1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics loopback device. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/scatterlist.h> 8 #include <linux/blk-mq.h> 9 #include <linux/nvme.h> 10 #include <linux/module.h> 11 #include <linux/parser.h> 12 #include "nvmet.h" 13 #include "../host/nvme.h" 14 #include "../host/fabrics.h" 15 16 #define NVME_LOOP_MAX_SEGMENTS 256 17 18 struct nvme_loop_iod { 19 struct nvme_request nvme_req; 20 struct nvme_command cmd; 21 struct nvme_completion cqe; 22 struct nvmet_req req; 23 struct nvme_loop_queue *queue; 24 struct work_struct work; 25 struct sg_table sg_table; 26 struct scatterlist first_sgl[]; 27 }; 28 29 struct nvme_loop_ctrl { 30 struct nvme_loop_queue *queues; 31 32 struct blk_mq_tag_set admin_tag_set; 33 34 struct list_head list; 35 struct blk_mq_tag_set tag_set; 36 struct nvme_loop_iod async_event_iod; 37 struct nvme_ctrl ctrl; 38 39 struct nvmet_port *port; 40 }; 41 42 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) 43 { 44 return container_of(ctrl, struct nvme_loop_ctrl, ctrl); 45 } 46 47 enum nvme_loop_queue_flags { 48 NVME_LOOP_Q_LIVE = 0, 49 }; 50 51 struct nvme_loop_queue { 52 struct nvmet_cq nvme_cq; 53 struct nvmet_sq nvme_sq; 54 struct nvme_loop_ctrl *ctrl; 55 unsigned long flags; 56 }; 57 58 static LIST_HEAD(nvme_loop_ports); 59 static DEFINE_MUTEX(nvme_loop_ports_mutex); 60 61 static LIST_HEAD(nvme_loop_ctrl_list); 62 static DEFINE_MUTEX(nvme_loop_ctrl_mutex); 63 64 static void nvme_loop_queue_response(struct nvmet_req *nvme_req); 65 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); 66 67 static const struct nvmet_fabrics_ops nvme_loop_ops; 68 69 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) 70 { 71 return queue - queue->ctrl->queues; 72 } 73 74 static void nvme_loop_complete_rq(struct request *req) 75 { 76 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 77 78 sg_free_table_chained(&iod->sg_table, NVME_INLINE_SG_CNT); 79 nvme_complete_rq(req); 80 } 81 82 static struct blk_mq_tags *nvme_loop_tagset(struct nvme_loop_queue *queue) 83 { 84 u32 queue_idx = nvme_loop_queue_idx(queue); 85 86 if (queue_idx == 0) 87 return queue->ctrl->admin_tag_set.tags[queue_idx]; 88 return queue->ctrl->tag_set.tags[queue_idx - 1]; 89 } 90 91 static void nvme_loop_queue_response(struct nvmet_req *req) 92 { 93 struct nvme_loop_queue *queue = 94 container_of(req->sq, struct nvme_loop_queue, nvme_sq); 95 struct nvme_completion *cqe = req->cqe; 96 97 /* 98 * AEN requests are special as they don't time out and can 99 * survive any kind of queue freeze and often don't respond to 100 * aborts. We don't even bother to allocate a struct request 101 * for them but rather special case them here. 102 */ 103 if (unlikely(nvme_is_aen_req(nvme_loop_queue_idx(queue), 104 cqe->command_id))) { 105 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 106 &cqe->result); 107 } else { 108 struct request *rq; 109 110 rq = nvme_find_rq(nvme_loop_tagset(queue), cqe->command_id); 111 if (!rq) { 112 dev_err(queue->ctrl->ctrl.device, 113 "got bad command_id %#x on queue %d\n", 114 cqe->command_id, nvme_loop_queue_idx(queue)); 115 return; 116 } 117 118 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 119 nvme_loop_complete_rq(rq); 120 } 121 } 122 123 static void nvme_loop_execute_work(struct work_struct *work) 124 { 125 struct nvme_loop_iod *iod = 126 container_of(work, struct nvme_loop_iod, work); 127 128 iod->req.execute(&iod->req); 129 } 130 131 static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, 132 const struct blk_mq_queue_data *bd) 133 { 134 struct nvme_ns *ns = hctx->queue->queuedata; 135 struct nvme_loop_queue *queue = hctx->driver_data; 136 struct request *req = bd->rq; 137 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 138 bool queue_ready = test_bit(NVME_LOOP_Q_LIVE, &queue->flags); 139 blk_status_t ret; 140 141 if (!nvme_check_ready(&queue->ctrl->ctrl, req, queue_ready)) 142 return nvme_fail_nonready_command(&queue->ctrl->ctrl, req); 143 144 ret = nvme_setup_cmd(ns, req); 145 if (ret) 146 return ret; 147 148 blk_mq_start_request(req); 149 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 150 iod->req.port = queue->ctrl->port; 151 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, 152 &queue->nvme_sq, &nvme_loop_ops)) 153 return BLK_STS_OK; 154 155 if (blk_rq_nr_phys_segments(req)) { 156 iod->sg_table.sgl = iod->first_sgl; 157 if (sg_alloc_table_chained(&iod->sg_table, 158 blk_rq_nr_phys_segments(req), 159 iod->sg_table.sgl, NVME_INLINE_SG_CNT)) { 160 nvme_cleanup_cmd(req); 161 return BLK_STS_RESOURCE; 162 } 163 164 iod->req.sg = iod->sg_table.sgl; 165 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); 166 iod->req.transfer_len = blk_rq_payload_bytes(req); 167 } 168 169 queue_work(nvmet_wq, &iod->work); 170 return BLK_STS_OK; 171 } 172 173 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg) 174 { 175 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); 176 struct nvme_loop_queue *queue = &ctrl->queues[0]; 177 struct nvme_loop_iod *iod = &ctrl->async_event_iod; 178 179 memset(&iod->cmd, 0, sizeof(iod->cmd)); 180 iod->cmd.common.opcode = nvme_admin_async_event; 181 iod->cmd.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 182 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 183 184 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, 185 &nvme_loop_ops)) { 186 dev_err(ctrl->ctrl.device, "failed async event work\n"); 187 return; 188 } 189 190 queue_work(nvmet_wq, &iod->work); 191 } 192 193 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, 194 struct nvme_loop_iod *iod, unsigned int queue_idx) 195 { 196 iod->req.cmd = &iod->cmd; 197 iod->req.cqe = &iod->cqe; 198 iod->queue = &ctrl->queues[queue_idx]; 199 INIT_WORK(&iod->work, nvme_loop_execute_work); 200 return 0; 201 } 202 203 static int nvme_loop_init_request(struct blk_mq_tag_set *set, 204 struct request *req, unsigned int hctx_idx, 205 unsigned int numa_node) 206 { 207 struct nvme_loop_ctrl *ctrl = set->driver_data; 208 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 209 210 nvme_req(req)->ctrl = &ctrl->ctrl; 211 nvme_req(req)->cmd = &iod->cmd; 212 return nvme_loop_init_iod(ctrl, blk_mq_rq_to_pdu(req), 213 (set == &ctrl->tag_set) ? hctx_idx + 1 : 0); 214 } 215 216 static struct lock_class_key loop_hctx_fq_lock_key; 217 218 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 219 unsigned int hctx_idx) 220 { 221 struct nvme_loop_ctrl *ctrl = data; 222 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; 223 224 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 225 226 /* 227 * flush_end_io() can be called recursively for us, so use our own 228 * lock class key for avoiding lockdep possible recursive locking, 229 * then we can remove the dynamically allocated lock class for each 230 * flush queue, that way may cause horrible boot delay. 231 */ 232 blk_mq_hctx_set_fq_lock_class(hctx, &loop_hctx_fq_lock_key); 233 234 hctx->driver_data = queue; 235 return 0; 236 } 237 238 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 239 unsigned int hctx_idx) 240 { 241 struct nvme_loop_ctrl *ctrl = data; 242 struct nvme_loop_queue *queue = &ctrl->queues[0]; 243 244 BUG_ON(hctx_idx != 0); 245 246 hctx->driver_data = queue; 247 return 0; 248 } 249 250 static const struct blk_mq_ops nvme_loop_mq_ops = { 251 .queue_rq = nvme_loop_queue_rq, 252 .complete = nvme_loop_complete_rq, 253 .init_request = nvme_loop_init_request, 254 .init_hctx = nvme_loop_init_hctx, 255 }; 256 257 static const struct blk_mq_ops nvme_loop_admin_mq_ops = { 258 .queue_rq = nvme_loop_queue_rq, 259 .complete = nvme_loop_complete_rq, 260 .init_request = nvme_loop_init_request, 261 .init_hctx = nvme_loop_init_admin_hctx, 262 }; 263 264 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) 265 { 266 if (!test_and_clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags)) 267 return; 268 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 269 blk_cleanup_queue(ctrl->ctrl.admin_q); 270 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 271 blk_mq_free_tag_set(&ctrl->admin_tag_set); 272 } 273 274 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) 275 { 276 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 277 278 if (list_empty(&ctrl->list)) 279 goto free_ctrl; 280 281 mutex_lock(&nvme_loop_ctrl_mutex); 282 list_del(&ctrl->list); 283 mutex_unlock(&nvme_loop_ctrl_mutex); 284 285 if (nctrl->tagset) { 286 blk_cleanup_queue(ctrl->ctrl.connect_q); 287 blk_mq_free_tag_set(&ctrl->tag_set); 288 } 289 kfree(ctrl->queues); 290 nvmf_free_options(nctrl->opts); 291 free_ctrl: 292 kfree(ctrl); 293 } 294 295 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl) 296 { 297 int i; 298 299 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 300 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 301 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 302 } 303 ctrl->ctrl.queue_count = 1; 304 } 305 306 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl) 307 { 308 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 309 unsigned int nr_io_queues; 310 int ret, i; 311 312 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 313 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 314 if (ret || !nr_io_queues) 315 return ret; 316 317 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues); 318 319 for (i = 1; i <= nr_io_queues; i++) { 320 ctrl->queues[i].ctrl = ctrl; 321 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 322 if (ret) 323 goto out_destroy_queues; 324 325 ctrl->ctrl.queue_count++; 326 } 327 328 return 0; 329 330 out_destroy_queues: 331 nvme_loop_destroy_io_queues(ctrl); 332 return ret; 333 } 334 335 static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl) 336 { 337 int i, ret; 338 339 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 340 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 341 if (ret) 342 return ret; 343 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 344 } 345 346 return 0; 347 } 348 349 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) 350 { 351 int error; 352 353 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 354 ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; 355 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 356 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS; 357 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 358 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 359 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 360 ctrl->admin_tag_set.driver_data = ctrl; 361 ctrl->admin_tag_set.nr_hw_queues = 1; 362 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT; 363 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 364 365 ctrl->queues[0].ctrl = ctrl; 366 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); 367 if (error) 368 return error; 369 ctrl->ctrl.queue_count = 1; 370 371 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 372 if (error) 373 goto out_free_sq; 374 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 375 376 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 377 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 378 error = PTR_ERR(ctrl->ctrl.fabrics_q); 379 goto out_free_tagset; 380 } 381 382 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 383 if (IS_ERR(ctrl->ctrl.admin_q)) { 384 error = PTR_ERR(ctrl->ctrl.admin_q); 385 goto out_cleanup_fabrics_q; 386 } 387 /* reset stopped state for the fresh admin queue */ 388 clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->ctrl.flags); 389 390 error = nvmf_connect_admin_queue(&ctrl->ctrl); 391 if (error) 392 goto out_cleanup_queue; 393 394 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 395 396 error = nvme_enable_ctrl(&ctrl->ctrl); 397 if (error) 398 goto out_cleanup_queue; 399 400 ctrl->ctrl.max_hw_sectors = 401 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); 402 403 nvme_start_admin_queue(&ctrl->ctrl); 404 405 error = nvme_init_ctrl_finish(&ctrl->ctrl); 406 if (error) 407 goto out_cleanup_queue; 408 409 return 0; 410 411 out_cleanup_queue: 412 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 413 blk_cleanup_queue(ctrl->ctrl.admin_q); 414 out_cleanup_fabrics_q: 415 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 416 out_free_tagset: 417 blk_mq_free_tag_set(&ctrl->admin_tag_set); 418 out_free_sq: 419 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 420 return error; 421 } 422 423 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) 424 { 425 if (ctrl->ctrl.queue_count > 1) { 426 nvme_stop_queues(&ctrl->ctrl); 427 blk_mq_tagset_busy_iter(&ctrl->tag_set, 428 nvme_cancel_request, &ctrl->ctrl); 429 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 430 nvme_loop_destroy_io_queues(ctrl); 431 } 432 433 nvme_stop_admin_queue(&ctrl->ctrl); 434 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 435 nvme_shutdown_ctrl(&ctrl->ctrl); 436 437 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 438 nvme_cancel_request, &ctrl->ctrl); 439 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 440 nvme_loop_destroy_admin_queue(ctrl); 441 } 442 443 static void nvme_loop_delete_ctrl_host(struct nvme_ctrl *ctrl) 444 { 445 nvme_loop_shutdown_ctrl(to_loop_ctrl(ctrl)); 446 } 447 448 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) 449 { 450 struct nvme_loop_ctrl *ctrl; 451 452 mutex_lock(&nvme_loop_ctrl_mutex); 453 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { 454 if (ctrl->ctrl.cntlid == nctrl->cntlid) 455 nvme_delete_ctrl(&ctrl->ctrl); 456 } 457 mutex_unlock(&nvme_loop_ctrl_mutex); 458 } 459 460 static void nvme_loop_reset_ctrl_work(struct work_struct *work) 461 { 462 struct nvme_loop_ctrl *ctrl = 463 container_of(work, struct nvme_loop_ctrl, ctrl.reset_work); 464 int ret; 465 466 nvme_stop_ctrl(&ctrl->ctrl); 467 nvme_loop_shutdown_ctrl(ctrl); 468 469 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 470 if (ctrl->ctrl.state != NVME_CTRL_DELETING && 471 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO) 472 /* state change failure for non-deleted ctrl? */ 473 WARN_ON_ONCE(1); 474 return; 475 } 476 477 ret = nvme_loop_configure_admin_queue(ctrl); 478 if (ret) 479 goto out_disable; 480 481 ret = nvme_loop_init_io_queues(ctrl); 482 if (ret) 483 goto out_destroy_admin; 484 485 ret = nvme_loop_connect_io_queues(ctrl); 486 if (ret) 487 goto out_destroy_io; 488 489 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 490 ctrl->ctrl.queue_count - 1); 491 492 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) 493 WARN_ON_ONCE(1); 494 495 nvme_start_ctrl(&ctrl->ctrl); 496 497 return; 498 499 out_destroy_io: 500 nvme_loop_destroy_io_queues(ctrl); 501 out_destroy_admin: 502 nvme_loop_destroy_admin_queue(ctrl); 503 out_disable: 504 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 505 nvme_uninit_ctrl(&ctrl->ctrl); 506 } 507 508 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { 509 .name = "loop", 510 .module = THIS_MODULE, 511 .flags = NVME_F_FABRICS, 512 .reg_read32 = nvmf_reg_read32, 513 .reg_read64 = nvmf_reg_read64, 514 .reg_write32 = nvmf_reg_write32, 515 .free_ctrl = nvme_loop_free_ctrl, 516 .submit_async_event = nvme_loop_submit_async_event, 517 .delete_ctrl = nvme_loop_delete_ctrl_host, 518 .get_address = nvmf_get_address, 519 }; 520 521 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) 522 { 523 int ret; 524 525 ret = nvme_loop_init_io_queues(ctrl); 526 if (ret) 527 return ret; 528 529 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 530 ctrl->tag_set.ops = &nvme_loop_mq_ops; 531 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 532 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS; 533 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 534 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 535 ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 536 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 537 ctrl->tag_set.driver_data = ctrl; 538 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 539 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 540 ctrl->ctrl.tagset = &ctrl->tag_set; 541 542 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 543 if (ret) 544 goto out_destroy_queues; 545 546 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl)); 547 if (ret) 548 goto out_free_tagset; 549 550 ret = nvme_loop_connect_io_queues(ctrl); 551 if (ret) 552 goto out_cleanup_connect_q; 553 554 return 0; 555 556 out_cleanup_connect_q: 557 blk_cleanup_queue(ctrl->ctrl.connect_q); 558 out_free_tagset: 559 blk_mq_free_tag_set(&ctrl->tag_set); 560 out_destroy_queues: 561 nvme_loop_destroy_io_queues(ctrl); 562 return ret; 563 } 564 565 static struct nvmet_port *nvme_loop_find_port(struct nvme_ctrl *ctrl) 566 { 567 struct nvmet_port *p, *found = NULL; 568 569 mutex_lock(&nvme_loop_ports_mutex); 570 list_for_each_entry(p, &nvme_loop_ports, entry) { 571 /* if no transport address is specified use the first port */ 572 if ((ctrl->opts->mask & NVMF_OPT_TRADDR) && 573 strcmp(ctrl->opts->traddr, p->disc_addr.traddr)) 574 continue; 575 found = p; 576 break; 577 } 578 mutex_unlock(&nvme_loop_ports_mutex); 579 return found; 580 } 581 582 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, 583 struct nvmf_ctrl_options *opts) 584 { 585 struct nvme_loop_ctrl *ctrl; 586 int ret; 587 588 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 589 if (!ctrl) 590 return ERR_PTR(-ENOMEM); 591 ctrl->ctrl.opts = opts; 592 INIT_LIST_HEAD(&ctrl->list); 593 594 INIT_WORK(&ctrl->ctrl.reset_work, nvme_loop_reset_ctrl_work); 595 596 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 597 0 /* no quirks, we're perfect! */); 598 if (ret) { 599 kfree(ctrl); 600 goto out; 601 } 602 603 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 604 WARN_ON_ONCE(1); 605 606 ret = -ENOMEM; 607 608 ctrl->ctrl.sqsize = opts->queue_size - 1; 609 ctrl->ctrl.kato = opts->kato; 610 ctrl->port = nvme_loop_find_port(&ctrl->ctrl); 611 612 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), 613 GFP_KERNEL); 614 if (!ctrl->queues) 615 goto out_uninit_ctrl; 616 617 ret = nvme_loop_configure_admin_queue(ctrl); 618 if (ret) 619 goto out_free_queues; 620 621 if (opts->queue_size > ctrl->ctrl.maxcmd) { 622 /* warn if maxcmd is lower than queue_size */ 623 dev_warn(ctrl->ctrl.device, 624 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 625 opts->queue_size, ctrl->ctrl.maxcmd); 626 opts->queue_size = ctrl->ctrl.maxcmd; 627 } 628 629 if (opts->nr_io_queues) { 630 ret = nvme_loop_create_io_queues(ctrl); 631 if (ret) 632 goto out_remove_admin_queue; 633 } 634 635 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); 636 637 dev_info(ctrl->ctrl.device, 638 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); 639 640 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) 641 WARN_ON_ONCE(1); 642 643 mutex_lock(&nvme_loop_ctrl_mutex); 644 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); 645 mutex_unlock(&nvme_loop_ctrl_mutex); 646 647 nvme_start_ctrl(&ctrl->ctrl); 648 649 return &ctrl->ctrl; 650 651 out_remove_admin_queue: 652 nvme_loop_destroy_admin_queue(ctrl); 653 out_free_queues: 654 kfree(ctrl->queues); 655 out_uninit_ctrl: 656 nvme_uninit_ctrl(&ctrl->ctrl); 657 nvme_put_ctrl(&ctrl->ctrl); 658 out: 659 if (ret > 0) 660 ret = -EIO; 661 return ERR_PTR(ret); 662 } 663 664 static int nvme_loop_add_port(struct nvmet_port *port) 665 { 666 mutex_lock(&nvme_loop_ports_mutex); 667 list_add_tail(&port->entry, &nvme_loop_ports); 668 mutex_unlock(&nvme_loop_ports_mutex); 669 return 0; 670 } 671 672 static void nvme_loop_remove_port(struct nvmet_port *port) 673 { 674 mutex_lock(&nvme_loop_ports_mutex); 675 list_del_init(&port->entry); 676 mutex_unlock(&nvme_loop_ports_mutex); 677 678 /* 679 * Ensure any ctrls that are in the process of being 680 * deleted are in fact deleted before we return 681 * and free the port. This is to prevent active 682 * ctrls from using a port after it's freed. 683 */ 684 flush_workqueue(nvme_delete_wq); 685 } 686 687 static const struct nvmet_fabrics_ops nvme_loop_ops = { 688 .owner = THIS_MODULE, 689 .type = NVMF_TRTYPE_LOOP, 690 .add_port = nvme_loop_add_port, 691 .remove_port = nvme_loop_remove_port, 692 .queue_response = nvme_loop_queue_response, 693 .delete_ctrl = nvme_loop_delete_ctrl, 694 }; 695 696 static struct nvmf_transport_ops nvme_loop_transport = { 697 .name = "loop", 698 .module = THIS_MODULE, 699 .create_ctrl = nvme_loop_create_ctrl, 700 .allowed_opts = NVMF_OPT_TRADDR, 701 }; 702 703 static int __init nvme_loop_init_module(void) 704 { 705 int ret; 706 707 ret = nvmet_register_transport(&nvme_loop_ops); 708 if (ret) 709 return ret; 710 711 ret = nvmf_register_transport(&nvme_loop_transport); 712 if (ret) 713 nvmet_unregister_transport(&nvme_loop_ops); 714 715 return ret; 716 } 717 718 static void __exit nvme_loop_cleanup_module(void) 719 { 720 struct nvme_loop_ctrl *ctrl, *next; 721 722 nvmf_unregister_transport(&nvme_loop_transport); 723 nvmet_unregister_transport(&nvme_loop_ops); 724 725 mutex_lock(&nvme_loop_ctrl_mutex); 726 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) 727 nvme_delete_ctrl(&ctrl->ctrl); 728 mutex_unlock(&nvme_loop_ctrl_mutex); 729 730 flush_workqueue(nvme_delete_wq); 731 } 732 733 module_init(nvme_loop_init_module); 734 module_exit(nvme_loop_cleanup_module); 735 736 MODULE_LICENSE("GPL v2"); 737 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */ 738