1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics loopback device. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/scatterlist.h> 8 #include <linux/blk-mq.h> 9 #include <linux/nvme.h> 10 #include <linux/module.h> 11 #include <linux/parser.h> 12 #include "nvmet.h" 13 #include "../host/nvme.h" 14 #include "../host/fabrics.h" 15 16 #define NVME_LOOP_MAX_SEGMENTS 256 17 18 struct nvme_loop_iod { 19 struct nvme_request nvme_req; 20 struct nvme_command cmd; 21 struct nvme_completion cqe; 22 struct nvmet_req req; 23 struct nvme_loop_queue *queue; 24 struct work_struct work; 25 struct sg_table sg_table; 26 struct scatterlist first_sgl[]; 27 }; 28 29 struct nvme_loop_ctrl { 30 struct nvme_loop_queue *queues; 31 32 struct blk_mq_tag_set admin_tag_set; 33 34 struct list_head list; 35 struct blk_mq_tag_set tag_set; 36 struct nvme_loop_iod async_event_iod; 37 struct nvme_ctrl ctrl; 38 39 struct nvmet_ctrl *target_ctrl; 40 struct nvmet_port *port; 41 }; 42 43 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl) 44 { 45 return container_of(ctrl, struct nvme_loop_ctrl, ctrl); 46 } 47 48 enum nvme_loop_queue_flags { 49 NVME_LOOP_Q_LIVE = 0, 50 }; 51 52 struct nvme_loop_queue { 53 struct nvmet_cq nvme_cq; 54 struct nvmet_sq nvme_sq; 55 struct nvme_loop_ctrl *ctrl; 56 unsigned long flags; 57 }; 58 59 static LIST_HEAD(nvme_loop_ports); 60 static DEFINE_MUTEX(nvme_loop_ports_mutex); 61 62 static LIST_HEAD(nvme_loop_ctrl_list); 63 static DEFINE_MUTEX(nvme_loop_ctrl_mutex); 64 65 static void nvme_loop_queue_response(struct nvmet_req *nvme_req); 66 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl); 67 68 static const struct nvmet_fabrics_ops nvme_loop_ops; 69 70 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue) 71 { 72 return queue - queue->ctrl->queues; 73 } 74 75 static void nvme_loop_complete_rq(struct request *req) 76 { 77 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 78 79 nvme_cleanup_cmd(req); 80 sg_free_table_chained(&iod->sg_table, SG_CHUNK_SIZE); 81 nvme_complete_rq(req); 82 } 83 84 static struct blk_mq_tags *nvme_loop_tagset(struct nvme_loop_queue *queue) 85 { 86 u32 queue_idx = nvme_loop_queue_idx(queue); 87 88 if (queue_idx == 0) 89 return queue->ctrl->admin_tag_set.tags[queue_idx]; 90 return queue->ctrl->tag_set.tags[queue_idx - 1]; 91 } 92 93 static void nvme_loop_queue_response(struct nvmet_req *req) 94 { 95 struct nvme_loop_queue *queue = 96 container_of(req->sq, struct nvme_loop_queue, nvme_sq); 97 struct nvme_completion *cqe = req->cqe; 98 99 /* 100 * AEN requests are special as they don't time out and can 101 * survive any kind of queue freeze and often don't respond to 102 * aborts. We don't even bother to allocate a struct request 103 * for them but rather special case them here. 104 */ 105 if (unlikely(nvme_loop_queue_idx(queue) == 0 && 106 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { 107 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 108 &cqe->result); 109 } else { 110 struct request *rq; 111 112 rq = blk_mq_tag_to_rq(nvme_loop_tagset(queue), cqe->command_id); 113 if (!rq) { 114 dev_err(queue->ctrl->ctrl.device, 115 "tag 0x%x on queue %d not found\n", 116 cqe->command_id, nvme_loop_queue_idx(queue)); 117 return; 118 } 119 120 nvme_end_request(rq, cqe->status, cqe->result); 121 } 122 } 123 124 static void nvme_loop_execute_work(struct work_struct *work) 125 { 126 struct nvme_loop_iod *iod = 127 container_of(work, struct nvme_loop_iod, work); 128 129 nvmet_req_execute(&iod->req); 130 } 131 132 static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, 133 const struct blk_mq_queue_data *bd) 134 { 135 struct nvme_ns *ns = hctx->queue->queuedata; 136 struct nvme_loop_queue *queue = hctx->driver_data; 137 struct request *req = bd->rq; 138 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); 139 bool queue_ready = test_bit(NVME_LOOP_Q_LIVE, &queue->flags); 140 blk_status_t ret; 141 142 if (!nvmf_check_ready(&queue->ctrl->ctrl, req, queue_ready)) 143 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, req); 144 145 ret = nvme_setup_cmd(ns, req, &iod->cmd); 146 if (ret) 147 return ret; 148 149 blk_mq_start_request(req); 150 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 151 iod->req.port = queue->ctrl->port; 152 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, 153 &queue->nvme_sq, &nvme_loop_ops)) 154 return BLK_STS_OK; 155 156 if (blk_rq_nr_phys_segments(req)) { 157 iod->sg_table.sgl = iod->first_sgl; 158 if (sg_alloc_table_chained(&iod->sg_table, 159 blk_rq_nr_phys_segments(req), 160 iod->sg_table.sgl, SG_CHUNK_SIZE)) 161 return BLK_STS_RESOURCE; 162 163 iod->req.sg = iod->sg_table.sgl; 164 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl); 165 iod->req.transfer_len = blk_rq_payload_bytes(req); 166 } 167 168 schedule_work(&iod->work); 169 return BLK_STS_OK; 170 } 171 172 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg) 173 { 174 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg); 175 struct nvme_loop_queue *queue = &ctrl->queues[0]; 176 struct nvme_loop_iod *iod = &ctrl->async_event_iod; 177 178 memset(&iod->cmd, 0, sizeof(iod->cmd)); 179 iod->cmd.common.opcode = nvme_admin_async_event; 180 iod->cmd.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 181 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF; 182 183 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq, 184 &nvme_loop_ops)) { 185 dev_err(ctrl->ctrl.device, "failed async event work\n"); 186 return; 187 } 188 189 schedule_work(&iod->work); 190 } 191 192 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl, 193 struct nvme_loop_iod *iod, unsigned int queue_idx) 194 { 195 iod->req.cmd = &iod->cmd; 196 iod->req.cqe = &iod->cqe; 197 iod->queue = &ctrl->queues[queue_idx]; 198 INIT_WORK(&iod->work, nvme_loop_execute_work); 199 return 0; 200 } 201 202 static int nvme_loop_init_request(struct blk_mq_tag_set *set, 203 struct request *req, unsigned int hctx_idx, 204 unsigned int numa_node) 205 { 206 struct nvme_loop_ctrl *ctrl = set->driver_data; 207 208 nvme_req(req)->ctrl = &ctrl->ctrl; 209 return nvme_loop_init_iod(ctrl, blk_mq_rq_to_pdu(req), 210 (set == &ctrl->tag_set) ? hctx_idx + 1 : 0); 211 } 212 213 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 214 unsigned int hctx_idx) 215 { 216 struct nvme_loop_ctrl *ctrl = data; 217 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1]; 218 219 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 220 221 hctx->driver_data = queue; 222 return 0; 223 } 224 225 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 226 unsigned int hctx_idx) 227 { 228 struct nvme_loop_ctrl *ctrl = data; 229 struct nvme_loop_queue *queue = &ctrl->queues[0]; 230 231 BUG_ON(hctx_idx != 0); 232 233 hctx->driver_data = queue; 234 return 0; 235 } 236 237 static const struct blk_mq_ops nvme_loop_mq_ops = { 238 .queue_rq = nvme_loop_queue_rq, 239 .complete = nvme_loop_complete_rq, 240 .init_request = nvme_loop_init_request, 241 .init_hctx = nvme_loop_init_hctx, 242 }; 243 244 static const struct blk_mq_ops nvme_loop_admin_mq_ops = { 245 .queue_rq = nvme_loop_queue_rq, 246 .complete = nvme_loop_complete_rq, 247 .init_request = nvme_loop_init_request, 248 .init_hctx = nvme_loop_init_admin_hctx, 249 }; 250 251 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) 252 { 253 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 254 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 255 blk_cleanup_queue(ctrl->ctrl.admin_q); 256 blk_mq_free_tag_set(&ctrl->admin_tag_set); 257 } 258 259 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl) 260 { 261 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl); 262 263 if (list_empty(&ctrl->list)) 264 goto free_ctrl; 265 266 mutex_lock(&nvme_loop_ctrl_mutex); 267 list_del(&ctrl->list); 268 mutex_unlock(&nvme_loop_ctrl_mutex); 269 270 if (nctrl->tagset) { 271 blk_cleanup_queue(ctrl->ctrl.connect_q); 272 blk_mq_free_tag_set(&ctrl->tag_set); 273 } 274 kfree(ctrl->queues); 275 nvmf_free_options(nctrl->opts); 276 free_ctrl: 277 kfree(ctrl); 278 } 279 280 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl) 281 { 282 int i; 283 284 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 285 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 286 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); 287 } 288 } 289 290 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl) 291 { 292 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 293 unsigned int nr_io_queues; 294 int ret, i; 295 296 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 297 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 298 if (ret || !nr_io_queues) 299 return ret; 300 301 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues); 302 303 for (i = 1; i <= nr_io_queues; i++) { 304 ctrl->queues[i].ctrl = ctrl; 305 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq); 306 if (ret) 307 goto out_destroy_queues; 308 309 ctrl->ctrl.queue_count++; 310 } 311 312 return 0; 313 314 out_destroy_queues: 315 nvme_loop_destroy_io_queues(ctrl); 316 return ret; 317 } 318 319 static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl) 320 { 321 int i, ret; 322 323 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 324 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); 325 if (ret) 326 return ret; 327 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags); 328 } 329 330 return 0; 331 } 332 333 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl) 334 { 335 int error; 336 337 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 338 ctrl->admin_tag_set.ops = &nvme_loop_admin_mq_ops; 339 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 340 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 341 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 342 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 343 SG_CHUNK_SIZE * sizeof(struct scatterlist); 344 ctrl->admin_tag_set.driver_data = ctrl; 345 ctrl->admin_tag_set.nr_hw_queues = 1; 346 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 347 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 348 349 ctrl->queues[0].ctrl = ctrl; 350 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq); 351 if (error) 352 return error; 353 ctrl->ctrl.queue_count = 1; 354 355 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 356 if (error) 357 goto out_free_sq; 358 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 359 360 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 361 if (IS_ERR(ctrl->ctrl.admin_q)) { 362 error = PTR_ERR(ctrl->ctrl.admin_q); 363 goto out_free_tagset; 364 } 365 366 error = nvmf_connect_admin_queue(&ctrl->ctrl); 367 if (error) 368 goto out_cleanup_queue; 369 370 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags); 371 372 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 373 if (error) { 374 dev_err(ctrl->ctrl.device, 375 "prop_get NVME_REG_CAP failed\n"); 376 goto out_cleanup_queue; 377 } 378 379 ctrl->ctrl.sqsize = 380 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 381 382 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 383 if (error) 384 goto out_cleanup_queue; 385 386 ctrl->ctrl.max_hw_sectors = 387 (NVME_LOOP_MAX_SEGMENTS - 1) << (PAGE_SHIFT - 9); 388 389 error = nvme_init_identify(&ctrl->ctrl); 390 if (error) 391 goto out_cleanup_queue; 392 393 return 0; 394 395 out_cleanup_queue: 396 blk_cleanup_queue(ctrl->ctrl.admin_q); 397 out_free_tagset: 398 blk_mq_free_tag_set(&ctrl->admin_tag_set); 399 out_free_sq: 400 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); 401 return error; 402 } 403 404 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl) 405 { 406 if (ctrl->ctrl.queue_count > 1) { 407 nvme_stop_queues(&ctrl->ctrl); 408 blk_mq_tagset_busy_iter(&ctrl->tag_set, 409 nvme_cancel_request, &ctrl->ctrl); 410 nvme_loop_destroy_io_queues(ctrl); 411 } 412 413 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 414 nvme_shutdown_ctrl(&ctrl->ctrl); 415 416 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 417 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 418 nvme_cancel_request, &ctrl->ctrl); 419 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 420 nvme_loop_destroy_admin_queue(ctrl); 421 } 422 423 static void nvme_loop_delete_ctrl_host(struct nvme_ctrl *ctrl) 424 { 425 nvme_loop_shutdown_ctrl(to_loop_ctrl(ctrl)); 426 } 427 428 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl) 429 { 430 struct nvme_loop_ctrl *ctrl; 431 432 mutex_lock(&nvme_loop_ctrl_mutex); 433 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) { 434 if (ctrl->ctrl.cntlid == nctrl->cntlid) 435 nvme_delete_ctrl(&ctrl->ctrl); 436 } 437 mutex_unlock(&nvme_loop_ctrl_mutex); 438 } 439 440 static void nvme_loop_reset_ctrl_work(struct work_struct *work) 441 { 442 struct nvme_loop_ctrl *ctrl = 443 container_of(work, struct nvme_loop_ctrl, ctrl.reset_work); 444 bool changed; 445 int ret; 446 447 nvme_stop_ctrl(&ctrl->ctrl); 448 nvme_loop_shutdown_ctrl(ctrl); 449 450 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 451 /* state change failure should never happen */ 452 WARN_ON_ONCE(1); 453 return; 454 } 455 456 ret = nvme_loop_configure_admin_queue(ctrl); 457 if (ret) 458 goto out_disable; 459 460 ret = nvme_loop_init_io_queues(ctrl); 461 if (ret) 462 goto out_destroy_admin; 463 464 ret = nvme_loop_connect_io_queues(ctrl); 465 if (ret) 466 goto out_destroy_io; 467 468 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 469 ctrl->ctrl.queue_count - 1); 470 471 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 472 WARN_ON_ONCE(!changed); 473 474 nvme_start_ctrl(&ctrl->ctrl); 475 476 return; 477 478 out_destroy_io: 479 nvme_loop_destroy_io_queues(ctrl); 480 out_destroy_admin: 481 nvme_loop_destroy_admin_queue(ctrl); 482 out_disable: 483 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 484 nvme_uninit_ctrl(&ctrl->ctrl); 485 nvme_put_ctrl(&ctrl->ctrl); 486 } 487 488 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = { 489 .name = "loop", 490 .module = THIS_MODULE, 491 .flags = NVME_F_FABRICS, 492 .reg_read32 = nvmf_reg_read32, 493 .reg_read64 = nvmf_reg_read64, 494 .reg_write32 = nvmf_reg_write32, 495 .free_ctrl = nvme_loop_free_ctrl, 496 .submit_async_event = nvme_loop_submit_async_event, 497 .delete_ctrl = nvme_loop_delete_ctrl_host, 498 .get_address = nvmf_get_address, 499 }; 500 501 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl) 502 { 503 int ret; 504 505 ret = nvme_loop_init_io_queues(ctrl); 506 if (ret) 507 return ret; 508 509 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 510 ctrl->tag_set.ops = &nvme_loop_mq_ops; 511 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 512 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 513 ctrl->tag_set.numa_node = NUMA_NO_NODE; 514 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 515 ctrl->tag_set.cmd_size = sizeof(struct nvme_loop_iod) + 516 SG_CHUNK_SIZE * sizeof(struct scatterlist); 517 ctrl->tag_set.driver_data = ctrl; 518 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 519 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 520 ctrl->ctrl.tagset = &ctrl->tag_set; 521 522 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 523 if (ret) 524 goto out_destroy_queues; 525 526 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 527 if (IS_ERR(ctrl->ctrl.connect_q)) { 528 ret = PTR_ERR(ctrl->ctrl.connect_q); 529 goto out_free_tagset; 530 } 531 532 ret = nvme_loop_connect_io_queues(ctrl); 533 if (ret) 534 goto out_cleanup_connect_q; 535 536 return 0; 537 538 out_cleanup_connect_q: 539 blk_cleanup_queue(ctrl->ctrl.connect_q); 540 out_free_tagset: 541 blk_mq_free_tag_set(&ctrl->tag_set); 542 out_destroy_queues: 543 nvme_loop_destroy_io_queues(ctrl); 544 return ret; 545 } 546 547 static struct nvmet_port *nvme_loop_find_port(struct nvme_ctrl *ctrl) 548 { 549 struct nvmet_port *p, *found = NULL; 550 551 mutex_lock(&nvme_loop_ports_mutex); 552 list_for_each_entry(p, &nvme_loop_ports, entry) { 553 /* if no transport address is specified use the first port */ 554 if ((ctrl->opts->mask & NVMF_OPT_TRADDR) && 555 strcmp(ctrl->opts->traddr, p->disc_addr.traddr)) 556 continue; 557 found = p; 558 break; 559 } 560 mutex_unlock(&nvme_loop_ports_mutex); 561 return found; 562 } 563 564 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev, 565 struct nvmf_ctrl_options *opts) 566 { 567 struct nvme_loop_ctrl *ctrl; 568 bool changed; 569 int ret; 570 571 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 572 if (!ctrl) 573 return ERR_PTR(-ENOMEM); 574 ctrl->ctrl.opts = opts; 575 INIT_LIST_HEAD(&ctrl->list); 576 577 INIT_WORK(&ctrl->ctrl.reset_work, nvme_loop_reset_ctrl_work); 578 579 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops, 580 0 /* no quirks, we're perfect! */); 581 if (ret) 582 goto out_put_ctrl; 583 584 ret = -ENOMEM; 585 586 ctrl->ctrl.sqsize = opts->queue_size - 1; 587 ctrl->ctrl.kato = opts->kato; 588 ctrl->port = nvme_loop_find_port(&ctrl->ctrl); 589 590 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues), 591 GFP_KERNEL); 592 if (!ctrl->queues) 593 goto out_uninit_ctrl; 594 595 ret = nvme_loop_configure_admin_queue(ctrl); 596 if (ret) 597 goto out_free_queues; 598 599 if (opts->queue_size > ctrl->ctrl.maxcmd) { 600 /* warn if maxcmd is lower than queue_size */ 601 dev_warn(ctrl->ctrl.device, 602 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 603 opts->queue_size, ctrl->ctrl.maxcmd); 604 opts->queue_size = ctrl->ctrl.maxcmd; 605 } 606 607 if (opts->nr_io_queues) { 608 ret = nvme_loop_create_io_queues(ctrl); 609 if (ret) 610 goto out_remove_admin_queue; 611 } 612 613 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0); 614 615 dev_info(ctrl->ctrl.device, 616 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn); 617 618 nvme_get_ctrl(&ctrl->ctrl); 619 620 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 621 WARN_ON_ONCE(!changed); 622 623 mutex_lock(&nvme_loop_ctrl_mutex); 624 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list); 625 mutex_unlock(&nvme_loop_ctrl_mutex); 626 627 nvme_start_ctrl(&ctrl->ctrl); 628 629 return &ctrl->ctrl; 630 631 out_remove_admin_queue: 632 nvme_loop_destroy_admin_queue(ctrl); 633 out_free_queues: 634 kfree(ctrl->queues); 635 out_uninit_ctrl: 636 nvme_uninit_ctrl(&ctrl->ctrl); 637 out_put_ctrl: 638 nvme_put_ctrl(&ctrl->ctrl); 639 if (ret > 0) 640 ret = -EIO; 641 return ERR_PTR(ret); 642 } 643 644 static int nvme_loop_add_port(struct nvmet_port *port) 645 { 646 mutex_lock(&nvme_loop_ports_mutex); 647 list_add_tail(&port->entry, &nvme_loop_ports); 648 mutex_unlock(&nvme_loop_ports_mutex); 649 return 0; 650 } 651 652 static void nvme_loop_remove_port(struct nvmet_port *port) 653 { 654 mutex_lock(&nvme_loop_ports_mutex); 655 list_del_init(&port->entry); 656 mutex_unlock(&nvme_loop_ports_mutex); 657 } 658 659 static const struct nvmet_fabrics_ops nvme_loop_ops = { 660 .owner = THIS_MODULE, 661 .type = NVMF_TRTYPE_LOOP, 662 .add_port = nvme_loop_add_port, 663 .remove_port = nvme_loop_remove_port, 664 .queue_response = nvme_loop_queue_response, 665 .delete_ctrl = nvme_loop_delete_ctrl, 666 }; 667 668 static struct nvmf_transport_ops nvme_loop_transport = { 669 .name = "loop", 670 .module = THIS_MODULE, 671 .create_ctrl = nvme_loop_create_ctrl, 672 .allowed_opts = NVMF_OPT_TRADDR, 673 }; 674 675 static int __init nvme_loop_init_module(void) 676 { 677 int ret; 678 679 ret = nvmet_register_transport(&nvme_loop_ops); 680 if (ret) 681 return ret; 682 683 ret = nvmf_register_transport(&nvme_loop_transport); 684 if (ret) 685 nvmet_unregister_transport(&nvme_loop_ops); 686 687 return ret; 688 } 689 690 static void __exit nvme_loop_cleanup_module(void) 691 { 692 struct nvme_loop_ctrl *ctrl, *next; 693 694 nvmf_unregister_transport(&nvme_loop_transport); 695 nvmet_unregister_transport(&nvme_loop_ops); 696 697 mutex_lock(&nvme_loop_ctrl_mutex); 698 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list) 699 nvme_delete_ctrl(&ctrl->ctrl); 700 mutex_unlock(&nvme_loop_ctrl_mutex); 701 702 flush_workqueue(nvme_delete_wq); 703 } 704 705 module_init(nvme_loop_init_module); 706 module_exit(nvme_loop_cleanup_module); 707 708 MODULE_LICENSE("GPL v2"); 709 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */ 710