xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27 
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31 
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34 
35 /*
36  * We allow up to a page of inline data to go with the SQE
37  */
38 #define NVMET_RDMA_INLINE_DATA_SIZE	PAGE_SIZE
39 
40 struct nvmet_rdma_cmd {
41 	struct ib_sge		sge[2];
42 	struct ib_cqe		cqe;
43 	struct ib_recv_wr	wr;
44 	struct scatterlist	inline_sg;
45 	struct page		*inline_page;
46 	struct nvme_command     *nvme_cmd;
47 	struct nvmet_rdma_queue	*queue;
48 };
49 
50 enum {
51 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
52 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
53 };
54 
55 struct nvmet_rdma_rsp {
56 	struct ib_sge		send_sge;
57 	struct ib_cqe		send_cqe;
58 	struct ib_send_wr	send_wr;
59 
60 	struct nvmet_rdma_cmd	*cmd;
61 	struct nvmet_rdma_queue	*queue;
62 
63 	struct ib_cqe		read_cqe;
64 	struct rdma_rw_ctx	rw;
65 
66 	struct nvmet_req	req;
67 
68 	u8			n_rdma;
69 	u32			flags;
70 	u32			invalidate_rkey;
71 
72 	struct list_head	wait_list;
73 	struct list_head	free_list;
74 };
75 
76 enum nvmet_rdma_queue_state {
77 	NVMET_RDMA_Q_CONNECTING,
78 	NVMET_RDMA_Q_LIVE,
79 	NVMET_RDMA_Q_DISCONNECTING,
80 };
81 
82 struct nvmet_rdma_queue {
83 	struct rdma_cm_id	*cm_id;
84 	struct nvmet_port	*port;
85 	struct ib_cq		*cq;
86 	atomic_t		sq_wr_avail;
87 	struct nvmet_rdma_device *dev;
88 	spinlock_t		state_lock;
89 	enum nvmet_rdma_queue_state state;
90 	struct nvmet_cq		nvme_cq;
91 	struct nvmet_sq		nvme_sq;
92 
93 	struct nvmet_rdma_rsp	*rsps;
94 	struct list_head	free_rsps;
95 	spinlock_t		rsps_lock;
96 	struct nvmet_rdma_cmd	*cmds;
97 
98 	struct work_struct	release_work;
99 	struct list_head	rsp_wait_list;
100 	struct list_head	rsp_wr_wait_list;
101 	spinlock_t		rsp_wr_wait_lock;
102 
103 	int			idx;
104 	int			host_qid;
105 	int			recv_queue_size;
106 	int			send_queue_size;
107 
108 	struct list_head	queue_list;
109 };
110 
111 struct nvmet_rdma_device {
112 	struct ib_device	*device;
113 	struct ib_pd		*pd;
114 	struct ib_srq		*srq;
115 	struct nvmet_rdma_cmd	*srq_cmds;
116 	size_t			srq_size;
117 	struct kref		ref;
118 	struct list_head	entry;
119 };
120 
121 static bool nvmet_rdma_use_srq;
122 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
123 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
124 
125 static DEFINE_IDA(nvmet_rdma_queue_ida);
126 static LIST_HEAD(nvmet_rdma_queue_list);
127 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
128 
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131 
132 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
133 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
134 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
137 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
138 
139 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
140 
141 /* XXX: really should move to a generic header sooner or later.. */
142 static inline u32 get_unaligned_le24(const u8 *p)
143 {
144 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
145 }
146 
147 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
148 {
149 	return nvme_is_write(rsp->req.cmd) &&
150 		rsp->req.transfer_len &&
151 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
152 }
153 
154 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
155 {
156 	return !nvme_is_write(rsp->req.cmd) &&
157 		rsp->req.transfer_len &&
158 		!rsp->req.rsp->status &&
159 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
160 }
161 
162 static inline struct nvmet_rdma_rsp *
163 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
164 {
165 	struct nvmet_rdma_rsp *rsp;
166 	unsigned long flags;
167 
168 	spin_lock_irqsave(&queue->rsps_lock, flags);
169 	rsp = list_first_entry(&queue->free_rsps,
170 				struct nvmet_rdma_rsp, free_list);
171 	list_del(&rsp->free_list);
172 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
173 
174 	return rsp;
175 }
176 
177 static inline void
178 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
179 {
180 	unsigned long flags;
181 
182 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
183 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
184 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
185 }
186 
187 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
188 			struct nvmet_rdma_cmd *c, bool admin)
189 {
190 	/* NVMe command / RDMA RECV */
191 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
192 	if (!c->nvme_cmd)
193 		goto out;
194 
195 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
196 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
197 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
198 		goto out_free_cmd;
199 
200 	c->sge[0].length = sizeof(*c->nvme_cmd);
201 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
202 
203 	if (!admin) {
204 		c->inline_page = alloc_pages(GFP_KERNEL,
205 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
206 		if (!c->inline_page)
207 			goto out_unmap_cmd;
208 		c->sge[1].addr = ib_dma_map_page(ndev->device,
209 				c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
210 				DMA_FROM_DEVICE);
211 		if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
212 			goto out_free_inline_page;
213 		c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
214 		c->sge[1].lkey = ndev->pd->local_dma_lkey;
215 	}
216 
217 	c->cqe.done = nvmet_rdma_recv_done;
218 
219 	c->wr.wr_cqe = &c->cqe;
220 	c->wr.sg_list = c->sge;
221 	c->wr.num_sge = admin ? 1 : 2;
222 
223 	return 0;
224 
225 out_free_inline_page:
226 	if (!admin) {
227 		__free_pages(c->inline_page,
228 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
229 	}
230 out_unmap_cmd:
231 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
232 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
233 out_free_cmd:
234 	kfree(c->nvme_cmd);
235 
236 out:
237 	return -ENOMEM;
238 }
239 
240 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
241 		struct nvmet_rdma_cmd *c, bool admin)
242 {
243 	if (!admin) {
244 		ib_dma_unmap_page(ndev->device, c->sge[1].addr,
245 				NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
246 		__free_pages(c->inline_page,
247 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
248 	}
249 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
250 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 	kfree(c->nvme_cmd);
252 }
253 
254 static struct nvmet_rdma_cmd *
255 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
256 		int nr_cmds, bool admin)
257 {
258 	struct nvmet_rdma_cmd *cmds;
259 	int ret = -EINVAL, i;
260 
261 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
262 	if (!cmds)
263 		goto out;
264 
265 	for (i = 0; i < nr_cmds; i++) {
266 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
267 		if (ret)
268 			goto out_free;
269 	}
270 
271 	return cmds;
272 
273 out_free:
274 	while (--i >= 0)
275 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
276 	kfree(cmds);
277 out:
278 	return ERR_PTR(ret);
279 }
280 
281 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
282 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
283 {
284 	int i;
285 
286 	for (i = 0; i < nr_cmds; i++)
287 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
288 	kfree(cmds);
289 }
290 
291 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
292 		struct nvmet_rdma_rsp *r)
293 {
294 	/* NVMe CQE / RDMA SEND */
295 	r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
296 	if (!r->req.rsp)
297 		goto out;
298 
299 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
300 			sizeof(*r->req.rsp), DMA_TO_DEVICE);
301 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
302 		goto out_free_rsp;
303 
304 	r->send_sge.length = sizeof(*r->req.rsp);
305 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
306 
307 	r->send_cqe.done = nvmet_rdma_send_done;
308 
309 	r->send_wr.wr_cqe = &r->send_cqe;
310 	r->send_wr.sg_list = &r->send_sge;
311 	r->send_wr.num_sge = 1;
312 	r->send_wr.send_flags = IB_SEND_SIGNALED;
313 
314 	/* Data In / RDMA READ */
315 	r->read_cqe.done = nvmet_rdma_read_data_done;
316 	return 0;
317 
318 out_free_rsp:
319 	kfree(r->req.rsp);
320 out:
321 	return -ENOMEM;
322 }
323 
324 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
325 		struct nvmet_rdma_rsp *r)
326 {
327 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
328 				sizeof(*r->req.rsp), DMA_TO_DEVICE);
329 	kfree(r->req.rsp);
330 }
331 
332 static int
333 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
334 {
335 	struct nvmet_rdma_device *ndev = queue->dev;
336 	int nr_rsps = queue->recv_queue_size * 2;
337 	int ret = -EINVAL, i;
338 
339 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
340 			GFP_KERNEL);
341 	if (!queue->rsps)
342 		goto out;
343 
344 	for (i = 0; i < nr_rsps; i++) {
345 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
346 
347 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
348 		if (ret)
349 			goto out_free;
350 
351 		list_add_tail(&rsp->free_list, &queue->free_rsps);
352 	}
353 
354 	return 0;
355 
356 out_free:
357 	while (--i >= 0) {
358 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
359 
360 		list_del(&rsp->free_list);
361 		nvmet_rdma_free_rsp(ndev, rsp);
362 	}
363 	kfree(queue->rsps);
364 out:
365 	return ret;
366 }
367 
368 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
369 {
370 	struct nvmet_rdma_device *ndev = queue->dev;
371 	int i, nr_rsps = queue->recv_queue_size * 2;
372 
373 	for (i = 0; i < nr_rsps; i++) {
374 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
375 
376 		list_del(&rsp->free_list);
377 		nvmet_rdma_free_rsp(ndev, rsp);
378 	}
379 	kfree(queue->rsps);
380 }
381 
382 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
383 		struct nvmet_rdma_cmd *cmd)
384 {
385 	struct ib_recv_wr *bad_wr;
386 
387 	ib_dma_sync_single_for_device(ndev->device,
388 		cmd->sge[0].addr, cmd->sge[0].length,
389 		DMA_FROM_DEVICE);
390 
391 	if (ndev->srq)
392 		return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
393 	return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
394 }
395 
396 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
397 {
398 	spin_lock(&queue->rsp_wr_wait_lock);
399 	while (!list_empty(&queue->rsp_wr_wait_list)) {
400 		struct nvmet_rdma_rsp *rsp;
401 		bool ret;
402 
403 		rsp = list_entry(queue->rsp_wr_wait_list.next,
404 				struct nvmet_rdma_rsp, wait_list);
405 		list_del(&rsp->wait_list);
406 
407 		spin_unlock(&queue->rsp_wr_wait_lock);
408 		ret = nvmet_rdma_execute_command(rsp);
409 		spin_lock(&queue->rsp_wr_wait_lock);
410 
411 		if (!ret) {
412 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
413 			break;
414 		}
415 	}
416 	spin_unlock(&queue->rsp_wr_wait_lock);
417 }
418 
419 
420 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
421 {
422 	struct nvmet_rdma_queue *queue = rsp->queue;
423 
424 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
425 
426 	if (rsp->n_rdma) {
427 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
428 				queue->cm_id->port_num, rsp->req.sg,
429 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
430 	}
431 
432 	if (rsp->req.sg != &rsp->cmd->inline_sg)
433 		sgl_free(rsp->req.sg);
434 
435 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
436 		nvmet_rdma_process_wr_wait_list(queue);
437 
438 	nvmet_rdma_put_rsp(rsp);
439 }
440 
441 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
442 {
443 	if (queue->nvme_sq.ctrl) {
444 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
445 	} else {
446 		/*
447 		 * we didn't setup the controller yet in case
448 		 * of admin connect error, just disconnect and
449 		 * cleanup the queue
450 		 */
451 		nvmet_rdma_queue_disconnect(queue);
452 	}
453 }
454 
455 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
456 {
457 	struct nvmet_rdma_rsp *rsp =
458 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
459 
460 	nvmet_rdma_release_rsp(rsp);
461 
462 	if (unlikely(wc->status != IB_WC_SUCCESS &&
463 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
464 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
465 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
466 		nvmet_rdma_error_comp(rsp->queue);
467 	}
468 }
469 
470 static void nvmet_rdma_queue_response(struct nvmet_req *req)
471 {
472 	struct nvmet_rdma_rsp *rsp =
473 		container_of(req, struct nvmet_rdma_rsp, req);
474 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
475 	struct ib_send_wr *first_wr, *bad_wr;
476 
477 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
478 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
479 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
480 	} else {
481 		rsp->send_wr.opcode = IB_WR_SEND;
482 	}
483 
484 	if (nvmet_rdma_need_data_out(rsp))
485 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
486 				cm_id->port_num, NULL, &rsp->send_wr);
487 	else
488 		first_wr = &rsp->send_wr;
489 
490 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
491 
492 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
493 		rsp->send_sge.addr, rsp->send_sge.length,
494 		DMA_TO_DEVICE);
495 
496 	if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
497 		pr_err("sending cmd response failed\n");
498 		nvmet_rdma_release_rsp(rsp);
499 	}
500 }
501 
502 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
503 {
504 	struct nvmet_rdma_rsp *rsp =
505 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
506 	struct nvmet_rdma_queue *queue = cq->cq_context;
507 
508 	WARN_ON(rsp->n_rdma <= 0);
509 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
510 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
511 			queue->cm_id->port_num, rsp->req.sg,
512 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
513 	rsp->n_rdma = 0;
514 
515 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
516 		nvmet_req_uninit(&rsp->req);
517 		nvmet_rdma_release_rsp(rsp);
518 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
519 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
520 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
521 			nvmet_rdma_error_comp(queue);
522 		}
523 		return;
524 	}
525 
526 	nvmet_req_execute(&rsp->req);
527 }
528 
529 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
530 		u64 off)
531 {
532 	sg_init_table(&rsp->cmd->inline_sg, 1);
533 	sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
534 	rsp->req.sg = &rsp->cmd->inline_sg;
535 	rsp->req.sg_cnt = 1;
536 }
537 
538 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
539 {
540 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
541 	u64 off = le64_to_cpu(sgl->addr);
542 	u32 len = le32_to_cpu(sgl->length);
543 
544 	if (!nvme_is_write(rsp->req.cmd))
545 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
546 
547 	if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
548 		pr_err("invalid inline data offset!\n");
549 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
550 	}
551 
552 	/* no data command? */
553 	if (!len)
554 		return 0;
555 
556 	nvmet_rdma_use_inline_sg(rsp, len, off);
557 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
558 	rsp->req.transfer_len += len;
559 	return 0;
560 }
561 
562 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
563 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
564 {
565 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
566 	u64 addr = le64_to_cpu(sgl->addr);
567 	u32 len = get_unaligned_le24(sgl->length);
568 	u32 key = get_unaligned_le32(sgl->key);
569 	int ret;
570 
571 	/* no data command? */
572 	if (!len)
573 		return 0;
574 
575 	rsp->req.sg = sgl_alloc(len, GFP_KERNEL, &rsp->req.sg_cnt);
576 	if (!rsp->req.sg)
577 		return NVME_SC_INTERNAL;
578 
579 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
580 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
581 			nvmet_data_dir(&rsp->req));
582 	if (ret < 0)
583 		return NVME_SC_INTERNAL;
584 	rsp->req.transfer_len += len;
585 	rsp->n_rdma += ret;
586 
587 	if (invalidate) {
588 		rsp->invalidate_rkey = key;
589 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
590 	}
591 
592 	return 0;
593 }
594 
595 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
596 {
597 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
598 
599 	switch (sgl->type >> 4) {
600 	case NVME_SGL_FMT_DATA_DESC:
601 		switch (sgl->type & 0xf) {
602 		case NVME_SGL_FMT_OFFSET:
603 			return nvmet_rdma_map_sgl_inline(rsp);
604 		default:
605 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
606 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
607 		}
608 	case NVME_KEY_SGL_FMT_DATA_DESC:
609 		switch (sgl->type & 0xf) {
610 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
611 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
612 		case NVME_SGL_FMT_ADDRESS:
613 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
614 		default:
615 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
616 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
617 		}
618 	default:
619 		pr_err("invalid SGL type: %#x\n", sgl->type);
620 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
621 	}
622 }
623 
624 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
625 {
626 	struct nvmet_rdma_queue *queue = rsp->queue;
627 
628 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
629 			&queue->sq_wr_avail) < 0)) {
630 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
631 				1 + rsp->n_rdma, queue->idx,
632 				queue->nvme_sq.ctrl->cntlid);
633 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
634 		return false;
635 	}
636 
637 	if (nvmet_rdma_need_data_in(rsp)) {
638 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
639 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
640 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
641 	} else {
642 		nvmet_req_execute(&rsp->req);
643 	}
644 
645 	return true;
646 }
647 
648 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
649 		struct nvmet_rdma_rsp *cmd)
650 {
651 	u16 status;
652 
653 	ib_dma_sync_single_for_cpu(queue->dev->device,
654 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
655 		DMA_FROM_DEVICE);
656 	ib_dma_sync_single_for_cpu(queue->dev->device,
657 		cmd->send_sge.addr, cmd->send_sge.length,
658 		DMA_TO_DEVICE);
659 
660 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
661 			&queue->nvme_sq, &nvmet_rdma_ops))
662 		return;
663 
664 	status = nvmet_rdma_map_sgl(cmd);
665 	if (status)
666 		goto out_err;
667 
668 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
669 		spin_lock(&queue->rsp_wr_wait_lock);
670 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
671 		spin_unlock(&queue->rsp_wr_wait_lock);
672 	}
673 
674 	return;
675 
676 out_err:
677 	nvmet_req_complete(&cmd->req, status);
678 }
679 
680 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
681 {
682 	struct nvmet_rdma_cmd *cmd =
683 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
684 	struct nvmet_rdma_queue *queue = cq->cq_context;
685 	struct nvmet_rdma_rsp *rsp;
686 
687 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
688 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
689 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
690 				wc->wr_cqe, ib_wc_status_msg(wc->status),
691 				wc->status);
692 			nvmet_rdma_error_comp(queue);
693 		}
694 		return;
695 	}
696 
697 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
698 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
699 		nvmet_rdma_error_comp(queue);
700 		return;
701 	}
702 
703 	cmd->queue = queue;
704 	rsp = nvmet_rdma_get_rsp(queue);
705 	rsp->queue = queue;
706 	rsp->cmd = cmd;
707 	rsp->flags = 0;
708 	rsp->req.cmd = cmd->nvme_cmd;
709 	rsp->req.port = queue->port;
710 	rsp->n_rdma = 0;
711 
712 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
713 		unsigned long flags;
714 
715 		spin_lock_irqsave(&queue->state_lock, flags);
716 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
717 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
718 		else
719 			nvmet_rdma_put_rsp(rsp);
720 		spin_unlock_irqrestore(&queue->state_lock, flags);
721 		return;
722 	}
723 
724 	nvmet_rdma_handle_command(queue, rsp);
725 }
726 
727 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
728 {
729 	if (!ndev->srq)
730 		return;
731 
732 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
733 	ib_destroy_srq(ndev->srq);
734 }
735 
736 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
737 {
738 	struct ib_srq_init_attr srq_attr = { NULL, };
739 	struct ib_srq *srq;
740 	size_t srq_size;
741 	int ret, i;
742 
743 	srq_size = 4095;	/* XXX: tune */
744 
745 	srq_attr.attr.max_wr = srq_size;
746 	srq_attr.attr.max_sge = 2;
747 	srq_attr.attr.srq_limit = 0;
748 	srq_attr.srq_type = IB_SRQT_BASIC;
749 	srq = ib_create_srq(ndev->pd, &srq_attr);
750 	if (IS_ERR(srq)) {
751 		/*
752 		 * If SRQs aren't supported we just go ahead and use normal
753 		 * non-shared receive queues.
754 		 */
755 		pr_info("SRQ requested but not supported.\n");
756 		return 0;
757 	}
758 
759 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
760 	if (IS_ERR(ndev->srq_cmds)) {
761 		ret = PTR_ERR(ndev->srq_cmds);
762 		goto out_destroy_srq;
763 	}
764 
765 	ndev->srq = srq;
766 	ndev->srq_size = srq_size;
767 
768 	for (i = 0; i < srq_size; i++)
769 		nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
770 
771 	return 0;
772 
773 out_destroy_srq:
774 	ib_destroy_srq(srq);
775 	return ret;
776 }
777 
778 static void nvmet_rdma_free_dev(struct kref *ref)
779 {
780 	struct nvmet_rdma_device *ndev =
781 		container_of(ref, struct nvmet_rdma_device, ref);
782 
783 	mutex_lock(&device_list_mutex);
784 	list_del(&ndev->entry);
785 	mutex_unlock(&device_list_mutex);
786 
787 	nvmet_rdma_destroy_srq(ndev);
788 	ib_dealloc_pd(ndev->pd);
789 
790 	kfree(ndev);
791 }
792 
793 static struct nvmet_rdma_device *
794 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
795 {
796 	struct nvmet_rdma_device *ndev;
797 	int ret;
798 
799 	mutex_lock(&device_list_mutex);
800 	list_for_each_entry(ndev, &device_list, entry) {
801 		if (ndev->device->node_guid == cm_id->device->node_guid &&
802 		    kref_get_unless_zero(&ndev->ref))
803 			goto out_unlock;
804 	}
805 
806 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
807 	if (!ndev)
808 		goto out_err;
809 
810 	ndev->device = cm_id->device;
811 	kref_init(&ndev->ref);
812 
813 	ndev->pd = ib_alloc_pd(ndev->device, 0);
814 	if (IS_ERR(ndev->pd))
815 		goto out_free_dev;
816 
817 	if (nvmet_rdma_use_srq) {
818 		ret = nvmet_rdma_init_srq(ndev);
819 		if (ret)
820 			goto out_free_pd;
821 	}
822 
823 	list_add(&ndev->entry, &device_list);
824 out_unlock:
825 	mutex_unlock(&device_list_mutex);
826 	pr_debug("added %s.\n", ndev->device->name);
827 	return ndev;
828 
829 out_free_pd:
830 	ib_dealloc_pd(ndev->pd);
831 out_free_dev:
832 	kfree(ndev);
833 out_err:
834 	mutex_unlock(&device_list_mutex);
835 	return NULL;
836 }
837 
838 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
839 {
840 	struct ib_qp_init_attr qp_attr;
841 	struct nvmet_rdma_device *ndev = queue->dev;
842 	int comp_vector, nr_cqe, ret, i;
843 
844 	/*
845 	 * Spread the io queues across completion vectors,
846 	 * but still keep all admin queues on vector 0.
847 	 */
848 	comp_vector = !queue->host_qid ? 0 :
849 		queue->idx % ndev->device->num_comp_vectors;
850 
851 	/*
852 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
853 	 */
854 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
855 
856 	queue->cq = ib_alloc_cq(ndev->device, queue,
857 			nr_cqe + 1, comp_vector,
858 			IB_POLL_WORKQUEUE);
859 	if (IS_ERR(queue->cq)) {
860 		ret = PTR_ERR(queue->cq);
861 		pr_err("failed to create CQ cqe= %d ret= %d\n",
862 		       nr_cqe + 1, ret);
863 		goto out;
864 	}
865 
866 	memset(&qp_attr, 0, sizeof(qp_attr));
867 	qp_attr.qp_context = queue;
868 	qp_attr.event_handler = nvmet_rdma_qp_event;
869 	qp_attr.send_cq = queue->cq;
870 	qp_attr.recv_cq = queue->cq;
871 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
872 	qp_attr.qp_type = IB_QPT_RC;
873 	/* +1 for drain */
874 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
875 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
876 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
877 					ndev->device->attrs.max_sge);
878 
879 	if (ndev->srq) {
880 		qp_attr.srq = ndev->srq;
881 	} else {
882 		/* +1 for drain */
883 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
884 		qp_attr.cap.max_recv_sge = 2;
885 	}
886 
887 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
888 	if (ret) {
889 		pr_err("failed to create_qp ret= %d\n", ret);
890 		goto err_destroy_cq;
891 	}
892 
893 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
894 
895 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
896 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
897 		 qp_attr.cap.max_send_wr, queue->cm_id);
898 
899 	if (!ndev->srq) {
900 		for (i = 0; i < queue->recv_queue_size; i++) {
901 			queue->cmds[i].queue = queue;
902 			nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
903 		}
904 	}
905 
906 out:
907 	return ret;
908 
909 err_destroy_cq:
910 	ib_free_cq(queue->cq);
911 	goto out;
912 }
913 
914 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
915 {
916 	struct ib_qp *qp = queue->cm_id->qp;
917 
918 	ib_drain_qp(qp);
919 	rdma_destroy_id(queue->cm_id);
920 	ib_destroy_qp(qp);
921 	ib_free_cq(queue->cq);
922 }
923 
924 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
925 {
926 	pr_debug("freeing queue %d\n", queue->idx);
927 
928 	nvmet_sq_destroy(&queue->nvme_sq);
929 
930 	nvmet_rdma_destroy_queue_ib(queue);
931 	if (!queue->dev->srq) {
932 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
933 				queue->recv_queue_size,
934 				!queue->host_qid);
935 	}
936 	nvmet_rdma_free_rsps(queue);
937 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
938 	kfree(queue);
939 }
940 
941 static void nvmet_rdma_release_queue_work(struct work_struct *w)
942 {
943 	struct nvmet_rdma_queue *queue =
944 		container_of(w, struct nvmet_rdma_queue, release_work);
945 	struct nvmet_rdma_device *dev = queue->dev;
946 
947 	nvmet_rdma_free_queue(queue);
948 
949 	kref_put(&dev->ref, nvmet_rdma_free_dev);
950 }
951 
952 static int
953 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
954 				struct nvmet_rdma_queue *queue)
955 {
956 	struct nvme_rdma_cm_req *req;
957 
958 	req = (struct nvme_rdma_cm_req *)conn->private_data;
959 	if (!req || conn->private_data_len == 0)
960 		return NVME_RDMA_CM_INVALID_LEN;
961 
962 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
963 		return NVME_RDMA_CM_INVALID_RECFMT;
964 
965 	queue->host_qid = le16_to_cpu(req->qid);
966 
967 	/*
968 	 * req->hsqsize corresponds to our recv queue size plus 1
969 	 * req->hrqsize corresponds to our send queue size
970 	 */
971 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
972 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
973 
974 	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
975 		return NVME_RDMA_CM_INVALID_HSQSIZE;
976 
977 	/* XXX: Should we enforce some kind of max for IO queues? */
978 
979 	return 0;
980 }
981 
982 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
983 				enum nvme_rdma_cm_status status)
984 {
985 	struct nvme_rdma_cm_rej rej;
986 
987 	pr_debug("rejecting connect request: status %d (%s)\n",
988 		 status, nvme_rdma_cm_msg(status));
989 
990 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
991 	rej.sts = cpu_to_le16(status);
992 
993 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
994 }
995 
996 static struct nvmet_rdma_queue *
997 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
998 		struct rdma_cm_id *cm_id,
999 		struct rdma_cm_event *event)
1000 {
1001 	struct nvmet_rdma_queue *queue;
1002 	int ret;
1003 
1004 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1005 	if (!queue) {
1006 		ret = NVME_RDMA_CM_NO_RSC;
1007 		goto out_reject;
1008 	}
1009 
1010 	ret = nvmet_sq_init(&queue->nvme_sq);
1011 	if (ret) {
1012 		ret = NVME_RDMA_CM_NO_RSC;
1013 		goto out_free_queue;
1014 	}
1015 
1016 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1017 	if (ret)
1018 		goto out_destroy_sq;
1019 
1020 	/*
1021 	 * Schedules the actual release because calling rdma_destroy_id from
1022 	 * inside a CM callback would trigger a deadlock. (great API design..)
1023 	 */
1024 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1025 	queue->dev = ndev;
1026 	queue->cm_id = cm_id;
1027 
1028 	spin_lock_init(&queue->state_lock);
1029 	queue->state = NVMET_RDMA_Q_CONNECTING;
1030 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1031 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1032 	spin_lock_init(&queue->rsp_wr_wait_lock);
1033 	INIT_LIST_HEAD(&queue->free_rsps);
1034 	spin_lock_init(&queue->rsps_lock);
1035 	INIT_LIST_HEAD(&queue->queue_list);
1036 
1037 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1038 	if (queue->idx < 0) {
1039 		ret = NVME_RDMA_CM_NO_RSC;
1040 		goto out_destroy_sq;
1041 	}
1042 
1043 	ret = nvmet_rdma_alloc_rsps(queue);
1044 	if (ret) {
1045 		ret = NVME_RDMA_CM_NO_RSC;
1046 		goto out_ida_remove;
1047 	}
1048 
1049 	if (!ndev->srq) {
1050 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1051 				queue->recv_queue_size,
1052 				!queue->host_qid);
1053 		if (IS_ERR(queue->cmds)) {
1054 			ret = NVME_RDMA_CM_NO_RSC;
1055 			goto out_free_responses;
1056 		}
1057 	}
1058 
1059 	ret = nvmet_rdma_create_queue_ib(queue);
1060 	if (ret) {
1061 		pr_err("%s: creating RDMA queue failed (%d).\n",
1062 			__func__, ret);
1063 		ret = NVME_RDMA_CM_NO_RSC;
1064 		goto out_free_cmds;
1065 	}
1066 
1067 	return queue;
1068 
1069 out_free_cmds:
1070 	if (!ndev->srq) {
1071 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1072 				queue->recv_queue_size,
1073 				!queue->host_qid);
1074 	}
1075 out_free_responses:
1076 	nvmet_rdma_free_rsps(queue);
1077 out_ida_remove:
1078 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1079 out_destroy_sq:
1080 	nvmet_sq_destroy(&queue->nvme_sq);
1081 out_free_queue:
1082 	kfree(queue);
1083 out_reject:
1084 	nvmet_rdma_cm_reject(cm_id, ret);
1085 	return NULL;
1086 }
1087 
1088 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1089 {
1090 	struct nvmet_rdma_queue *queue = priv;
1091 
1092 	switch (event->event) {
1093 	case IB_EVENT_COMM_EST:
1094 		rdma_notify(queue->cm_id, event->event);
1095 		break;
1096 	default:
1097 		pr_err("received IB QP event: %s (%d)\n",
1098 		       ib_event_msg(event->event), event->event);
1099 		break;
1100 	}
1101 }
1102 
1103 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1104 		struct nvmet_rdma_queue *queue,
1105 		struct rdma_conn_param *p)
1106 {
1107 	struct rdma_conn_param  param = { };
1108 	struct nvme_rdma_cm_rep priv = { };
1109 	int ret = -ENOMEM;
1110 
1111 	param.rnr_retry_count = 7;
1112 	param.flow_control = 1;
1113 	param.initiator_depth = min_t(u8, p->initiator_depth,
1114 		queue->dev->device->attrs.max_qp_init_rd_atom);
1115 	param.private_data = &priv;
1116 	param.private_data_len = sizeof(priv);
1117 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1118 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1119 
1120 	ret = rdma_accept(cm_id, &param);
1121 	if (ret)
1122 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1123 
1124 	return ret;
1125 }
1126 
1127 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1128 		struct rdma_cm_event *event)
1129 {
1130 	struct nvmet_rdma_device *ndev;
1131 	struct nvmet_rdma_queue *queue;
1132 	int ret = -EINVAL;
1133 
1134 	ndev = nvmet_rdma_find_get_device(cm_id);
1135 	if (!ndev) {
1136 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1137 		return -ECONNREFUSED;
1138 	}
1139 
1140 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1141 	if (!queue) {
1142 		ret = -ENOMEM;
1143 		goto put_device;
1144 	}
1145 	queue->port = cm_id->context;
1146 
1147 	if (queue->host_qid == 0) {
1148 		/* Let inflight controller teardown complete */
1149 		flush_scheduled_work();
1150 	}
1151 
1152 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1153 	if (ret) {
1154 		schedule_work(&queue->release_work);
1155 		/* Destroying rdma_cm id is not needed here */
1156 		return 0;
1157 	}
1158 
1159 	mutex_lock(&nvmet_rdma_queue_mutex);
1160 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1161 	mutex_unlock(&nvmet_rdma_queue_mutex);
1162 
1163 	return 0;
1164 
1165 put_device:
1166 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1167 
1168 	return ret;
1169 }
1170 
1171 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1172 {
1173 	unsigned long flags;
1174 
1175 	spin_lock_irqsave(&queue->state_lock, flags);
1176 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1177 		pr_warn("trying to establish a connected queue\n");
1178 		goto out_unlock;
1179 	}
1180 	queue->state = NVMET_RDMA_Q_LIVE;
1181 
1182 	while (!list_empty(&queue->rsp_wait_list)) {
1183 		struct nvmet_rdma_rsp *cmd;
1184 
1185 		cmd = list_first_entry(&queue->rsp_wait_list,
1186 					struct nvmet_rdma_rsp, wait_list);
1187 		list_del(&cmd->wait_list);
1188 
1189 		spin_unlock_irqrestore(&queue->state_lock, flags);
1190 		nvmet_rdma_handle_command(queue, cmd);
1191 		spin_lock_irqsave(&queue->state_lock, flags);
1192 	}
1193 
1194 out_unlock:
1195 	spin_unlock_irqrestore(&queue->state_lock, flags);
1196 }
1197 
1198 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1199 {
1200 	bool disconnect = false;
1201 	unsigned long flags;
1202 
1203 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1204 
1205 	spin_lock_irqsave(&queue->state_lock, flags);
1206 	switch (queue->state) {
1207 	case NVMET_RDMA_Q_CONNECTING:
1208 	case NVMET_RDMA_Q_LIVE:
1209 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1210 		disconnect = true;
1211 		break;
1212 	case NVMET_RDMA_Q_DISCONNECTING:
1213 		break;
1214 	}
1215 	spin_unlock_irqrestore(&queue->state_lock, flags);
1216 
1217 	if (disconnect) {
1218 		rdma_disconnect(queue->cm_id);
1219 		schedule_work(&queue->release_work);
1220 	}
1221 }
1222 
1223 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1224 {
1225 	bool disconnect = false;
1226 
1227 	mutex_lock(&nvmet_rdma_queue_mutex);
1228 	if (!list_empty(&queue->queue_list)) {
1229 		list_del_init(&queue->queue_list);
1230 		disconnect = true;
1231 	}
1232 	mutex_unlock(&nvmet_rdma_queue_mutex);
1233 
1234 	if (disconnect)
1235 		__nvmet_rdma_queue_disconnect(queue);
1236 }
1237 
1238 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1239 		struct nvmet_rdma_queue *queue)
1240 {
1241 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1242 
1243 	mutex_lock(&nvmet_rdma_queue_mutex);
1244 	if (!list_empty(&queue->queue_list))
1245 		list_del_init(&queue->queue_list);
1246 	mutex_unlock(&nvmet_rdma_queue_mutex);
1247 
1248 	pr_err("failed to connect queue %d\n", queue->idx);
1249 	schedule_work(&queue->release_work);
1250 }
1251 
1252 /**
1253  * nvme_rdma_device_removal() - Handle RDMA device removal
1254  * @cm_id:	rdma_cm id, used for nvmet port
1255  * @queue:      nvmet rdma queue (cm id qp_context)
1256  *
1257  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1258  * to unplug. Note that this event can be generated on a normal
1259  * queue cm_id and/or a device bound listener cm_id (where in this
1260  * case queue will be null).
1261  *
1262  * We registered an ib_client to handle device removal for queues,
1263  * so we only need to handle the listening port cm_ids. In this case
1264  * we nullify the priv to prevent double cm_id destruction and destroying
1265  * the cm_id implicitely by returning a non-zero rc to the callout.
1266  */
1267 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1268 		struct nvmet_rdma_queue *queue)
1269 {
1270 	struct nvmet_port *port;
1271 
1272 	if (queue) {
1273 		/*
1274 		 * This is a queue cm_id. we have registered
1275 		 * an ib_client to handle queues removal
1276 		 * so don't interfear and just return.
1277 		 */
1278 		return 0;
1279 	}
1280 
1281 	port = cm_id->context;
1282 
1283 	/*
1284 	 * This is a listener cm_id. Make sure that
1285 	 * future remove_port won't invoke a double
1286 	 * cm_id destroy. use atomic xchg to make sure
1287 	 * we don't compete with remove_port.
1288 	 */
1289 	if (xchg(&port->priv, NULL) != cm_id)
1290 		return 0;
1291 
1292 	/*
1293 	 * We need to return 1 so that the core will destroy
1294 	 * it's own ID.  What a great API design..
1295 	 */
1296 	return 1;
1297 }
1298 
1299 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1300 		struct rdma_cm_event *event)
1301 {
1302 	struct nvmet_rdma_queue *queue = NULL;
1303 	int ret = 0;
1304 
1305 	if (cm_id->qp)
1306 		queue = cm_id->qp->qp_context;
1307 
1308 	pr_debug("%s (%d): status %d id %p\n",
1309 		rdma_event_msg(event->event), event->event,
1310 		event->status, cm_id);
1311 
1312 	switch (event->event) {
1313 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1314 		ret = nvmet_rdma_queue_connect(cm_id, event);
1315 		break;
1316 	case RDMA_CM_EVENT_ESTABLISHED:
1317 		nvmet_rdma_queue_established(queue);
1318 		break;
1319 	case RDMA_CM_EVENT_ADDR_CHANGE:
1320 	case RDMA_CM_EVENT_DISCONNECTED:
1321 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1322 		nvmet_rdma_queue_disconnect(queue);
1323 		break;
1324 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1325 		ret = nvmet_rdma_device_removal(cm_id, queue);
1326 		break;
1327 	case RDMA_CM_EVENT_REJECTED:
1328 		pr_debug("Connection rejected: %s\n",
1329 			 rdma_reject_msg(cm_id, event->status));
1330 		/* FALLTHROUGH */
1331 	case RDMA_CM_EVENT_UNREACHABLE:
1332 	case RDMA_CM_EVENT_CONNECT_ERROR:
1333 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1334 		break;
1335 	default:
1336 		pr_err("received unrecognized RDMA CM event %d\n",
1337 			event->event);
1338 		break;
1339 	}
1340 
1341 	return ret;
1342 }
1343 
1344 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1345 {
1346 	struct nvmet_rdma_queue *queue;
1347 
1348 restart:
1349 	mutex_lock(&nvmet_rdma_queue_mutex);
1350 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1351 		if (queue->nvme_sq.ctrl == ctrl) {
1352 			list_del_init(&queue->queue_list);
1353 			mutex_unlock(&nvmet_rdma_queue_mutex);
1354 
1355 			__nvmet_rdma_queue_disconnect(queue);
1356 			goto restart;
1357 		}
1358 	}
1359 	mutex_unlock(&nvmet_rdma_queue_mutex);
1360 }
1361 
1362 static int nvmet_rdma_add_port(struct nvmet_port *port)
1363 {
1364 	struct rdma_cm_id *cm_id;
1365 	struct sockaddr_storage addr = { };
1366 	__kernel_sa_family_t af;
1367 	int ret;
1368 
1369 	switch (port->disc_addr.adrfam) {
1370 	case NVMF_ADDR_FAMILY_IP4:
1371 		af = AF_INET;
1372 		break;
1373 	case NVMF_ADDR_FAMILY_IP6:
1374 		af = AF_INET6;
1375 		break;
1376 	default:
1377 		pr_err("address family %d not supported\n",
1378 				port->disc_addr.adrfam);
1379 		return -EINVAL;
1380 	}
1381 
1382 	ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1383 			port->disc_addr.trsvcid, &addr);
1384 	if (ret) {
1385 		pr_err("malformed ip/port passed: %s:%s\n",
1386 			port->disc_addr.traddr, port->disc_addr.trsvcid);
1387 		return ret;
1388 	}
1389 
1390 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1391 			RDMA_PS_TCP, IB_QPT_RC);
1392 	if (IS_ERR(cm_id)) {
1393 		pr_err("CM ID creation failed\n");
1394 		return PTR_ERR(cm_id);
1395 	}
1396 
1397 	/*
1398 	 * Allow both IPv4 and IPv6 sockets to bind a single port
1399 	 * at the same time.
1400 	 */
1401 	ret = rdma_set_afonly(cm_id, 1);
1402 	if (ret) {
1403 		pr_err("rdma_set_afonly failed (%d)\n", ret);
1404 		goto out_destroy_id;
1405 	}
1406 
1407 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1408 	if (ret) {
1409 		pr_err("binding CM ID to %pISpcs failed (%d)\n",
1410 			(struct sockaddr *)&addr, ret);
1411 		goto out_destroy_id;
1412 	}
1413 
1414 	ret = rdma_listen(cm_id, 128);
1415 	if (ret) {
1416 		pr_err("listening to %pISpcs failed (%d)\n",
1417 			(struct sockaddr *)&addr, ret);
1418 		goto out_destroy_id;
1419 	}
1420 
1421 	pr_info("enabling port %d (%pISpcs)\n",
1422 		le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1423 	port->priv = cm_id;
1424 	return 0;
1425 
1426 out_destroy_id:
1427 	rdma_destroy_id(cm_id);
1428 	return ret;
1429 }
1430 
1431 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1432 {
1433 	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1434 
1435 	if (cm_id)
1436 		rdma_destroy_id(cm_id);
1437 }
1438 
1439 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1440 		struct nvmet_port *port, char *traddr)
1441 {
1442 	struct rdma_cm_id *cm_id = port->priv;
1443 
1444 	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1445 		struct nvmet_rdma_rsp *rsp =
1446 			container_of(req, struct nvmet_rdma_rsp, req);
1447 		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1448 		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1449 
1450 		sprintf(traddr, "%pISc", addr);
1451 	} else {
1452 		memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1453 	}
1454 }
1455 
1456 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1457 	.owner			= THIS_MODULE,
1458 	.type			= NVMF_TRTYPE_RDMA,
1459 	.sqe_inline_size	= NVMET_RDMA_INLINE_DATA_SIZE,
1460 	.msdbd			= 1,
1461 	.has_keyed_sgls		= 1,
1462 	.add_port		= nvmet_rdma_add_port,
1463 	.remove_port		= nvmet_rdma_remove_port,
1464 	.queue_response		= nvmet_rdma_queue_response,
1465 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1466 	.disc_traddr		= nvmet_rdma_disc_port_addr,
1467 };
1468 
1469 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1470 {
1471 	struct nvmet_rdma_queue *queue, *tmp;
1472 	struct nvmet_rdma_device *ndev;
1473 	bool found = false;
1474 
1475 	mutex_lock(&device_list_mutex);
1476 	list_for_each_entry(ndev, &device_list, entry) {
1477 		if (ndev->device == ib_device) {
1478 			found = true;
1479 			break;
1480 		}
1481 	}
1482 	mutex_unlock(&device_list_mutex);
1483 
1484 	if (!found)
1485 		return;
1486 
1487 	/*
1488 	 * IB Device that is used by nvmet controllers is being removed,
1489 	 * delete all queues using this device.
1490 	 */
1491 	mutex_lock(&nvmet_rdma_queue_mutex);
1492 	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1493 				 queue_list) {
1494 		if (queue->dev->device != ib_device)
1495 			continue;
1496 
1497 		pr_info("Removing queue %d\n", queue->idx);
1498 		list_del_init(&queue->queue_list);
1499 		__nvmet_rdma_queue_disconnect(queue);
1500 	}
1501 	mutex_unlock(&nvmet_rdma_queue_mutex);
1502 
1503 	flush_scheduled_work();
1504 }
1505 
1506 static struct ib_client nvmet_rdma_ib_client = {
1507 	.name   = "nvmet_rdma",
1508 	.remove = nvmet_rdma_remove_one
1509 };
1510 
1511 static int __init nvmet_rdma_init(void)
1512 {
1513 	int ret;
1514 
1515 	ret = ib_register_client(&nvmet_rdma_ib_client);
1516 	if (ret)
1517 		return ret;
1518 
1519 	ret = nvmet_register_transport(&nvmet_rdma_ops);
1520 	if (ret)
1521 		goto err_ib_client;
1522 
1523 	return 0;
1524 
1525 err_ib_client:
1526 	ib_unregister_client(&nvmet_rdma_ib_client);
1527 	return ret;
1528 }
1529 
1530 static void __exit nvmet_rdma_exit(void)
1531 {
1532 	nvmet_unregister_transport(&nvmet_rdma_ops);
1533 	ib_unregister_client(&nvmet_rdma_ib_client);
1534 	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1535 	ida_destroy(&nvmet_rdma_queue_ida);
1536 }
1537 
1538 module_init(nvmet_rdma_init);
1539 module_exit(nvmet_rdma_exit);
1540 
1541 MODULE_LICENSE("GPL v2");
1542 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1543