1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics loopback device. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/scatterlist.h> 8 #include <linux/blk-mq.h> 9 #include <linux/nvme.h> 10 #include <linux/module.h> 11 #include <linux/parser.h> 12 #include "nvmet.h" 13 #include "../host/nvme.h" 14 #include "../host/fabrics.h" 15 16 #define NVME_LOOP_MAX_SEGMENTS 256 17 18 struct nvme_loop_iod { 19 struct nvme_request nvme_req; 20 struct nvme_command cmd; 21 struct nvme_completion cqe; 22 struct nvmet_req req; 23 struct nvme_loop_queue *queue; 24 struct work_struct work; 25 struct sg_table sg_table; 26 struct scatterlist first_sgl[]; 27 }; 28 29 struct nvme_loop_ctrl { 30 struct nvme_loop_queue *queues; 31 32 struct blk_mq_tag_set admin_tag_set; 33 34 struct list_head list; 35 struct blk_mq_tag_set tag_set; 36 struct nvme_loop_iod async_event_iod; 37 struct nvme_ctrl ctrl; 38 39 struct nvmet_port *port; 40 }; 41 42 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) 43 { 44 return container_of(ctrl, struct nvme_loop_ctrl, ctrl); 45 } 46 47 enum nvme_loop_queue_flags { 48 NVME_LOOP_Q_LIVE = 0, 49 }; 50 51 struct nvme_loop_queue { 52 struct nvmet_cq nvme_cq; 53 struct nvmet_sq nvme_sq; 54 struct nvme_loop_ctrl *ctrl; 55 unsigned long flags; 56 }; 57 58 static LIST_HEAD(nvme_loop_ports); 59 static DEFINE_MUTEX(nvme_loop_ports_mutex); 60 61 static LIST_HEAD(nvme_loop_ctrl_list); 62 static DEFINE_MUTEX(nvme_loop_ctrl_mutex); 63 64 static void nvme_loop_queue_response(struct nvmet_req *nvme_req); 65 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); 66 67 static const struct nvmet_fabrics_ops nvme_loop_ops; 68 69 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) 70 { 71 return queue - queue->ctrl->queues; 72 } 73 74 static void nvme_loop_complete_rq(struct request *req) 75 { 76 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 77 78 sg_free_table_chained(&iod->sg_table, NVME_INLINE_SG_CNT); 79 nvme_complete_rq(req); 80 } 81 82 static struct blk_mq_tags *nvme_loop_tagset(struct nvme_loop_queue *queue) 83 { 84 u32 queue_idx = nvme_loop_queue_idx(queue); 85 86 if (queue_idx == 0) 87 return queue->ctrl->admin_tag_set.tags[queue_idx]; 88 return queue->ctrl->tag_set.tags[queue_idx - 1]; 89 } 90 91 static void nvme_loop_queue_response(struct nvmet_req *req) 92 { 93 struct nvme_loop_queue *queue = 94 container_of(req->sq, struct nvme_loop_queue, nvme_sq); 95 struct nvme_completion *cqe = req->cqe; 96 97 /* 98 * AEN requests are special as they don't time out and can 99 * survive any kind of queue freeze and often don't respond to 100 * aborts. We don't even bother to allocate a struct request 101 * for them but rather special case them here. 102 */ 103 if (unlikely(nvme_is_aen_req(nvme_loop_queue_idx(queue), 104 cqe->command_id))) { 105 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 106 &cqe->result); 107 } else { 108 struct request *rq; 109 110 rq = nvme_find_rq(nvme_loop_tagset(queue), cqe->command_id); 111 if (!rq) { 112 dev_err(queue->ctrl->ctrl.device, 113 "got bad command_id %#x on queue %d\n", 114 cqe->command_id, nvme_loop_queue_idx(queue)); 115 return; 116 } 117 118 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 119 nvme_loop_complete_rq(rq); 120 } 121 } 122 123 static void nvme_loop_execute_work(struct work_struct *work) 124 { 125 struct nvme_loop_iod *iod = 126 container_of(work, struct nvme_loop_iod, work); 127 128 iod->req.execute(&iod->req); 129 } 130 131 static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, 132 const struct blk_mq_queue_data *bd) 133 { 134 struct nvme_ns *ns = hctx->queue->queuedata; 135 struct nvme_loop_queue *queue = hctx->driver_data; 136 struct request *req = bd->rq; 137 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 138 bool queue_ready = test_bit(NVME_LOOP_Q_LIVE, &queue->flags); 139 blk_status_t ret; 140 141 if (!nvme_check_ready(&queue->ctrl->ctrl, req, queue_ready)) 142 return nvme_fail_nonready_command(&queue->ctrl->ctrl, req); 143 144 ret = nvme_setup_cmd(ns, req); 145 if (ret) 146 return ret; 147 148 blk_mq_start_request(req); 149 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 150 iod->req.port = queue->ctrl->port; 151 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, 152 &queue->nvme_sq, &nvme_loop_ops)) 153 return BLK_STS_OK; 154 155 if (blk_rq_nr_phys_segments(req)) { 156 iod->sg_table.sgl = iod->first_sgl; 157 if (sg_alloc_table_chained(&iod->sg_table, 158 blk_rq_nr_phys_segments(req), 159 iod->sg_table.sgl, NVME_INLINE_SG_CNT)) { 160 nvme_cleanup_cmd(req); 161 return BLK_STS_RESOURCE; 162 } 163 164 iod->req.sg = iod->sg_table.sgl; 165 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); 166 iod->req.transfer_len = blk_rq_payload_bytes(req); 167 } 168 169 queue_work(nvmet_wq, &iod->work); 170 return BLK_STS_OK; 171 } 172 173 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg) 174 { 175 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); 176 struct nvme_loop_queue *queue = &ctrl->queues[0]; 177 struct nvme_loop_iod *iod = &ctrl->async_event_iod; 178 179 memset(&iod->cmd, 0, sizeof(iod->cmd)); 180 iod->cmd.common.opcode = nvme_admin_async_event; 181 iod->cmd.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 182 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 183 184 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, 185 &nvme_loop_ops)) { 186 dev_err(ctrl->ctrl.device, "failed async event work\n"); 187 return; 188 } 189 190 queue_work(nvmet_wq, &iod->work); 191 } 192 193 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, 194 struct nvme_loop_iod *iod, unsigned int queue_idx) 195 { 196 iod->req.cmd = &iod->cmd; 197 iod->req.cqe = &iod->cqe; 198 iod->queue = &ctrl->queues[queue_idx]; 199 INIT_WORK(&iod->work, nvme_loop_execute_work); 200 return 0; 201 } 202 203 static int nvme_loop_init_request(struct blk_mq_tag_set *set, 204 struct request *req, unsigned int hctx_idx, 205 unsigned int numa_node) 206 { 207 struct nvme_loop_ctrl *ctrl = set->driver_data; 208 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 209 210 nvme_req(req)->ctrl = &ctrl->ctrl; 211 nvme_req(req)->cmd = &iod->cmd; 212 return nvme_loop_init_iod(ctrl, blk_mq_rq_to_pdu(req), 213 (set == &ctrl->tag_set) ? hctx_idx + 1 : 0); 214 } 215 216 static struct lock_class_key loop_hctx_fq_lock_key; 217 218 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 219 unsigned int hctx_idx) 220 { 221 struct nvme_loop_ctrl *ctrl = data; 222 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; 223 224 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 225 226 /* 227 * flush_end_io() can be called recursively for us, so use our own 228 * lock class key for avoiding lockdep possible recursive locking, 229 * then we can remove the dynamically allocated lock class for each 230 * flush queue, that way may cause horrible boot delay. 231 */ 232 blk_mq_hctx_set_fq_lock_class(hctx, &loop_hctx_fq_lock_key); 233 234 hctx->driver_data = queue; 235 return 0; 236 } 237 238 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 239 unsigned int hctx_idx) 240 { 241 struct nvme_loop_ctrl *ctrl = data; 242 struct nvme_loop_queue *queue = &ctrl->queues[0]; 243 244 BUG_ON(hctx_idx != 0); 245 246 hctx->driver_data = queue; 247 return 0; 248 } 249 250 static const struct blk_mq_ops nvme_loop_mq_ops = { 251 .queue_rq = nvme_loop_queue_rq, 252 .complete = nvme_loop_complete_rq, 253 .init_request = nvme_loop_init_request, 254 .init_hctx = nvme_loop_init_hctx, 255 }; 256 257 static const struct blk_mq_ops nvme_loop_admin_mq_ops = { 258 .queue_rq = nvme_loop_queue_rq, 259 .complete = nvme_loop_complete_rq, 260 .init_request = nvme_loop_init_request, 261 .init_hctx = nvme_loop_init_admin_hctx, 262 }; 263 264 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) 265 { 266 if (!test_and_clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags)) 267 return; 268 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 269 blk_mq_destroy_queue(ctrl->ctrl.admin_q); 270 blk_mq_destroy_queue(ctrl->ctrl.fabrics_q); 271 blk_mq_free_tag_set(&ctrl->admin_tag_set); 272 } 273 274 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) 275 { 276 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 277 278 if (list_empty(&ctrl->list)) 279 goto free_ctrl; 280 281 mutex_lock(&nvme_loop_ctrl_mutex); 282 list_del(&ctrl->list); 283 mutex_unlock(&nvme_loop_ctrl_mutex); 284 285 if (nctrl->tagset) { 286 blk_mq_destroy_queue(ctrl->ctrl.connect_q); 287 blk_mq_free_tag_set(&ctrl->tag_set); 288 } 289 kfree(ctrl->queues); 290 nvmf_free_options(nctrl->opts); 291 free_ctrl: 292 kfree(ctrl); 293 } 294 295 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl) 296 { 297 int i; 298 299 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 300 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 301 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 302 } 303 ctrl->ctrl.queue_count = 1; 304 } 305 306 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl) 307 { 308 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 309 unsigned int nr_io_queues; 310 int ret, i; 311 312 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 313 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 314 if (ret || !nr_io_queues) 315 return ret; 316 317 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues); 318 319 for (i = 1; i <= nr_io_queues; i++) { 320 ctrl->queues[i].ctrl = ctrl; 321 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 322 if (ret) 323 goto out_destroy_queues; 324 325 ctrl->ctrl.queue_count++; 326 } 327 328 return 0; 329 330 out_destroy_queues: 331 nvme_loop_destroy_io_queues(ctrl); 332 return ret; 333 } 334 335 static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl) 336 { 337 int i, ret; 338 339 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 340 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 341 if (ret) 342 return ret; 343 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 344 } 345 346 return 0; 347 } 348 349 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) 350 { 351 int error; 352 353 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 354 ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; 355 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 356 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS; 357 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 358 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 359 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 360 ctrl->admin_tag_set.driver_data = ctrl; 361 ctrl->admin_tag_set.nr_hw_queues = 1; 362 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT; 363 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 364 365 ctrl->queues[0].ctrl = ctrl; 366 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); 367 if (error) 368 return error; 369 ctrl->ctrl.queue_count = 1; 370 371 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 372 if (error) 373 goto out_free_sq; 374 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 375 376 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 377 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 378 error = PTR_ERR(ctrl->ctrl.fabrics_q); 379 goto out_free_tagset; 380 } 381 382 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 383 if (IS_ERR(ctrl->ctrl.admin_q)) { 384 error = PTR_ERR(ctrl->ctrl.admin_q); 385 goto out_cleanup_fabrics_q; 386 } 387 /* reset stopped state for the fresh admin queue */ 388 clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->ctrl.flags); 389 390 error = nvmf_connect_admin_queue(&ctrl->ctrl); 391 if (error) 392 goto out_cleanup_queue; 393 394 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 395 396 error = nvme_enable_ctrl(&ctrl->ctrl); 397 if (error) 398 goto out_cleanup_queue; 399 400 ctrl->ctrl.max_hw_sectors = 401 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); 402 403 nvme_start_admin_queue(&ctrl->ctrl); 404 405 error = nvme_init_ctrl_finish(&ctrl->ctrl); 406 if (error) 407 goto out_cleanup_queue; 408 409 return 0; 410 411 out_cleanup_queue: 412 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 413 blk_mq_destroy_queue(ctrl->ctrl.admin_q); 414 out_cleanup_fabrics_q: 415 blk_mq_destroy_queue(ctrl->ctrl.fabrics_q); 416 out_free_tagset: 417 blk_mq_free_tag_set(&ctrl->admin_tag_set); 418 out_free_sq: 419 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 420 return error; 421 } 422 423 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) 424 { 425 if (ctrl->ctrl.queue_count > 1) { 426 nvme_stop_queues(&ctrl->ctrl); 427 nvme_cancel_tagset(&ctrl->ctrl); 428 nvme_loop_destroy_io_queues(ctrl); 429 } 430 431 nvme_stop_admin_queue(&ctrl->ctrl); 432 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 433 nvme_shutdown_ctrl(&ctrl->ctrl); 434 435 nvme_cancel_admin_tagset(&ctrl->ctrl); 436 nvme_loop_destroy_admin_queue(ctrl); 437 } 438 439 static void nvme_loop_delete_ctrl_host(struct nvme_ctrl *ctrl) 440 { 441 nvme_loop_shutdown_ctrl(to_loop_ctrl(ctrl)); 442 } 443 444 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) 445 { 446 struct nvme_loop_ctrl *ctrl; 447 448 mutex_lock(&nvme_loop_ctrl_mutex); 449 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { 450 if (ctrl->ctrl.cntlid == nctrl->cntlid) 451 nvme_delete_ctrl(&ctrl->ctrl); 452 } 453 mutex_unlock(&nvme_loop_ctrl_mutex); 454 } 455 456 static void nvme_loop_reset_ctrl_work(struct work_struct *work) 457 { 458 struct nvme_loop_ctrl *ctrl = 459 container_of(work, struct nvme_loop_ctrl, ctrl.reset_work); 460 int ret; 461 462 nvme_stop_ctrl(&ctrl->ctrl); 463 nvme_loop_shutdown_ctrl(ctrl); 464 465 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 466 if (ctrl->ctrl.state != NVME_CTRL_DELETING && 467 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO) 468 /* state change failure for non-deleted ctrl? */ 469 WARN_ON_ONCE(1); 470 return; 471 } 472 473 ret = nvme_loop_configure_admin_queue(ctrl); 474 if (ret) 475 goto out_disable; 476 477 ret = nvme_loop_init_io_queues(ctrl); 478 if (ret) 479 goto out_destroy_admin; 480 481 ret = nvme_loop_connect_io_queues(ctrl); 482 if (ret) 483 goto out_destroy_io; 484 485 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 486 ctrl->ctrl.queue_count - 1); 487 488 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) 489 WARN_ON_ONCE(1); 490 491 nvme_start_ctrl(&ctrl->ctrl); 492 493 return; 494 495 out_destroy_io: 496 nvme_loop_destroy_io_queues(ctrl); 497 out_destroy_admin: 498 nvme_loop_destroy_admin_queue(ctrl); 499 out_disable: 500 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 501 nvme_uninit_ctrl(&ctrl->ctrl); 502 } 503 504 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { 505 .name = "loop", 506 .module = THIS_MODULE, 507 .flags = NVME_F_FABRICS, 508 .reg_read32 = nvmf_reg_read32, 509 .reg_read64 = nvmf_reg_read64, 510 .reg_write32 = nvmf_reg_write32, 511 .free_ctrl = nvme_loop_free_ctrl, 512 .submit_async_event = nvme_loop_submit_async_event, 513 .delete_ctrl = nvme_loop_delete_ctrl_host, 514 .get_address = nvmf_get_address, 515 }; 516 517 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) 518 { 519 int ret; 520 521 ret = nvme_loop_init_io_queues(ctrl); 522 if (ret) 523 return ret; 524 525 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 526 ctrl->tag_set.ops = &nvme_loop_mq_ops; 527 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 528 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS; 529 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 530 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 531 ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 532 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 533 ctrl->tag_set.driver_data = ctrl; 534 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 535 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 536 ctrl->ctrl.tagset = &ctrl->tag_set; 537 538 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 539 if (ret) 540 goto out_destroy_queues; 541 542 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl)); 543 if (ret) 544 goto out_free_tagset; 545 546 ret = nvme_loop_connect_io_queues(ctrl); 547 if (ret) 548 goto out_cleanup_connect_q; 549 550 return 0; 551 552 out_cleanup_connect_q: 553 blk_mq_destroy_queue(ctrl->ctrl.connect_q); 554 out_free_tagset: 555 blk_mq_free_tag_set(&ctrl->tag_set); 556 out_destroy_queues: 557 nvme_loop_destroy_io_queues(ctrl); 558 return ret; 559 } 560 561 static struct nvmet_port *nvme_loop_find_port(struct nvme_ctrl *ctrl) 562 { 563 struct nvmet_port *p, *found = NULL; 564 565 mutex_lock(&nvme_loop_ports_mutex); 566 list_for_each_entry(p, &nvme_loop_ports, entry) { 567 /* if no transport address is specified use the first port */ 568 if ((ctrl->opts->mask & NVMF_OPT_TRADDR) && 569 strcmp(ctrl->opts->traddr, p->disc_addr.traddr)) 570 continue; 571 found = p; 572 break; 573 } 574 mutex_unlock(&nvme_loop_ports_mutex); 575 return found; 576 } 577 578 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, 579 struct nvmf_ctrl_options *opts) 580 { 581 struct nvme_loop_ctrl *ctrl; 582 int ret; 583 584 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 585 if (!ctrl) 586 return ERR_PTR(-ENOMEM); 587 ctrl->ctrl.opts = opts; 588 INIT_LIST_HEAD(&ctrl->list); 589 590 INIT_WORK(&ctrl->ctrl.reset_work, nvme_loop_reset_ctrl_work); 591 592 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 593 0 /* no quirks, we're perfect! */); 594 if (ret) { 595 kfree(ctrl); 596 goto out; 597 } 598 599 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 600 WARN_ON_ONCE(1); 601 602 ret = -ENOMEM; 603 604 ctrl->ctrl.sqsize = opts->queue_size - 1; 605 ctrl->ctrl.kato = opts->kato; 606 ctrl->port = nvme_loop_find_port(&ctrl->ctrl); 607 608 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), 609 GFP_KERNEL); 610 if (!ctrl->queues) 611 goto out_uninit_ctrl; 612 613 ret = nvme_loop_configure_admin_queue(ctrl); 614 if (ret) 615 goto out_free_queues; 616 617 if (opts->queue_size > ctrl->ctrl.maxcmd) { 618 /* warn if maxcmd is lower than queue_size */ 619 dev_warn(ctrl->ctrl.device, 620 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 621 opts->queue_size, ctrl->ctrl.maxcmd); 622 opts->queue_size = ctrl->ctrl.maxcmd; 623 } 624 625 if (opts->nr_io_queues) { 626 ret = nvme_loop_create_io_queues(ctrl); 627 if (ret) 628 goto out_remove_admin_queue; 629 } 630 631 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); 632 633 dev_info(ctrl->ctrl.device, 634 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); 635 636 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) 637 WARN_ON_ONCE(1); 638 639 mutex_lock(&nvme_loop_ctrl_mutex); 640 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); 641 mutex_unlock(&nvme_loop_ctrl_mutex); 642 643 nvme_start_ctrl(&ctrl->ctrl); 644 645 return &ctrl->ctrl; 646 647 out_remove_admin_queue: 648 nvme_loop_destroy_admin_queue(ctrl); 649 out_free_queues: 650 kfree(ctrl->queues); 651 out_uninit_ctrl: 652 nvme_uninit_ctrl(&ctrl->ctrl); 653 nvme_put_ctrl(&ctrl->ctrl); 654 out: 655 if (ret > 0) 656 ret = -EIO; 657 return ERR_PTR(ret); 658 } 659 660 static int nvme_loop_add_port(struct nvmet_port *port) 661 { 662 mutex_lock(&nvme_loop_ports_mutex); 663 list_add_tail(&port->entry, &nvme_loop_ports); 664 mutex_unlock(&nvme_loop_ports_mutex); 665 return 0; 666 } 667 668 static void nvme_loop_remove_port(struct nvmet_port *port) 669 { 670 mutex_lock(&nvme_loop_ports_mutex); 671 list_del_init(&port->entry); 672 mutex_unlock(&nvme_loop_ports_mutex); 673 674 /* 675 * Ensure any ctrls that are in the process of being 676 * deleted are in fact deleted before we return 677 * and free the port. This is to prevent active 678 * ctrls from using a port after it's freed. 679 */ 680 flush_workqueue(nvme_delete_wq); 681 } 682 683 static const struct nvmet_fabrics_ops nvme_loop_ops = { 684 .owner = THIS_MODULE, 685 .type = NVMF_TRTYPE_LOOP, 686 .add_port = nvme_loop_add_port, 687 .remove_port = nvme_loop_remove_port, 688 .queue_response = nvme_loop_queue_response, 689 .delete_ctrl = nvme_loop_delete_ctrl, 690 }; 691 692 static struct nvmf_transport_ops nvme_loop_transport = { 693 .name = "loop", 694 .module = THIS_MODULE, 695 .create_ctrl = nvme_loop_create_ctrl, 696 .allowed_opts = NVMF_OPT_TRADDR, 697 }; 698 699 static int __init nvme_loop_init_module(void) 700 { 701 int ret; 702 703 ret = nvmet_register_transport(&nvme_loop_ops); 704 if (ret) 705 return ret; 706 707 ret = nvmf_register_transport(&nvme_loop_transport); 708 if (ret) 709 nvmet_unregister_transport(&nvme_loop_ops); 710 711 return ret; 712 } 713 714 static void __exit nvme_loop_cleanup_module(void) 715 { 716 struct nvme_loop_ctrl *ctrl, *next; 717 718 nvmf_unregister_transport(&nvme_loop_transport); 719 nvmet_unregister_transport(&nvme_loop_ops); 720 721 mutex_lock(&nvme_loop_ctrl_mutex); 722 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) 723 nvme_delete_ctrl(&ctrl->ctrl); 724 mutex_unlock(&nvme_loop_ctrl_mutex); 725 726 flush_workqueue(nvme_delete_wq); 727 } 728 729 module_init(nvme_loop_init_module); 730 module_exit(nvme_loop_cleanup_module); 731 732 MODULE_LICENSE("GPL v2"); 733 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */ 734