1 /* 2 * NVMe over Fabrics RDMA target. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/atomic.h> 16 #include <linux/ctype.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/nvme.h> 22 #include <linux/slab.h> 23 #include <linux/string.h> 24 #include <linux/wait.h> 25 #include <linux/inet.h> 26 #include <asm/unaligned.h> 27 28 #include <rdma/ib_verbs.h> 29 #include <rdma/rdma_cm.h> 30 #include <rdma/rw.h> 31 32 #include <linux/nvme-rdma.h> 33 #include "nvmet.h" 34 35 /* 36 * We allow up to a page of inline data to go with the SQE 37 */ 38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE 39 40 struct nvmet_rdma_cmd { 41 struct ib_sge sge[2]; 42 struct ib_cqe cqe; 43 struct ib_recv_wr wr; 44 struct scatterlist inline_sg; 45 struct page *inline_page; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 }; 49 50 enum { 51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 53 }; 54 55 struct nvmet_rdma_rsp { 56 struct ib_sge send_sge; 57 struct ib_cqe send_cqe; 58 struct ib_send_wr send_wr; 59 60 struct nvmet_rdma_cmd *cmd; 61 struct nvmet_rdma_queue *queue; 62 63 struct ib_cqe read_cqe; 64 struct rdma_rw_ctx rw; 65 66 struct nvmet_req req; 67 68 u8 n_rdma; 69 u32 flags; 70 u32 invalidate_rkey; 71 72 struct list_head wait_list; 73 struct list_head free_list; 74 }; 75 76 enum nvmet_rdma_queue_state { 77 NVMET_RDMA_Q_CONNECTING, 78 NVMET_RDMA_Q_LIVE, 79 NVMET_RDMA_Q_DISCONNECTING, 80 NVMET_RDMA_IN_DEVICE_REMOVAL, 81 }; 82 83 struct nvmet_rdma_queue { 84 struct rdma_cm_id *cm_id; 85 struct nvmet_port *port; 86 struct ib_cq *cq; 87 atomic_t sq_wr_avail; 88 struct nvmet_rdma_device *dev; 89 spinlock_t state_lock; 90 enum nvmet_rdma_queue_state state; 91 struct nvmet_cq nvme_cq; 92 struct nvmet_sq nvme_sq; 93 94 struct nvmet_rdma_rsp *rsps; 95 struct list_head free_rsps; 96 spinlock_t rsps_lock; 97 struct nvmet_rdma_cmd *cmds; 98 99 struct work_struct release_work; 100 struct list_head rsp_wait_list; 101 struct list_head rsp_wr_wait_list; 102 spinlock_t rsp_wr_wait_lock; 103 104 int idx; 105 int host_qid; 106 int recv_queue_size; 107 int send_queue_size; 108 109 struct list_head queue_list; 110 }; 111 112 struct nvmet_rdma_device { 113 struct ib_device *device; 114 struct ib_pd *pd; 115 struct ib_srq *srq; 116 struct nvmet_rdma_cmd *srq_cmds; 117 size_t srq_size; 118 struct kref ref; 119 struct list_head entry; 120 }; 121 122 static bool nvmet_rdma_use_srq; 123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 124 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 125 126 static DEFINE_IDA(nvmet_rdma_queue_ida); 127 static LIST_HEAD(nvmet_rdma_queue_list); 128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 129 130 static LIST_HEAD(device_list); 131 static DEFINE_MUTEX(device_list_mutex); 132 133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 139 140 static struct nvmet_fabrics_ops nvmet_rdma_ops; 141 142 /* XXX: really should move to a generic header sooner or later.. */ 143 static inline u32 get_unaligned_le24(const u8 *p) 144 { 145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; 146 } 147 148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 149 { 150 return nvme_is_write(rsp->req.cmd) && 151 rsp->req.data_len && 152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 153 } 154 155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 156 { 157 return !nvme_is_write(rsp->req.cmd) && 158 rsp->req.data_len && 159 !rsp->req.rsp->status && 160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 161 } 162 163 static inline struct nvmet_rdma_rsp * 164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 165 { 166 struct nvmet_rdma_rsp *rsp; 167 unsigned long flags; 168 169 spin_lock_irqsave(&queue->rsps_lock, flags); 170 rsp = list_first_entry(&queue->free_rsps, 171 struct nvmet_rdma_rsp, free_list); 172 list_del(&rsp->free_list); 173 spin_unlock_irqrestore(&queue->rsps_lock, flags); 174 175 return rsp; 176 } 177 178 static inline void 179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 180 { 181 unsigned long flags; 182 183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 186 } 187 188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents) 189 { 190 struct scatterlist *sg; 191 int count; 192 193 if (!sgl || !nents) 194 return; 195 196 for_each_sg(sgl, sg, nents, count) 197 __free_page(sg_page(sg)); 198 kfree(sgl); 199 } 200 201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, 202 u32 length) 203 { 204 struct scatterlist *sg; 205 struct page *page; 206 unsigned int nent; 207 int i = 0; 208 209 nent = DIV_ROUND_UP(length, PAGE_SIZE); 210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 211 if (!sg) 212 goto out; 213 214 sg_init_table(sg, nent); 215 216 while (length) { 217 u32 page_len = min_t(u32, length, PAGE_SIZE); 218 219 page = alloc_page(GFP_KERNEL); 220 if (!page) 221 goto out_free_pages; 222 223 sg_set_page(&sg[i], page, page_len, 0); 224 length -= page_len; 225 i++; 226 } 227 *sgl = sg; 228 *nents = nent; 229 return 0; 230 231 out_free_pages: 232 while (i > 0) { 233 i--; 234 __free_page(sg_page(&sg[i])); 235 } 236 kfree(sg); 237 out: 238 return NVME_SC_INTERNAL; 239 } 240 241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 242 struct nvmet_rdma_cmd *c, bool admin) 243 { 244 /* NVMe command / RDMA RECV */ 245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 246 if (!c->nvme_cmd) 247 goto out; 248 249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 252 goto out_free_cmd; 253 254 c->sge[0].length = sizeof(*c->nvme_cmd); 255 c->sge[0].lkey = ndev->pd->local_dma_lkey; 256 257 if (!admin) { 258 c->inline_page = alloc_pages(GFP_KERNEL, 259 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 260 if (!c->inline_page) 261 goto out_unmap_cmd; 262 c->sge[1].addr = ib_dma_map_page(ndev->device, 263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE, 264 DMA_FROM_DEVICE); 265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr)) 266 goto out_free_inline_page; 267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE; 268 c->sge[1].lkey = ndev->pd->local_dma_lkey; 269 } 270 271 c->cqe.done = nvmet_rdma_recv_done; 272 273 c->wr.wr_cqe = &c->cqe; 274 c->wr.sg_list = c->sge; 275 c->wr.num_sge = admin ? 1 : 2; 276 277 return 0; 278 279 out_free_inline_page: 280 if (!admin) { 281 __free_pages(c->inline_page, 282 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 283 } 284 out_unmap_cmd: 285 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 287 out_free_cmd: 288 kfree(c->nvme_cmd); 289 290 out: 291 return -ENOMEM; 292 } 293 294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 295 struct nvmet_rdma_cmd *c, bool admin) 296 { 297 if (!admin) { 298 ib_dma_unmap_page(ndev->device, c->sge[1].addr, 299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); 300 __free_pages(c->inline_page, 301 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 302 } 303 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 305 kfree(c->nvme_cmd); 306 } 307 308 static struct nvmet_rdma_cmd * 309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 310 int nr_cmds, bool admin) 311 { 312 struct nvmet_rdma_cmd *cmds; 313 int ret = -EINVAL, i; 314 315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 316 if (!cmds) 317 goto out; 318 319 for (i = 0; i < nr_cmds; i++) { 320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 321 if (ret) 322 goto out_free; 323 } 324 325 return cmds; 326 327 out_free: 328 while (--i >= 0) 329 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 330 kfree(cmds); 331 out: 332 return ERR_PTR(ret); 333 } 334 335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 337 { 338 int i; 339 340 for (i = 0; i < nr_cmds; i++) 341 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 342 kfree(cmds); 343 } 344 345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 346 struct nvmet_rdma_rsp *r) 347 { 348 /* NVMe CQE / RDMA SEND */ 349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); 350 if (!r->req.rsp) 351 goto out; 352 353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, 354 sizeof(*r->req.rsp), DMA_TO_DEVICE); 355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 356 goto out_free_rsp; 357 358 r->send_sge.length = sizeof(*r->req.rsp); 359 r->send_sge.lkey = ndev->pd->local_dma_lkey; 360 361 r->send_cqe.done = nvmet_rdma_send_done; 362 363 r->send_wr.wr_cqe = &r->send_cqe; 364 r->send_wr.sg_list = &r->send_sge; 365 r->send_wr.num_sge = 1; 366 r->send_wr.send_flags = IB_SEND_SIGNALED; 367 368 /* Data In / RDMA READ */ 369 r->read_cqe.done = nvmet_rdma_read_data_done; 370 return 0; 371 372 out_free_rsp: 373 kfree(r->req.rsp); 374 out: 375 return -ENOMEM; 376 } 377 378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 379 struct nvmet_rdma_rsp *r) 380 { 381 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 382 sizeof(*r->req.rsp), DMA_TO_DEVICE); 383 kfree(r->req.rsp); 384 } 385 386 static int 387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 388 { 389 struct nvmet_rdma_device *ndev = queue->dev; 390 int nr_rsps = queue->recv_queue_size * 2; 391 int ret = -EINVAL, i; 392 393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 394 GFP_KERNEL); 395 if (!queue->rsps) 396 goto out; 397 398 for (i = 0; i < nr_rsps; i++) { 399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 400 401 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 402 if (ret) 403 goto out_free; 404 405 list_add_tail(&rsp->free_list, &queue->free_rsps); 406 } 407 408 return 0; 409 410 out_free: 411 while (--i >= 0) { 412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 413 414 list_del(&rsp->free_list); 415 nvmet_rdma_free_rsp(ndev, rsp); 416 } 417 kfree(queue->rsps); 418 out: 419 return ret; 420 } 421 422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 423 { 424 struct nvmet_rdma_device *ndev = queue->dev; 425 int i, nr_rsps = queue->recv_queue_size * 2; 426 427 for (i = 0; i < nr_rsps; i++) { 428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 429 430 list_del(&rsp->free_list); 431 nvmet_rdma_free_rsp(ndev, rsp); 432 } 433 kfree(queue->rsps); 434 } 435 436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 437 struct nvmet_rdma_cmd *cmd) 438 { 439 struct ib_recv_wr *bad_wr; 440 441 ib_dma_sync_single_for_device(ndev->device, 442 cmd->sge[0].addr, cmd->sge[0].length, 443 DMA_FROM_DEVICE); 444 445 if (ndev->srq) 446 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr); 447 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr); 448 } 449 450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 451 { 452 spin_lock(&queue->rsp_wr_wait_lock); 453 while (!list_empty(&queue->rsp_wr_wait_list)) { 454 struct nvmet_rdma_rsp *rsp; 455 bool ret; 456 457 rsp = list_entry(queue->rsp_wr_wait_list.next, 458 struct nvmet_rdma_rsp, wait_list); 459 list_del(&rsp->wait_list); 460 461 spin_unlock(&queue->rsp_wr_wait_lock); 462 ret = nvmet_rdma_execute_command(rsp); 463 spin_lock(&queue->rsp_wr_wait_lock); 464 465 if (!ret) { 466 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 467 break; 468 } 469 } 470 spin_unlock(&queue->rsp_wr_wait_lock); 471 } 472 473 474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 475 { 476 struct nvmet_rdma_queue *queue = rsp->queue; 477 478 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 479 480 if (rsp->n_rdma) { 481 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 482 queue->cm_id->port_num, rsp->req.sg, 483 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 484 } 485 486 if (rsp->req.sg != &rsp->cmd->inline_sg) 487 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt); 488 489 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 490 nvmet_rdma_process_wr_wait_list(queue); 491 492 nvmet_rdma_put_rsp(rsp); 493 } 494 495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 496 { 497 if (queue->nvme_sq.ctrl) { 498 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 499 } else { 500 /* 501 * we didn't setup the controller yet in case 502 * of admin connect error, just disconnect and 503 * cleanup the queue 504 */ 505 nvmet_rdma_queue_disconnect(queue); 506 } 507 } 508 509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 510 { 511 struct nvmet_rdma_rsp *rsp = 512 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 513 514 nvmet_rdma_release_rsp(rsp); 515 516 if (unlikely(wc->status != IB_WC_SUCCESS && 517 wc->status != IB_WC_WR_FLUSH_ERR)) { 518 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 519 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 520 nvmet_rdma_error_comp(rsp->queue); 521 } 522 } 523 524 static void nvmet_rdma_queue_response(struct nvmet_req *req) 525 { 526 struct nvmet_rdma_rsp *rsp = 527 container_of(req, struct nvmet_rdma_rsp, req); 528 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 529 struct ib_send_wr *first_wr, *bad_wr; 530 531 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 532 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 533 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 534 } else { 535 rsp->send_wr.opcode = IB_WR_SEND; 536 } 537 538 if (nvmet_rdma_need_data_out(rsp)) 539 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 540 cm_id->port_num, NULL, &rsp->send_wr); 541 else 542 first_wr = &rsp->send_wr; 543 544 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 545 546 ib_dma_sync_single_for_device(rsp->queue->dev->device, 547 rsp->send_sge.addr, rsp->send_sge.length, 548 DMA_TO_DEVICE); 549 550 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) { 551 pr_err("sending cmd response failed\n"); 552 nvmet_rdma_release_rsp(rsp); 553 } 554 } 555 556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 557 { 558 struct nvmet_rdma_rsp *rsp = 559 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 560 struct nvmet_rdma_queue *queue = cq->cq_context; 561 562 WARN_ON(rsp->n_rdma <= 0); 563 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 564 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 565 queue->cm_id->port_num, rsp->req.sg, 566 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 567 rsp->n_rdma = 0; 568 569 if (unlikely(wc->status != IB_WC_SUCCESS)) { 570 nvmet_rdma_release_rsp(rsp); 571 if (wc->status != IB_WC_WR_FLUSH_ERR) { 572 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 573 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 574 nvmet_rdma_error_comp(queue); 575 } 576 return; 577 } 578 579 rsp->req.execute(&rsp->req); 580 } 581 582 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 583 u64 off) 584 { 585 sg_init_table(&rsp->cmd->inline_sg, 1); 586 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off); 587 rsp->req.sg = &rsp->cmd->inline_sg; 588 rsp->req.sg_cnt = 1; 589 } 590 591 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 592 { 593 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 594 u64 off = le64_to_cpu(sgl->addr); 595 u32 len = le32_to_cpu(sgl->length); 596 597 if (!nvme_is_write(rsp->req.cmd)) 598 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 599 600 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) { 601 pr_err("invalid inline data offset!\n"); 602 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 603 } 604 605 /* no data command? */ 606 if (!len) 607 return 0; 608 609 nvmet_rdma_use_inline_sg(rsp, len, off); 610 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 611 return 0; 612 } 613 614 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 615 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 616 { 617 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 618 u64 addr = le64_to_cpu(sgl->addr); 619 u32 len = get_unaligned_le24(sgl->length); 620 u32 key = get_unaligned_le32(sgl->key); 621 int ret; 622 u16 status; 623 624 /* no data command? */ 625 if (!len) 626 return 0; 627 628 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt, 629 len); 630 if (status) 631 return status; 632 633 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 634 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 635 nvmet_data_dir(&rsp->req)); 636 if (ret < 0) 637 return NVME_SC_INTERNAL; 638 rsp->n_rdma += ret; 639 640 if (invalidate) { 641 rsp->invalidate_rkey = key; 642 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 643 } 644 645 return 0; 646 } 647 648 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 649 { 650 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 651 652 switch (sgl->type >> 4) { 653 case NVME_SGL_FMT_DATA_DESC: 654 switch (sgl->type & 0xf) { 655 case NVME_SGL_FMT_OFFSET: 656 return nvmet_rdma_map_sgl_inline(rsp); 657 default: 658 pr_err("invalid SGL subtype: %#x\n", sgl->type); 659 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 660 } 661 case NVME_KEY_SGL_FMT_DATA_DESC: 662 switch (sgl->type & 0xf) { 663 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 664 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 665 case NVME_SGL_FMT_ADDRESS: 666 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 667 default: 668 pr_err("invalid SGL subtype: %#x\n", sgl->type); 669 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 670 } 671 default: 672 pr_err("invalid SGL type: %#x\n", sgl->type); 673 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 674 } 675 } 676 677 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 678 { 679 struct nvmet_rdma_queue *queue = rsp->queue; 680 681 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 682 &queue->sq_wr_avail) < 0)) { 683 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 684 1 + rsp->n_rdma, queue->idx, 685 queue->nvme_sq.ctrl->cntlid); 686 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 687 return false; 688 } 689 690 if (nvmet_rdma_need_data_in(rsp)) { 691 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, 692 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 693 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 694 } else { 695 rsp->req.execute(&rsp->req); 696 } 697 698 return true; 699 } 700 701 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 702 struct nvmet_rdma_rsp *cmd) 703 { 704 u16 status; 705 706 cmd->queue = queue; 707 cmd->n_rdma = 0; 708 cmd->req.port = queue->port; 709 710 711 ib_dma_sync_single_for_cpu(queue->dev->device, 712 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 713 DMA_FROM_DEVICE); 714 ib_dma_sync_single_for_cpu(queue->dev->device, 715 cmd->send_sge.addr, cmd->send_sge.length, 716 DMA_TO_DEVICE); 717 718 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 719 &queue->nvme_sq, &nvmet_rdma_ops)) 720 return; 721 722 status = nvmet_rdma_map_sgl(cmd); 723 if (status) 724 goto out_err; 725 726 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 727 spin_lock(&queue->rsp_wr_wait_lock); 728 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 729 spin_unlock(&queue->rsp_wr_wait_lock); 730 } 731 732 return; 733 734 out_err: 735 nvmet_req_complete(&cmd->req, status); 736 } 737 738 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 739 { 740 struct nvmet_rdma_cmd *cmd = 741 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 742 struct nvmet_rdma_queue *queue = cq->cq_context; 743 struct nvmet_rdma_rsp *rsp; 744 745 if (unlikely(wc->status != IB_WC_SUCCESS)) { 746 if (wc->status != IB_WC_WR_FLUSH_ERR) { 747 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 748 wc->wr_cqe, ib_wc_status_msg(wc->status), 749 wc->status); 750 nvmet_rdma_error_comp(queue); 751 } 752 return; 753 } 754 755 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 756 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 757 nvmet_rdma_error_comp(queue); 758 return; 759 } 760 761 cmd->queue = queue; 762 rsp = nvmet_rdma_get_rsp(queue); 763 rsp->cmd = cmd; 764 rsp->flags = 0; 765 rsp->req.cmd = cmd->nvme_cmd; 766 767 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 768 unsigned long flags; 769 770 spin_lock_irqsave(&queue->state_lock, flags); 771 if (queue->state == NVMET_RDMA_Q_CONNECTING) 772 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 773 else 774 nvmet_rdma_put_rsp(rsp); 775 spin_unlock_irqrestore(&queue->state_lock, flags); 776 return; 777 } 778 779 nvmet_rdma_handle_command(queue, rsp); 780 } 781 782 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 783 { 784 if (!ndev->srq) 785 return; 786 787 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 788 ib_destroy_srq(ndev->srq); 789 } 790 791 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 792 { 793 struct ib_srq_init_attr srq_attr = { NULL, }; 794 struct ib_srq *srq; 795 size_t srq_size; 796 int ret, i; 797 798 srq_size = 4095; /* XXX: tune */ 799 800 srq_attr.attr.max_wr = srq_size; 801 srq_attr.attr.max_sge = 2; 802 srq_attr.attr.srq_limit = 0; 803 srq_attr.srq_type = IB_SRQT_BASIC; 804 srq = ib_create_srq(ndev->pd, &srq_attr); 805 if (IS_ERR(srq)) { 806 /* 807 * If SRQs aren't supported we just go ahead and use normal 808 * non-shared receive queues. 809 */ 810 pr_info("SRQ requested but not supported.\n"); 811 return 0; 812 } 813 814 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 815 if (IS_ERR(ndev->srq_cmds)) { 816 ret = PTR_ERR(ndev->srq_cmds); 817 goto out_destroy_srq; 818 } 819 820 ndev->srq = srq; 821 ndev->srq_size = srq_size; 822 823 for (i = 0; i < srq_size; i++) 824 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 825 826 return 0; 827 828 out_destroy_srq: 829 ib_destroy_srq(srq); 830 return ret; 831 } 832 833 static void nvmet_rdma_free_dev(struct kref *ref) 834 { 835 struct nvmet_rdma_device *ndev = 836 container_of(ref, struct nvmet_rdma_device, ref); 837 838 mutex_lock(&device_list_mutex); 839 list_del(&ndev->entry); 840 mutex_unlock(&device_list_mutex); 841 842 nvmet_rdma_destroy_srq(ndev); 843 ib_dealloc_pd(ndev->pd); 844 845 kfree(ndev); 846 } 847 848 static struct nvmet_rdma_device * 849 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 850 { 851 struct nvmet_rdma_device *ndev; 852 int ret; 853 854 mutex_lock(&device_list_mutex); 855 list_for_each_entry(ndev, &device_list, entry) { 856 if (ndev->device->node_guid == cm_id->device->node_guid && 857 kref_get_unless_zero(&ndev->ref)) 858 goto out_unlock; 859 } 860 861 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 862 if (!ndev) 863 goto out_err; 864 865 ndev->device = cm_id->device; 866 kref_init(&ndev->ref); 867 868 ndev->pd = ib_alloc_pd(ndev->device, 0); 869 if (IS_ERR(ndev->pd)) 870 goto out_free_dev; 871 872 if (nvmet_rdma_use_srq) { 873 ret = nvmet_rdma_init_srq(ndev); 874 if (ret) 875 goto out_free_pd; 876 } 877 878 list_add(&ndev->entry, &device_list); 879 out_unlock: 880 mutex_unlock(&device_list_mutex); 881 pr_debug("added %s.\n", ndev->device->name); 882 return ndev; 883 884 out_free_pd: 885 ib_dealloc_pd(ndev->pd); 886 out_free_dev: 887 kfree(ndev); 888 out_err: 889 mutex_unlock(&device_list_mutex); 890 return NULL; 891 } 892 893 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 894 { 895 struct ib_qp_init_attr qp_attr; 896 struct nvmet_rdma_device *ndev = queue->dev; 897 int comp_vector, nr_cqe, ret, i; 898 899 /* 900 * Spread the io queues across completion vectors, 901 * but still keep all admin queues on vector 0. 902 */ 903 comp_vector = !queue->host_qid ? 0 : 904 queue->idx % ndev->device->num_comp_vectors; 905 906 /* 907 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 908 */ 909 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 910 911 queue->cq = ib_alloc_cq(ndev->device, queue, 912 nr_cqe + 1, comp_vector, 913 IB_POLL_WORKQUEUE); 914 if (IS_ERR(queue->cq)) { 915 ret = PTR_ERR(queue->cq); 916 pr_err("failed to create CQ cqe= %d ret= %d\n", 917 nr_cqe + 1, ret); 918 goto out; 919 } 920 921 memset(&qp_attr, 0, sizeof(qp_attr)); 922 qp_attr.qp_context = queue; 923 qp_attr.event_handler = nvmet_rdma_qp_event; 924 qp_attr.send_cq = queue->cq; 925 qp_attr.recv_cq = queue->cq; 926 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 927 qp_attr.qp_type = IB_QPT_RC; 928 /* +1 for drain */ 929 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 930 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; 931 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 932 ndev->device->attrs.max_sge); 933 934 if (ndev->srq) { 935 qp_attr.srq = ndev->srq; 936 } else { 937 /* +1 for drain */ 938 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 939 qp_attr.cap.max_recv_sge = 2; 940 } 941 942 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 943 if (ret) { 944 pr_err("failed to create_qp ret= %d\n", ret); 945 goto err_destroy_cq; 946 } 947 948 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 949 950 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 951 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 952 qp_attr.cap.max_send_wr, queue->cm_id); 953 954 if (!ndev->srq) { 955 for (i = 0; i < queue->recv_queue_size; i++) { 956 queue->cmds[i].queue = queue; 957 nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 958 } 959 } 960 961 out: 962 return ret; 963 964 err_destroy_cq: 965 ib_free_cq(queue->cq); 966 goto out; 967 } 968 969 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 970 { 971 ib_drain_qp(queue->cm_id->qp); 972 rdma_destroy_qp(queue->cm_id); 973 ib_free_cq(queue->cq); 974 } 975 976 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 977 { 978 pr_info("freeing queue %d\n", queue->idx); 979 980 nvmet_sq_destroy(&queue->nvme_sq); 981 982 nvmet_rdma_destroy_queue_ib(queue); 983 if (!queue->dev->srq) { 984 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 985 queue->recv_queue_size, 986 !queue->host_qid); 987 } 988 nvmet_rdma_free_rsps(queue); 989 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 990 kfree(queue); 991 } 992 993 static void nvmet_rdma_release_queue_work(struct work_struct *w) 994 { 995 struct nvmet_rdma_queue *queue = 996 container_of(w, struct nvmet_rdma_queue, release_work); 997 struct rdma_cm_id *cm_id = queue->cm_id; 998 struct nvmet_rdma_device *dev = queue->dev; 999 enum nvmet_rdma_queue_state state = queue->state; 1000 1001 nvmet_rdma_free_queue(queue); 1002 1003 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL) 1004 rdma_destroy_id(cm_id); 1005 1006 kref_put(&dev->ref, nvmet_rdma_free_dev); 1007 } 1008 1009 static int 1010 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1011 struct nvmet_rdma_queue *queue) 1012 { 1013 struct nvme_rdma_cm_req *req; 1014 1015 req = (struct nvme_rdma_cm_req *)conn->private_data; 1016 if (!req || conn->private_data_len == 0) 1017 return NVME_RDMA_CM_INVALID_LEN; 1018 1019 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1020 return NVME_RDMA_CM_INVALID_RECFMT; 1021 1022 queue->host_qid = le16_to_cpu(req->qid); 1023 1024 /* 1025 * req->hsqsize corresponds to our recv queue size plus 1 1026 * req->hrqsize corresponds to our send queue size 1027 */ 1028 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1029 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1030 1031 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH) 1032 return NVME_RDMA_CM_INVALID_HSQSIZE; 1033 1034 /* XXX: Should we enforce some kind of max for IO queues? */ 1035 1036 return 0; 1037 } 1038 1039 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1040 enum nvme_rdma_cm_status status) 1041 { 1042 struct nvme_rdma_cm_rej rej; 1043 1044 pr_debug("rejecting connect request: status %d (%s)\n", 1045 status, nvme_rdma_cm_msg(status)); 1046 1047 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1048 rej.sts = cpu_to_le16(status); 1049 1050 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1051 } 1052 1053 static struct nvmet_rdma_queue * 1054 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1055 struct rdma_cm_id *cm_id, 1056 struct rdma_cm_event *event) 1057 { 1058 struct nvmet_rdma_queue *queue; 1059 int ret; 1060 1061 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1062 if (!queue) { 1063 ret = NVME_RDMA_CM_NO_RSC; 1064 goto out_reject; 1065 } 1066 1067 ret = nvmet_sq_init(&queue->nvme_sq); 1068 if (ret) { 1069 ret = NVME_RDMA_CM_NO_RSC; 1070 goto out_free_queue; 1071 } 1072 1073 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1074 if (ret) 1075 goto out_destroy_sq; 1076 1077 /* 1078 * Schedules the actual release because calling rdma_destroy_id from 1079 * inside a CM callback would trigger a deadlock. (great API design..) 1080 */ 1081 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1082 queue->dev = ndev; 1083 queue->cm_id = cm_id; 1084 1085 spin_lock_init(&queue->state_lock); 1086 queue->state = NVMET_RDMA_Q_CONNECTING; 1087 INIT_LIST_HEAD(&queue->rsp_wait_list); 1088 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1089 spin_lock_init(&queue->rsp_wr_wait_lock); 1090 INIT_LIST_HEAD(&queue->free_rsps); 1091 spin_lock_init(&queue->rsps_lock); 1092 INIT_LIST_HEAD(&queue->queue_list); 1093 1094 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1095 if (queue->idx < 0) { 1096 ret = NVME_RDMA_CM_NO_RSC; 1097 goto out_destroy_sq; 1098 } 1099 1100 ret = nvmet_rdma_alloc_rsps(queue); 1101 if (ret) { 1102 ret = NVME_RDMA_CM_NO_RSC; 1103 goto out_ida_remove; 1104 } 1105 1106 if (!ndev->srq) { 1107 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1108 queue->recv_queue_size, 1109 !queue->host_qid); 1110 if (IS_ERR(queue->cmds)) { 1111 ret = NVME_RDMA_CM_NO_RSC; 1112 goto out_free_responses; 1113 } 1114 } 1115 1116 ret = nvmet_rdma_create_queue_ib(queue); 1117 if (ret) { 1118 pr_err("%s: creating RDMA queue failed (%d).\n", 1119 __func__, ret); 1120 ret = NVME_RDMA_CM_NO_RSC; 1121 goto out_free_cmds; 1122 } 1123 1124 return queue; 1125 1126 out_free_cmds: 1127 if (!ndev->srq) { 1128 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1129 queue->recv_queue_size, 1130 !queue->host_qid); 1131 } 1132 out_free_responses: 1133 nvmet_rdma_free_rsps(queue); 1134 out_ida_remove: 1135 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1136 out_destroy_sq: 1137 nvmet_sq_destroy(&queue->nvme_sq); 1138 out_free_queue: 1139 kfree(queue); 1140 out_reject: 1141 nvmet_rdma_cm_reject(cm_id, ret); 1142 return NULL; 1143 } 1144 1145 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1146 { 1147 struct nvmet_rdma_queue *queue = priv; 1148 1149 switch (event->event) { 1150 case IB_EVENT_COMM_EST: 1151 rdma_notify(queue->cm_id, event->event); 1152 break; 1153 default: 1154 pr_err("received IB QP event: %s (%d)\n", 1155 ib_event_msg(event->event), event->event); 1156 break; 1157 } 1158 } 1159 1160 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1161 struct nvmet_rdma_queue *queue, 1162 struct rdma_conn_param *p) 1163 { 1164 struct rdma_conn_param param = { }; 1165 struct nvme_rdma_cm_rep priv = { }; 1166 int ret = -ENOMEM; 1167 1168 param.rnr_retry_count = 7; 1169 param.flow_control = 1; 1170 param.initiator_depth = min_t(u8, p->initiator_depth, 1171 queue->dev->device->attrs.max_qp_init_rd_atom); 1172 param.private_data = &priv; 1173 param.private_data_len = sizeof(priv); 1174 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1175 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1176 1177 ret = rdma_accept(cm_id, ¶m); 1178 if (ret) 1179 pr_err("rdma_accept failed (error code = %d)\n", ret); 1180 1181 return ret; 1182 } 1183 1184 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1185 struct rdma_cm_event *event) 1186 { 1187 struct nvmet_rdma_device *ndev; 1188 struct nvmet_rdma_queue *queue; 1189 int ret = -EINVAL; 1190 1191 ndev = nvmet_rdma_find_get_device(cm_id); 1192 if (!ndev) { 1193 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1194 return -ECONNREFUSED; 1195 } 1196 1197 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1198 if (!queue) { 1199 ret = -ENOMEM; 1200 goto put_device; 1201 } 1202 queue->port = cm_id->context; 1203 1204 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1205 if (ret) 1206 goto release_queue; 1207 1208 mutex_lock(&nvmet_rdma_queue_mutex); 1209 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1210 mutex_unlock(&nvmet_rdma_queue_mutex); 1211 1212 return 0; 1213 1214 release_queue: 1215 nvmet_rdma_free_queue(queue); 1216 put_device: 1217 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1218 1219 return ret; 1220 } 1221 1222 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1223 { 1224 unsigned long flags; 1225 1226 spin_lock_irqsave(&queue->state_lock, flags); 1227 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1228 pr_warn("trying to establish a connected queue\n"); 1229 goto out_unlock; 1230 } 1231 queue->state = NVMET_RDMA_Q_LIVE; 1232 1233 while (!list_empty(&queue->rsp_wait_list)) { 1234 struct nvmet_rdma_rsp *cmd; 1235 1236 cmd = list_first_entry(&queue->rsp_wait_list, 1237 struct nvmet_rdma_rsp, wait_list); 1238 list_del(&cmd->wait_list); 1239 1240 spin_unlock_irqrestore(&queue->state_lock, flags); 1241 nvmet_rdma_handle_command(queue, cmd); 1242 spin_lock_irqsave(&queue->state_lock, flags); 1243 } 1244 1245 out_unlock: 1246 spin_unlock_irqrestore(&queue->state_lock, flags); 1247 } 1248 1249 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1250 { 1251 bool disconnect = false; 1252 unsigned long flags; 1253 1254 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1255 1256 spin_lock_irqsave(&queue->state_lock, flags); 1257 switch (queue->state) { 1258 case NVMET_RDMA_Q_CONNECTING: 1259 case NVMET_RDMA_Q_LIVE: 1260 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1261 case NVMET_RDMA_IN_DEVICE_REMOVAL: 1262 disconnect = true; 1263 break; 1264 case NVMET_RDMA_Q_DISCONNECTING: 1265 break; 1266 } 1267 spin_unlock_irqrestore(&queue->state_lock, flags); 1268 1269 if (disconnect) { 1270 rdma_disconnect(queue->cm_id); 1271 schedule_work(&queue->release_work); 1272 } 1273 } 1274 1275 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1276 { 1277 bool disconnect = false; 1278 1279 mutex_lock(&nvmet_rdma_queue_mutex); 1280 if (!list_empty(&queue->queue_list)) { 1281 list_del_init(&queue->queue_list); 1282 disconnect = true; 1283 } 1284 mutex_unlock(&nvmet_rdma_queue_mutex); 1285 1286 if (disconnect) 1287 __nvmet_rdma_queue_disconnect(queue); 1288 } 1289 1290 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1291 struct nvmet_rdma_queue *queue) 1292 { 1293 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1294 1295 mutex_lock(&nvmet_rdma_queue_mutex); 1296 if (!list_empty(&queue->queue_list)) 1297 list_del_init(&queue->queue_list); 1298 mutex_unlock(&nvmet_rdma_queue_mutex); 1299 1300 pr_err("failed to connect queue %d\n", queue->idx); 1301 schedule_work(&queue->release_work); 1302 } 1303 1304 /** 1305 * nvme_rdma_device_removal() - Handle RDMA device removal 1306 * @queue: nvmet rdma queue (cm id qp_context) 1307 * @addr: nvmet address (cm_id context) 1308 * 1309 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1310 * to unplug so we should take care of destroying our RDMA resources. 1311 * This event will be generated for each allocated cm_id. 1312 * 1313 * Note that this event can be generated on a normal queue cm_id 1314 * and/or a device bound listener cm_id (where in this case 1315 * queue will be null). 1316 * 1317 * we claim ownership on destroying the cm_id. For queues we move 1318 * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port 1319 * we nullify the priv to prevent double cm_id destruction and destroying 1320 * the cm_id implicitely by returning a non-zero rc to the callout. 1321 */ 1322 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1323 struct nvmet_rdma_queue *queue) 1324 { 1325 unsigned long flags; 1326 1327 if (!queue) { 1328 struct nvmet_port *port = cm_id->context; 1329 1330 /* 1331 * This is a listener cm_id. Make sure that 1332 * future remove_port won't invoke a double 1333 * cm_id destroy. use atomic xchg to make sure 1334 * we don't compete with remove_port. 1335 */ 1336 if (xchg(&port->priv, NULL) != cm_id) 1337 return 0; 1338 } else { 1339 /* 1340 * This is a queue cm_id. Make sure that 1341 * release queue will not destroy the cm_id 1342 * and schedule all ctrl queues removal (only 1343 * if the queue is not disconnecting already). 1344 */ 1345 spin_lock_irqsave(&queue->state_lock, flags); 1346 if (queue->state != NVMET_RDMA_Q_DISCONNECTING) 1347 queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL; 1348 spin_unlock_irqrestore(&queue->state_lock, flags); 1349 nvmet_rdma_queue_disconnect(queue); 1350 flush_scheduled_work(); 1351 } 1352 1353 /* 1354 * We need to return 1 so that the core will destroy 1355 * it's own ID. What a great API design.. 1356 */ 1357 return 1; 1358 } 1359 1360 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1361 struct rdma_cm_event *event) 1362 { 1363 struct nvmet_rdma_queue *queue = NULL; 1364 int ret = 0; 1365 1366 if (cm_id->qp) 1367 queue = cm_id->qp->qp_context; 1368 1369 pr_debug("%s (%d): status %d id %p\n", 1370 rdma_event_msg(event->event), event->event, 1371 event->status, cm_id); 1372 1373 switch (event->event) { 1374 case RDMA_CM_EVENT_CONNECT_REQUEST: 1375 ret = nvmet_rdma_queue_connect(cm_id, event); 1376 break; 1377 case RDMA_CM_EVENT_ESTABLISHED: 1378 nvmet_rdma_queue_established(queue); 1379 break; 1380 case RDMA_CM_EVENT_ADDR_CHANGE: 1381 case RDMA_CM_EVENT_DISCONNECTED: 1382 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1383 /* 1384 * We might end up here when we already freed the qp 1385 * which means queue release sequence is in progress, 1386 * so don't get in the way... 1387 */ 1388 if (queue) 1389 nvmet_rdma_queue_disconnect(queue); 1390 break; 1391 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1392 ret = nvmet_rdma_device_removal(cm_id, queue); 1393 break; 1394 case RDMA_CM_EVENT_REJECTED: 1395 pr_debug("Connection rejected: %s\n", 1396 rdma_reject_msg(cm_id, event->status)); 1397 /* FALLTHROUGH */ 1398 case RDMA_CM_EVENT_UNREACHABLE: 1399 case RDMA_CM_EVENT_CONNECT_ERROR: 1400 nvmet_rdma_queue_connect_fail(cm_id, queue); 1401 break; 1402 default: 1403 pr_err("received unrecognized RDMA CM event %d\n", 1404 event->event); 1405 break; 1406 } 1407 1408 return ret; 1409 } 1410 1411 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1412 { 1413 struct nvmet_rdma_queue *queue; 1414 1415 restart: 1416 mutex_lock(&nvmet_rdma_queue_mutex); 1417 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1418 if (queue->nvme_sq.ctrl == ctrl) { 1419 list_del_init(&queue->queue_list); 1420 mutex_unlock(&nvmet_rdma_queue_mutex); 1421 1422 __nvmet_rdma_queue_disconnect(queue); 1423 goto restart; 1424 } 1425 } 1426 mutex_unlock(&nvmet_rdma_queue_mutex); 1427 } 1428 1429 static int nvmet_rdma_add_port(struct nvmet_port *port) 1430 { 1431 struct rdma_cm_id *cm_id; 1432 struct sockaddr_in addr_in; 1433 u16 port_in; 1434 int ret; 1435 1436 switch (port->disc_addr.adrfam) { 1437 case NVMF_ADDR_FAMILY_IP4: 1438 break; 1439 default: 1440 pr_err("address family %d not supported\n", 1441 port->disc_addr.adrfam); 1442 return -EINVAL; 1443 } 1444 1445 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in); 1446 if (ret) 1447 return ret; 1448 1449 addr_in.sin_family = AF_INET; 1450 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr); 1451 addr_in.sin_port = htons(port_in); 1452 1453 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1454 RDMA_PS_TCP, IB_QPT_RC); 1455 if (IS_ERR(cm_id)) { 1456 pr_err("CM ID creation failed\n"); 1457 return PTR_ERR(cm_id); 1458 } 1459 1460 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in); 1461 if (ret) { 1462 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret); 1463 goto out_destroy_id; 1464 } 1465 1466 ret = rdma_listen(cm_id, 128); 1467 if (ret) { 1468 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret); 1469 goto out_destroy_id; 1470 } 1471 1472 pr_info("enabling port %d (%pISpc)\n", 1473 le16_to_cpu(port->disc_addr.portid), &addr_in); 1474 port->priv = cm_id; 1475 return 0; 1476 1477 out_destroy_id: 1478 rdma_destroy_id(cm_id); 1479 return ret; 1480 } 1481 1482 static void nvmet_rdma_remove_port(struct nvmet_port *port) 1483 { 1484 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); 1485 1486 if (cm_id) 1487 rdma_destroy_id(cm_id); 1488 } 1489 1490 static struct nvmet_fabrics_ops nvmet_rdma_ops = { 1491 .owner = THIS_MODULE, 1492 .type = NVMF_TRTYPE_RDMA, 1493 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE, 1494 .msdbd = 1, 1495 .has_keyed_sgls = 1, 1496 .add_port = nvmet_rdma_add_port, 1497 .remove_port = nvmet_rdma_remove_port, 1498 .queue_response = nvmet_rdma_queue_response, 1499 .delete_ctrl = nvmet_rdma_delete_ctrl, 1500 }; 1501 1502 static int __init nvmet_rdma_init(void) 1503 { 1504 return nvmet_register_transport(&nvmet_rdma_ops); 1505 } 1506 1507 static void __exit nvmet_rdma_exit(void) 1508 { 1509 struct nvmet_rdma_queue *queue; 1510 1511 nvmet_unregister_transport(&nvmet_rdma_ops); 1512 1513 flush_scheduled_work(); 1514 1515 mutex_lock(&nvmet_rdma_queue_mutex); 1516 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list, 1517 struct nvmet_rdma_queue, queue_list))) { 1518 list_del_init(&queue->queue_list); 1519 1520 mutex_unlock(&nvmet_rdma_queue_mutex); 1521 __nvmet_rdma_queue_disconnect(queue); 1522 mutex_lock(&nvmet_rdma_queue_mutex); 1523 } 1524 mutex_unlock(&nvmet_rdma_queue_mutex); 1525 1526 flush_scheduled_work(); 1527 ida_destroy(&nvmet_rdma_queue_ida); 1528 } 1529 1530 module_init(nvmet_rdma_init); 1531 module_exit(nvmet_rdma_exit); 1532 1533 MODULE_LICENSE("GPL v2"); 1534 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1535