1 /* 2 * NVMe over Fabrics loopback device. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/scatterlist.h> 16 #include <linux/delay.h> 17 #include <linux/blk-mq.h> 18 #include <linux/nvme.h> 19 #include <linux/module.h> 20 #include <linux/parser.h> 21 #include <linux/t10-pi.h> 22 #include "nvmet.h" 23 #include "../host/nvme.h" 24 #include "../host/fabrics.h" 25 26 #define NVME_LOOP_AQ_DEPTH 256 27 28 #define NVME_LOOP_MAX_SEGMENTS 256 29 30 /* 31 * We handle AEN commands ourselves and don't even let the 32 * block layer know about them. 33 */ 34 #define NVME_LOOP_NR_AEN_COMMANDS 1 35 #define NVME_LOOP_AQ_BLKMQ_DEPTH \ 36 (NVME_LOOP_AQ_DEPTH - NVME_LOOP_NR_AEN_COMMANDS) 37 38 struct nvme_loop_iod { 39 struct nvme_command cmd; 40 struct nvme_completion rsp; 41 struct nvmet_req req; 42 struct nvme_loop_queue *queue; 43 struct work_struct work; 44 struct sg_table sg_table; 45 struct scatterlist first_sgl[]; 46 }; 47 48 struct nvme_loop_ctrl { 49 spinlock_t lock; 50 struct nvme_loop_queue *queues; 51 u32 queue_count; 52 53 struct blk_mq_tag_set admin_tag_set; 54 55 struct list_head list; 56 u64 cap; 57 struct blk_mq_tag_set tag_set; 58 struct nvme_loop_iod async_event_iod; 59 struct nvme_ctrl ctrl; 60 61 struct nvmet_ctrl *target_ctrl; 62 struct work_struct delete_work; 63 struct work_struct reset_work; 64 }; 65 66 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) 67 { 68 return container_of(ctrl, struct nvme_loop_ctrl, ctrl); 69 } 70 71 struct nvme_loop_queue { 72 struct nvmet_cq nvme_cq; 73 struct nvmet_sq nvme_sq; 74 struct nvme_loop_ctrl *ctrl; 75 }; 76 77 static struct nvmet_port *nvmet_loop_port; 78 79 static LIST_HEAD(nvme_loop_ctrl_list); 80 static DEFINE_MUTEX(nvme_loop_ctrl_mutex); 81 82 static void nvme_loop_queue_response(struct nvmet_req *nvme_req); 83 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); 84 85 static struct nvmet_fabrics_ops nvme_loop_ops; 86 87 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) 88 { 89 return queue - queue->ctrl->queues; 90 } 91 92 static void nvme_loop_complete_rq(struct request *req) 93 { 94 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 95 int error = 0; 96 97 nvme_cleanup_cmd(req); 98 sg_free_table_chained(&iod->sg_table, true); 99 100 if (unlikely(req->errors)) { 101 if (nvme_req_needs_retry(req, req->errors)) { 102 nvme_requeue_req(req); 103 return; 104 } 105 106 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 107 error = req->errors; 108 else 109 error = nvme_error_status(req->errors); 110 } 111 112 blk_mq_end_request(req, error); 113 } 114 115 static void nvme_loop_queue_response(struct nvmet_req *nvme_req) 116 { 117 struct nvme_loop_iod *iod = 118 container_of(nvme_req, struct nvme_loop_iod, req); 119 struct nvme_completion *cqe = &iod->rsp; 120 121 /* 122 * AEN requests are special as they don't time out and can 123 * survive any kind of queue freeze and often don't respond to 124 * aborts. We don't even bother to allocate a struct request 125 * for them but rather special case them here. 126 */ 127 if (unlikely(nvme_loop_queue_idx(iod->queue) == 0 && 128 cqe->command_id >= NVME_LOOP_AQ_BLKMQ_DEPTH)) { 129 nvme_complete_async_event(&iod->queue->ctrl->ctrl, cqe); 130 } else { 131 struct request *req = blk_mq_rq_from_pdu(iod); 132 133 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) 134 memcpy(req->special, cqe, sizeof(*cqe)); 135 blk_mq_complete_request(req, le16_to_cpu(cqe->status) >> 1); 136 } 137 } 138 139 static void nvme_loop_execute_work(struct work_struct *work) 140 { 141 struct nvme_loop_iod *iod = 142 container_of(work, struct nvme_loop_iod, work); 143 144 iod->req.execute(&iod->req); 145 } 146 147 static enum blk_eh_timer_return 148 nvme_loop_timeout(struct request *rq, bool reserved) 149 { 150 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(rq); 151 152 /* queue error recovery */ 153 schedule_work(&iod->queue->ctrl->reset_work); 154 155 /* fail with DNR on admin cmd timeout */ 156 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 157 158 return BLK_EH_HANDLED; 159 } 160 161 static int nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, 162 const struct blk_mq_queue_data *bd) 163 { 164 struct nvme_ns *ns = hctx->queue->queuedata; 165 struct nvme_loop_queue *queue = hctx->driver_data; 166 struct request *req = bd->rq; 167 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 168 int ret; 169 170 ret = nvme_setup_cmd(ns, req, &iod->cmd); 171 if (ret) 172 return ret; 173 174 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 175 iod->req.port = nvmet_loop_port; 176 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, 177 &queue->nvme_sq, &nvme_loop_ops)) { 178 nvme_cleanup_cmd(req); 179 blk_mq_start_request(req); 180 nvme_loop_queue_response(&iod->req); 181 return 0; 182 } 183 184 if (blk_rq_bytes(req)) { 185 iod->sg_table.sgl = iod->first_sgl; 186 ret = sg_alloc_table_chained(&iod->sg_table, 187 req->nr_phys_segments, iod->sg_table.sgl); 188 if (ret) 189 return BLK_MQ_RQ_QUEUE_BUSY; 190 191 iod->req.sg = iod->sg_table.sgl; 192 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); 193 BUG_ON(iod->req.sg_cnt > req->nr_phys_segments); 194 } 195 196 iod->cmd.common.command_id = req->tag; 197 blk_mq_start_request(req); 198 199 schedule_work(&iod->work); 200 return 0; 201 } 202 203 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 204 { 205 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); 206 struct nvme_loop_queue *queue = &ctrl->queues[0]; 207 struct nvme_loop_iod *iod = &ctrl->async_event_iod; 208 209 memset(&iod->cmd, 0, sizeof(iod->cmd)); 210 iod->cmd.common.opcode = nvme_admin_async_event; 211 iod->cmd.common.command_id = NVME_LOOP_AQ_BLKMQ_DEPTH; 212 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 213 214 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, 215 &nvme_loop_ops)) { 216 dev_err(ctrl->ctrl.device, "failed async event work\n"); 217 return; 218 } 219 220 schedule_work(&iod->work); 221 } 222 223 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, 224 struct nvme_loop_iod *iod, unsigned int queue_idx) 225 { 226 BUG_ON(queue_idx >= ctrl->queue_count); 227 228 iod->req.cmd = &iod->cmd; 229 iod->req.rsp = &iod->rsp; 230 iod->queue = &ctrl->queues[queue_idx]; 231 INIT_WORK(&iod->work, nvme_loop_execute_work); 232 return 0; 233 } 234 235 static int nvme_loop_init_request(void *data, struct request *req, 236 unsigned int hctx_idx, unsigned int rq_idx, 237 unsigned int numa_node) 238 { 239 return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), hctx_idx + 1); 240 } 241 242 static int nvme_loop_init_admin_request(void *data, struct request *req, 243 unsigned int hctx_idx, unsigned int rq_idx, 244 unsigned int numa_node) 245 { 246 return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), 0); 247 } 248 249 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 250 unsigned int hctx_idx) 251 { 252 struct nvme_loop_ctrl *ctrl = data; 253 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; 254 255 BUG_ON(hctx_idx >= ctrl->queue_count); 256 257 hctx->driver_data = queue; 258 return 0; 259 } 260 261 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 262 unsigned int hctx_idx) 263 { 264 struct nvme_loop_ctrl *ctrl = data; 265 struct nvme_loop_queue *queue = &ctrl->queues[0]; 266 267 BUG_ON(hctx_idx != 0); 268 269 hctx->driver_data = queue; 270 return 0; 271 } 272 273 static struct blk_mq_ops nvme_loop_mq_ops = { 274 .queue_rq = nvme_loop_queue_rq, 275 .complete = nvme_loop_complete_rq, 276 .map_queue = blk_mq_map_queue, 277 .init_request = nvme_loop_init_request, 278 .init_hctx = nvme_loop_init_hctx, 279 .timeout = nvme_loop_timeout, 280 }; 281 282 static struct blk_mq_ops nvme_loop_admin_mq_ops = { 283 .queue_rq = nvme_loop_queue_rq, 284 .complete = nvme_loop_complete_rq, 285 .map_queue = blk_mq_map_queue, 286 .init_request = nvme_loop_init_admin_request, 287 .init_hctx = nvme_loop_init_admin_hctx, 288 .timeout = nvme_loop_timeout, 289 }; 290 291 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) 292 { 293 blk_cleanup_queue(ctrl->ctrl.admin_q); 294 blk_mq_free_tag_set(&ctrl->admin_tag_set); 295 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 296 } 297 298 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) 299 { 300 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 301 302 if (list_empty(&ctrl->list)) 303 goto free_ctrl; 304 305 mutex_lock(&nvme_loop_ctrl_mutex); 306 list_del(&ctrl->list); 307 mutex_unlock(&nvme_loop_ctrl_mutex); 308 309 if (nctrl->tagset) { 310 blk_cleanup_queue(ctrl->ctrl.connect_q); 311 blk_mq_free_tag_set(&ctrl->tag_set); 312 } 313 kfree(ctrl->queues); 314 nvmf_free_options(nctrl->opts); 315 free_ctrl: 316 kfree(ctrl); 317 } 318 319 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) 320 { 321 int error; 322 323 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 324 ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; 325 ctrl->admin_tag_set.queue_depth = NVME_LOOP_AQ_BLKMQ_DEPTH; 326 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 327 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 328 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 329 SG_CHUNK_SIZE * sizeof(struct scatterlist); 330 ctrl->admin_tag_set.driver_data = ctrl; 331 ctrl->admin_tag_set.nr_hw_queues = 1; 332 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 333 334 ctrl->queues[0].ctrl = ctrl; 335 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); 336 if (error) 337 return error; 338 ctrl->queue_count = 1; 339 340 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 341 if (error) 342 goto out_free_sq; 343 344 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 345 if (IS_ERR(ctrl->ctrl.admin_q)) { 346 error = PTR_ERR(ctrl->ctrl.admin_q); 347 goto out_free_tagset; 348 } 349 350 error = nvmf_connect_admin_queue(&ctrl->ctrl); 351 if (error) 352 goto out_cleanup_queue; 353 354 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 355 if (error) { 356 dev_err(ctrl->ctrl.device, 357 "prop_get NVME_REG_CAP failed\n"); 358 goto out_cleanup_queue; 359 } 360 361 ctrl->ctrl.sqsize = 362 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 363 364 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 365 if (error) 366 goto out_cleanup_queue; 367 368 ctrl->ctrl.max_hw_sectors = 369 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); 370 371 error = nvme_init_identify(&ctrl->ctrl); 372 if (error) 373 goto out_cleanup_queue; 374 375 nvme_start_keep_alive(&ctrl->ctrl); 376 377 return 0; 378 379 out_cleanup_queue: 380 blk_cleanup_queue(ctrl->ctrl.admin_q); 381 out_free_tagset: 382 blk_mq_free_tag_set(&ctrl->admin_tag_set); 383 out_free_sq: 384 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 385 return error; 386 } 387 388 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) 389 { 390 int i; 391 392 nvme_stop_keep_alive(&ctrl->ctrl); 393 394 if (ctrl->queue_count > 1) { 395 nvme_stop_queues(&ctrl->ctrl); 396 blk_mq_tagset_busy_iter(&ctrl->tag_set, 397 nvme_cancel_request, &ctrl->ctrl); 398 399 for (i = 1; i < ctrl->queue_count; i++) 400 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 401 } 402 403 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 404 nvme_shutdown_ctrl(&ctrl->ctrl); 405 406 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 407 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 408 nvme_cancel_request, &ctrl->ctrl); 409 nvme_loop_destroy_admin_queue(ctrl); 410 } 411 412 static void nvme_loop_del_ctrl_work(struct work_struct *work) 413 { 414 struct nvme_loop_ctrl *ctrl = container_of(work, 415 struct nvme_loop_ctrl, delete_work); 416 417 nvme_uninit_ctrl(&ctrl->ctrl); 418 nvme_loop_shutdown_ctrl(ctrl); 419 nvme_put_ctrl(&ctrl->ctrl); 420 } 421 422 static int __nvme_loop_del_ctrl(struct nvme_loop_ctrl *ctrl) 423 { 424 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 425 return -EBUSY; 426 427 if (!schedule_work(&ctrl->delete_work)) 428 return -EBUSY; 429 430 return 0; 431 } 432 433 static int nvme_loop_del_ctrl(struct nvme_ctrl *nctrl) 434 { 435 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 436 int ret; 437 438 ret = __nvme_loop_del_ctrl(ctrl); 439 if (ret) 440 return ret; 441 442 flush_work(&ctrl->delete_work); 443 444 return 0; 445 } 446 447 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) 448 { 449 struct nvme_loop_ctrl *ctrl; 450 451 mutex_lock(&nvme_loop_ctrl_mutex); 452 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { 453 if (ctrl->ctrl.cntlid == nctrl->cntlid) 454 __nvme_loop_del_ctrl(ctrl); 455 } 456 mutex_unlock(&nvme_loop_ctrl_mutex); 457 } 458 459 static void nvme_loop_reset_ctrl_work(struct work_struct *work) 460 { 461 struct nvme_loop_ctrl *ctrl = container_of(work, 462 struct nvme_loop_ctrl, reset_work); 463 bool changed; 464 int i, ret; 465 466 nvme_loop_shutdown_ctrl(ctrl); 467 468 ret = nvme_loop_configure_admin_queue(ctrl); 469 if (ret) 470 goto out_disable; 471 472 for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) { 473 ctrl->queues[i].ctrl = ctrl; 474 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 475 if (ret) 476 goto out_free_queues; 477 478 ctrl->queue_count++; 479 } 480 481 for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) { 482 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 483 if (ret) 484 goto out_free_queues; 485 } 486 487 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 488 WARN_ON_ONCE(!changed); 489 490 nvme_queue_scan(&ctrl->ctrl); 491 nvme_queue_async_events(&ctrl->ctrl); 492 493 nvme_start_queues(&ctrl->ctrl); 494 495 return; 496 497 out_free_queues: 498 for (i = 1; i < ctrl->queue_count; i++) 499 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 500 nvme_loop_destroy_admin_queue(ctrl); 501 out_disable: 502 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 503 nvme_uninit_ctrl(&ctrl->ctrl); 504 nvme_put_ctrl(&ctrl->ctrl); 505 } 506 507 static int nvme_loop_reset_ctrl(struct nvme_ctrl *nctrl) 508 { 509 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 510 511 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 512 return -EBUSY; 513 514 if (!schedule_work(&ctrl->reset_work)) 515 return -EBUSY; 516 517 flush_work(&ctrl->reset_work); 518 519 return 0; 520 } 521 522 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { 523 .name = "loop", 524 .module = THIS_MODULE, 525 .is_fabrics = true, 526 .reg_read32 = nvmf_reg_read32, 527 .reg_read64 = nvmf_reg_read64, 528 .reg_write32 = nvmf_reg_write32, 529 .reset_ctrl = nvme_loop_reset_ctrl, 530 .free_ctrl = nvme_loop_free_ctrl, 531 .submit_async_event = nvme_loop_submit_async_event, 532 .delete_ctrl = nvme_loop_del_ctrl, 533 .get_subsysnqn = nvmf_get_subsysnqn, 534 }; 535 536 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) 537 { 538 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 539 int ret, i; 540 541 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 542 if (ret || !opts->nr_io_queues) 543 return ret; 544 545 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", 546 opts->nr_io_queues); 547 548 for (i = 1; i <= opts->nr_io_queues; i++) { 549 ctrl->queues[i].ctrl = ctrl; 550 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 551 if (ret) 552 goto out_destroy_queues; 553 554 ctrl->queue_count++; 555 } 556 557 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 558 ctrl->tag_set.ops = &nvme_loop_mq_ops; 559 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 560 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 561 ctrl->tag_set.numa_node = NUMA_NO_NODE; 562 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 563 ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 564 SG_CHUNK_SIZE * sizeof(struct scatterlist); 565 ctrl->tag_set.driver_data = ctrl; 566 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 567 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 568 ctrl->ctrl.tagset = &ctrl->tag_set; 569 570 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 571 if (ret) 572 goto out_destroy_queues; 573 574 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 575 if (IS_ERR(ctrl->ctrl.connect_q)) { 576 ret = PTR_ERR(ctrl->ctrl.connect_q); 577 goto out_free_tagset; 578 } 579 580 for (i = 1; i <= opts->nr_io_queues; i++) { 581 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 582 if (ret) 583 goto out_cleanup_connect_q; 584 } 585 586 return 0; 587 588 out_cleanup_connect_q: 589 blk_cleanup_queue(ctrl->ctrl.connect_q); 590 out_free_tagset: 591 blk_mq_free_tag_set(&ctrl->tag_set); 592 out_destroy_queues: 593 for (i = 1; i < ctrl->queue_count; i++) 594 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 595 return ret; 596 } 597 598 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, 599 struct nvmf_ctrl_options *opts) 600 { 601 struct nvme_loop_ctrl *ctrl; 602 bool changed; 603 int ret; 604 605 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 606 if (!ctrl) 607 return ERR_PTR(-ENOMEM); 608 ctrl->ctrl.opts = opts; 609 INIT_LIST_HEAD(&ctrl->list); 610 611 INIT_WORK(&ctrl->delete_work, nvme_loop_del_ctrl_work); 612 INIT_WORK(&ctrl->reset_work, nvme_loop_reset_ctrl_work); 613 614 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 615 0 /* no quirks, we're perfect! */); 616 if (ret) 617 goto out_put_ctrl; 618 619 spin_lock_init(&ctrl->lock); 620 621 ret = -ENOMEM; 622 623 ctrl->ctrl.sqsize = opts->queue_size - 1; 624 ctrl->ctrl.kato = opts->kato; 625 626 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), 627 GFP_KERNEL); 628 if (!ctrl->queues) 629 goto out_uninit_ctrl; 630 631 ret = nvme_loop_configure_admin_queue(ctrl); 632 if (ret) 633 goto out_free_queues; 634 635 if (opts->queue_size > ctrl->ctrl.maxcmd) { 636 /* warn if maxcmd is lower than queue_size */ 637 dev_warn(ctrl->ctrl.device, 638 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 639 opts->queue_size, ctrl->ctrl.maxcmd); 640 opts->queue_size = ctrl->ctrl.maxcmd; 641 } 642 643 if (opts->nr_io_queues) { 644 ret = nvme_loop_create_io_queues(ctrl); 645 if (ret) 646 goto out_remove_admin_queue; 647 } 648 649 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); 650 651 dev_info(ctrl->ctrl.device, 652 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); 653 654 kref_get(&ctrl->ctrl.kref); 655 656 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 657 WARN_ON_ONCE(!changed); 658 659 mutex_lock(&nvme_loop_ctrl_mutex); 660 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); 661 mutex_unlock(&nvme_loop_ctrl_mutex); 662 663 if (opts->nr_io_queues) { 664 nvme_queue_scan(&ctrl->ctrl); 665 nvme_queue_async_events(&ctrl->ctrl); 666 } 667 668 return &ctrl->ctrl; 669 670 out_remove_admin_queue: 671 nvme_loop_destroy_admin_queue(ctrl); 672 out_free_queues: 673 kfree(ctrl->queues); 674 out_uninit_ctrl: 675 nvme_uninit_ctrl(&ctrl->ctrl); 676 out_put_ctrl: 677 nvme_put_ctrl(&ctrl->ctrl); 678 if (ret > 0) 679 ret = -EIO; 680 return ERR_PTR(ret); 681 } 682 683 static int nvme_loop_add_port(struct nvmet_port *port) 684 { 685 /* 686 * XXX: disalow adding more than one port so 687 * there is no connection rejections when a 688 * a subsystem is assigned to a port for which 689 * loop doesn't have a pointer. 690 * This scenario would be possible if we allowed 691 * more than one port to be added and a subsystem 692 * was assigned to a port other than nvmet_loop_port. 693 */ 694 695 if (nvmet_loop_port) 696 return -EPERM; 697 698 nvmet_loop_port = port; 699 return 0; 700 } 701 702 static void nvme_loop_remove_port(struct nvmet_port *port) 703 { 704 if (port == nvmet_loop_port) 705 nvmet_loop_port = NULL; 706 } 707 708 static struct nvmet_fabrics_ops nvme_loop_ops = { 709 .owner = THIS_MODULE, 710 .type = NVMF_TRTYPE_LOOP, 711 .add_port = nvme_loop_add_port, 712 .remove_port = nvme_loop_remove_port, 713 .queue_response = nvme_loop_queue_response, 714 .delete_ctrl = nvme_loop_delete_ctrl, 715 }; 716 717 static struct nvmf_transport_ops nvme_loop_transport = { 718 .name = "loop", 719 .create_ctrl = nvme_loop_create_ctrl, 720 }; 721 722 static int __init nvme_loop_init_module(void) 723 { 724 int ret; 725 726 ret = nvmet_register_transport(&nvme_loop_ops); 727 if (ret) 728 return ret; 729 nvmf_register_transport(&nvme_loop_transport); 730 return 0; 731 } 732 733 static void __exit nvme_loop_cleanup_module(void) 734 { 735 struct nvme_loop_ctrl *ctrl, *next; 736 737 nvmf_unregister_transport(&nvme_loop_transport); 738 nvmet_unregister_transport(&nvme_loop_ops); 739 740 mutex_lock(&nvme_loop_ctrl_mutex); 741 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) 742 __nvme_loop_del_ctrl(ctrl); 743 mutex_unlock(&nvme_loop_ctrl_mutex); 744 745 flush_scheduled_work(); 746 } 747 748 module_init(nvme_loop_init_module); 749 module_exit(nvme_loop_cleanup_module); 750 751 MODULE_LICENSE("GPL v2"); 752 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */ 753