1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/module.h> 9 #include "nvmet.h" 10 11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 12 { 13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; 14 /* Number of logical blocks per physical block. */ 15 const u32 lpp = ql->physical_block_size / ql->logical_block_size; 16 /* Logical blocks per physical block, 0's based. */ 17 const __le16 lpp0b = to0based(lpp); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); 44 /* NPDG = Namespace Preferred Deallocate Alignment */ 45 id->npda = id->npdg; 46 /* NOWS = Namespace Optimal Write Size */ 47 id->nows = to0based(ql->io_opt / ql->logical_block_size); 48 } 49 50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) 51 { 52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev); 53 54 if (bi) { 55 ns->metadata_size = bi->tuple_size; 56 if (bi->profile == &t10_pi_type1_crc) 57 ns->pi_type = NVME_NS_DPS_PI_TYPE1; 58 else if (bi->profile == &t10_pi_type3_crc) 59 ns->pi_type = NVME_NS_DPS_PI_TYPE3; 60 else 61 /* Unsupported metadata type */ 62 ns->metadata_size = 0; 63 } 64 } 65 66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 67 { 68 int ret; 69 70 ns->bdev = blkdev_get_by_path(ns->device_path, 71 FMODE_READ | FMODE_WRITE, NULL); 72 if (IS_ERR(ns->bdev)) { 73 ret = PTR_ERR(ns->bdev); 74 if (ret != -ENOTBLK) { 75 pr_err("failed to open block device %s: (%ld)\n", 76 ns->device_path, PTR_ERR(ns->bdev)); 77 } 78 ns->bdev = NULL; 79 return ret; 80 } 81 ns->size = i_size_read(ns->bdev->bd_inode); 82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 83 84 ns->pi_type = 0; 85 ns->metadata_size = 0; 86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) 87 nvmet_bdev_ns_enable_integrity(ns); 88 89 return 0; 90 } 91 92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 93 { 94 if (ns->bdev) { 95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); 96 ns->bdev = NULL; 97 } 98 } 99 100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) 101 { 102 ns->size = i_size_read(ns->bdev->bd_inode); 103 } 104 105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 106 { 107 u16 status = NVME_SC_SUCCESS; 108 109 if (likely(blk_sts == BLK_STS_OK)) 110 return status; 111 /* 112 * Right now there exists M : 1 mapping between block layer error 113 * to the NVMe status code (see nvme_error_status()). For consistency, 114 * when we reverse map we use most appropriate NVMe Status code from 115 * the group of the NVMe staus codes used in the nvme_error_status(). 116 */ 117 switch (blk_sts) { 118 case BLK_STS_NOSPC: 119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 120 req->error_loc = offsetof(struct nvme_rw_command, length); 121 break; 122 case BLK_STS_TARGET: 123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 124 req->error_loc = offsetof(struct nvme_rw_command, slba); 125 break; 126 case BLK_STS_NOTSUPP: 127 req->error_loc = offsetof(struct nvme_common_command, opcode); 128 switch (req->cmd->common.opcode) { 129 case nvme_cmd_dsm: 130 case nvme_cmd_write_zeroes: 131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 132 break; 133 default: 134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 135 } 136 break; 137 case BLK_STS_MEDIUM: 138 status = NVME_SC_ACCESS_DENIED; 139 req->error_loc = offsetof(struct nvme_rw_command, nsid); 140 break; 141 case BLK_STS_IOERR: 142 /* fallthru */ 143 default: 144 status = NVME_SC_INTERNAL | NVME_SC_DNR; 145 req->error_loc = offsetof(struct nvme_common_command, opcode); 146 } 147 148 switch (req->cmd->common.opcode) { 149 case nvme_cmd_read: 150 case nvme_cmd_write: 151 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 152 break; 153 case nvme_cmd_write_zeroes: 154 req->error_slba = 155 le64_to_cpu(req->cmd->write_zeroes.slba); 156 break; 157 default: 158 req->error_slba = 0; 159 } 160 return status; 161 } 162 163 static void nvmet_bio_done(struct bio *bio) 164 { 165 struct nvmet_req *req = bio->bi_private; 166 167 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 168 if (bio != &req->b.inline_bio) 169 bio_put(bio); 170 } 171 172 #ifdef CONFIG_BLK_DEV_INTEGRITY 173 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 174 struct sg_mapping_iter *miter) 175 { 176 struct blk_integrity *bi; 177 struct bio_integrity_payload *bip; 178 struct block_device *bdev = req->ns->bdev; 179 int rc; 180 size_t resid, len; 181 182 bi = bdev_get_integrity(bdev); 183 if (unlikely(!bi)) { 184 pr_err("Unable to locate bio_integrity\n"); 185 return -ENODEV; 186 } 187 188 bip = bio_integrity_alloc(bio, GFP_NOIO, 189 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES)); 190 if (IS_ERR(bip)) { 191 pr_err("Unable to allocate bio_integrity_payload\n"); 192 return PTR_ERR(bip); 193 } 194 195 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 196 /* virtual start sector must be in integrity interval units */ 197 bip_set_seed(bip, bio->bi_iter.bi_sector >> 198 (bi->interval_exp - SECTOR_SHIFT)); 199 200 resid = bip->bip_iter.bi_size; 201 while (resid > 0 && sg_miter_next(miter)) { 202 len = min_t(size_t, miter->length, resid); 203 rc = bio_integrity_add_page(bio, miter->page, len, 204 offset_in_page(miter->addr)); 205 if (unlikely(rc != len)) { 206 pr_err("bio_integrity_add_page() failed; %d\n", rc); 207 sg_miter_stop(miter); 208 return -ENOMEM; 209 } 210 211 resid -= len; 212 if (len < miter->length) 213 miter->consumed -= miter->length - len; 214 } 215 sg_miter_stop(miter); 216 217 return 0; 218 } 219 #else 220 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 221 struct sg_mapping_iter *miter) 222 { 223 return -EINVAL; 224 } 225 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 226 227 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 228 { 229 int sg_cnt = req->sg_cnt; 230 struct bio *bio; 231 struct scatterlist *sg; 232 struct blk_plug plug; 233 sector_t sector; 234 int op, i, rc; 235 struct sg_mapping_iter prot_miter; 236 unsigned int iter_flags; 237 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; 238 239 if (!nvmet_check_transfer_len(req, total_len)) 240 return; 241 242 if (!req->sg_cnt) { 243 nvmet_req_complete(req, 0); 244 return; 245 } 246 247 if (req->cmd->rw.opcode == nvme_cmd_write) { 248 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 249 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 250 op |= REQ_FUA; 251 iter_flags = SG_MITER_TO_SG; 252 } else { 253 op = REQ_OP_READ; 254 iter_flags = SG_MITER_FROM_SG; 255 } 256 257 if (is_pci_p2pdma_page(sg_page(req->sg))) 258 op |= REQ_NOMERGE; 259 260 sector = le64_to_cpu(req->cmd->rw.slba); 261 sector <<= (req->ns->blksize_shift - 9); 262 263 if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) { 264 bio = &req->b.inline_bio; 265 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 266 } else { 267 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 268 } 269 bio_set_dev(bio, req->ns->bdev); 270 bio->bi_iter.bi_sector = sector; 271 bio->bi_private = req; 272 bio->bi_end_io = nvmet_bio_done; 273 bio->bi_opf = op; 274 275 blk_start_plug(&plug); 276 if (req->metadata_len) 277 sg_miter_start(&prot_miter, req->metadata_sg, 278 req->metadata_sg_cnt, iter_flags); 279 280 for_each_sg(req->sg, sg, req->sg_cnt, i) { 281 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 282 != sg->length) { 283 struct bio *prev = bio; 284 285 if (req->metadata_len) { 286 rc = nvmet_bdev_alloc_bip(req, bio, 287 &prot_miter); 288 if (unlikely(rc)) { 289 bio_io_error(bio); 290 return; 291 } 292 } 293 294 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 295 bio_set_dev(bio, req->ns->bdev); 296 bio->bi_iter.bi_sector = sector; 297 bio->bi_opf = op; 298 299 bio_chain(bio, prev); 300 submit_bio(prev); 301 } 302 303 sector += sg->length >> 9; 304 sg_cnt--; 305 } 306 307 if (req->metadata_len) { 308 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); 309 if (unlikely(rc)) { 310 bio_io_error(bio); 311 return; 312 } 313 } 314 315 submit_bio(bio); 316 blk_finish_plug(&plug); 317 } 318 319 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 320 { 321 struct bio *bio = &req->b.inline_bio; 322 323 if (!nvmet_check_transfer_len(req, 0)) 324 return; 325 326 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 327 bio_set_dev(bio, req->ns->bdev); 328 bio->bi_private = req; 329 bio->bi_end_io = nvmet_bio_done; 330 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 331 332 submit_bio(bio); 333 } 334 335 u16 nvmet_bdev_flush(struct nvmet_req *req) 336 { 337 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL)) 338 return NVME_SC_INTERNAL | NVME_SC_DNR; 339 return 0; 340 } 341 342 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 343 struct nvme_dsm_range *range, struct bio **bio) 344 { 345 struct nvmet_ns *ns = req->ns; 346 int ret; 347 348 ret = __blkdev_issue_discard(ns->bdev, 349 le64_to_cpu(range->slba) << (ns->blksize_shift - 9), 350 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 351 GFP_KERNEL, 0, bio); 352 if (ret && ret != -EOPNOTSUPP) { 353 req->error_slba = le64_to_cpu(range->slba); 354 return errno_to_nvme_status(req, ret); 355 } 356 return NVME_SC_SUCCESS; 357 } 358 359 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 360 { 361 struct nvme_dsm_range range; 362 struct bio *bio = NULL; 363 int i; 364 u16 status; 365 366 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 367 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 368 sizeof(range)); 369 if (status) 370 break; 371 372 status = nvmet_bdev_discard_range(req, &range, &bio); 373 if (status) 374 break; 375 } 376 377 if (bio) { 378 bio->bi_private = req; 379 bio->bi_end_io = nvmet_bio_done; 380 if (status) 381 bio_io_error(bio); 382 else 383 submit_bio(bio); 384 } else { 385 nvmet_req_complete(req, status); 386 } 387 } 388 389 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 390 { 391 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) 392 return; 393 394 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 395 case NVME_DSMGMT_AD: 396 nvmet_bdev_execute_discard(req); 397 return; 398 case NVME_DSMGMT_IDR: 399 case NVME_DSMGMT_IDW: 400 default: 401 /* Not supported yet */ 402 nvmet_req_complete(req, 0); 403 return; 404 } 405 } 406 407 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 408 { 409 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 410 struct bio *bio = NULL; 411 sector_t sector; 412 sector_t nr_sector; 413 int ret; 414 415 if (!nvmet_check_transfer_len(req, 0)) 416 return; 417 418 sector = le64_to_cpu(write_zeroes->slba) << 419 (req->ns->blksize_shift - 9); 420 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 421 (req->ns->blksize_shift - 9)); 422 423 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 424 GFP_KERNEL, &bio, 0); 425 if (bio) { 426 bio->bi_private = req; 427 bio->bi_end_io = nvmet_bio_done; 428 submit_bio(bio); 429 } else { 430 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 431 } 432 } 433 434 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 435 { 436 struct nvme_command *cmd = req->cmd; 437 438 switch (cmd->common.opcode) { 439 case nvme_cmd_read: 440 case nvme_cmd_write: 441 req->execute = nvmet_bdev_execute_rw; 442 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 443 req->metadata_len = nvmet_rw_metadata_len(req); 444 return 0; 445 case nvme_cmd_flush: 446 req->execute = nvmet_bdev_execute_flush; 447 return 0; 448 case nvme_cmd_dsm: 449 req->execute = nvmet_bdev_execute_dsm; 450 return 0; 451 case nvme_cmd_write_zeroes: 452 req->execute = nvmet_bdev_execute_write_zeroes; 453 return 0; 454 default: 455 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 456 req->sq->qid); 457 req->error_loc = offsetof(struct nvme_common_command, opcode); 458 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 459 } 460 } 461