1 /* 2 * NVMe over Fabrics loopback device. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/scatterlist.h> 16 #include <linux/delay.h> 17 #include <linux/blk-mq.h> 18 #include <linux/nvme.h> 19 #include <linux/module.h> 20 #include <linux/parser.h> 21 #include <linux/t10-pi.h> 22 #include "nvmet.h" 23 #include "../host/nvme.h" 24 #include "../host/fabrics.h" 25 26 #define NVME_LOOP_AQ_DEPTH 256 27 28 #define NVME_LOOP_MAX_SEGMENTS 256 29 30 /* 31 * We handle AEN commands ourselves and don't even let the 32 * block layer know about them. 33 */ 34 #define NVME_LOOP_NR_AEN_COMMANDS 1 35 #define NVME_LOOP_AQ_BLKMQ_DEPTH \ 36 (NVME_LOOP_AQ_DEPTH - NVME_LOOP_NR_AEN_COMMANDS) 37 38 struct nvme_loop_iod { 39 struct nvme_request nvme_req; 40 struct nvme_command cmd; 41 struct nvme_completion rsp; 42 struct nvmet_req req; 43 struct nvme_loop_queue *queue; 44 struct work_struct work; 45 struct sg_table sg_table; 46 struct scatterlist first_sgl[]; 47 }; 48 49 struct nvme_loop_ctrl { 50 spinlock_t lock; 51 struct nvme_loop_queue *queues; 52 u32 queue_count; 53 54 struct blk_mq_tag_set admin_tag_set; 55 56 struct list_head list; 57 u64 cap; 58 struct blk_mq_tag_set tag_set; 59 struct nvme_loop_iod async_event_iod; 60 struct nvme_ctrl ctrl; 61 62 struct nvmet_ctrl *target_ctrl; 63 struct work_struct delete_work; 64 struct work_struct reset_work; 65 }; 66 67 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) 68 { 69 return container_of(ctrl, struct nvme_loop_ctrl, ctrl); 70 } 71 72 struct nvme_loop_queue { 73 struct nvmet_cq nvme_cq; 74 struct nvmet_sq nvme_sq; 75 struct nvme_loop_ctrl *ctrl; 76 }; 77 78 static struct nvmet_port *nvmet_loop_port; 79 80 static LIST_HEAD(nvme_loop_ctrl_list); 81 static DEFINE_MUTEX(nvme_loop_ctrl_mutex); 82 83 static void nvme_loop_queue_response(struct nvmet_req *nvme_req); 84 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); 85 86 static struct nvmet_fabrics_ops nvme_loop_ops; 87 88 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) 89 { 90 return queue - queue->ctrl->queues; 91 } 92 93 static void nvme_loop_complete_rq(struct request *req) 94 { 95 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 96 int error = 0; 97 98 nvme_cleanup_cmd(req); 99 sg_free_table_chained(&iod->sg_table, true); 100 101 if (unlikely(req->errors)) { 102 if (nvme_req_needs_retry(req, req->errors)) { 103 nvme_requeue_req(req); 104 return; 105 } 106 107 if (blk_rq_is_passthrough(req)) 108 error = req->errors; 109 else 110 error = nvme_error_status(req->errors); 111 } 112 113 blk_mq_end_request(req, error); 114 } 115 116 static void nvme_loop_queue_response(struct nvmet_req *req) 117 { 118 struct nvme_loop_iod *iod = 119 container_of(req, struct nvme_loop_iod, req); 120 struct nvme_completion *cqe = &iod->rsp; 121 122 /* 123 * AEN requests are special as they don't time out and can 124 * survive any kind of queue freeze and often don't respond to 125 * aborts. We don't even bother to allocate a struct request 126 * for them but rather special case them here. 127 */ 128 if (unlikely(nvme_loop_queue_idx(iod->queue) == 0 && 129 cqe->command_id >= NVME_LOOP_AQ_BLKMQ_DEPTH)) { 130 nvme_complete_async_event(&iod->queue->ctrl->ctrl, cqe->status, 131 &cqe->result); 132 } else { 133 struct request *rq = blk_mq_rq_from_pdu(iod); 134 135 iod->nvme_req.result = cqe->result; 136 blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); 137 } 138 } 139 140 static void nvme_loop_execute_work(struct work_struct *work) 141 { 142 struct nvme_loop_iod *iod = 143 container_of(work, struct nvme_loop_iod, work); 144 145 iod->req.execute(&iod->req); 146 } 147 148 static enum blk_eh_timer_return 149 nvme_loop_timeout(struct request *rq, bool reserved) 150 { 151 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(rq); 152 153 /* queue error recovery */ 154 schedule_work(&iod->queue->ctrl->reset_work); 155 156 /* fail with DNR on admin cmd timeout */ 157 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 158 159 return BLK_EH_HANDLED; 160 } 161 162 static int nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, 163 const struct blk_mq_queue_data *bd) 164 { 165 struct nvme_ns *ns = hctx->queue->queuedata; 166 struct nvme_loop_queue *queue = hctx->driver_data; 167 struct request *req = bd->rq; 168 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 169 int ret; 170 171 ret = nvme_setup_cmd(ns, req, &iod->cmd); 172 if (ret != BLK_MQ_RQ_QUEUE_OK) 173 return ret; 174 175 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 176 iod->req.port = nvmet_loop_port; 177 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, 178 &queue->nvme_sq, &nvme_loop_ops)) { 179 nvme_cleanup_cmd(req); 180 blk_mq_start_request(req); 181 nvme_loop_queue_response(&iod->req); 182 return BLK_MQ_RQ_QUEUE_OK; 183 } 184 185 if (blk_rq_bytes(req)) { 186 iod->sg_table.sgl = iod->first_sgl; 187 ret = sg_alloc_table_chained(&iod->sg_table, 188 blk_rq_nr_phys_segments(req), 189 iod->sg_table.sgl); 190 if (ret) 191 return BLK_MQ_RQ_QUEUE_BUSY; 192 193 iod->req.sg = iod->sg_table.sgl; 194 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); 195 } 196 197 blk_mq_start_request(req); 198 199 schedule_work(&iod->work); 200 return BLK_MQ_RQ_QUEUE_OK; 201 } 202 203 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 204 { 205 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); 206 struct nvme_loop_queue *queue = &ctrl->queues[0]; 207 struct nvme_loop_iod *iod = &ctrl->async_event_iod; 208 209 memset(&iod->cmd, 0, sizeof(iod->cmd)); 210 iod->cmd.common.opcode = nvme_admin_async_event; 211 iod->cmd.common.command_id = NVME_LOOP_AQ_BLKMQ_DEPTH; 212 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 213 214 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, 215 &nvme_loop_ops)) { 216 dev_err(ctrl->ctrl.device, "failed async event work\n"); 217 return; 218 } 219 220 schedule_work(&iod->work); 221 } 222 223 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, 224 struct nvme_loop_iod *iod, unsigned int queue_idx) 225 { 226 iod->req.cmd = &iod->cmd; 227 iod->req.rsp = &iod->rsp; 228 iod->queue = &ctrl->queues[queue_idx]; 229 INIT_WORK(&iod->work, nvme_loop_execute_work); 230 return 0; 231 } 232 233 static int nvme_loop_init_request(void *data, struct request *req, 234 unsigned int hctx_idx, unsigned int rq_idx, 235 unsigned int numa_node) 236 { 237 return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), hctx_idx + 1); 238 } 239 240 static int nvme_loop_init_admin_request(void *data, struct request *req, 241 unsigned int hctx_idx, unsigned int rq_idx, 242 unsigned int numa_node) 243 { 244 return nvme_loop_init_iod(data, blk_mq_rq_to_pdu(req), 0); 245 } 246 247 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 248 unsigned int hctx_idx) 249 { 250 struct nvme_loop_ctrl *ctrl = data; 251 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; 252 253 BUG_ON(hctx_idx >= ctrl->queue_count); 254 255 hctx->driver_data = queue; 256 return 0; 257 } 258 259 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 260 unsigned int hctx_idx) 261 { 262 struct nvme_loop_ctrl *ctrl = data; 263 struct nvme_loop_queue *queue = &ctrl->queues[0]; 264 265 BUG_ON(hctx_idx != 0); 266 267 hctx->driver_data = queue; 268 return 0; 269 } 270 271 static struct blk_mq_ops nvme_loop_mq_ops = { 272 .queue_rq = nvme_loop_queue_rq, 273 .complete = nvme_loop_complete_rq, 274 .init_request = nvme_loop_init_request, 275 .init_hctx = nvme_loop_init_hctx, 276 .timeout = nvme_loop_timeout, 277 }; 278 279 static struct blk_mq_ops nvme_loop_admin_mq_ops = { 280 .queue_rq = nvme_loop_queue_rq, 281 .complete = nvme_loop_complete_rq, 282 .init_request = nvme_loop_init_admin_request, 283 .init_hctx = nvme_loop_init_admin_hctx, 284 .timeout = nvme_loop_timeout, 285 }; 286 287 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) 288 { 289 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 290 blk_cleanup_queue(ctrl->ctrl.admin_q); 291 blk_mq_free_tag_set(&ctrl->admin_tag_set); 292 } 293 294 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) 295 { 296 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 297 298 if (list_empty(&ctrl->list)) 299 goto free_ctrl; 300 301 mutex_lock(&nvme_loop_ctrl_mutex); 302 list_del(&ctrl->list); 303 mutex_unlock(&nvme_loop_ctrl_mutex); 304 305 if (nctrl->tagset) { 306 blk_cleanup_queue(ctrl->ctrl.connect_q); 307 blk_mq_free_tag_set(&ctrl->tag_set); 308 } 309 kfree(ctrl->queues); 310 nvmf_free_options(nctrl->opts); 311 free_ctrl: 312 kfree(ctrl); 313 } 314 315 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl) 316 { 317 int i; 318 319 for (i = 1; i < ctrl->queue_count; i++) 320 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 321 } 322 323 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl) 324 { 325 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 326 unsigned int nr_io_queues; 327 int ret, i; 328 329 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 330 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 331 if (ret || !nr_io_queues) 332 return ret; 333 334 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues); 335 336 for (i = 1; i <= nr_io_queues; i++) { 337 ctrl->queues[i].ctrl = ctrl; 338 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 339 if (ret) 340 goto out_destroy_queues; 341 342 ctrl->queue_count++; 343 } 344 345 return 0; 346 347 out_destroy_queues: 348 nvme_loop_destroy_io_queues(ctrl); 349 return ret; 350 } 351 352 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) 353 { 354 int error; 355 356 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 357 ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; 358 ctrl->admin_tag_set.queue_depth = NVME_LOOP_AQ_BLKMQ_DEPTH; 359 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 360 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 361 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 362 SG_CHUNK_SIZE * sizeof(struct scatterlist); 363 ctrl->admin_tag_set.driver_data = ctrl; 364 ctrl->admin_tag_set.nr_hw_queues = 1; 365 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 366 367 ctrl->queues[0].ctrl = ctrl; 368 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); 369 if (error) 370 return error; 371 ctrl->queue_count = 1; 372 373 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 374 if (error) 375 goto out_free_sq; 376 377 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 378 if (IS_ERR(ctrl->ctrl.admin_q)) { 379 error = PTR_ERR(ctrl->ctrl.admin_q); 380 goto out_free_tagset; 381 } 382 383 error = nvmf_connect_admin_queue(&ctrl->ctrl); 384 if (error) 385 goto out_cleanup_queue; 386 387 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 388 if (error) { 389 dev_err(ctrl->ctrl.device, 390 "prop_get NVME_REG_CAP failed\n"); 391 goto out_cleanup_queue; 392 } 393 394 ctrl->ctrl.sqsize = 395 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 396 397 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 398 if (error) 399 goto out_cleanup_queue; 400 401 ctrl->ctrl.max_hw_sectors = 402 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); 403 404 error = nvme_init_identify(&ctrl->ctrl); 405 if (error) 406 goto out_cleanup_queue; 407 408 nvme_start_keep_alive(&ctrl->ctrl); 409 410 return 0; 411 412 out_cleanup_queue: 413 blk_cleanup_queue(ctrl->ctrl.admin_q); 414 out_free_tagset: 415 blk_mq_free_tag_set(&ctrl->admin_tag_set); 416 out_free_sq: 417 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 418 return error; 419 } 420 421 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) 422 { 423 nvme_stop_keep_alive(&ctrl->ctrl); 424 425 if (ctrl->queue_count > 1) { 426 nvme_stop_queues(&ctrl->ctrl); 427 blk_mq_tagset_busy_iter(&ctrl->tag_set, 428 nvme_cancel_request, &ctrl->ctrl); 429 nvme_loop_destroy_io_queues(ctrl); 430 } 431 432 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 433 nvme_shutdown_ctrl(&ctrl->ctrl); 434 435 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 436 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 437 nvme_cancel_request, &ctrl->ctrl); 438 nvme_loop_destroy_admin_queue(ctrl); 439 } 440 441 static void nvme_loop_del_ctrl_work(struct work_struct *work) 442 { 443 struct nvme_loop_ctrl *ctrl = container_of(work, 444 struct nvme_loop_ctrl, delete_work); 445 446 nvme_uninit_ctrl(&ctrl->ctrl); 447 nvme_loop_shutdown_ctrl(ctrl); 448 nvme_put_ctrl(&ctrl->ctrl); 449 } 450 451 static int __nvme_loop_del_ctrl(struct nvme_loop_ctrl *ctrl) 452 { 453 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 454 return -EBUSY; 455 456 if (!schedule_work(&ctrl->delete_work)) 457 return -EBUSY; 458 459 return 0; 460 } 461 462 static int nvme_loop_del_ctrl(struct nvme_ctrl *nctrl) 463 { 464 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 465 int ret; 466 467 ret = __nvme_loop_del_ctrl(ctrl); 468 if (ret) 469 return ret; 470 471 flush_work(&ctrl->delete_work); 472 473 return 0; 474 } 475 476 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) 477 { 478 struct nvme_loop_ctrl *ctrl; 479 480 mutex_lock(&nvme_loop_ctrl_mutex); 481 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { 482 if (ctrl->ctrl.cntlid == nctrl->cntlid) 483 __nvme_loop_del_ctrl(ctrl); 484 } 485 mutex_unlock(&nvme_loop_ctrl_mutex); 486 } 487 488 static void nvme_loop_reset_ctrl_work(struct work_struct *work) 489 { 490 struct nvme_loop_ctrl *ctrl = container_of(work, 491 struct nvme_loop_ctrl, reset_work); 492 bool changed; 493 int i, ret; 494 495 nvme_loop_shutdown_ctrl(ctrl); 496 497 ret = nvme_loop_configure_admin_queue(ctrl); 498 if (ret) 499 goto out_disable; 500 501 ret = nvme_loop_init_io_queues(ctrl); 502 if (ret) 503 goto out_destroy_admin; 504 505 for (i = 1; i < ctrl->queue_count; i++) { 506 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 507 if (ret) 508 goto out_destroy_io; 509 } 510 511 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 512 WARN_ON_ONCE(!changed); 513 514 nvme_queue_scan(&ctrl->ctrl); 515 nvme_queue_async_events(&ctrl->ctrl); 516 517 nvme_start_queues(&ctrl->ctrl); 518 519 return; 520 521 out_destroy_io: 522 nvme_loop_destroy_io_queues(ctrl); 523 out_destroy_admin: 524 nvme_loop_destroy_admin_queue(ctrl); 525 out_disable: 526 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 527 nvme_uninit_ctrl(&ctrl->ctrl); 528 nvme_put_ctrl(&ctrl->ctrl); 529 } 530 531 static int nvme_loop_reset_ctrl(struct nvme_ctrl *nctrl) 532 { 533 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 534 535 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 536 return -EBUSY; 537 538 if (!schedule_work(&ctrl->reset_work)) 539 return -EBUSY; 540 541 flush_work(&ctrl->reset_work); 542 543 return 0; 544 } 545 546 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { 547 .name = "loop", 548 .module = THIS_MODULE, 549 .is_fabrics = true, 550 .reg_read32 = nvmf_reg_read32, 551 .reg_read64 = nvmf_reg_read64, 552 .reg_write32 = nvmf_reg_write32, 553 .reset_ctrl = nvme_loop_reset_ctrl, 554 .free_ctrl = nvme_loop_free_ctrl, 555 .submit_async_event = nvme_loop_submit_async_event, 556 .delete_ctrl = nvme_loop_del_ctrl, 557 .get_subsysnqn = nvmf_get_subsysnqn, 558 }; 559 560 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) 561 { 562 int ret, i; 563 564 ret = nvme_loop_init_io_queues(ctrl); 565 if (ret) 566 return ret; 567 568 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 569 ctrl->tag_set.ops = &nvme_loop_mq_ops; 570 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 571 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 572 ctrl->tag_set.numa_node = NUMA_NO_NODE; 573 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 574 ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 575 SG_CHUNK_SIZE * sizeof(struct scatterlist); 576 ctrl->tag_set.driver_data = ctrl; 577 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 578 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 579 ctrl->ctrl.tagset = &ctrl->tag_set; 580 581 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 582 if (ret) 583 goto out_destroy_queues; 584 585 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 586 if (IS_ERR(ctrl->ctrl.connect_q)) { 587 ret = PTR_ERR(ctrl->ctrl.connect_q); 588 goto out_free_tagset; 589 } 590 591 for (i = 1; i < ctrl->queue_count; i++) { 592 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 593 if (ret) 594 goto out_cleanup_connect_q; 595 } 596 597 return 0; 598 599 out_cleanup_connect_q: 600 blk_cleanup_queue(ctrl->ctrl.connect_q); 601 out_free_tagset: 602 blk_mq_free_tag_set(&ctrl->tag_set); 603 out_destroy_queues: 604 nvme_loop_destroy_io_queues(ctrl); 605 return ret; 606 } 607 608 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, 609 struct nvmf_ctrl_options *opts) 610 { 611 struct nvme_loop_ctrl *ctrl; 612 bool changed; 613 int ret; 614 615 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 616 if (!ctrl) 617 return ERR_PTR(-ENOMEM); 618 ctrl->ctrl.opts = opts; 619 INIT_LIST_HEAD(&ctrl->list); 620 621 INIT_WORK(&ctrl->delete_work, nvme_loop_del_ctrl_work); 622 INIT_WORK(&ctrl->reset_work, nvme_loop_reset_ctrl_work); 623 624 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 625 0 /* no quirks, we're perfect! */); 626 if (ret) 627 goto out_put_ctrl; 628 629 spin_lock_init(&ctrl->lock); 630 631 ret = -ENOMEM; 632 633 ctrl->ctrl.sqsize = opts->queue_size - 1; 634 ctrl->ctrl.kato = opts->kato; 635 636 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), 637 GFP_KERNEL); 638 if (!ctrl->queues) 639 goto out_uninit_ctrl; 640 641 ret = nvme_loop_configure_admin_queue(ctrl); 642 if (ret) 643 goto out_free_queues; 644 645 if (opts->queue_size > ctrl->ctrl.maxcmd) { 646 /* warn if maxcmd is lower than queue_size */ 647 dev_warn(ctrl->ctrl.device, 648 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 649 opts->queue_size, ctrl->ctrl.maxcmd); 650 opts->queue_size = ctrl->ctrl.maxcmd; 651 } 652 653 if (opts->nr_io_queues) { 654 ret = nvme_loop_create_io_queues(ctrl); 655 if (ret) 656 goto out_remove_admin_queue; 657 } 658 659 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); 660 661 dev_info(ctrl->ctrl.device, 662 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); 663 664 kref_get(&ctrl->ctrl.kref); 665 666 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 667 WARN_ON_ONCE(!changed); 668 669 mutex_lock(&nvme_loop_ctrl_mutex); 670 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); 671 mutex_unlock(&nvme_loop_ctrl_mutex); 672 673 if (opts->nr_io_queues) { 674 nvme_queue_scan(&ctrl->ctrl); 675 nvme_queue_async_events(&ctrl->ctrl); 676 } 677 678 return &ctrl->ctrl; 679 680 out_remove_admin_queue: 681 nvme_loop_destroy_admin_queue(ctrl); 682 out_free_queues: 683 kfree(ctrl->queues); 684 out_uninit_ctrl: 685 nvme_uninit_ctrl(&ctrl->ctrl); 686 out_put_ctrl: 687 nvme_put_ctrl(&ctrl->ctrl); 688 if (ret > 0) 689 ret = -EIO; 690 return ERR_PTR(ret); 691 } 692 693 static int nvme_loop_add_port(struct nvmet_port *port) 694 { 695 /* 696 * XXX: disalow adding more than one port so 697 * there is no connection rejections when a 698 * a subsystem is assigned to a port for which 699 * loop doesn't have a pointer. 700 * This scenario would be possible if we allowed 701 * more than one port to be added and a subsystem 702 * was assigned to a port other than nvmet_loop_port. 703 */ 704 705 if (nvmet_loop_port) 706 return -EPERM; 707 708 nvmet_loop_port = port; 709 return 0; 710 } 711 712 static void nvme_loop_remove_port(struct nvmet_port *port) 713 { 714 if (port == nvmet_loop_port) 715 nvmet_loop_port = NULL; 716 } 717 718 static struct nvmet_fabrics_ops nvme_loop_ops = { 719 .owner = THIS_MODULE, 720 .type = NVMF_TRTYPE_LOOP, 721 .add_port = nvme_loop_add_port, 722 .remove_port = nvme_loop_remove_port, 723 .queue_response = nvme_loop_queue_response, 724 .delete_ctrl = nvme_loop_delete_ctrl, 725 }; 726 727 static struct nvmf_transport_ops nvme_loop_transport = { 728 .name = "loop", 729 .create_ctrl = nvme_loop_create_ctrl, 730 }; 731 732 static int __init nvme_loop_init_module(void) 733 { 734 int ret; 735 736 ret = nvmet_register_transport(&nvme_loop_ops); 737 if (ret) 738 return ret; 739 return nvmf_register_transport(&nvme_loop_transport); 740 } 741 742 static void __exit nvme_loop_cleanup_module(void) 743 { 744 struct nvme_loop_ctrl *ctrl, *next; 745 746 nvmf_unregister_transport(&nvme_loop_transport); 747 nvmet_unregister_transport(&nvme_loop_ops); 748 749 mutex_lock(&nvme_loop_ctrl_mutex); 750 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) 751 __nvme_loop_del_ctrl(ctrl); 752 mutex_unlock(&nvme_loop_ctrl_mutex); 753 754 flush_scheduled_work(); 755 } 756 757 module_init(nvme_loop_init_module); 758 module_exit(nvme_loop_cleanup_module); 759 760 MODULE_LICENSE("GPL v2"); 761 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */ 762