1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/module.h> 9 #include "nvmet.h" 10 11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 12 { 13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; 14 /* Number of logical blocks per physical block. */ 15 const u32 lpp = ql->physical_block_size / ql->logical_block_size; 16 /* Logical blocks per physical block, 0's based. */ 17 const __le16 lpp0b = to0based(lpp); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); 44 /* NPDG = Namespace Preferred Deallocate Alignment */ 45 id->npda = id->npdg; 46 /* NOWS = Namespace Optimal Write Size */ 47 id->nows = to0based(ql->io_opt / ql->logical_block_size); 48 } 49 50 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 51 { 52 int ret; 53 54 ns->bdev = blkdev_get_by_path(ns->device_path, 55 FMODE_READ | FMODE_WRITE, NULL); 56 if (IS_ERR(ns->bdev)) { 57 ret = PTR_ERR(ns->bdev); 58 if (ret != -ENOTBLK) { 59 pr_err("failed to open block device %s: (%ld)\n", 60 ns->device_path, PTR_ERR(ns->bdev)); 61 } 62 ns->bdev = NULL; 63 return ret; 64 } 65 ns->size = i_size_read(ns->bdev->bd_inode); 66 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 67 return 0; 68 } 69 70 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 71 { 72 if (ns->bdev) { 73 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); 74 ns->bdev = NULL; 75 } 76 } 77 78 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 79 { 80 u16 status = NVME_SC_SUCCESS; 81 82 if (likely(blk_sts == BLK_STS_OK)) 83 return status; 84 /* 85 * Right now there exists M : 1 mapping between block layer error 86 * to the NVMe status code (see nvme_error_status()). For consistency, 87 * when we reverse map we use most appropriate NVMe Status code from 88 * the group of the NVMe staus codes used in the nvme_error_status(). 89 */ 90 switch (blk_sts) { 91 case BLK_STS_NOSPC: 92 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 93 req->error_loc = offsetof(struct nvme_rw_command, length); 94 break; 95 case BLK_STS_TARGET: 96 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 97 req->error_loc = offsetof(struct nvme_rw_command, slba); 98 break; 99 case BLK_STS_NOTSUPP: 100 req->error_loc = offsetof(struct nvme_common_command, opcode); 101 switch (req->cmd->common.opcode) { 102 case nvme_cmd_dsm: 103 case nvme_cmd_write_zeroes: 104 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 105 break; 106 default: 107 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 108 } 109 break; 110 case BLK_STS_MEDIUM: 111 status = NVME_SC_ACCESS_DENIED; 112 req->error_loc = offsetof(struct nvme_rw_command, nsid); 113 break; 114 case BLK_STS_IOERR: 115 /* fallthru */ 116 default: 117 status = NVME_SC_INTERNAL | NVME_SC_DNR; 118 req->error_loc = offsetof(struct nvme_common_command, opcode); 119 } 120 121 switch (req->cmd->common.opcode) { 122 case nvme_cmd_read: 123 case nvme_cmd_write: 124 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 125 break; 126 case nvme_cmd_write_zeroes: 127 req->error_slba = 128 le64_to_cpu(req->cmd->write_zeroes.slba); 129 break; 130 default: 131 req->error_slba = 0; 132 } 133 return status; 134 } 135 136 static void nvmet_bio_done(struct bio *bio) 137 { 138 struct nvmet_req *req = bio->bi_private; 139 140 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 141 if (bio != &req->b.inline_bio) 142 bio_put(bio); 143 } 144 145 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 146 { 147 int sg_cnt = req->sg_cnt; 148 struct bio *bio; 149 struct scatterlist *sg; 150 sector_t sector; 151 int op, op_flags = 0, i; 152 153 if (!req->sg_cnt) { 154 nvmet_req_complete(req, 0); 155 return; 156 } 157 158 if (req->cmd->rw.opcode == nvme_cmd_write) { 159 op = REQ_OP_WRITE; 160 op_flags = REQ_SYNC | REQ_IDLE; 161 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 162 op_flags |= REQ_FUA; 163 } else { 164 op = REQ_OP_READ; 165 } 166 167 if (is_pci_p2pdma_page(sg_page(req->sg))) 168 op_flags |= REQ_NOMERGE; 169 170 sector = le64_to_cpu(req->cmd->rw.slba); 171 sector <<= (req->ns->blksize_shift - 9); 172 173 if (req->data_len <= NVMET_MAX_INLINE_DATA_LEN) { 174 bio = &req->b.inline_bio; 175 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 176 } else { 177 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 178 } 179 bio_set_dev(bio, req->ns->bdev); 180 bio->bi_iter.bi_sector = sector; 181 bio->bi_private = req; 182 bio->bi_end_io = nvmet_bio_done; 183 bio_set_op_attrs(bio, op, op_flags); 184 185 for_each_sg(req->sg, sg, req->sg_cnt, i) { 186 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 187 != sg->length) { 188 struct bio *prev = bio; 189 190 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 191 bio_set_dev(bio, req->ns->bdev); 192 bio->bi_iter.bi_sector = sector; 193 bio_set_op_attrs(bio, op, op_flags); 194 195 bio_chain(bio, prev); 196 submit_bio(prev); 197 } 198 199 sector += sg->length >> 9; 200 sg_cnt--; 201 } 202 203 submit_bio(bio); 204 } 205 206 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 207 { 208 struct bio *bio = &req->b.inline_bio; 209 210 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 211 bio_set_dev(bio, req->ns->bdev); 212 bio->bi_private = req; 213 bio->bi_end_io = nvmet_bio_done; 214 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 215 216 submit_bio(bio); 217 } 218 219 u16 nvmet_bdev_flush(struct nvmet_req *req) 220 { 221 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL)) 222 return NVME_SC_INTERNAL | NVME_SC_DNR; 223 return 0; 224 } 225 226 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 227 struct nvme_dsm_range *range, struct bio **bio) 228 { 229 struct nvmet_ns *ns = req->ns; 230 int ret; 231 232 ret = __blkdev_issue_discard(ns->bdev, 233 le64_to_cpu(range->slba) << (ns->blksize_shift - 9), 234 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 235 GFP_KERNEL, 0, bio); 236 if (ret && ret != -EOPNOTSUPP) { 237 req->error_slba = le64_to_cpu(range->slba); 238 return errno_to_nvme_status(req, ret); 239 } 240 return NVME_SC_SUCCESS; 241 } 242 243 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 244 { 245 struct nvme_dsm_range range; 246 struct bio *bio = NULL; 247 int i; 248 u16 status; 249 250 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 251 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 252 sizeof(range)); 253 if (status) 254 break; 255 256 status = nvmet_bdev_discard_range(req, &range, &bio); 257 if (status) 258 break; 259 } 260 261 if (bio) { 262 bio->bi_private = req; 263 bio->bi_end_io = nvmet_bio_done; 264 if (status) { 265 bio->bi_status = BLK_STS_IOERR; 266 bio_endio(bio); 267 } else { 268 submit_bio(bio); 269 } 270 } else { 271 nvmet_req_complete(req, status); 272 } 273 } 274 275 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 276 { 277 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 278 case NVME_DSMGMT_AD: 279 nvmet_bdev_execute_discard(req); 280 return; 281 case NVME_DSMGMT_IDR: 282 case NVME_DSMGMT_IDW: 283 default: 284 /* Not supported yet */ 285 nvmet_req_complete(req, 0); 286 return; 287 } 288 } 289 290 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 291 { 292 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 293 struct bio *bio = NULL; 294 sector_t sector; 295 sector_t nr_sector; 296 int ret; 297 298 sector = le64_to_cpu(write_zeroes->slba) << 299 (req->ns->blksize_shift - 9); 300 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 301 (req->ns->blksize_shift - 9)); 302 303 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 304 GFP_KERNEL, &bio, 0); 305 if (bio) { 306 bio->bi_private = req; 307 bio->bi_end_io = nvmet_bio_done; 308 submit_bio(bio); 309 } else { 310 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 311 } 312 } 313 314 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 315 { 316 struct nvme_command *cmd = req->cmd; 317 318 switch (cmd->common.opcode) { 319 case nvme_cmd_read: 320 case nvme_cmd_write: 321 req->execute = nvmet_bdev_execute_rw; 322 req->data_len = nvmet_rw_len(req); 323 return 0; 324 case nvme_cmd_flush: 325 req->execute = nvmet_bdev_execute_flush; 326 req->data_len = 0; 327 return 0; 328 case nvme_cmd_dsm: 329 req->execute = nvmet_bdev_execute_dsm; 330 req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) * 331 sizeof(struct nvme_dsm_range); 332 return 0; 333 case nvme_cmd_write_zeroes: 334 req->execute = nvmet_bdev_execute_write_zeroes; 335 req->data_len = 0; 336 return 0; 337 default: 338 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 339 req->sq->qid); 340 req->error_loc = offsetof(struct nvme_common_command, opcode); 341 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 342 } 343 } 344