 1991 if (ndev->device == ib_device) { 1992 found = true; 1993 break; 1994 } 1995 } 1996 mutex_unlock(&device_list_mutex); 1997 1998 if (!found) 1999 return; 2000 2001 /* 2002 * IB Device that is used by nvmet controllers is being removed, 2003 * delete all queues using this device. 2004 */ 2005 mutex_lock(&nvmet_rdma_queue_mutex); 2006 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2007 queue_list) { 2008 if (queue->dev->device != ib_device) 2009 continue; 2010 2011 pr_info("Removing queue %d\n", queue->idx); 2012 list_del_init(&queue->queue_list); 2013 __nvmet_rdma_queue_disconnect(queue); 2014 } 2015 mutex_unlock(&nvmet_rdma_queue_mutex); 2016 2017 flush_scheduled_work(); 2018 } 2019 2020 static struct ib_client nvmet_rdma_ib_client = { 2021 .name = "nvmet_rdma", 2022 .remove = nvmet_rdma_remove_one 2023 }; 2024 2025 static int __init nvmet_rdma_init(void) 2026 { 2027 int ret; 2028 2029 ret = ib_register_client(&nvmet_rdma_ib_client); 2030 if (ret) 2031 return ret; 2032 2033 ret = nvmet_register_transport(&nvmet_rdma_ops); 2034 if (ret) 2035 goto err_ib_client; 2036 2037 return 0; 2038 2039 err_ib_client: 2040 ib_unregister_client(&nvmet_rdma_ib_client); 2041 return ret; 2042 } 2043 2044 static void __exit nvmet_rdma_exit(void) 2045 { 2046 nvmet_unregister_transport(&nvmet_rdma_ops); 2047 ib_unregister_client(&nvmet_rdma_ib_client); 2048 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2049 ida_destroy(&nvmet_rdma_queue_ida); 2050 } 2051 2052 module_init(nvmet_rdma_init); 2053 module_exit(nvmet_rdma_exit); 2054 2055 MODULE_LICENSE("GPL v2"); 2056 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2057