xref: /openbmc/linux/drivers/nvme/target/loop.c (revision 82003e04)
1 /*
2  * NVMe over Fabrics loopback device.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/scatterlist.h>
16 #include <linux/delay.h>
17 #include <linux/blk-mq.h>
18 #include <linux/nvme.h>
19 #include <linux/module.h>
20 #include <linux/parser.h>
21 #include <linux/t10-pi.h>
22 #include "nvmet.h"
23 #include "../host/nvme.h"
24 #include "../host/fabrics.h"
25 
26 #define NVME_LOOP_AQ_DEPTH		256
27 
28 #define NVME_LOOP_MAX_SEGMENTS		256
29 
30 /*
31  * We handle AEN commands ourselves and don't even let the
32  * block layer know about them.
33  */
34 #define NVME_LOOP_NR_AEN_COMMANDS	1
35 #define NVME_LOOP_AQ_BLKMQ_DEPTH	\
36 	(NVME_LOOP_AQ_DEPTH - NVME_LOOP_NR_AEN_COMMANDS)
37 
38 struct nvme_loop_iod {
39 	struct nvme_command	cmd;
40 	struct nvme_completion	rsp;
41 	struct nvmet_req	req;
42 	struct nvme_loop_queue	*queue;
43 	struct work_struct	work;
44 	struct sg_table		sg_table;
45 	struct scatterlist	first_sgl[];
46 };
47 
48 struct nvme_loop_ctrl {
49 	spinlock_t		lock;
50 	struct nvme_loop_queue	*queues;
51 	u32			queue_count;
52 
53 	struct blk_mq_tag_set	admin_tag_set;
54 
55 	struct list_head	list;
56 	u64			cap;
57 	struct blk_mq_tag_set	tag_set;
58 	struct nvme_loop_iod	async_event_iod;
59 	struct nvme_ctrl	ctrl;
60 
61 	struct nvmet_ctrl	*target_ctrl;
62 	struct work_struct	delete_work;
63 	struct work_struct	reset_work;
64 };
65 
66 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl)
67 {
68 	return container_of(ctrl, struct nvme_loop_ctrl, ctrl);
69 }
70 
71 struct nvme_loop_queue {
72 	struct nvmet_cq		nvme_cq;
73 	struct nvmet_sq		nvme_sq;
74 	struct nvme_loop_ctrl	*ctrl;
75 };
76 
77 static struct nvmet_port *nvmet_loop_port;
78 
79 static LIST_HEAD(nvme_loop_ctrl_list);
80 static DEFINE_MUTEX(nvme_loop_ctrl_mutex);
81 
82 static void nvme_loop_queue_response(struct nvmet_req *nvme_req);
83 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl);
84 
85 static struct nvmet_fabrics_ops nvme_loop_ops;
86 
87 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue)
88 {
89 	return queue - queue->ctrl->queues;
90 }
91 
92 static void nvme_loop_complete_rq(struct request *req)
93 {
94 	struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
95 	int error = 0;
96 
97 	nvme_cleanup_cmd(req);
98 	sg_free_table_chained(&iod->sg_table, true);
99 
100 	if (unlikely(req->errors)) {
101 		if (nvme_req_needs_retry(req, req->errors)) {
102 			nvme_requeue_req(req);
103 			return;
104 		}
105 
106 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
107 			error = req->errors;
108 		else
109 			error = nvme_error_status(req->errors);
110 	}
111 
112 	blk_mq_end_request(req, error);
113 }
114 
115 static void nvme_loop_queue_response(struct nvmet_req *nvme_req)
116 {
117 	struct nvme_loop_iod *iod =
118 		container_of(nvme_req, struct nvme_loop_iod, req);
119 	struct nvme_completion *cqe = &iod->rsp;
120 
121 	/*
122 	 * AEN requests are special as they don't time out and can
123 	 * survive any kind of queue freeze and often don't respond to
124 	 * aborts.  We don't even bother to allocate a struct request
125 	 * for them but rather special case them here.
126 	 */
127 	if (unlikely(nvme_loop_queue_idx(iod->queue) == 0 &&
128 			cqe->command_id >= NVME_LOOP_AQ_BLKMQ_DEPTH)) {
129 		nvme_complete_async_event(&iod->queue->ctrl->ctrl, cqe);
130 	} else {
131 		struct request *req = blk_mq_rq_from_pdu(iod);
132 
133 		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
134 			memcpy(req->special, cqe, sizeof(*cqe));
135 		blk_mq_complete_request(req, le16_to_cpu(cqe->status) >> 1);
136 	}
137 }
138 
139 static void nvme_loop_execute_work(struct work_struct *work)
140 {
141 	struct nvme_loop_iod *iod =
142 		container_of(work, struct nvme_loop_iod, work);
143 
144 	iod->req.execute(&iod->req);
145 }
146 
147 static enum blk_eh_timer_return
148 nvme_loop_timeout(struct request *rq, bool reserved)
149 {
150 	struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(rq);
151 
152 	/* queue error recovery */
153 	schedule_work(&iod->queue->ctrl->reset_work);
154 
155 	/* fail with DNR on admin cmd timeout */
156 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
157 
158 	return BLK_EH_HANDLED;
159 }
160 
161 static int nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx,
162 		const struct blk_mq_queue_data *bd)
163 {
164 	struct nvme_ns *ns = hctx->queue->queuedata;
165 	struct nvme_loop_queue *queue = hctx->driver_data;
166 	struct request *req = bd->rq;
167 	struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
168 	int ret;
169 
170 	ret = nvme_setup_cmd(ns, req, &iod->cmd);
171 	if (ret)
172 		return ret;
173 
174 	iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
175 	iod->req.port = nvmet_loop_port;
176 	if (!nvmet_req_init(&iod->req, &queue->nvme_cq,
177 			&queue->nvme_sq, &nvme_loop_ops)) {
178 		nvme_cleanup_cmd(req);
179 		blk_mq_start_request(req);
180 		nvme_loop_queue_response(&iod->req);
181 		return 0;
182 	}
183 
184 	if (blk_rq_bytes(req)) {
185 		iod->sg_table.sgl = iod->first_sgl;
186 		ret = sg_alloc_table_chained(&iod->sg_table,
187 			req->nr_phys_segments, iod->sg_table.sgl);
188 		if (ret)
189 			return BLK_MQ_RQ_QUEUE_BUSY;
190 
191 		iod->req.sg = iod->sg_table.sgl;
192 		iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl);
193 		BUG_ON(iod->req.sg_cnt > req->nr_phys_segments);
194 	}
195 
196 	iod->cmd.common.command_id = req->tag;
197 	blk_mq_start_request(req);
198 
199 	schedule_work(&iod->work);
200 	return 0;
201 }
202 
203 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
204 {
205 	struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg);
206 	struct nvme_loop_queue *queue = &ctrl->queues[0];
207 	struct nvme_loop_iod *iod = &ctrl->async_event_iod;
208 
209 	memset(&iod->cmd, 0, sizeof(iod->cmd));
210 	iod->cmd.common.opcode = nvme_admin_async_event;
211 	iod->cmd.common.command_id = NVME_LOOP_AQ_BLKMQ_DEPTH;
212 	iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
213 
214 	if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq,
215 			&nvme_loop_ops)) {
216 		dev_err(ctrl->ctrl.device, "failed async event work\n");
217 		return;
218 	}
219 
220 	schedule_work(&iod->work);
221 }
222 
223 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl,
224 		struct nvme_loop_iod *iod, unsigned int queue_idx)
225 {
226 	BUG_ON(queue_idx >= ctrl->queue_count);
227 
228 	iod->req.cmd = &iod->cmd;
229 	iod->req.rsp = &iod->rsp;
230 	iod->queue = &ctrl->queues[queue_idx];
231 	INIT_WORK(&iod->work, nvme_loop_execute_work);
232 	return 0;
233 }
234 
235 static int nvme_loop_init_request(void *data, struct request *req,
236 				unsigned int hctx_idx, unsigned int rq_idx,
237 				unsigned int numa_node)
238 {
239 	return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), hctx_idx + 1);
240 }
241 
242 static int nvme_loop_init_admin_request(void *data, struct request *req,
243 				unsigned int hctx_idx, unsigned int rq_idx,
244 				unsigned int numa_node)
245 {
246 	return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), 0);
247 }
248 
249 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
250 		unsigned int hctx_idx)
251 {
252 	struct nvme_loop_ctrl *ctrl = data;
253 	struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1];
254 
255 	BUG_ON(hctx_idx >= ctrl->queue_count);
256 
257 	hctx->driver_data = queue;
258 	return 0;
259 }
260 
261 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
262 		unsigned int hctx_idx)
263 {
264 	struct nvme_loop_ctrl *ctrl = data;
265 	struct nvme_loop_queue *queue = &ctrl->queues[0];
266 
267 	BUG_ON(hctx_idx != 0);
268 
269 	hctx->driver_data = queue;
270 	return 0;
271 }
272 
273 static struct blk_mq_ops nvme_loop_mq_ops = {
274 	.queue_rq	= nvme_loop_queue_rq,
275 	.complete	= nvme_loop_complete_rq,
276 	.init_request	= nvme_loop_init_request,
277 	.init_hctx	= nvme_loop_init_hctx,
278 	.timeout	= nvme_loop_timeout,
279 };
280 
281 static struct blk_mq_ops nvme_loop_admin_mq_ops = {
282 	.queue_rq	= nvme_loop_queue_rq,
283 	.complete	= nvme_loop_complete_rq,
284 	.init_request	= nvme_loop_init_admin_request,
285 	.init_hctx	= nvme_loop_init_admin_hctx,
286 	.timeout	= nvme_loop_timeout,
287 };
288 
289 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl)
290 {
291 	blk_cleanup_queue(ctrl->ctrl.admin_q);
292 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
293 	nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
294 }
295 
296 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl)
297 {
298 	struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl);
299 
300 	if (list_empty(&ctrl->list))
301 		goto free_ctrl;
302 
303 	mutex_lock(&nvme_loop_ctrl_mutex);
304 	list_del(&ctrl->list);
305 	mutex_unlock(&nvme_loop_ctrl_mutex);
306 
307 	if (nctrl->tagset) {
308 		blk_cleanup_queue(ctrl->ctrl.connect_q);
309 		blk_mq_free_tag_set(&ctrl->tag_set);
310 	}
311 	kfree(ctrl->queues);
312 	nvmf_free_options(nctrl->opts);
313 free_ctrl:
314 	kfree(ctrl);
315 }
316 
317 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl)
318 {
319 	int error;
320 
321 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
322 	ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops;
323 	ctrl->admin_tag_set.queue_depth = NVME_LOOP_AQ_BLKMQ_DEPTH;
324 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
325 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
326 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) +
327 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
328 	ctrl->admin_tag_set.driver_data = ctrl;
329 	ctrl->admin_tag_set.nr_hw_queues = 1;
330 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
331 
332 	ctrl->queues[0].ctrl = ctrl;
333 	error = nvmet_sq_init(&ctrl->queues[0].nvme_sq);
334 	if (error)
335 		return error;
336 	ctrl->queue_count = 1;
337 
338 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
339 	if (error)
340 		goto out_free_sq;
341 
342 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
343 	if (IS_ERR(ctrl->ctrl.admin_q)) {
344 		error = PTR_ERR(ctrl->ctrl.admin_q);
345 		goto out_free_tagset;
346 	}
347 
348 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
349 	if (error)
350 		goto out_cleanup_queue;
351 
352 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
353 	if (error) {
354 		dev_err(ctrl->ctrl.device,
355 			"prop_get NVME_REG_CAP failed\n");
356 		goto out_cleanup_queue;
357 	}
358 
359 	ctrl->ctrl.sqsize =
360 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
361 
362 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
363 	if (error)
364 		goto out_cleanup_queue;
365 
366 	ctrl->ctrl.max_hw_sectors =
367 		(NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9);
368 
369 	error = nvme_init_identify(&ctrl->ctrl);
370 	if (error)
371 		goto out_cleanup_queue;
372 
373 	nvme_start_keep_alive(&ctrl->ctrl);
374 
375 	return 0;
376 
377 out_cleanup_queue:
378 	blk_cleanup_queue(ctrl->ctrl.admin_q);
379 out_free_tagset:
380 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
381 out_free_sq:
382 	nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
383 	return error;
384 }
385 
386 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl)
387 {
388 	int i;
389 
390 	nvme_stop_keep_alive(&ctrl->ctrl);
391 
392 	if (ctrl->queue_count > 1) {
393 		nvme_stop_queues(&ctrl->ctrl);
394 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
395 					nvme_cancel_request, &ctrl->ctrl);
396 
397 		for (i = 1; i < ctrl->queue_count; i++)
398 			nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
399 	}
400 
401 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
402 		nvme_shutdown_ctrl(&ctrl->ctrl);
403 
404 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
405 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
406 				nvme_cancel_request, &ctrl->ctrl);
407 	nvme_loop_destroy_admin_queue(ctrl);
408 }
409 
410 static void nvme_loop_del_ctrl_work(struct work_struct *work)
411 {
412 	struct nvme_loop_ctrl *ctrl = container_of(work,
413 				struct nvme_loop_ctrl, delete_work);
414 
415 	nvme_uninit_ctrl(&ctrl->ctrl);
416 	nvme_loop_shutdown_ctrl(ctrl);
417 	nvme_put_ctrl(&ctrl->ctrl);
418 }
419 
420 static int __nvme_loop_del_ctrl(struct nvme_loop_ctrl *ctrl)
421 {
422 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
423 		return -EBUSY;
424 
425 	if (!schedule_work(&ctrl->delete_work))
426 		return -EBUSY;
427 
428 	return 0;
429 }
430 
431 static int nvme_loop_del_ctrl(struct nvme_ctrl *nctrl)
432 {
433 	struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl);
434 	int ret;
435 
436 	ret = __nvme_loop_del_ctrl(ctrl);
437 	if (ret)
438 		return ret;
439 
440 	flush_work(&ctrl->delete_work);
441 
442 	return 0;
443 }
444 
445 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl)
446 {
447 	struct nvme_loop_ctrl *ctrl;
448 
449 	mutex_lock(&nvme_loop_ctrl_mutex);
450 	list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) {
451 		if (ctrl->ctrl.cntlid == nctrl->cntlid)
452 			__nvme_loop_del_ctrl(ctrl);
453 	}
454 	mutex_unlock(&nvme_loop_ctrl_mutex);
455 }
456 
457 static void nvme_loop_reset_ctrl_work(struct work_struct *work)
458 {
459 	struct nvme_loop_ctrl *ctrl = container_of(work,
460 					struct nvme_loop_ctrl, reset_work);
461 	bool changed;
462 	int i, ret;
463 
464 	nvme_loop_shutdown_ctrl(ctrl);
465 
466 	ret = nvme_loop_configure_admin_queue(ctrl);
467 	if (ret)
468 		goto out_disable;
469 
470 	for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) {
471 		ctrl->queues[i].ctrl = ctrl;
472 		ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq);
473 		if (ret)
474 			goto out_free_queues;
475 
476 		ctrl->queue_count++;
477 	}
478 
479 	for (i = 1; i <= ctrl->ctrl.opts->nr_io_queues; i++) {
480 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
481 		if (ret)
482 			goto out_free_queues;
483 	}
484 
485 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
486 	WARN_ON_ONCE(!changed);
487 
488 	nvme_queue_scan(&ctrl->ctrl);
489 	nvme_queue_async_events(&ctrl->ctrl);
490 
491 	nvme_start_queues(&ctrl->ctrl);
492 
493 	return;
494 
495 out_free_queues:
496 	for (i = 1; i < ctrl->queue_count; i++)
497 		nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
498 	nvme_loop_destroy_admin_queue(ctrl);
499 out_disable:
500 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
501 	nvme_uninit_ctrl(&ctrl->ctrl);
502 	nvme_put_ctrl(&ctrl->ctrl);
503 }
504 
505 static int nvme_loop_reset_ctrl(struct nvme_ctrl *nctrl)
506 {
507 	struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl);
508 
509 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
510 		return -EBUSY;
511 
512 	if (!schedule_work(&ctrl->reset_work))
513 		return -EBUSY;
514 
515 	flush_work(&ctrl->reset_work);
516 
517 	return 0;
518 }
519 
520 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = {
521 	.name			= "loop",
522 	.module			= THIS_MODULE,
523 	.is_fabrics		= true,
524 	.reg_read32		= nvmf_reg_read32,
525 	.reg_read64		= nvmf_reg_read64,
526 	.reg_write32		= nvmf_reg_write32,
527 	.reset_ctrl		= nvme_loop_reset_ctrl,
528 	.free_ctrl		= nvme_loop_free_ctrl,
529 	.submit_async_event	= nvme_loop_submit_async_event,
530 	.delete_ctrl		= nvme_loop_del_ctrl,
531 	.get_subsysnqn		= nvmf_get_subsysnqn,
532 };
533 
534 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl)
535 {
536 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
537 	int ret, i;
538 
539 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
540 	if (ret || !opts->nr_io_queues)
541 		return ret;
542 
543 	dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
544 		opts->nr_io_queues);
545 
546 	for (i = 1; i <= opts->nr_io_queues; i++) {
547 		ctrl->queues[i].ctrl = ctrl;
548 		ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq);
549 		if (ret)
550 			goto out_destroy_queues;
551 
552 		ctrl->queue_count++;
553 	}
554 
555 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
556 	ctrl->tag_set.ops = &nvme_loop_mq_ops;
557 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
558 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
559 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
560 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
561 	ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) +
562 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
563 	ctrl->tag_set.driver_data = ctrl;
564 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
565 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
566 	ctrl->ctrl.tagset = &ctrl->tag_set;
567 
568 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
569 	if (ret)
570 		goto out_destroy_queues;
571 
572 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
573 	if (IS_ERR(ctrl->ctrl.connect_q)) {
574 		ret = PTR_ERR(ctrl->ctrl.connect_q);
575 		goto out_free_tagset;
576 	}
577 
578 	for (i = 1; i <= opts->nr_io_queues; i++) {
579 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
580 		if (ret)
581 			goto out_cleanup_connect_q;
582 	}
583 
584 	return 0;
585 
586 out_cleanup_connect_q:
587 	blk_cleanup_queue(ctrl->ctrl.connect_q);
588 out_free_tagset:
589 	blk_mq_free_tag_set(&ctrl->tag_set);
590 out_destroy_queues:
591 	for (i = 1; i < ctrl->queue_count; i++)
592 		nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
593 	return ret;
594 }
595 
596 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev,
597 		struct nvmf_ctrl_options *opts)
598 {
599 	struct nvme_loop_ctrl *ctrl;
600 	bool changed;
601 	int ret;
602 
603 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
604 	if (!ctrl)
605 		return ERR_PTR(-ENOMEM);
606 	ctrl->ctrl.opts = opts;
607 	INIT_LIST_HEAD(&ctrl->list);
608 
609 	INIT_WORK(&ctrl->delete_work, nvme_loop_del_ctrl_work);
610 	INIT_WORK(&ctrl->reset_work, nvme_loop_reset_ctrl_work);
611 
612 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops,
613 				0 /* no quirks, we're perfect! */);
614 	if (ret)
615 		goto out_put_ctrl;
616 
617 	spin_lock_init(&ctrl->lock);
618 
619 	ret = -ENOMEM;
620 
621 	ctrl->ctrl.sqsize = opts->queue_size - 1;
622 	ctrl->ctrl.kato = opts->kato;
623 
624 	ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues),
625 			GFP_KERNEL);
626 	if (!ctrl->queues)
627 		goto out_uninit_ctrl;
628 
629 	ret = nvme_loop_configure_admin_queue(ctrl);
630 	if (ret)
631 		goto out_free_queues;
632 
633 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
634 		/* warn if maxcmd is lower than queue_size */
635 		dev_warn(ctrl->ctrl.device,
636 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
637 			opts->queue_size, ctrl->ctrl.maxcmd);
638 		opts->queue_size = ctrl->ctrl.maxcmd;
639 	}
640 
641 	if (opts->nr_io_queues) {
642 		ret = nvme_loop_create_io_queues(ctrl);
643 		if (ret)
644 			goto out_remove_admin_queue;
645 	}
646 
647 	nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0);
648 
649 	dev_info(ctrl->ctrl.device,
650 		 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn);
651 
652 	kref_get(&ctrl->ctrl.kref);
653 
654 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
655 	WARN_ON_ONCE(!changed);
656 
657 	mutex_lock(&nvme_loop_ctrl_mutex);
658 	list_add_tail(&ctrl->list, &nvme_loop_ctrl_list);
659 	mutex_unlock(&nvme_loop_ctrl_mutex);
660 
661 	if (opts->nr_io_queues) {
662 		nvme_queue_scan(&ctrl->ctrl);
663 		nvme_queue_async_events(&ctrl->ctrl);
664 	}
665 
666 	return &ctrl->ctrl;
667 
668 out_remove_admin_queue:
669 	nvme_loop_destroy_admin_queue(ctrl);
670 out_free_queues:
671 	kfree(ctrl->queues);
672 out_uninit_ctrl:
673 	nvme_uninit_ctrl(&ctrl->ctrl);
674 out_put_ctrl:
675 	nvme_put_ctrl(&ctrl->ctrl);
676 	if (ret > 0)
677 		ret = -EIO;
678 	return ERR_PTR(ret);
679 }
680 
681 static int nvme_loop_add_port(struct nvmet_port *port)
682 {
683 	/*
684 	 * XXX: disalow adding more than one port so
685 	 * there is no connection rejections when a
686 	 * a subsystem is assigned to a port for which
687 	 * loop doesn't have a pointer.
688 	 * This scenario would be possible if we allowed
689 	 * more than one port to be added and a subsystem
690 	 * was assigned to a port other than nvmet_loop_port.
691 	 */
692 
693 	if (nvmet_loop_port)
694 		return -EPERM;
695 
696 	nvmet_loop_port = port;
697 	return 0;
698 }
699 
700 static void nvme_loop_remove_port(struct nvmet_port *port)
701 {
702 	if (port == nvmet_loop_port)
703 		nvmet_loop_port = NULL;
704 }
705 
706 static struct nvmet_fabrics_ops nvme_loop_ops = {
707 	.owner		= THIS_MODULE,
708 	.type		= NVMF_TRTYPE_LOOP,
709 	.add_port	= nvme_loop_add_port,
710 	.remove_port	= nvme_loop_remove_port,
711 	.queue_response = nvme_loop_queue_response,
712 	.delete_ctrl	= nvme_loop_delete_ctrl,
713 };
714 
715 static struct nvmf_transport_ops nvme_loop_transport = {
716 	.name		= "loop",
717 	.create_ctrl	= nvme_loop_create_ctrl,
718 };
719 
720 static int __init nvme_loop_init_module(void)
721 {
722 	int ret;
723 
724 	ret = nvmet_register_transport(&nvme_loop_ops);
725 	if (ret)
726 		return ret;
727 	nvmf_register_transport(&nvme_loop_transport);
728 	return 0;
729 }
730 
731 static void __exit nvme_loop_cleanup_module(void)
732 {
733 	struct nvme_loop_ctrl *ctrl, *next;
734 
735 	nvmf_unregister_transport(&nvme_loop_transport);
736 	nvmet_unregister_transport(&nvme_loop_ops);
737 
738 	mutex_lock(&nvme_loop_ctrl_mutex);
739 	list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list)
740 		__nvme_loop_del_ctrl(ctrl);
741 	mutex_unlock(&nvme_loop_ctrl_mutex);
742 
743 	flush_scheduled_work();
744 }
745 
746 module_init(nvme_loop_init_module);
747 module_exit(nvme_loop_cleanup_module);
748 
749 MODULE_LICENSE("GPL v2");
750 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */
751