1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <asm/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 struct nvmet_rdma_srq; 41 42 struct nvmet_rdma_cmd { 43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 44 struct ib_cqe cqe; 45 struct ib_recv_wr wr; 46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 47 struct nvme_command *nvme_cmd; 48 struct nvmet_rdma_queue *queue; 49 struct nvmet_rdma_srq *nsrq; 50 }; 51 52 enum { 53 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 54 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 55 }; 56 57 struct nvmet_rdma_rsp { 58 struct ib_sge send_sge; 59 struct ib_cqe send_cqe; 60 struct ib_send_wr send_wr; 61 62 struct nvmet_rdma_cmd *cmd; 63 struct nvmet_rdma_queue *queue; 64 65 struct ib_cqe read_cqe; 66 struct ib_cqe write_cqe; 67 struct rdma_rw_ctx rw; 68 69 struct nvmet_req req; 70 71 bool allocated; 72 u8 n_rdma; 73 u32 flags; 74 u32 invalidate_rkey; 75 76 struct list_head wait_list; 77 struct list_head free_list; 78 }; 79 80 enum nvmet_rdma_queue_state { 81 NVMET_RDMA_Q_CONNECTING, 82 NVMET_RDMA_Q_LIVE, 83 NVMET_RDMA_Q_DISCONNECTING, 84 }; 85 86 struct nvmet_rdma_queue { 87 struct rdma_cm_id *cm_id; 88 struct ib_qp *qp; 89 struct nvmet_port *port; 90 struct ib_cq *cq; 91 atomic_t sq_wr_avail; 92 struct nvmet_rdma_device *dev; 93 struct nvmet_rdma_srq *nsrq; 94 spinlock_t state_lock; 95 enum nvmet_rdma_queue_state state; 96 struct nvmet_cq nvme_cq; 97 struct nvmet_sq nvme_sq; 98 99 struct nvmet_rdma_rsp *rsps; 100 struct list_head free_rsps; 101 spinlock_t rsps_lock; 102 struct nvmet_rdma_cmd *cmds; 103 104 struct work_struct release_work; 105 struct list_head rsp_wait_list; 106 struct list_head rsp_wr_wait_list; 107 spinlock_t rsp_wr_wait_lock; 108 109 int idx; 110 int host_qid; 111 int comp_vector; 112 int recv_queue_size; 113 int send_queue_size; 114 115 struct list_head queue_list; 116 }; 117 118 struct nvmet_rdma_port { 119 struct nvmet_port *nport; 120 struct sockaddr_storage addr; 121 struct rdma_cm_id *cm_id; 122 struct delayed_work repair_work; 123 }; 124 125 struct nvmet_rdma_srq { 126 struct ib_srq *srq; 127 struct nvmet_rdma_cmd *cmds; 128 struct nvmet_rdma_device *ndev; 129 }; 130 131 struct nvmet_rdma_device { 132 struct ib_device *device; 133 struct ib_pd *pd; 134 struct nvmet_rdma_srq **srqs; 135 int srq_count; 136 size_t srq_size; 137 struct kref ref; 138 struct list_head entry; 139 int inline_data_size; 140 int inline_page_count; 141 }; 142 143 static bool nvmet_rdma_use_srq; 144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 145 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 146 147 static int srq_size_set(const char *val, const struct kernel_param *kp); 148 static const struct kernel_param_ops srq_size_ops = { 149 .set = srq_size_set, 150 .get = param_get_int, 151 }; 152 153 static int nvmet_rdma_srq_size = 1024; 154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 156 157 static DEFINE_IDA(nvmet_rdma_queue_ida); 158 static LIST_HEAD(nvmet_rdma_queue_list); 159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 160 161 static LIST_HEAD(device_list); 162 static DEFINE_MUTEX(device_list_mutex); 163 164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 172 struct nvmet_rdma_rsp *r); 173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 174 struct nvmet_rdma_rsp *r); 175 176 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 177 178 static int srq_size_set(const char *val, const struct kernel_param *kp) 179 { 180 int n = 0, ret; 181 182 ret = kstrtoint(val, 10, &n); 183 if (ret != 0 || n < 256) 184 return -EINVAL; 185 186 return param_set_int(val, kp); 187 } 188 189 static int num_pages(int len) 190 { 191 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 192 } 193 194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 195 { 196 return nvme_is_write(rsp->req.cmd) && 197 rsp->req.transfer_len && 198 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 199 } 200 201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 202 { 203 return !nvme_is_write(rsp->req.cmd) && 204 rsp->req.transfer_len && 205 !rsp->req.cqe->status && 206 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 207 } 208 209 static inline struct nvmet_rdma_rsp * 210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 211 { 212 struct nvmet_rdma_rsp *rsp; 213 unsigned long flags; 214 215 spin_lock_irqsave(&queue->rsps_lock, flags); 216 rsp = list_first_entry_or_null(&queue->free_rsps, 217 struct nvmet_rdma_rsp, free_list); 218 if (likely(rsp)) 219 list_del(&rsp->free_list); 220 spin_unlock_irqrestore(&queue->rsps_lock, flags); 221 222 if (unlikely(!rsp)) { 223 int ret; 224 225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 226 if (unlikely(!rsp)) 227 return NULL; 228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); 229 if (unlikely(ret)) { 230 kfree(rsp); 231 return NULL; 232 } 233 234 rsp->allocated = true; 235 } 236 237 return rsp; 238 } 239 240 static inline void 241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 242 { 243 unsigned long flags; 244 245 if (unlikely(rsp->allocated)) { 246 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 247 kfree(rsp); 248 return; 249 } 250 251 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 252 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 253 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 254 } 255 256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 257 struct nvmet_rdma_cmd *c) 258 { 259 struct scatterlist *sg; 260 struct ib_sge *sge; 261 int i; 262 263 if (!ndev->inline_data_size) 264 return; 265 266 sg = c->inline_sg; 267 sge = &c->sge[1]; 268 269 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 270 if (sge->length) 271 ib_dma_unmap_page(ndev->device, sge->addr, 272 sge->length, DMA_FROM_DEVICE); 273 if (sg_page(sg)) 274 __free_page(sg_page(sg)); 275 } 276 } 277 278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 279 struct nvmet_rdma_cmd *c) 280 { 281 struct scatterlist *sg; 282 struct ib_sge *sge; 283 struct page *pg; 284 int len; 285 int i; 286 287 if (!ndev->inline_data_size) 288 return 0; 289 290 sg = c->inline_sg; 291 sg_init_table(sg, ndev->inline_page_count); 292 sge = &c->sge[1]; 293 len = ndev->inline_data_size; 294 295 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 296 pg = alloc_page(GFP_KERNEL); 297 if (!pg) 298 goto out_err; 299 sg_assign_page(sg, pg); 300 sge->addr = ib_dma_map_page(ndev->device, 301 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 302 if (ib_dma_mapping_error(ndev->device, sge->addr)) 303 goto out_err; 304 sge->length = min_t(int, len, PAGE_SIZE); 305 sge->lkey = ndev->pd->local_dma_lkey; 306 len -= sge->length; 307 } 308 309 return 0; 310 out_err: 311 for (; i >= 0; i--, sg--, sge--) { 312 if (sge->length) 313 ib_dma_unmap_page(ndev->device, sge->addr, 314 sge->length, DMA_FROM_DEVICE); 315 if (sg_page(sg)) 316 __free_page(sg_page(sg)); 317 } 318 return -ENOMEM; 319 } 320 321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 322 struct nvmet_rdma_cmd *c, bool admin) 323 { 324 /* NVMe command / RDMA RECV */ 325 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 326 if (!c->nvme_cmd) 327 goto out; 328 329 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 330 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 331 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 332 goto out_free_cmd; 333 334 c->sge[0].length = sizeof(*c->nvme_cmd); 335 c->sge[0].lkey = ndev->pd->local_dma_lkey; 336 337 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 338 goto out_unmap_cmd; 339 340 c->cqe.done = nvmet_rdma_recv_done; 341 342 c->wr.wr_cqe = &c->cqe; 343 c->wr.sg_list = c->sge; 344 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 345 346 return 0; 347 348 out_unmap_cmd: 349 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 350 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 351 out_free_cmd: 352 kfree(c->nvme_cmd); 353 354 out: 355 return -ENOMEM; 356 } 357 358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 359 struct nvmet_rdma_cmd *c, bool admin) 360 { 361 if (!admin) 362 nvmet_rdma_free_inline_pages(ndev, c); 363 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 364 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 365 kfree(c->nvme_cmd); 366 } 367 368 static struct nvmet_rdma_cmd * 369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 370 int nr_cmds, bool admin) 371 { 372 struct nvmet_rdma_cmd *cmds; 373 int ret = -EINVAL, i; 374 375 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 376 if (!cmds) 377 goto out; 378 379 for (i = 0; i < nr_cmds; i++) { 380 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 381 if (ret) 382 goto out_free; 383 } 384 385 return cmds; 386 387 out_free: 388 while (--i >= 0) 389 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 390 kfree(cmds); 391 out: 392 return ERR_PTR(ret); 393 } 394 395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 396 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 397 { 398 int i; 399 400 for (i = 0; i < nr_cmds; i++) 401 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 402 kfree(cmds); 403 } 404 405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 406 struct nvmet_rdma_rsp *r) 407 { 408 /* NVMe CQE / RDMA SEND */ 409 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 410 if (!r->req.cqe) 411 goto out; 412 413 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 414 sizeof(*r->req.cqe), DMA_TO_DEVICE); 415 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 416 goto out_free_rsp; 417 418 if (ib_dma_pci_p2p_dma_supported(ndev->device)) 419 r->req.p2p_client = &ndev->device->dev; 420 r->send_sge.length = sizeof(*r->req.cqe); 421 r->send_sge.lkey = ndev->pd->local_dma_lkey; 422 423 r->send_cqe.done = nvmet_rdma_send_done; 424 425 r->send_wr.wr_cqe = &r->send_cqe; 426 r->send_wr.sg_list = &r->send_sge; 427 r->send_wr.num_sge = 1; 428 r->send_wr.send_flags = IB_SEND_SIGNALED; 429 430 /* Data In / RDMA READ */ 431 r->read_cqe.done = nvmet_rdma_read_data_done; 432 /* Data Out / RDMA WRITE */ 433 r->write_cqe.done = nvmet_rdma_write_data_done; 434 435 return 0; 436 437 out_free_rsp: 438 kfree(r->req.cqe); 439 out: 440 return -ENOMEM; 441 } 442 443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 444 struct nvmet_rdma_rsp *r) 445 { 446 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 447 sizeof(*r->req.cqe), DMA_TO_DEVICE); 448 kfree(r->req.cqe); 449 } 450 451 static int 452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 453 { 454 struct nvmet_rdma_device *ndev = queue->dev; 455 int nr_rsps = queue->recv_queue_size * 2; 456 int ret = -EINVAL, i; 457 458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 459 GFP_KERNEL); 460 if (!queue->rsps) 461 goto out; 462 463 for (i = 0; i < nr_rsps; i++) { 464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 465 466 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 467 if (ret) 468 goto out_free; 469 470 list_add_tail(&rsp->free_list, &queue->free_rsps); 471 } 472 473 return 0; 474 475 out_free: 476 while (--i >= 0) 477 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 478 kfree(queue->rsps); 479 out: 480 return ret; 481 } 482 483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 484 { 485 struct nvmet_rdma_device *ndev = queue->dev; 486 int i, nr_rsps = queue->recv_queue_size * 2; 487 488 for (i = 0; i < nr_rsps; i++) 489 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 490 kfree(queue->rsps); 491 } 492 493 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 494 struct nvmet_rdma_cmd *cmd) 495 { 496 int ret; 497 498 ib_dma_sync_single_for_device(ndev->device, 499 cmd->sge[0].addr, cmd->sge[0].length, 500 DMA_FROM_DEVICE); 501 502 if (cmd->nsrq) 503 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 504 else 505 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 506 507 if (unlikely(ret)) 508 pr_err("post_recv cmd failed\n"); 509 510 return ret; 511 } 512 513 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 514 { 515 spin_lock(&queue->rsp_wr_wait_lock); 516 while (!list_empty(&queue->rsp_wr_wait_list)) { 517 struct nvmet_rdma_rsp *rsp; 518 bool ret; 519 520 rsp = list_entry(queue->rsp_wr_wait_list.next, 521 struct nvmet_rdma_rsp, wait_list); 522 list_del(&rsp->wait_list); 523 524 spin_unlock(&queue->rsp_wr_wait_lock); 525 ret = nvmet_rdma_execute_command(rsp); 526 spin_lock(&queue->rsp_wr_wait_lock); 527 528 if (!ret) { 529 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 530 break; 531 } 532 } 533 spin_unlock(&queue->rsp_wr_wait_lock); 534 } 535 536 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 537 { 538 struct ib_mr_status mr_status; 539 int ret; 540 u16 status = 0; 541 542 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 543 if (ret) { 544 pr_err("ib_check_mr_status failed, ret %d\n", ret); 545 return NVME_SC_INVALID_PI; 546 } 547 548 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 549 switch (mr_status.sig_err.err_type) { 550 case IB_SIG_BAD_GUARD: 551 status = NVME_SC_GUARD_CHECK; 552 break; 553 case IB_SIG_BAD_REFTAG: 554 status = NVME_SC_REFTAG_CHECK; 555 break; 556 case IB_SIG_BAD_APPTAG: 557 status = NVME_SC_APPTAG_CHECK; 558 break; 559 } 560 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 561 mr_status.sig_err.err_type, 562 mr_status.sig_err.expected, 563 mr_status.sig_err.actual); 564 } 565 566 return status; 567 } 568 569 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 570 struct nvme_command *cmd, struct ib_sig_domain *domain, 571 u16 control, u8 pi_type) 572 { 573 domain->sig_type = IB_SIG_TYPE_T10_DIF; 574 domain->sig.dif.bg_type = IB_T10DIF_CRC; 575 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 576 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 577 if (control & NVME_RW_PRINFO_PRCHK_REF) 578 domain->sig.dif.ref_remap = true; 579 580 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 581 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 582 domain->sig.dif.app_escape = true; 583 if (pi_type == NVME_NS_DPS_PI_TYPE3) 584 domain->sig.dif.ref_escape = true; 585 } 586 587 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 588 struct ib_sig_attrs *sig_attrs) 589 { 590 struct nvme_command *cmd = req->cmd; 591 u16 control = le16_to_cpu(cmd->rw.control); 592 u8 pi_type = req->ns->pi_type; 593 struct blk_integrity *bi; 594 595 bi = bdev_get_integrity(req->ns->bdev); 596 597 memset(sig_attrs, 0, sizeof(*sig_attrs)); 598 599 if (control & NVME_RW_PRINFO_PRACT) { 600 /* for WRITE_INSERT/READ_STRIP no wire domain */ 601 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 602 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 603 pi_type); 604 /* Clear the PRACT bit since HCA will generate/verify the PI */ 605 control &= ~NVME_RW_PRINFO_PRACT; 606 cmd->rw.control = cpu_to_le16(control); 607 /* PI is added by the HW */ 608 req->transfer_len += req->metadata_len; 609 } else { 610 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 611 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 612 pi_type); 613 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 614 pi_type); 615 } 616 617 if (control & NVME_RW_PRINFO_PRCHK_REF) 618 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 619 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 620 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 621 if (control & NVME_RW_PRINFO_PRCHK_APP) 622 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 623 } 624 625 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 626 struct ib_sig_attrs *sig_attrs) 627 { 628 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 629 struct nvmet_req *req = &rsp->req; 630 int ret; 631 632 if (req->metadata_len) 633 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 634 cm_id->port_num, req->sg, req->sg_cnt, 635 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 636 addr, key, nvmet_data_dir(req)); 637 else 638 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 639 req->sg, req->sg_cnt, 0, addr, key, 640 nvmet_data_dir(req)); 641 642 return ret; 643 } 644 645 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 646 { 647 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 648 struct nvmet_req *req = &rsp->req; 649 650 if (req->metadata_len) 651 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 652 cm_id->port_num, req->sg, req->sg_cnt, 653 req->metadata_sg, req->metadata_sg_cnt, 654 nvmet_data_dir(req)); 655 else 656 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 657 req->sg, req->sg_cnt, nvmet_data_dir(req)); 658 } 659 660 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 661 { 662 struct nvmet_rdma_queue *queue = rsp->queue; 663 664 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 665 666 if (rsp->n_rdma) 667 nvmet_rdma_rw_ctx_destroy(rsp); 668 669 if (rsp->req.sg != rsp->cmd->inline_sg) 670 nvmet_req_free_sgls(&rsp->req); 671 672 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 673 nvmet_rdma_process_wr_wait_list(queue); 674 675 nvmet_rdma_put_rsp(rsp); 676 } 677 678 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 679 { 680 if (queue->nvme_sq.ctrl) { 681 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 682 } else { 683 /* 684 * we didn't setup the controller yet in case 685 * of admin connect error, just disconnect and 686 * cleanup the queue 687 */ 688 nvmet_rdma_queue_disconnect(queue); 689 } 690 } 691 692 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 693 { 694 struct nvmet_rdma_rsp *rsp = 695 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 696 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 697 698 nvmet_rdma_release_rsp(rsp); 699 700 if (unlikely(wc->status != IB_WC_SUCCESS && 701 wc->status != IB_WC_WR_FLUSH_ERR)) { 702 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 703 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 704 nvmet_rdma_error_comp(queue); 705 } 706 } 707 708 static void nvmet_rdma_queue_response(struct nvmet_req *req) 709 { 710 struct nvmet_rdma_rsp *rsp = 711 container_of(req, struct nvmet_rdma_rsp, req); 712 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 713 struct ib_send_wr *first_wr; 714 715 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 716 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 717 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 718 } else { 719 rsp->send_wr.opcode = IB_WR_SEND; 720 } 721 722 if (nvmet_rdma_need_data_out(rsp)) { 723 if (rsp->req.metadata_len) 724 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 725 cm_id->port_num, &rsp->write_cqe, NULL); 726 else 727 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 728 cm_id->port_num, NULL, &rsp->send_wr); 729 } else { 730 first_wr = &rsp->send_wr; 731 } 732 733 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 734 735 ib_dma_sync_single_for_device(rsp->queue->dev->device, 736 rsp->send_sge.addr, rsp->send_sge.length, 737 DMA_TO_DEVICE); 738 739 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 740 pr_err("sending cmd response failed\n"); 741 nvmet_rdma_release_rsp(rsp); 742 } 743 } 744 745 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 746 { 747 struct nvmet_rdma_rsp *rsp = 748 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 749 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 750 u16 status = 0; 751 752 WARN_ON(rsp->n_rdma <= 0); 753 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 754 rsp->n_rdma = 0; 755 756 if (unlikely(wc->status != IB_WC_SUCCESS)) { 757 nvmet_rdma_rw_ctx_destroy(rsp); 758 nvmet_req_uninit(&rsp->req); 759 nvmet_rdma_release_rsp(rsp); 760 if (wc->status != IB_WC_WR_FLUSH_ERR) { 761 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 762 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 763 nvmet_rdma_error_comp(queue); 764 } 765 return; 766 } 767 768 if (rsp->req.metadata_len) 769 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 770 nvmet_rdma_rw_ctx_destroy(rsp); 771 772 if (unlikely(status)) 773 nvmet_req_complete(&rsp->req, status); 774 else 775 rsp->req.execute(&rsp->req); 776 } 777 778 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 779 { 780 struct nvmet_rdma_rsp *rsp = 781 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 782 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 783 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 784 u16 status; 785 786 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 787 return; 788 789 WARN_ON(rsp->n_rdma <= 0); 790 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 791 rsp->n_rdma = 0; 792 793 if (unlikely(wc->status != IB_WC_SUCCESS)) { 794 nvmet_rdma_rw_ctx_destroy(rsp); 795 nvmet_req_uninit(&rsp->req); 796 nvmet_rdma_release_rsp(rsp); 797 if (wc->status != IB_WC_WR_FLUSH_ERR) { 798 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 799 ib_wc_status_msg(wc->status), wc->status); 800 nvmet_rdma_error_comp(queue); 801 } 802 return; 803 } 804 805 /* 806 * Upon RDMA completion check the signature status 807 * - if succeeded send good NVMe response 808 * - if failed send bad NVMe response with appropriate error 809 */ 810 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 811 if (unlikely(status)) 812 rsp->req.cqe->status = cpu_to_le16(status << 1); 813 nvmet_rdma_rw_ctx_destroy(rsp); 814 815 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 816 pr_err("sending cmd response failed\n"); 817 nvmet_rdma_release_rsp(rsp); 818 } 819 } 820 821 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 822 u64 off) 823 { 824 int sg_count = num_pages(len); 825 struct scatterlist *sg; 826 int i; 827 828 sg = rsp->cmd->inline_sg; 829 for (i = 0; i < sg_count; i++, sg++) { 830 if (i < sg_count - 1) 831 sg_unmark_end(sg); 832 else 833 sg_mark_end(sg); 834 sg->offset = off; 835 sg->length = min_t(int, len, PAGE_SIZE - off); 836 len -= sg->length; 837 if (!i) 838 off = 0; 839 } 840 841 rsp->req.sg = rsp->cmd->inline_sg; 842 rsp->req.sg_cnt = sg_count; 843 } 844 845 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 846 { 847 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 848 u64 off = le64_to_cpu(sgl->addr); 849 u32 len = le32_to_cpu(sgl->length); 850 851 if (!nvme_is_write(rsp->req.cmd)) { 852 rsp->req.error_loc = 853 offsetof(struct nvme_common_command, opcode); 854 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 855 } 856 857 if (off + len > rsp->queue->dev->inline_data_size) { 858 pr_err("invalid inline data offset!\n"); 859 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 860 } 861 862 /* no data command? */ 863 if (!len) 864 return 0; 865 866 nvmet_rdma_use_inline_sg(rsp, len, off); 867 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 868 rsp->req.transfer_len += len; 869 return 0; 870 } 871 872 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 873 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 874 { 875 u64 addr = le64_to_cpu(sgl->addr); 876 u32 key = get_unaligned_le32(sgl->key); 877 struct ib_sig_attrs sig_attrs; 878 int ret; 879 880 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 881 882 /* no data command? */ 883 if (!rsp->req.transfer_len) 884 return 0; 885 886 if (rsp->req.metadata_len) 887 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 888 889 ret = nvmet_req_alloc_sgls(&rsp->req); 890 if (unlikely(ret < 0)) 891 goto error_out; 892 893 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 894 if (unlikely(ret < 0)) 895 goto error_out; 896 rsp->n_rdma += ret; 897 898 if (invalidate) { 899 rsp->invalidate_rkey = key; 900 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 901 } 902 903 return 0; 904 905 error_out: 906 rsp->req.transfer_len = 0; 907 return NVME_SC_INTERNAL; 908 } 909 910 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 911 { 912 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 913 914 switch (sgl->type >> 4) { 915 case NVME_SGL_FMT_DATA_DESC: 916 switch (sgl->type & 0xf) { 917 case NVME_SGL_FMT_OFFSET: 918 return nvmet_rdma_map_sgl_inline(rsp); 919 default: 920 pr_err("invalid SGL subtype: %#x\n", sgl->type); 921 rsp->req.error_loc = 922 offsetof(struct nvme_common_command, dptr); 923 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 924 } 925 case NVME_KEY_SGL_FMT_DATA_DESC: 926 switch (sgl->type & 0xf) { 927 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 928 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 929 case NVME_SGL_FMT_ADDRESS: 930 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 931 default: 932 pr_err("invalid SGL subtype: %#x\n", sgl->type); 933 rsp->req.error_loc = 934 offsetof(struct nvme_common_command, dptr); 935 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 936 } 937 default: 938 pr_err("invalid SGL type: %#x\n", sgl->type); 939 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 940 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 941 } 942 } 943 944 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 945 { 946 struct nvmet_rdma_queue *queue = rsp->queue; 947 948 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 949 &queue->sq_wr_avail) < 0)) { 950 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 951 1 + rsp->n_rdma, queue->idx, 952 queue->nvme_sq.ctrl->cntlid); 953 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 954 return false; 955 } 956 957 if (nvmet_rdma_need_data_in(rsp)) { 958 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 959 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 960 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 961 } else { 962 rsp->req.execute(&rsp->req); 963 } 964 965 return true; 966 } 967 968 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 969 struct nvmet_rdma_rsp *cmd) 970 { 971 u16 status; 972 973 ib_dma_sync_single_for_cpu(queue->dev->device, 974 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 975 DMA_FROM_DEVICE); 976 ib_dma_sync_single_for_cpu(queue->dev->device, 977 cmd->send_sge.addr, cmd->send_sge.length, 978 DMA_TO_DEVICE); 979 980 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 981 &queue->nvme_sq, &nvmet_rdma_ops)) 982 return; 983 984 status = nvmet_rdma_map_sgl(cmd); 985 if (status) 986 goto out_err; 987 988 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 989 spin_lock(&queue->rsp_wr_wait_lock); 990 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 991 spin_unlock(&queue->rsp_wr_wait_lock); 992 } 993 994 return; 995 996 out_err: 997 nvmet_req_complete(&cmd->req, status); 998 } 999 1000 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1001 { 1002 struct nvmet_rdma_cmd *cmd = 1003 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1004 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1005 struct nvmet_rdma_rsp *rsp; 1006 1007 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1008 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1009 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1010 wc->wr_cqe, ib_wc_status_msg(wc->status), 1011 wc->status); 1012 nvmet_rdma_error_comp(queue); 1013 } 1014 return; 1015 } 1016 1017 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1018 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1019 nvmet_rdma_error_comp(queue); 1020 return; 1021 } 1022 1023 cmd->queue = queue; 1024 rsp = nvmet_rdma_get_rsp(queue); 1025 if (unlikely(!rsp)) { 1026 /* 1027 * we get here only under memory pressure, 1028 * silently drop and have the host retry 1029 * as we can't even fail it. 1030 */ 1031 nvmet_rdma_post_recv(queue->dev, cmd); 1032 return; 1033 } 1034 rsp->queue = queue; 1035 rsp->cmd = cmd; 1036 rsp->flags = 0; 1037 rsp->req.cmd = cmd->nvme_cmd; 1038 rsp->req.port = queue->port; 1039 rsp->n_rdma = 0; 1040 1041 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&queue->state_lock, flags); 1045 if (queue->state == NVMET_RDMA_Q_CONNECTING) 1046 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1047 else 1048 nvmet_rdma_put_rsp(rsp); 1049 spin_unlock_irqrestore(&queue->state_lock, flags); 1050 return; 1051 } 1052 1053 nvmet_rdma_handle_command(queue, rsp); 1054 } 1055 1056 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1057 { 1058 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1059 false); 1060 ib_destroy_srq(nsrq->srq); 1061 1062 kfree(nsrq); 1063 } 1064 1065 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1066 { 1067 int i; 1068 1069 if (!ndev->srqs) 1070 return; 1071 1072 for (i = 0; i < ndev->srq_count; i++) 1073 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1074 1075 kfree(ndev->srqs); 1076 } 1077 1078 static struct nvmet_rdma_srq * 1079 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1080 { 1081 struct ib_srq_init_attr srq_attr = { NULL, }; 1082 size_t srq_size = ndev->srq_size; 1083 struct nvmet_rdma_srq *nsrq; 1084 struct ib_srq *srq; 1085 int ret, i; 1086 1087 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1088 if (!nsrq) 1089 return ERR_PTR(-ENOMEM); 1090 1091 srq_attr.attr.max_wr = srq_size; 1092 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1093 srq_attr.attr.srq_limit = 0; 1094 srq_attr.srq_type = IB_SRQT_BASIC; 1095 srq = ib_create_srq(ndev->pd, &srq_attr); 1096 if (IS_ERR(srq)) { 1097 ret = PTR_ERR(srq); 1098 goto out_free; 1099 } 1100 1101 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1102 if (IS_ERR(nsrq->cmds)) { 1103 ret = PTR_ERR(nsrq->cmds); 1104 goto out_destroy_srq; 1105 } 1106 1107 nsrq->srq = srq; 1108 nsrq->ndev = ndev; 1109 1110 for (i = 0; i < srq_size; i++) { 1111 nsrq->cmds[i].nsrq = nsrq; 1112 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1113 if (ret) 1114 goto out_free_cmds; 1115 } 1116 1117 return nsrq; 1118 1119 out_free_cmds: 1120 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1121 out_destroy_srq: 1122 ib_destroy_srq(srq); 1123 out_free: 1124 kfree(nsrq); 1125 return ERR_PTR(ret); 1126 } 1127 1128 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1129 { 1130 int i, ret; 1131 1132 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1133 /* 1134 * If SRQs aren't supported we just go ahead and use normal 1135 * non-shared receive queues. 1136 */ 1137 pr_info("SRQ requested but not supported.\n"); 1138 return 0; 1139 } 1140 1141 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1142 nvmet_rdma_srq_size); 1143 ndev->srq_count = min(ndev->device->num_comp_vectors, 1144 ndev->device->attrs.max_srq); 1145 1146 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1147 if (!ndev->srqs) 1148 return -ENOMEM; 1149 1150 for (i = 0; i < ndev->srq_count; i++) { 1151 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1152 if (IS_ERR(ndev->srqs[i])) { 1153 ret = PTR_ERR(ndev->srqs[i]); 1154 goto err_srq; 1155 } 1156 } 1157 1158 return 0; 1159 1160 err_srq: 1161 while (--i >= 0) 1162 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1163 kfree(ndev->srqs); 1164 return ret; 1165 } 1166 1167 static void nvmet_rdma_free_dev(struct kref *ref) 1168 { 1169 struct nvmet_rdma_device *ndev = 1170 container_of(ref, struct nvmet_rdma_device, ref); 1171 1172 mutex_lock(&device_list_mutex); 1173 list_del(&ndev->entry); 1174 mutex_unlock(&device_list_mutex); 1175 1176 nvmet_rdma_destroy_srqs(ndev); 1177 ib_dealloc_pd(ndev->pd); 1178 1179 kfree(ndev); 1180 } 1181 1182 static struct nvmet_rdma_device * 1183 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1184 { 1185 struct nvmet_rdma_port *port = cm_id->context; 1186 struct nvmet_port *nport = port->nport; 1187 struct nvmet_rdma_device *ndev; 1188 int inline_page_count; 1189 int inline_sge_count; 1190 int ret; 1191 1192 mutex_lock(&device_list_mutex); 1193 list_for_each_entry(ndev, &device_list, entry) { 1194 if (ndev->device->node_guid == cm_id->device->node_guid && 1195 kref_get_unless_zero(&ndev->ref)) 1196 goto out_unlock; 1197 } 1198 1199 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1200 if (!ndev) 1201 goto out_err; 1202 1203 inline_page_count = num_pages(nport->inline_data_size); 1204 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1205 cm_id->device->attrs.max_recv_sge) - 1; 1206 if (inline_page_count > inline_sge_count) { 1207 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1208 nport->inline_data_size, cm_id->device->name, 1209 inline_sge_count * PAGE_SIZE); 1210 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1211 inline_page_count = inline_sge_count; 1212 } 1213 ndev->inline_data_size = nport->inline_data_size; 1214 ndev->inline_page_count = inline_page_count; 1215 1216 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & 1217 IBK_INTEGRITY_HANDOVER)) { 1218 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1219 cm_id->device->name); 1220 nport->pi_enable = false; 1221 } 1222 1223 ndev->device = cm_id->device; 1224 kref_init(&ndev->ref); 1225 1226 ndev->pd = ib_alloc_pd(ndev->device, 0); 1227 if (IS_ERR(ndev->pd)) 1228 goto out_free_dev; 1229 1230 if (nvmet_rdma_use_srq) { 1231 ret = nvmet_rdma_init_srqs(ndev); 1232 if (ret) 1233 goto out_free_pd; 1234 } 1235 1236 list_add(&ndev->entry, &device_list); 1237 out_unlock: 1238 mutex_unlock(&device_list_mutex); 1239 pr_debug("added %s.\n", ndev->device->name); 1240 return ndev; 1241 1242 out_free_pd: 1243 ib_dealloc_pd(ndev->pd); 1244 out_free_dev: 1245 kfree(ndev); 1246 out_err: 1247 mutex_unlock(&device_list_mutex); 1248 return NULL; 1249 } 1250 1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1252 { 1253 struct ib_qp_init_attr qp_attr = { }; 1254 struct nvmet_rdma_device *ndev = queue->dev; 1255 int nr_cqe, ret, i, factor; 1256 1257 /* 1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1259 */ 1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1261 1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1263 queue->comp_vector, IB_POLL_WORKQUEUE); 1264 if (IS_ERR(queue->cq)) { 1265 ret = PTR_ERR(queue->cq); 1266 pr_err("failed to create CQ cqe= %d ret= %d\n", 1267 nr_cqe + 1, ret); 1268 goto out; 1269 } 1270 1271 qp_attr.qp_context = queue; 1272 qp_attr.event_handler = nvmet_rdma_qp_event; 1273 qp_attr.send_cq = queue->cq; 1274 qp_attr.recv_cq = queue->cq; 1275 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1276 qp_attr.qp_type = IB_QPT_RC; 1277 /* +1 for drain */ 1278 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1279 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1280 1 << NVMET_RDMA_MAX_MDTS); 1281 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1282 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1283 ndev->device->attrs.max_send_sge); 1284 1285 if (queue->nsrq) { 1286 qp_attr.srq = queue->nsrq->srq; 1287 } else { 1288 /* +1 for drain */ 1289 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1290 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1291 } 1292 1293 if (queue->port->pi_enable && queue->host_qid) 1294 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1295 1296 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1297 if (ret) { 1298 pr_err("failed to create_qp ret= %d\n", ret); 1299 goto err_destroy_cq; 1300 } 1301 queue->qp = queue->cm_id->qp; 1302 1303 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1304 1305 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1306 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1307 qp_attr.cap.max_send_wr, queue->cm_id); 1308 1309 if (!queue->nsrq) { 1310 for (i = 0; i < queue->recv_queue_size; i++) { 1311 queue->cmds[i].queue = queue; 1312 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1313 if (ret) 1314 goto err_destroy_qp; 1315 } 1316 } 1317 1318 out: 1319 return ret; 1320 1321 err_destroy_qp: 1322 rdma_destroy_qp(queue->cm_id); 1323 err_destroy_cq: 1324 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1325 goto out; 1326 } 1327 1328 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1329 { 1330 ib_drain_qp(queue->qp); 1331 if (queue->cm_id) 1332 rdma_destroy_id(queue->cm_id); 1333 ib_destroy_qp(queue->qp); 1334 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1335 queue->send_queue_size + 1); 1336 } 1337 1338 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1339 { 1340 pr_debug("freeing queue %d\n", queue->idx); 1341 1342 nvmet_sq_destroy(&queue->nvme_sq); 1343 1344 nvmet_rdma_destroy_queue_ib(queue); 1345 if (!queue->nsrq) { 1346 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1347 queue->recv_queue_size, 1348 !queue->host_qid); 1349 } 1350 nvmet_rdma_free_rsps(queue); 1351 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1352 kfree(queue); 1353 } 1354 1355 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1356 { 1357 struct nvmet_rdma_queue *queue = 1358 container_of(w, struct nvmet_rdma_queue, release_work); 1359 struct nvmet_rdma_device *dev = queue->dev; 1360 1361 nvmet_rdma_free_queue(queue); 1362 1363 kref_put(&dev->ref, nvmet_rdma_free_dev); 1364 } 1365 1366 static int 1367 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1368 struct nvmet_rdma_queue *queue) 1369 { 1370 struct nvme_rdma_cm_req *req; 1371 1372 req = (struct nvme_rdma_cm_req *)conn->private_data; 1373 if (!req || conn->private_data_len == 0) 1374 return NVME_RDMA_CM_INVALID_LEN; 1375 1376 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1377 return NVME_RDMA_CM_INVALID_RECFMT; 1378 1379 queue->host_qid = le16_to_cpu(req->qid); 1380 1381 /* 1382 * req->hsqsize corresponds to our recv queue size plus 1 1383 * req->hrqsize corresponds to our send queue size 1384 */ 1385 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1386 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1387 1388 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1389 return NVME_RDMA_CM_INVALID_HSQSIZE; 1390 1391 /* XXX: Should we enforce some kind of max for IO queues? */ 1392 1393 return 0; 1394 } 1395 1396 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1397 enum nvme_rdma_cm_status status) 1398 { 1399 struct nvme_rdma_cm_rej rej; 1400 1401 pr_debug("rejecting connect request: status %d (%s)\n", 1402 status, nvme_rdma_cm_msg(status)); 1403 1404 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1405 rej.sts = cpu_to_le16(status); 1406 1407 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1408 IB_CM_REJ_CONSUMER_DEFINED); 1409 } 1410 1411 static struct nvmet_rdma_queue * 1412 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1413 struct rdma_cm_id *cm_id, 1414 struct rdma_cm_event *event) 1415 { 1416 struct nvmet_rdma_port *port = cm_id->context; 1417 struct nvmet_rdma_queue *queue; 1418 int ret; 1419 1420 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1421 if (!queue) { 1422 ret = NVME_RDMA_CM_NO_RSC; 1423 goto out_reject; 1424 } 1425 1426 ret = nvmet_sq_init(&queue->nvme_sq); 1427 if (ret) { 1428 ret = NVME_RDMA_CM_NO_RSC; 1429 goto out_free_queue; 1430 } 1431 1432 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1433 if (ret) 1434 goto out_destroy_sq; 1435 1436 /* 1437 * Schedules the actual release because calling rdma_destroy_id from 1438 * inside a CM callback would trigger a deadlock. (great API design..) 1439 */ 1440 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1441 queue->dev = ndev; 1442 queue->cm_id = cm_id; 1443 queue->port = port->nport; 1444 1445 spin_lock_init(&queue->state_lock); 1446 queue->state = NVMET_RDMA_Q_CONNECTING; 1447 INIT_LIST_HEAD(&queue->rsp_wait_list); 1448 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1449 spin_lock_init(&queue->rsp_wr_wait_lock); 1450 INIT_LIST_HEAD(&queue->free_rsps); 1451 spin_lock_init(&queue->rsps_lock); 1452 INIT_LIST_HEAD(&queue->queue_list); 1453 1454 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); 1455 if (queue->idx < 0) { 1456 ret = NVME_RDMA_CM_NO_RSC; 1457 goto out_destroy_sq; 1458 } 1459 1460 /* 1461 * Spread the io queues across completion vectors, 1462 * but still keep all admin queues on vector 0. 1463 */ 1464 queue->comp_vector = !queue->host_qid ? 0 : 1465 queue->idx % ndev->device->num_comp_vectors; 1466 1467 1468 ret = nvmet_rdma_alloc_rsps(queue); 1469 if (ret) { 1470 ret = NVME_RDMA_CM_NO_RSC; 1471 goto out_ida_remove; 1472 } 1473 1474 if (ndev->srqs) { 1475 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1476 } else { 1477 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1478 queue->recv_queue_size, 1479 !queue->host_qid); 1480 if (IS_ERR(queue->cmds)) { 1481 ret = NVME_RDMA_CM_NO_RSC; 1482 goto out_free_responses; 1483 } 1484 } 1485 1486 ret = nvmet_rdma_create_queue_ib(queue); 1487 if (ret) { 1488 pr_err("%s: creating RDMA queue failed (%d).\n", 1489 __func__, ret); 1490 ret = NVME_RDMA_CM_NO_RSC; 1491 goto out_free_cmds; 1492 } 1493 1494 return queue; 1495 1496 out_free_cmds: 1497 if (!queue->nsrq) { 1498 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1499 queue->recv_queue_size, 1500 !queue->host_qid); 1501 } 1502 out_free_responses: 1503 nvmet_rdma_free_rsps(queue); 1504 out_ida_remove: 1505 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1506 out_destroy_sq: 1507 nvmet_sq_destroy(&queue->nvme_sq); 1508 out_free_queue: 1509 kfree(queue); 1510 out_reject: 1511 nvmet_rdma_cm_reject(cm_id, ret); 1512 return NULL; 1513 } 1514 1515 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1516 { 1517 struct nvmet_rdma_queue *queue = priv; 1518 1519 switch (event->event) { 1520 case IB_EVENT_COMM_EST: 1521 rdma_notify(queue->cm_id, event->event); 1522 break; 1523 case IB_EVENT_QP_LAST_WQE_REACHED: 1524 pr_debug("received last WQE reached event for queue=0x%p\n", 1525 queue); 1526 break; 1527 default: 1528 pr_err("received IB QP event: %s (%d)\n", 1529 ib_event_msg(event->event), event->event); 1530 break; 1531 } 1532 } 1533 1534 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1535 struct nvmet_rdma_queue *queue, 1536 struct rdma_conn_param *p) 1537 { 1538 struct rdma_conn_param param = { }; 1539 struct nvme_rdma_cm_rep priv = { }; 1540 int ret = -ENOMEM; 1541 1542 param.rnr_retry_count = 7; 1543 param.flow_control = 1; 1544 param.initiator_depth = min_t(u8, p->initiator_depth, 1545 queue->dev->device->attrs.max_qp_init_rd_atom); 1546 param.private_data = &priv; 1547 param.private_data_len = sizeof(priv); 1548 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1549 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1550 1551 ret = rdma_accept(cm_id, ¶m); 1552 if (ret) 1553 pr_err("rdma_accept failed (error code = %d)\n", ret); 1554 1555 return ret; 1556 } 1557 1558 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1559 struct rdma_cm_event *event) 1560 { 1561 struct nvmet_rdma_device *ndev; 1562 struct nvmet_rdma_queue *queue; 1563 int ret = -EINVAL; 1564 1565 ndev = nvmet_rdma_find_get_device(cm_id); 1566 if (!ndev) { 1567 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1568 return -ECONNREFUSED; 1569 } 1570 1571 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1572 if (!queue) { 1573 ret = -ENOMEM; 1574 goto put_device; 1575 } 1576 1577 if (queue->host_qid == 0) { 1578 /* Let inflight controller teardown complete */ 1579 flush_workqueue(nvmet_wq); 1580 } 1581 1582 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1583 if (ret) { 1584 /* 1585 * Don't destroy the cm_id in free path, as we implicitly 1586 * destroy the cm_id here with non-zero ret code. 1587 */ 1588 queue->cm_id = NULL; 1589 goto free_queue; 1590 } 1591 1592 mutex_lock(&nvmet_rdma_queue_mutex); 1593 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1594 mutex_unlock(&nvmet_rdma_queue_mutex); 1595 1596 return 0; 1597 1598 free_queue: 1599 nvmet_rdma_free_queue(queue); 1600 put_device: 1601 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1602 1603 return ret; 1604 } 1605 1606 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1607 { 1608 unsigned long flags; 1609 1610 spin_lock_irqsave(&queue->state_lock, flags); 1611 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1612 pr_warn("trying to establish a connected queue\n"); 1613 goto out_unlock; 1614 } 1615 queue->state = NVMET_RDMA_Q_LIVE; 1616 1617 while (!list_empty(&queue->rsp_wait_list)) { 1618 struct nvmet_rdma_rsp *cmd; 1619 1620 cmd = list_first_entry(&queue->rsp_wait_list, 1621 struct nvmet_rdma_rsp, wait_list); 1622 list_del(&cmd->wait_list); 1623 1624 spin_unlock_irqrestore(&queue->state_lock, flags); 1625 nvmet_rdma_handle_command(queue, cmd); 1626 spin_lock_irqsave(&queue->state_lock, flags); 1627 } 1628 1629 out_unlock: 1630 spin_unlock_irqrestore(&queue->state_lock, flags); 1631 } 1632 1633 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1634 { 1635 bool disconnect = false; 1636 unsigned long flags; 1637 1638 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1639 1640 spin_lock_irqsave(&queue->state_lock, flags); 1641 switch (queue->state) { 1642 case NVMET_RDMA_Q_CONNECTING: 1643 while (!list_empty(&queue->rsp_wait_list)) { 1644 struct nvmet_rdma_rsp *rsp; 1645 1646 rsp = list_first_entry(&queue->rsp_wait_list, 1647 struct nvmet_rdma_rsp, 1648 wait_list); 1649 list_del(&rsp->wait_list); 1650 nvmet_rdma_put_rsp(rsp); 1651 } 1652 fallthrough; 1653 case NVMET_RDMA_Q_LIVE: 1654 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1655 disconnect = true; 1656 break; 1657 case NVMET_RDMA_Q_DISCONNECTING: 1658 break; 1659 } 1660 spin_unlock_irqrestore(&queue->state_lock, flags); 1661 1662 if (disconnect) { 1663 rdma_disconnect(queue->cm_id); 1664 queue_work(nvmet_wq, &queue->release_work); 1665 } 1666 } 1667 1668 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1669 { 1670 bool disconnect = false; 1671 1672 mutex_lock(&nvmet_rdma_queue_mutex); 1673 if (!list_empty(&queue->queue_list)) { 1674 list_del_init(&queue->queue_list); 1675 disconnect = true; 1676 } 1677 mutex_unlock(&nvmet_rdma_queue_mutex); 1678 1679 if (disconnect) 1680 __nvmet_rdma_queue_disconnect(queue); 1681 } 1682 1683 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1684 struct nvmet_rdma_queue *queue) 1685 { 1686 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1687 1688 mutex_lock(&nvmet_rdma_queue_mutex); 1689 if (!list_empty(&queue->queue_list)) 1690 list_del_init(&queue->queue_list); 1691 mutex_unlock(&nvmet_rdma_queue_mutex); 1692 1693 pr_err("failed to connect queue %d\n", queue->idx); 1694 queue_work(nvmet_wq, &queue->release_work); 1695 } 1696 1697 /** 1698 * nvmet_rdma_device_removal() - Handle RDMA device removal 1699 * @cm_id: rdma_cm id, used for nvmet port 1700 * @queue: nvmet rdma queue (cm id qp_context) 1701 * 1702 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1703 * to unplug. Note that this event can be generated on a normal 1704 * queue cm_id and/or a device bound listener cm_id (where in this 1705 * case queue will be null). 1706 * 1707 * We registered an ib_client to handle device removal for queues, 1708 * so we only need to handle the listening port cm_ids. In this case 1709 * we nullify the priv to prevent double cm_id destruction and destroying 1710 * the cm_id implicitely by returning a non-zero rc to the callout. 1711 */ 1712 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1713 struct nvmet_rdma_queue *queue) 1714 { 1715 struct nvmet_rdma_port *port; 1716 1717 if (queue) { 1718 /* 1719 * This is a queue cm_id. we have registered 1720 * an ib_client to handle queues removal 1721 * so don't interfear and just return. 1722 */ 1723 return 0; 1724 } 1725 1726 port = cm_id->context; 1727 1728 /* 1729 * This is a listener cm_id. Make sure that 1730 * future remove_port won't invoke a double 1731 * cm_id destroy. use atomic xchg to make sure 1732 * we don't compete with remove_port. 1733 */ 1734 if (xchg(&port->cm_id, NULL) != cm_id) 1735 return 0; 1736 1737 /* 1738 * We need to return 1 so that the core will destroy 1739 * it's own ID. What a great API design.. 1740 */ 1741 return 1; 1742 } 1743 1744 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1745 struct rdma_cm_event *event) 1746 { 1747 struct nvmet_rdma_queue *queue = NULL; 1748 int ret = 0; 1749 1750 if (cm_id->qp) 1751 queue = cm_id->qp->qp_context; 1752 1753 pr_debug("%s (%d): status %d id %p\n", 1754 rdma_event_msg(event->event), event->event, 1755 event->status, cm_id); 1756 1757 switch (event->event) { 1758 case RDMA_CM_EVENT_CONNECT_REQUEST: 1759 ret = nvmet_rdma_queue_connect(cm_id, event); 1760 break; 1761 case RDMA_CM_EVENT_ESTABLISHED: 1762 nvmet_rdma_queue_established(queue); 1763 break; 1764 case RDMA_CM_EVENT_ADDR_CHANGE: 1765 if (!queue) { 1766 struct nvmet_rdma_port *port = cm_id->context; 1767 1768 queue_delayed_work(nvmet_wq, &port->repair_work, 0); 1769 break; 1770 } 1771 fallthrough; 1772 case RDMA_CM_EVENT_DISCONNECTED: 1773 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1774 nvmet_rdma_queue_disconnect(queue); 1775 break; 1776 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1777 ret = nvmet_rdma_device_removal(cm_id, queue); 1778 break; 1779 case RDMA_CM_EVENT_REJECTED: 1780 pr_debug("Connection rejected: %s\n", 1781 rdma_reject_msg(cm_id, event->status)); 1782 fallthrough; 1783 case RDMA_CM_EVENT_UNREACHABLE: 1784 case RDMA_CM_EVENT_CONNECT_ERROR: 1785 nvmet_rdma_queue_connect_fail(cm_id, queue); 1786 break; 1787 default: 1788 pr_err("received unrecognized RDMA CM event %d\n", 1789 event->event); 1790 break; 1791 } 1792 1793 return ret; 1794 } 1795 1796 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1797 { 1798 struct nvmet_rdma_queue *queue; 1799 1800 restart: 1801 mutex_lock(&nvmet_rdma_queue_mutex); 1802 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1803 if (queue->nvme_sq.ctrl == ctrl) { 1804 list_del_init(&queue->queue_list); 1805 mutex_unlock(&nvmet_rdma_queue_mutex); 1806 1807 __nvmet_rdma_queue_disconnect(queue); 1808 goto restart; 1809 } 1810 } 1811 mutex_unlock(&nvmet_rdma_queue_mutex); 1812 } 1813 1814 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1815 { 1816 struct nvmet_rdma_queue *queue, *tmp; 1817 struct nvmet_port *nport = port->nport; 1818 1819 mutex_lock(&nvmet_rdma_queue_mutex); 1820 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1821 queue_list) { 1822 if (queue->port != nport) 1823 continue; 1824 1825 list_del_init(&queue->queue_list); 1826 __nvmet_rdma_queue_disconnect(queue); 1827 } 1828 mutex_unlock(&nvmet_rdma_queue_mutex); 1829 } 1830 1831 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1832 { 1833 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1834 1835 if (cm_id) 1836 rdma_destroy_id(cm_id); 1837 1838 /* 1839 * Destroy the remaining queues, which are not belong to any 1840 * controller yet. Do it here after the RDMA-CM was destroyed 1841 * guarantees that no new queue will be created. 1842 */ 1843 nvmet_rdma_destroy_port_queues(port); 1844 } 1845 1846 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1847 { 1848 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1849 struct rdma_cm_id *cm_id; 1850 int ret; 1851 1852 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1853 RDMA_PS_TCP, IB_QPT_RC); 1854 if (IS_ERR(cm_id)) { 1855 pr_err("CM ID creation failed\n"); 1856 return PTR_ERR(cm_id); 1857 } 1858 1859 /* 1860 * Allow both IPv4 and IPv6 sockets to bind a single port 1861 * at the same time. 1862 */ 1863 ret = rdma_set_afonly(cm_id, 1); 1864 if (ret) { 1865 pr_err("rdma_set_afonly failed (%d)\n", ret); 1866 goto out_destroy_id; 1867 } 1868 1869 ret = rdma_bind_addr(cm_id, addr); 1870 if (ret) { 1871 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1872 goto out_destroy_id; 1873 } 1874 1875 ret = rdma_listen(cm_id, 128); 1876 if (ret) { 1877 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1878 goto out_destroy_id; 1879 } 1880 1881 port->cm_id = cm_id; 1882 return 0; 1883 1884 out_destroy_id: 1885 rdma_destroy_id(cm_id); 1886 return ret; 1887 } 1888 1889 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1890 { 1891 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1892 struct nvmet_rdma_port, repair_work); 1893 int ret; 1894 1895 nvmet_rdma_disable_port(port); 1896 ret = nvmet_rdma_enable_port(port); 1897 if (ret) 1898 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); 1899 } 1900 1901 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1902 { 1903 struct nvmet_rdma_port *port; 1904 __kernel_sa_family_t af; 1905 int ret; 1906 1907 port = kzalloc(sizeof(*port), GFP_KERNEL); 1908 if (!port) 1909 return -ENOMEM; 1910 1911 nport->priv = port; 1912 port->nport = nport; 1913 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1914 1915 switch (nport->disc_addr.adrfam) { 1916 case NVMF_ADDR_FAMILY_IP4: 1917 af = AF_INET; 1918 break; 1919 case NVMF_ADDR_FAMILY_IP6: 1920 af = AF_INET6; 1921 break; 1922 default: 1923 pr_err("address family %d not supported\n", 1924 nport->disc_addr.adrfam); 1925 ret = -EINVAL; 1926 goto out_free_port; 1927 } 1928 1929 if (nport->inline_data_size < 0) { 1930 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1931 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1932 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1933 nport->inline_data_size, 1934 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1935 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1936 } 1937 1938 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1939 nport->disc_addr.trsvcid, &port->addr); 1940 if (ret) { 1941 pr_err("malformed ip/port passed: %s:%s\n", 1942 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1943 goto out_free_port; 1944 } 1945 1946 ret = nvmet_rdma_enable_port(port); 1947 if (ret) 1948 goto out_free_port; 1949 1950 pr_info("enabling port %d (%pISpcs)\n", 1951 le16_to_cpu(nport->disc_addr.portid), 1952 (struct sockaddr *)&port->addr); 1953 1954 return 0; 1955 1956 out_free_port: 1957 kfree(port); 1958 return ret; 1959 } 1960 1961 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1962 { 1963 struct nvmet_rdma_port *port = nport->priv; 1964 1965 cancel_delayed_work_sync(&port->repair_work); 1966 nvmet_rdma_disable_port(port); 1967 kfree(port); 1968 } 1969 1970 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1971 struct nvmet_port *nport, char *traddr) 1972 { 1973 struct nvmet_rdma_port *port = nport->priv; 1974 struct rdma_cm_id *cm_id = port->cm_id; 1975 1976 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 1977 struct nvmet_rdma_rsp *rsp = 1978 container_of(req, struct nvmet_rdma_rsp, req); 1979 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 1980 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 1981 1982 sprintf(traddr, "%pISc", addr); 1983 } else { 1984 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1985 } 1986 } 1987 1988 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 1989 { 1990 if (ctrl->pi_support) 1991 return NVMET_RDMA_MAX_METADATA_MDTS; 1992 return NVMET_RDMA_MAX_MDTS; 1993 } 1994 1995 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 1996 { 1997 return NVME_RDMA_MAX_QUEUE_SIZE; 1998 } 1999 2000 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2001 .owner = THIS_MODULE, 2002 .type = NVMF_TRTYPE_RDMA, 2003 .msdbd = 1, 2004 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2005 .add_port = nvmet_rdma_add_port, 2006 .remove_port = nvmet_rdma_remove_port, 2007 .queue_response = nvmet_rdma_queue_response, 2008 .delete_ctrl = nvmet_rdma_delete_ctrl, 2009 .disc_traddr = nvmet_rdma_disc_port_addr, 2010 .get_mdts = nvmet_rdma_get_mdts, 2011 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2012 }; 2013 2014 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2015 { 2016 struct nvmet_rdma_queue *queue, *tmp; 2017 struct nvmet_rdma_device *ndev; 2018 bool found = false; 2019 2020 mutex_lock(&device_list_mutex); 2021 list_for_each_entry(ndev, &device_list, entry) { 2022 if (ndev->device == ib_device) { 2023 found = true; 2024 break; 2025 } 2026 } 2027 mutex_unlock(&device_list_mutex); 2028 2029 if (!found) 2030 return; 2031 2032 /* 2033 * IB Device that is used by nvmet controllers is being removed, 2034 * delete all queues using this device. 2035 */ 2036 mutex_lock(&nvmet_rdma_queue_mutex); 2037 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2038 queue_list) { 2039 if (queue->dev->device != ib_device) 2040 continue; 2041 2042 pr_info("Removing queue %d\n", queue->idx); 2043 list_del_init(&queue->queue_list); 2044 __nvmet_rdma_queue_disconnect(queue); 2045 } 2046 mutex_unlock(&nvmet_rdma_queue_mutex); 2047 2048 flush_workqueue(nvmet_wq); 2049 } 2050 2051 static struct ib_client nvmet_rdma_ib_client = { 2052 .name = "nvmet_rdma", 2053 .remove = nvmet_rdma_remove_one 2054 }; 2055 2056 static int __init nvmet_rdma_init(void) 2057 { 2058 int ret; 2059 2060 ret = ib_register_client(&nvmet_rdma_ib_client); 2061 if (ret) 2062 return ret; 2063 2064 ret = nvmet_register_transport(&nvmet_rdma_ops); 2065 if (ret) 2066 goto err_ib_client; 2067 2068 return 0; 2069 2070 err_ib_client: 2071 ib_unregister_client(&nvmet_rdma_ib_client); 2072 return ret; 2073 } 2074 2075 static void __exit nvmet_rdma_exit(void) 2076 { 2077 nvmet_unregister_transport(&nvmet_rdma_ops); 2078 ib_unregister_client(&nvmet_rdma_ib_client); 2079 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2080 ida_destroy(&nvmet_rdma_queue_ida); 2081 } 2082 2083 module_init(nvmet_rdma_init); 2084 module_exit(nvmet_rdma_exit); 2085 2086 MODULE_LICENSE("GPL v2"); 2087 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2088