xref: /openbmc/linux/drivers/nvme/target/rdma.c (revision 4f6cce39)
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27 
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31 
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34 
35 /*
36  * We allow up to a page of inline data to go with the SQE
37  */
38 #define NVMET_RDMA_INLINE_DATA_SIZE	PAGE_SIZE
39 
40 struct nvmet_rdma_cmd {
41 	struct ib_sge		sge[2];
42 	struct ib_cqe		cqe;
43 	struct ib_recv_wr	wr;
44 	struct scatterlist	inline_sg;
45 	struct page		*inline_page;
46 	struct nvme_command     *nvme_cmd;
47 	struct nvmet_rdma_queue	*queue;
48 };
49 
50 enum {
51 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
52 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
53 };
54 
55 struct nvmet_rdma_rsp {
56 	struct ib_sge		send_sge;
57 	struct ib_cqe		send_cqe;
58 	struct ib_send_wr	send_wr;
59 
60 	struct nvmet_rdma_cmd	*cmd;
61 	struct nvmet_rdma_queue	*queue;
62 
63 	struct ib_cqe		read_cqe;
64 	struct rdma_rw_ctx	rw;
65 
66 	struct nvmet_req	req;
67 
68 	u8			n_rdma;
69 	u32			flags;
70 	u32			invalidate_rkey;
71 
72 	struct list_head	wait_list;
73 	struct list_head	free_list;
74 };
75 
76 enum nvmet_rdma_queue_state {
77 	NVMET_RDMA_Q_CONNECTING,
78 	NVMET_RDMA_Q_LIVE,
79 	NVMET_RDMA_Q_DISCONNECTING,
80 	NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82 
83 struct nvmet_rdma_queue {
84 	struct rdma_cm_id	*cm_id;
85 	struct nvmet_port	*port;
86 	struct ib_cq		*cq;
87 	atomic_t		sq_wr_avail;
88 	struct nvmet_rdma_device *dev;
89 	spinlock_t		state_lock;
90 	enum nvmet_rdma_queue_state state;
91 	struct nvmet_cq		nvme_cq;
92 	struct nvmet_sq		nvme_sq;
93 
94 	struct nvmet_rdma_rsp	*rsps;
95 	struct list_head	free_rsps;
96 	spinlock_t		rsps_lock;
97 	struct nvmet_rdma_cmd	*cmds;
98 
99 	struct work_struct	release_work;
100 	struct list_head	rsp_wait_list;
101 	struct list_head	rsp_wr_wait_list;
102 	spinlock_t		rsp_wr_wait_lock;
103 
104 	int			idx;
105 	int			host_qid;
106 	int			recv_queue_size;
107 	int			send_queue_size;
108 
109 	struct list_head	queue_list;
110 };
111 
112 struct nvmet_rdma_device {
113 	struct ib_device	*device;
114 	struct ib_pd		*pd;
115 	struct ib_srq		*srq;
116 	struct nvmet_rdma_cmd	*srq_cmds;
117 	size_t			srq_size;
118 	struct kref		ref;
119 	struct list_head	entry;
120 };
121 
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125 
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129 
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132 
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139 
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141 
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147 
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150 	return nvme_is_write(rsp->req.cmd) &&
151 		rsp->req.data_len &&
152 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154 
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157 	return !nvme_is_write(rsp->req.cmd) &&
158 		rsp->req.data_len &&
159 		!rsp->req.rsp->status &&
160 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162 
163 static inline struct nvmet_rdma_rsp *
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166 	struct nvmet_rdma_rsp *rsp;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&queue->rsps_lock, flags);
170 	rsp = list_first_entry(&queue->free_rsps,
171 				struct nvmet_rdma_rsp, free_list);
172 	list_del(&rsp->free_list);
173 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
174 
175 	return rsp;
176 }
177 
178 static inline void
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187 
188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190 	struct scatterlist *sg;
191 	int count;
192 
193 	if (!sgl || !nents)
194 		return;
195 
196 	for_each_sg(sgl, sg, nents, count)
197 		__free_page(sg_page(sg));
198 	kfree(sgl);
199 }
200 
201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202 		u32 length)
203 {
204 	struct scatterlist *sg;
205 	struct page *page;
206 	unsigned int nent;
207 	int i = 0;
208 
209 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
210 	sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211 	if (!sg)
212 		goto out;
213 
214 	sg_init_table(sg, nent);
215 
216 	while (length) {
217 		u32 page_len = min_t(u32, length, PAGE_SIZE);
218 
219 		page = alloc_page(GFP_KERNEL);
220 		if (!page)
221 			goto out_free_pages;
222 
223 		sg_set_page(&sg[i], page, page_len, 0);
224 		length -= page_len;
225 		i++;
226 	}
227 	*sgl = sg;
228 	*nents = nent;
229 	return 0;
230 
231 out_free_pages:
232 	while (i > 0) {
233 		i--;
234 		__free_page(sg_page(&sg[i]));
235 	}
236 	kfree(sg);
237 out:
238 	return NVME_SC_INTERNAL;
239 }
240 
241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242 			struct nvmet_rdma_cmd *c, bool admin)
243 {
244 	/* NVMe command / RDMA RECV */
245 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246 	if (!c->nvme_cmd)
247 		goto out;
248 
249 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252 		goto out_free_cmd;
253 
254 	c->sge[0].length = sizeof(*c->nvme_cmd);
255 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
256 
257 	if (!admin) {
258 		c->inline_page = alloc_pages(GFP_KERNEL,
259 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260 		if (!c->inline_page)
261 			goto out_unmap_cmd;
262 		c->sge[1].addr = ib_dma_map_page(ndev->device,
263 				c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 				DMA_FROM_DEVICE);
265 		if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266 			goto out_free_inline_page;
267 		c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268 		c->sge[1].lkey = ndev->pd->local_dma_lkey;
269 	}
270 
271 	c->cqe.done = nvmet_rdma_recv_done;
272 
273 	c->wr.wr_cqe = &c->cqe;
274 	c->wr.sg_list = c->sge;
275 	c->wr.num_sge = admin ? 1 : 2;
276 
277 	return 0;
278 
279 out_free_inline_page:
280 	if (!admin) {
281 		__free_pages(c->inline_page,
282 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283 	}
284 out_unmap_cmd:
285 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288 	kfree(c->nvme_cmd);
289 
290 out:
291 	return -ENOMEM;
292 }
293 
294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295 		struct nvmet_rdma_cmd *c, bool admin)
296 {
297 	if (!admin) {
298 		ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299 				NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300 		__free_pages(c->inline_page,
301 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 	}
303 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305 	kfree(c->nvme_cmd);
306 }
307 
308 static struct nvmet_rdma_cmd *
309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310 		int nr_cmds, bool admin)
311 {
312 	struct nvmet_rdma_cmd *cmds;
313 	int ret = -EINVAL, i;
314 
315 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316 	if (!cmds)
317 		goto out;
318 
319 	for (i = 0; i < nr_cmds; i++) {
320 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321 		if (ret)
322 			goto out_free;
323 	}
324 
325 	return cmds;
326 
327 out_free:
328 	while (--i >= 0)
329 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330 	kfree(cmds);
331 out:
332 	return ERR_PTR(ret);
333 }
334 
335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338 	int i;
339 
340 	for (i = 0; i < nr_cmds; i++)
341 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342 	kfree(cmds);
343 }
344 
345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346 		struct nvmet_rdma_rsp *r)
347 {
348 	/* NVMe CQE / RDMA SEND */
349 	r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350 	if (!r->req.rsp)
351 		goto out;
352 
353 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354 			sizeof(*r->req.rsp), DMA_TO_DEVICE);
355 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356 		goto out_free_rsp;
357 
358 	r->send_sge.length = sizeof(*r->req.rsp);
359 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
360 
361 	r->send_cqe.done = nvmet_rdma_send_done;
362 
363 	r->send_wr.wr_cqe = &r->send_cqe;
364 	r->send_wr.sg_list = &r->send_sge;
365 	r->send_wr.num_sge = 1;
366 	r->send_wr.send_flags = IB_SEND_SIGNALED;
367 
368 	/* Data In / RDMA READ */
369 	r->read_cqe.done = nvmet_rdma_read_data_done;
370 	return 0;
371 
372 out_free_rsp:
373 	kfree(r->req.rsp);
374 out:
375 	return -ENOMEM;
376 }
377 
378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379 		struct nvmet_rdma_rsp *r)
380 {
381 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382 				sizeof(*r->req.rsp), DMA_TO_DEVICE);
383 	kfree(r->req.rsp);
384 }
385 
386 static int
387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389 	struct nvmet_rdma_device *ndev = queue->dev;
390 	int nr_rsps = queue->recv_queue_size * 2;
391 	int ret = -EINVAL, i;
392 
393 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394 			GFP_KERNEL);
395 	if (!queue->rsps)
396 		goto out;
397 
398 	for (i = 0; i < nr_rsps; i++) {
399 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400 
401 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402 		if (ret)
403 			goto out_free;
404 
405 		list_add_tail(&rsp->free_list, &queue->free_rsps);
406 	}
407 
408 	return 0;
409 
410 out_free:
411 	while (--i >= 0) {
412 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413 
414 		list_del(&rsp->free_list);
415 		nvmet_rdma_free_rsp(ndev, rsp);
416 	}
417 	kfree(queue->rsps);
418 out:
419 	return ret;
420 }
421 
422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424 	struct nvmet_rdma_device *ndev = queue->dev;
425 	int i, nr_rsps = queue->recv_queue_size * 2;
426 
427 	for (i = 0; i < nr_rsps; i++) {
428 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429 
430 		list_del(&rsp->free_list);
431 		nvmet_rdma_free_rsp(ndev, rsp);
432 	}
433 	kfree(queue->rsps);
434 }
435 
436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437 		struct nvmet_rdma_cmd *cmd)
438 {
439 	struct ib_recv_wr *bad_wr;
440 
441 	ib_dma_sync_single_for_device(ndev->device,
442 		cmd->sge[0].addr, cmd->sge[0].length,
443 		DMA_FROM_DEVICE);
444 
445 	if (ndev->srq)
446 		return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
447 	return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
448 }
449 
450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
451 {
452 	spin_lock(&queue->rsp_wr_wait_lock);
453 	while (!list_empty(&queue->rsp_wr_wait_list)) {
454 		struct nvmet_rdma_rsp *rsp;
455 		bool ret;
456 
457 		rsp = list_entry(queue->rsp_wr_wait_list.next,
458 				struct nvmet_rdma_rsp, wait_list);
459 		list_del(&rsp->wait_list);
460 
461 		spin_unlock(&queue->rsp_wr_wait_lock);
462 		ret = nvmet_rdma_execute_command(rsp);
463 		spin_lock(&queue->rsp_wr_wait_lock);
464 
465 		if (!ret) {
466 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
467 			break;
468 		}
469 	}
470 	spin_unlock(&queue->rsp_wr_wait_lock);
471 }
472 
473 
474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
475 {
476 	struct nvmet_rdma_queue *queue = rsp->queue;
477 
478 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
479 
480 	if (rsp->n_rdma) {
481 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
482 				queue->cm_id->port_num, rsp->req.sg,
483 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
484 	}
485 
486 	if (rsp->req.sg != &rsp->cmd->inline_sg)
487 		nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
488 
489 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
490 		nvmet_rdma_process_wr_wait_list(queue);
491 
492 	nvmet_rdma_put_rsp(rsp);
493 }
494 
495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
496 {
497 	if (queue->nvme_sq.ctrl) {
498 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
499 	} else {
500 		/*
501 		 * we didn't setup the controller yet in case
502 		 * of admin connect error, just disconnect and
503 		 * cleanup the queue
504 		 */
505 		nvmet_rdma_queue_disconnect(queue);
506 	}
507 }
508 
509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
510 {
511 	struct nvmet_rdma_rsp *rsp =
512 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
513 
514 	nvmet_rdma_release_rsp(rsp);
515 
516 	if (unlikely(wc->status != IB_WC_SUCCESS &&
517 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
518 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
519 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
520 		nvmet_rdma_error_comp(rsp->queue);
521 	}
522 }
523 
524 static void nvmet_rdma_queue_response(struct nvmet_req *req)
525 {
526 	struct nvmet_rdma_rsp *rsp =
527 		container_of(req, struct nvmet_rdma_rsp, req);
528 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
529 	struct ib_send_wr *first_wr, *bad_wr;
530 
531 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
532 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
533 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
534 	} else {
535 		rsp->send_wr.opcode = IB_WR_SEND;
536 	}
537 
538 	if (nvmet_rdma_need_data_out(rsp))
539 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
540 				cm_id->port_num, NULL, &rsp->send_wr);
541 	else
542 		first_wr = &rsp->send_wr;
543 
544 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
545 
546 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
547 		rsp->send_sge.addr, rsp->send_sge.length,
548 		DMA_TO_DEVICE);
549 
550 	if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
551 		pr_err("sending cmd response failed\n");
552 		nvmet_rdma_release_rsp(rsp);
553 	}
554 }
555 
556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
557 {
558 	struct nvmet_rdma_rsp *rsp =
559 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
560 	struct nvmet_rdma_queue *queue = cq->cq_context;
561 
562 	WARN_ON(rsp->n_rdma <= 0);
563 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
564 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
565 			queue->cm_id->port_num, rsp->req.sg,
566 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
567 	rsp->n_rdma = 0;
568 
569 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
570 		nvmet_rdma_release_rsp(rsp);
571 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
572 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
573 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
574 			nvmet_rdma_error_comp(queue);
575 		}
576 		return;
577 	}
578 
579 	rsp->req.execute(&rsp->req);
580 }
581 
582 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
583 		u64 off)
584 {
585 	sg_init_table(&rsp->cmd->inline_sg, 1);
586 	sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
587 	rsp->req.sg = &rsp->cmd->inline_sg;
588 	rsp->req.sg_cnt = 1;
589 }
590 
591 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
592 {
593 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
594 	u64 off = le64_to_cpu(sgl->addr);
595 	u32 len = le32_to_cpu(sgl->length);
596 
597 	if (!nvme_is_write(rsp->req.cmd))
598 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
599 
600 	if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
601 		pr_err("invalid inline data offset!\n");
602 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
603 	}
604 
605 	/* no data command? */
606 	if (!len)
607 		return 0;
608 
609 	nvmet_rdma_use_inline_sg(rsp, len, off);
610 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
611 	return 0;
612 }
613 
614 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
615 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
616 {
617 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
618 	u64 addr = le64_to_cpu(sgl->addr);
619 	u32 len = get_unaligned_le24(sgl->length);
620 	u32 key = get_unaligned_le32(sgl->key);
621 	int ret;
622 	u16 status;
623 
624 	/* no data command? */
625 	if (!len)
626 		return 0;
627 
628 	status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
629 			len);
630 	if (status)
631 		return status;
632 
633 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
634 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
635 			nvmet_data_dir(&rsp->req));
636 	if (ret < 0)
637 		return NVME_SC_INTERNAL;
638 	rsp->n_rdma += ret;
639 
640 	if (invalidate) {
641 		rsp->invalidate_rkey = key;
642 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
643 	}
644 
645 	return 0;
646 }
647 
648 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
649 {
650 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
651 
652 	switch (sgl->type >> 4) {
653 	case NVME_SGL_FMT_DATA_DESC:
654 		switch (sgl->type & 0xf) {
655 		case NVME_SGL_FMT_OFFSET:
656 			return nvmet_rdma_map_sgl_inline(rsp);
657 		default:
658 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
659 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
660 		}
661 	case NVME_KEY_SGL_FMT_DATA_DESC:
662 		switch (sgl->type & 0xf) {
663 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
664 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
665 		case NVME_SGL_FMT_ADDRESS:
666 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
667 		default:
668 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
669 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
670 		}
671 	default:
672 		pr_err("invalid SGL type: %#x\n", sgl->type);
673 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
674 	}
675 }
676 
677 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
678 {
679 	struct nvmet_rdma_queue *queue = rsp->queue;
680 
681 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
682 			&queue->sq_wr_avail) < 0)) {
683 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
684 				1 + rsp->n_rdma, queue->idx,
685 				queue->nvme_sq.ctrl->cntlid);
686 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
687 		return false;
688 	}
689 
690 	if (nvmet_rdma_need_data_in(rsp)) {
691 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
692 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
693 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
694 	} else {
695 		rsp->req.execute(&rsp->req);
696 	}
697 
698 	return true;
699 }
700 
701 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
702 		struct nvmet_rdma_rsp *cmd)
703 {
704 	u16 status;
705 
706 	cmd->queue = queue;
707 	cmd->n_rdma = 0;
708 	cmd->req.port = queue->port;
709 
710 
711 	ib_dma_sync_single_for_cpu(queue->dev->device,
712 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
713 		DMA_FROM_DEVICE);
714 	ib_dma_sync_single_for_cpu(queue->dev->device,
715 		cmd->send_sge.addr, cmd->send_sge.length,
716 		DMA_TO_DEVICE);
717 
718 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
719 			&queue->nvme_sq, &nvmet_rdma_ops))
720 		return;
721 
722 	status = nvmet_rdma_map_sgl(cmd);
723 	if (status)
724 		goto out_err;
725 
726 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
727 		spin_lock(&queue->rsp_wr_wait_lock);
728 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
729 		spin_unlock(&queue->rsp_wr_wait_lock);
730 	}
731 
732 	return;
733 
734 out_err:
735 	nvmet_req_complete(&cmd->req, status);
736 }
737 
738 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
739 {
740 	struct nvmet_rdma_cmd *cmd =
741 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
742 	struct nvmet_rdma_queue *queue = cq->cq_context;
743 	struct nvmet_rdma_rsp *rsp;
744 
745 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
746 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
747 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
748 				wc->wr_cqe, ib_wc_status_msg(wc->status),
749 				wc->status);
750 			nvmet_rdma_error_comp(queue);
751 		}
752 		return;
753 	}
754 
755 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
756 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
757 		nvmet_rdma_error_comp(queue);
758 		return;
759 	}
760 
761 	cmd->queue = queue;
762 	rsp = nvmet_rdma_get_rsp(queue);
763 	rsp->cmd = cmd;
764 	rsp->flags = 0;
765 	rsp->req.cmd = cmd->nvme_cmd;
766 
767 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
768 		unsigned long flags;
769 
770 		spin_lock_irqsave(&queue->state_lock, flags);
771 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
772 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
773 		else
774 			nvmet_rdma_put_rsp(rsp);
775 		spin_unlock_irqrestore(&queue->state_lock, flags);
776 		return;
777 	}
778 
779 	nvmet_rdma_handle_command(queue, rsp);
780 }
781 
782 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
783 {
784 	if (!ndev->srq)
785 		return;
786 
787 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
788 	ib_destroy_srq(ndev->srq);
789 }
790 
791 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
792 {
793 	struct ib_srq_init_attr srq_attr = { NULL, };
794 	struct ib_srq *srq;
795 	size_t srq_size;
796 	int ret, i;
797 
798 	srq_size = 4095;	/* XXX: tune */
799 
800 	srq_attr.attr.max_wr = srq_size;
801 	srq_attr.attr.max_sge = 2;
802 	srq_attr.attr.srq_limit = 0;
803 	srq_attr.srq_type = IB_SRQT_BASIC;
804 	srq = ib_create_srq(ndev->pd, &srq_attr);
805 	if (IS_ERR(srq)) {
806 		/*
807 		 * If SRQs aren't supported we just go ahead and use normal
808 		 * non-shared receive queues.
809 		 */
810 		pr_info("SRQ requested but not supported.\n");
811 		return 0;
812 	}
813 
814 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
815 	if (IS_ERR(ndev->srq_cmds)) {
816 		ret = PTR_ERR(ndev->srq_cmds);
817 		goto out_destroy_srq;
818 	}
819 
820 	ndev->srq = srq;
821 	ndev->srq_size = srq_size;
822 
823 	for (i = 0; i < srq_size; i++)
824 		nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
825 
826 	return 0;
827 
828 out_destroy_srq:
829 	ib_destroy_srq(srq);
830 	return ret;
831 }
832 
833 static void nvmet_rdma_free_dev(struct kref *ref)
834 {
835 	struct nvmet_rdma_device *ndev =
836 		container_of(ref, struct nvmet_rdma_device, ref);
837 
838 	mutex_lock(&device_list_mutex);
839 	list_del(&ndev->entry);
840 	mutex_unlock(&device_list_mutex);
841 
842 	nvmet_rdma_destroy_srq(ndev);
843 	ib_dealloc_pd(ndev->pd);
844 
845 	kfree(ndev);
846 }
847 
848 static struct nvmet_rdma_device *
849 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
850 {
851 	struct nvmet_rdma_device *ndev;
852 	int ret;
853 
854 	mutex_lock(&device_list_mutex);
855 	list_for_each_entry(ndev, &device_list, entry) {
856 		if (ndev->device->node_guid == cm_id->device->node_guid &&
857 		    kref_get_unless_zero(&ndev->ref))
858 			goto out_unlock;
859 	}
860 
861 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
862 	if (!ndev)
863 		goto out_err;
864 
865 	ndev->device = cm_id->device;
866 	kref_init(&ndev->ref);
867 
868 	ndev->pd = ib_alloc_pd(ndev->device, 0);
869 	if (IS_ERR(ndev->pd))
870 		goto out_free_dev;
871 
872 	if (nvmet_rdma_use_srq) {
873 		ret = nvmet_rdma_init_srq(ndev);
874 		if (ret)
875 			goto out_free_pd;
876 	}
877 
878 	list_add(&ndev->entry, &device_list);
879 out_unlock:
880 	mutex_unlock(&device_list_mutex);
881 	pr_debug("added %s.\n", ndev->device->name);
882 	return ndev;
883 
884 out_free_pd:
885 	ib_dealloc_pd(ndev->pd);
886 out_free_dev:
887 	kfree(ndev);
888 out_err:
889 	mutex_unlock(&device_list_mutex);
890 	return NULL;
891 }
892 
893 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
894 {
895 	struct ib_qp_init_attr qp_attr;
896 	struct nvmet_rdma_device *ndev = queue->dev;
897 	int comp_vector, nr_cqe, ret, i;
898 
899 	/*
900 	 * Spread the io queues across completion vectors,
901 	 * but still keep all admin queues on vector 0.
902 	 */
903 	comp_vector = !queue->host_qid ? 0 :
904 		queue->idx % ndev->device->num_comp_vectors;
905 
906 	/*
907 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
908 	 */
909 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
910 
911 	queue->cq = ib_alloc_cq(ndev->device, queue,
912 			nr_cqe + 1, comp_vector,
913 			IB_POLL_WORKQUEUE);
914 	if (IS_ERR(queue->cq)) {
915 		ret = PTR_ERR(queue->cq);
916 		pr_err("failed to create CQ cqe= %d ret= %d\n",
917 		       nr_cqe + 1, ret);
918 		goto out;
919 	}
920 
921 	memset(&qp_attr, 0, sizeof(qp_attr));
922 	qp_attr.qp_context = queue;
923 	qp_attr.event_handler = nvmet_rdma_qp_event;
924 	qp_attr.send_cq = queue->cq;
925 	qp_attr.recv_cq = queue->cq;
926 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
927 	qp_attr.qp_type = IB_QPT_RC;
928 	/* +1 for drain */
929 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
930 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
931 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
932 					ndev->device->attrs.max_sge);
933 
934 	if (ndev->srq) {
935 		qp_attr.srq = ndev->srq;
936 	} else {
937 		/* +1 for drain */
938 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
939 		qp_attr.cap.max_recv_sge = 2;
940 	}
941 
942 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
943 	if (ret) {
944 		pr_err("failed to create_qp ret= %d\n", ret);
945 		goto err_destroy_cq;
946 	}
947 
948 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
949 
950 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
951 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
952 		 qp_attr.cap.max_send_wr, queue->cm_id);
953 
954 	if (!ndev->srq) {
955 		for (i = 0; i < queue->recv_queue_size; i++) {
956 			queue->cmds[i].queue = queue;
957 			nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
958 		}
959 	}
960 
961 out:
962 	return ret;
963 
964 err_destroy_cq:
965 	ib_free_cq(queue->cq);
966 	goto out;
967 }
968 
969 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
970 {
971 	ib_drain_qp(queue->cm_id->qp);
972 	rdma_destroy_qp(queue->cm_id);
973 	ib_free_cq(queue->cq);
974 }
975 
976 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
977 {
978 	pr_info("freeing queue %d\n", queue->idx);
979 
980 	nvmet_sq_destroy(&queue->nvme_sq);
981 
982 	nvmet_rdma_destroy_queue_ib(queue);
983 	if (!queue->dev->srq) {
984 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
985 				queue->recv_queue_size,
986 				!queue->host_qid);
987 	}
988 	nvmet_rdma_free_rsps(queue);
989 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
990 	kfree(queue);
991 }
992 
993 static void nvmet_rdma_release_queue_work(struct work_struct *w)
994 {
995 	struct nvmet_rdma_queue *queue =
996 		container_of(w, struct nvmet_rdma_queue, release_work);
997 	struct rdma_cm_id *cm_id = queue->cm_id;
998 	struct nvmet_rdma_device *dev = queue->dev;
999 	enum nvmet_rdma_queue_state state = queue->state;
1000 
1001 	nvmet_rdma_free_queue(queue);
1002 
1003 	if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
1004 		rdma_destroy_id(cm_id);
1005 
1006 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1007 }
1008 
1009 static int
1010 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1011 				struct nvmet_rdma_queue *queue)
1012 {
1013 	struct nvme_rdma_cm_req *req;
1014 
1015 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1016 	if (!req || conn->private_data_len == 0)
1017 		return NVME_RDMA_CM_INVALID_LEN;
1018 
1019 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1020 		return NVME_RDMA_CM_INVALID_RECFMT;
1021 
1022 	queue->host_qid = le16_to_cpu(req->qid);
1023 
1024 	/*
1025 	 * req->hsqsize corresponds to our recv queue size plus 1
1026 	 * req->hrqsize corresponds to our send queue size
1027 	 */
1028 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1029 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1030 
1031 	if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1032 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1033 
1034 	/* XXX: Should we enforce some kind of max for IO queues? */
1035 
1036 	return 0;
1037 }
1038 
1039 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1040 				enum nvme_rdma_cm_status status)
1041 {
1042 	struct nvme_rdma_cm_rej rej;
1043 
1044 	pr_debug("rejecting connect request: status %d (%s)\n",
1045 		 status, nvme_rdma_cm_msg(status));
1046 
1047 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1048 	rej.sts = cpu_to_le16(status);
1049 
1050 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1051 }
1052 
1053 static struct nvmet_rdma_queue *
1054 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1055 		struct rdma_cm_id *cm_id,
1056 		struct rdma_cm_event *event)
1057 {
1058 	struct nvmet_rdma_queue *queue;
1059 	int ret;
1060 
1061 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1062 	if (!queue) {
1063 		ret = NVME_RDMA_CM_NO_RSC;
1064 		goto out_reject;
1065 	}
1066 
1067 	ret = nvmet_sq_init(&queue->nvme_sq);
1068 	if (ret) {
1069 		ret = NVME_RDMA_CM_NO_RSC;
1070 		goto out_free_queue;
1071 	}
1072 
1073 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1074 	if (ret)
1075 		goto out_destroy_sq;
1076 
1077 	/*
1078 	 * Schedules the actual release because calling rdma_destroy_id from
1079 	 * inside a CM callback would trigger a deadlock. (great API design..)
1080 	 */
1081 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1082 	queue->dev = ndev;
1083 	queue->cm_id = cm_id;
1084 
1085 	spin_lock_init(&queue->state_lock);
1086 	queue->state = NVMET_RDMA_Q_CONNECTING;
1087 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1088 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1089 	spin_lock_init(&queue->rsp_wr_wait_lock);
1090 	INIT_LIST_HEAD(&queue->free_rsps);
1091 	spin_lock_init(&queue->rsps_lock);
1092 	INIT_LIST_HEAD(&queue->queue_list);
1093 
1094 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1095 	if (queue->idx < 0) {
1096 		ret = NVME_RDMA_CM_NO_RSC;
1097 		goto out_destroy_sq;
1098 	}
1099 
1100 	ret = nvmet_rdma_alloc_rsps(queue);
1101 	if (ret) {
1102 		ret = NVME_RDMA_CM_NO_RSC;
1103 		goto out_ida_remove;
1104 	}
1105 
1106 	if (!ndev->srq) {
1107 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1108 				queue->recv_queue_size,
1109 				!queue->host_qid);
1110 		if (IS_ERR(queue->cmds)) {
1111 			ret = NVME_RDMA_CM_NO_RSC;
1112 			goto out_free_responses;
1113 		}
1114 	}
1115 
1116 	ret = nvmet_rdma_create_queue_ib(queue);
1117 	if (ret) {
1118 		pr_err("%s: creating RDMA queue failed (%d).\n",
1119 			__func__, ret);
1120 		ret = NVME_RDMA_CM_NO_RSC;
1121 		goto out_free_cmds;
1122 	}
1123 
1124 	return queue;
1125 
1126 out_free_cmds:
1127 	if (!ndev->srq) {
1128 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1129 				queue->recv_queue_size,
1130 				!queue->host_qid);
1131 	}
1132 out_free_responses:
1133 	nvmet_rdma_free_rsps(queue);
1134 out_ida_remove:
1135 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1136 out_destroy_sq:
1137 	nvmet_sq_destroy(&queue->nvme_sq);
1138 out_free_queue:
1139 	kfree(queue);
1140 out_reject:
1141 	nvmet_rdma_cm_reject(cm_id, ret);
1142 	return NULL;
1143 }
1144 
1145 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1146 {
1147 	struct nvmet_rdma_queue *queue = priv;
1148 
1149 	switch (event->event) {
1150 	case IB_EVENT_COMM_EST:
1151 		rdma_notify(queue->cm_id, event->event);
1152 		break;
1153 	default:
1154 		pr_err("received IB QP event: %s (%d)\n",
1155 		       ib_event_msg(event->event), event->event);
1156 		break;
1157 	}
1158 }
1159 
1160 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1161 		struct nvmet_rdma_queue *queue,
1162 		struct rdma_conn_param *p)
1163 {
1164 	struct rdma_conn_param  param = { };
1165 	struct nvme_rdma_cm_rep priv = { };
1166 	int ret = -ENOMEM;
1167 
1168 	param.rnr_retry_count = 7;
1169 	param.flow_control = 1;
1170 	param.initiator_depth = min_t(u8, p->initiator_depth,
1171 		queue->dev->device->attrs.max_qp_init_rd_atom);
1172 	param.private_data = &priv;
1173 	param.private_data_len = sizeof(priv);
1174 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1175 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1176 
1177 	ret = rdma_accept(cm_id, &param);
1178 	if (ret)
1179 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1180 
1181 	return ret;
1182 }
1183 
1184 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1185 		struct rdma_cm_event *event)
1186 {
1187 	struct nvmet_rdma_device *ndev;
1188 	struct nvmet_rdma_queue *queue;
1189 	int ret = -EINVAL;
1190 
1191 	ndev = nvmet_rdma_find_get_device(cm_id);
1192 	if (!ndev) {
1193 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1194 		return -ECONNREFUSED;
1195 	}
1196 
1197 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1198 	if (!queue) {
1199 		ret = -ENOMEM;
1200 		goto put_device;
1201 	}
1202 	queue->port = cm_id->context;
1203 
1204 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1205 	if (ret)
1206 		goto release_queue;
1207 
1208 	mutex_lock(&nvmet_rdma_queue_mutex);
1209 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1210 	mutex_unlock(&nvmet_rdma_queue_mutex);
1211 
1212 	return 0;
1213 
1214 release_queue:
1215 	nvmet_rdma_free_queue(queue);
1216 put_device:
1217 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1218 
1219 	return ret;
1220 }
1221 
1222 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1223 {
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(&queue->state_lock, flags);
1227 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1228 		pr_warn("trying to establish a connected queue\n");
1229 		goto out_unlock;
1230 	}
1231 	queue->state = NVMET_RDMA_Q_LIVE;
1232 
1233 	while (!list_empty(&queue->rsp_wait_list)) {
1234 		struct nvmet_rdma_rsp *cmd;
1235 
1236 		cmd = list_first_entry(&queue->rsp_wait_list,
1237 					struct nvmet_rdma_rsp, wait_list);
1238 		list_del(&cmd->wait_list);
1239 
1240 		spin_unlock_irqrestore(&queue->state_lock, flags);
1241 		nvmet_rdma_handle_command(queue, cmd);
1242 		spin_lock_irqsave(&queue->state_lock, flags);
1243 	}
1244 
1245 out_unlock:
1246 	spin_unlock_irqrestore(&queue->state_lock, flags);
1247 }
1248 
1249 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1250 {
1251 	bool disconnect = false;
1252 	unsigned long flags;
1253 
1254 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1255 
1256 	spin_lock_irqsave(&queue->state_lock, flags);
1257 	switch (queue->state) {
1258 	case NVMET_RDMA_Q_CONNECTING:
1259 	case NVMET_RDMA_Q_LIVE:
1260 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1261 	case NVMET_RDMA_IN_DEVICE_REMOVAL:
1262 		disconnect = true;
1263 		break;
1264 	case NVMET_RDMA_Q_DISCONNECTING:
1265 		break;
1266 	}
1267 	spin_unlock_irqrestore(&queue->state_lock, flags);
1268 
1269 	if (disconnect) {
1270 		rdma_disconnect(queue->cm_id);
1271 		schedule_work(&queue->release_work);
1272 	}
1273 }
1274 
1275 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1276 {
1277 	bool disconnect = false;
1278 
1279 	mutex_lock(&nvmet_rdma_queue_mutex);
1280 	if (!list_empty(&queue->queue_list)) {
1281 		list_del_init(&queue->queue_list);
1282 		disconnect = true;
1283 	}
1284 	mutex_unlock(&nvmet_rdma_queue_mutex);
1285 
1286 	if (disconnect)
1287 		__nvmet_rdma_queue_disconnect(queue);
1288 }
1289 
1290 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1291 		struct nvmet_rdma_queue *queue)
1292 {
1293 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1294 
1295 	mutex_lock(&nvmet_rdma_queue_mutex);
1296 	if (!list_empty(&queue->queue_list))
1297 		list_del_init(&queue->queue_list);
1298 	mutex_unlock(&nvmet_rdma_queue_mutex);
1299 
1300 	pr_err("failed to connect queue %d\n", queue->idx);
1301 	schedule_work(&queue->release_work);
1302 }
1303 
1304 /**
1305  * nvme_rdma_device_removal() - Handle RDMA device removal
1306  * @queue:      nvmet rdma queue (cm id qp_context)
1307  * @addr:	nvmet address (cm_id context)
1308  *
1309  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1310  * to unplug so we should take care of destroying our RDMA resources.
1311  * This event will be generated for each allocated cm_id.
1312  *
1313  * Note that this event can be generated on a normal queue cm_id
1314  * and/or a device bound listener cm_id (where in this case
1315  * queue will be null).
1316  *
1317  * we claim ownership on destroying the cm_id. For queues we move
1318  * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1319  * we nullify the priv to prevent double cm_id destruction and destroying
1320  * the cm_id implicitely by returning a non-zero rc to the callout.
1321  */
1322 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1323 		struct nvmet_rdma_queue *queue)
1324 {
1325 	unsigned long flags;
1326 
1327 	if (!queue) {
1328 		struct nvmet_port *port = cm_id->context;
1329 
1330 		/*
1331 		 * This is a listener cm_id. Make sure that
1332 		 * future remove_port won't invoke a double
1333 		 * cm_id destroy. use atomic xchg to make sure
1334 		 * we don't compete with remove_port.
1335 		 */
1336 		if (xchg(&port->priv, NULL) != cm_id)
1337 			return 0;
1338 	} else {
1339 		/*
1340 		 * This is a queue cm_id. Make sure that
1341 		 * release queue will not destroy the cm_id
1342 		 * and schedule all ctrl queues removal (only
1343 		 * if the queue is not disconnecting already).
1344 		 */
1345 		spin_lock_irqsave(&queue->state_lock, flags);
1346 		if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1347 			queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1348 		spin_unlock_irqrestore(&queue->state_lock, flags);
1349 		nvmet_rdma_queue_disconnect(queue);
1350 		flush_scheduled_work();
1351 	}
1352 
1353 	/*
1354 	 * We need to return 1 so that the core will destroy
1355 	 * it's own ID.  What a great API design..
1356 	 */
1357 	return 1;
1358 }
1359 
1360 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1361 		struct rdma_cm_event *event)
1362 {
1363 	struct nvmet_rdma_queue *queue = NULL;
1364 	int ret = 0;
1365 
1366 	if (cm_id->qp)
1367 		queue = cm_id->qp->qp_context;
1368 
1369 	pr_debug("%s (%d): status %d id %p\n",
1370 		rdma_event_msg(event->event), event->event,
1371 		event->status, cm_id);
1372 
1373 	switch (event->event) {
1374 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1375 		ret = nvmet_rdma_queue_connect(cm_id, event);
1376 		break;
1377 	case RDMA_CM_EVENT_ESTABLISHED:
1378 		nvmet_rdma_queue_established(queue);
1379 		break;
1380 	case RDMA_CM_EVENT_ADDR_CHANGE:
1381 	case RDMA_CM_EVENT_DISCONNECTED:
1382 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1383 		/*
1384 		 * We might end up here when we already freed the qp
1385 		 * which means queue release sequence is in progress,
1386 		 * so don't get in the way...
1387 		 */
1388 		if (queue)
1389 			nvmet_rdma_queue_disconnect(queue);
1390 		break;
1391 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1392 		ret = nvmet_rdma_device_removal(cm_id, queue);
1393 		break;
1394 	case RDMA_CM_EVENT_REJECTED:
1395 		pr_debug("Connection rejected: %s\n",
1396 			 rdma_reject_msg(cm_id, event->status));
1397 		/* FALLTHROUGH */
1398 	case RDMA_CM_EVENT_UNREACHABLE:
1399 	case RDMA_CM_EVENT_CONNECT_ERROR:
1400 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1401 		break;
1402 	default:
1403 		pr_err("received unrecognized RDMA CM event %d\n",
1404 			event->event);
1405 		break;
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1412 {
1413 	struct nvmet_rdma_queue *queue;
1414 
1415 restart:
1416 	mutex_lock(&nvmet_rdma_queue_mutex);
1417 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1418 		if (queue->nvme_sq.ctrl == ctrl) {
1419 			list_del_init(&queue->queue_list);
1420 			mutex_unlock(&nvmet_rdma_queue_mutex);
1421 
1422 			__nvmet_rdma_queue_disconnect(queue);
1423 			goto restart;
1424 		}
1425 	}
1426 	mutex_unlock(&nvmet_rdma_queue_mutex);
1427 }
1428 
1429 static int nvmet_rdma_add_port(struct nvmet_port *port)
1430 {
1431 	struct rdma_cm_id *cm_id;
1432 	struct sockaddr_in addr_in;
1433 	u16 port_in;
1434 	int ret;
1435 
1436 	switch (port->disc_addr.adrfam) {
1437 	case NVMF_ADDR_FAMILY_IP4:
1438 		break;
1439 	default:
1440 		pr_err("address family %d not supported\n",
1441 				port->disc_addr.adrfam);
1442 		return -EINVAL;
1443 	}
1444 
1445 	ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1446 	if (ret)
1447 		return ret;
1448 
1449 	addr_in.sin_family = AF_INET;
1450 	addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1451 	addr_in.sin_port = htons(port_in);
1452 
1453 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1454 			RDMA_PS_TCP, IB_QPT_RC);
1455 	if (IS_ERR(cm_id)) {
1456 		pr_err("CM ID creation failed\n");
1457 		return PTR_ERR(cm_id);
1458 	}
1459 
1460 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1461 	if (ret) {
1462 		pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1463 		goto out_destroy_id;
1464 	}
1465 
1466 	ret = rdma_listen(cm_id, 128);
1467 	if (ret) {
1468 		pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1469 		goto out_destroy_id;
1470 	}
1471 
1472 	pr_info("enabling port %d (%pISpc)\n",
1473 		le16_to_cpu(port->disc_addr.portid), &addr_in);
1474 	port->priv = cm_id;
1475 	return 0;
1476 
1477 out_destroy_id:
1478 	rdma_destroy_id(cm_id);
1479 	return ret;
1480 }
1481 
1482 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1483 {
1484 	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1485 
1486 	if (cm_id)
1487 		rdma_destroy_id(cm_id);
1488 }
1489 
1490 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1491 	.owner			= THIS_MODULE,
1492 	.type			= NVMF_TRTYPE_RDMA,
1493 	.sqe_inline_size	= NVMET_RDMA_INLINE_DATA_SIZE,
1494 	.msdbd			= 1,
1495 	.has_keyed_sgls		= 1,
1496 	.add_port		= nvmet_rdma_add_port,
1497 	.remove_port		= nvmet_rdma_remove_port,
1498 	.queue_response		= nvmet_rdma_queue_response,
1499 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1500 };
1501 
1502 static int __init nvmet_rdma_init(void)
1503 {
1504 	return nvmet_register_transport(&nvmet_rdma_ops);
1505 }
1506 
1507 static void __exit nvmet_rdma_exit(void)
1508 {
1509 	struct nvmet_rdma_queue *queue;
1510 
1511 	nvmet_unregister_transport(&nvmet_rdma_ops);
1512 
1513 	flush_scheduled_work();
1514 
1515 	mutex_lock(&nvmet_rdma_queue_mutex);
1516 	while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1517 			struct nvmet_rdma_queue, queue_list))) {
1518 		list_del_init(&queue->queue_list);
1519 
1520 		mutex_unlock(&nvmet_rdma_queue_mutex);
1521 		__nvmet_rdma_queue_disconnect(queue);
1522 		mutex_lock(&nvmet_rdma_queue_mutex);
1523 	}
1524 	mutex_unlock(&nvmet_rdma_queue_mutex);
1525 
1526 	flush_scheduled_work();
1527 	ida_destroy(&nvmet_rdma_queue_ida);
1528 }
1529 
1530 module_init(nvmet_rdma_init);
1531 module_exit(nvmet_rdma_exit);
1532 
1533 MODULE_LICENSE("GPL v2");
1534 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1535