1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/module.h> 9 #include "nvmet.h" 10 11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 12 { 13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; 14 /* Number of logical blocks per physical block. */ 15 const u32 lpp = ql->physical_block_size / ql->logical_block_size; 16 /* Logical blocks per physical block, 0's based. */ 17 const __le16 lpp0b = to0based(lpp); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); 44 /* NPDG = Namespace Preferred Deallocate Alignment */ 45 id->npda = id->npdg; 46 /* NOWS = Namespace Optimal Write Size */ 47 id->nows = to0based(ql->io_opt / ql->logical_block_size); 48 } 49 50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) 51 { 52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev); 53 54 if (bi) { 55 ns->metadata_size = bi->tuple_size; 56 if (bi->profile == &t10_pi_type1_crc) 57 ns->pi_type = NVME_NS_DPS_PI_TYPE1; 58 else if (bi->profile == &t10_pi_type3_crc) 59 ns->pi_type = NVME_NS_DPS_PI_TYPE3; 60 else 61 /* Unsupported metadata type */ 62 ns->metadata_size = 0; 63 } 64 } 65 66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 67 { 68 int ret; 69 70 ns->bdev = blkdev_get_by_path(ns->device_path, 71 FMODE_READ | FMODE_WRITE, NULL); 72 if (IS_ERR(ns->bdev)) { 73 ret = PTR_ERR(ns->bdev); 74 if (ret != -ENOTBLK) { 75 pr_err("failed to open block device %s: (%ld)\n", 76 ns->device_path, PTR_ERR(ns->bdev)); 77 } 78 ns->bdev = NULL; 79 return ret; 80 } 81 ns->size = i_size_read(ns->bdev->bd_inode); 82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 83 84 ns->pi_type = 0; 85 ns->metadata_size = 0; 86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) 87 nvmet_bdev_ns_enable_integrity(ns); 88 89 return 0; 90 } 91 92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 93 { 94 if (ns->bdev) { 95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); 96 ns->bdev = NULL; 97 } 98 } 99 100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) 101 { 102 ns->size = i_size_read(ns->bdev->bd_inode); 103 } 104 105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 106 { 107 u16 status = NVME_SC_SUCCESS; 108 109 if (likely(blk_sts == BLK_STS_OK)) 110 return status; 111 /* 112 * Right now there exists M : 1 mapping between block layer error 113 * to the NVMe status code (see nvme_error_status()). For consistency, 114 * when we reverse map we use most appropriate NVMe Status code from 115 * the group of the NVMe staus codes used in the nvme_error_status(). 116 */ 117 switch (blk_sts) { 118 case BLK_STS_NOSPC: 119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 120 req->error_loc = offsetof(struct nvme_rw_command, length); 121 break; 122 case BLK_STS_TARGET: 123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 124 req->error_loc = offsetof(struct nvme_rw_command, slba); 125 break; 126 case BLK_STS_NOTSUPP: 127 req->error_loc = offsetof(struct nvme_common_command, opcode); 128 switch (req->cmd->common.opcode) { 129 case nvme_cmd_dsm: 130 case nvme_cmd_write_zeroes: 131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 132 break; 133 default: 134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 135 } 136 break; 137 case BLK_STS_MEDIUM: 138 status = NVME_SC_ACCESS_DENIED; 139 req->error_loc = offsetof(struct nvme_rw_command, nsid); 140 break; 141 case BLK_STS_IOERR: 142 default: 143 status = NVME_SC_INTERNAL | NVME_SC_DNR; 144 req->error_loc = offsetof(struct nvme_common_command, opcode); 145 } 146 147 switch (req->cmd->common.opcode) { 148 case nvme_cmd_read: 149 case nvme_cmd_write: 150 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 151 break; 152 case nvme_cmd_write_zeroes: 153 req->error_slba = 154 le64_to_cpu(req->cmd->write_zeroes.slba); 155 break; 156 default: 157 req->error_slba = 0; 158 } 159 return status; 160 } 161 162 static void nvmet_bio_done(struct bio *bio) 163 { 164 struct nvmet_req *req = bio->bi_private; 165 166 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 167 if (bio != &req->b.inline_bio) 168 bio_put(bio); 169 } 170 171 #ifdef CONFIG_BLK_DEV_INTEGRITY 172 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 173 struct sg_mapping_iter *miter) 174 { 175 struct blk_integrity *bi; 176 struct bio_integrity_payload *bip; 177 struct block_device *bdev = req->ns->bdev; 178 int rc; 179 size_t resid, len; 180 181 bi = bdev_get_integrity(bdev); 182 if (unlikely(!bi)) { 183 pr_err("Unable to locate bio_integrity\n"); 184 return -ENODEV; 185 } 186 187 bip = bio_integrity_alloc(bio, GFP_NOIO, 188 bio_max_segs(req->metadata_sg_cnt)); 189 if (IS_ERR(bip)) { 190 pr_err("Unable to allocate bio_integrity_payload\n"); 191 return PTR_ERR(bip); 192 } 193 194 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 195 /* virtual start sector must be in integrity interval units */ 196 bip_set_seed(bip, bio->bi_iter.bi_sector >> 197 (bi->interval_exp - SECTOR_SHIFT)); 198 199 resid = bip->bip_iter.bi_size; 200 while (resid > 0 && sg_miter_next(miter)) { 201 len = min_t(size_t, miter->length, resid); 202 rc = bio_integrity_add_page(bio, miter->page, len, 203 offset_in_page(miter->addr)); 204 if (unlikely(rc != len)) { 205 pr_err("bio_integrity_add_page() failed; %d\n", rc); 206 sg_miter_stop(miter); 207 return -ENOMEM; 208 } 209 210 resid -= len; 211 if (len < miter->length) 212 miter->consumed -= miter->length - len; 213 } 214 sg_miter_stop(miter); 215 216 return 0; 217 } 218 #else 219 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 220 struct sg_mapping_iter *miter) 221 { 222 return -EINVAL; 223 } 224 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 225 226 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 227 { 228 unsigned int sg_cnt = req->sg_cnt; 229 struct bio *bio; 230 struct scatterlist *sg; 231 struct blk_plug plug; 232 sector_t sector; 233 int op, i, rc; 234 struct sg_mapping_iter prot_miter; 235 unsigned int iter_flags; 236 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; 237 238 if (!nvmet_check_transfer_len(req, total_len)) 239 return; 240 241 if (!req->sg_cnt) { 242 nvmet_req_complete(req, 0); 243 return; 244 } 245 246 if (req->cmd->rw.opcode == nvme_cmd_write) { 247 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 248 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 249 op |= REQ_FUA; 250 iter_flags = SG_MITER_TO_SG; 251 } else { 252 op = REQ_OP_READ; 253 iter_flags = SG_MITER_FROM_SG; 254 } 255 256 if (is_pci_p2pdma_page(sg_page(req->sg))) 257 op |= REQ_NOMERGE; 258 259 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba); 260 261 if (nvmet_use_inline_bvec(req)) { 262 bio = &req->b.inline_bio; 263 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 264 } else { 265 bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt)); 266 } 267 bio_set_dev(bio, req->ns->bdev); 268 bio->bi_iter.bi_sector = sector; 269 bio->bi_private = req; 270 bio->bi_end_io = nvmet_bio_done; 271 bio->bi_opf = op; 272 273 blk_start_plug(&plug); 274 if (req->metadata_len) 275 sg_miter_start(&prot_miter, req->metadata_sg, 276 req->metadata_sg_cnt, iter_flags); 277 278 for_each_sg(req->sg, sg, req->sg_cnt, i) { 279 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 280 != sg->length) { 281 struct bio *prev = bio; 282 283 if (req->metadata_len) { 284 rc = nvmet_bdev_alloc_bip(req, bio, 285 &prot_miter); 286 if (unlikely(rc)) { 287 bio_io_error(bio); 288 return; 289 } 290 } 291 292 bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt)); 293 bio_set_dev(bio, req->ns->bdev); 294 bio->bi_iter.bi_sector = sector; 295 bio->bi_opf = op; 296 297 bio_chain(bio, prev); 298 submit_bio(prev); 299 } 300 301 sector += sg->length >> 9; 302 sg_cnt--; 303 } 304 305 if (req->metadata_len) { 306 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); 307 if (unlikely(rc)) { 308 bio_io_error(bio); 309 return; 310 } 311 } 312 313 submit_bio(bio); 314 blk_finish_plug(&plug); 315 } 316 317 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 318 { 319 struct bio *bio = &req->b.inline_bio; 320 321 if (!nvmet_check_transfer_len(req, 0)) 322 return; 323 324 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 325 bio_set_dev(bio, req->ns->bdev); 326 bio->bi_private = req; 327 bio->bi_end_io = nvmet_bio_done; 328 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 329 330 submit_bio(bio); 331 } 332 333 u16 nvmet_bdev_flush(struct nvmet_req *req) 334 { 335 if (blkdev_issue_flush(req->ns->bdev)) 336 return NVME_SC_INTERNAL | NVME_SC_DNR; 337 return 0; 338 } 339 340 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 341 struct nvme_dsm_range *range, struct bio **bio) 342 { 343 struct nvmet_ns *ns = req->ns; 344 int ret; 345 346 ret = __blkdev_issue_discard(ns->bdev, 347 nvmet_lba_to_sect(ns, range->slba), 348 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 349 GFP_KERNEL, 0, bio); 350 if (ret && ret != -EOPNOTSUPP) { 351 req->error_slba = le64_to_cpu(range->slba); 352 return errno_to_nvme_status(req, ret); 353 } 354 return NVME_SC_SUCCESS; 355 } 356 357 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 358 { 359 struct nvme_dsm_range range; 360 struct bio *bio = NULL; 361 int i; 362 u16 status; 363 364 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 365 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 366 sizeof(range)); 367 if (status) 368 break; 369 370 status = nvmet_bdev_discard_range(req, &range, &bio); 371 if (status) 372 break; 373 } 374 375 if (bio) { 376 bio->bi_private = req; 377 bio->bi_end_io = nvmet_bio_done; 378 if (status) 379 bio_io_error(bio); 380 else 381 submit_bio(bio); 382 } else { 383 nvmet_req_complete(req, status); 384 } 385 } 386 387 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 388 { 389 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) 390 return; 391 392 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 393 case NVME_DSMGMT_AD: 394 nvmet_bdev_execute_discard(req); 395 return; 396 case NVME_DSMGMT_IDR: 397 case NVME_DSMGMT_IDW: 398 default: 399 /* Not supported yet */ 400 nvmet_req_complete(req, 0); 401 return; 402 } 403 } 404 405 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 406 { 407 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 408 struct bio *bio = NULL; 409 sector_t sector; 410 sector_t nr_sector; 411 int ret; 412 413 if (!nvmet_check_transfer_len(req, 0)) 414 return; 415 416 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba); 417 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 418 (req->ns->blksize_shift - 9)); 419 420 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 421 GFP_KERNEL, &bio, 0); 422 if (bio) { 423 bio->bi_private = req; 424 bio->bi_end_io = nvmet_bio_done; 425 submit_bio(bio); 426 } else { 427 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 428 } 429 } 430 431 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 432 { 433 struct nvme_command *cmd = req->cmd; 434 435 switch (cmd->common.opcode) { 436 case nvme_cmd_read: 437 case nvme_cmd_write: 438 req->execute = nvmet_bdev_execute_rw; 439 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 440 req->metadata_len = nvmet_rw_metadata_len(req); 441 return 0; 442 case nvme_cmd_flush: 443 req->execute = nvmet_bdev_execute_flush; 444 return 0; 445 case nvme_cmd_dsm: 446 req->execute = nvmet_bdev_execute_dsm; 447 return 0; 448 case nvme_cmd_write_zeroes: 449 req->execute = nvmet_bdev_execute_write_zeroes; 450 return 0; 451 default: 452 return nvmet_report_invalid_opcode(req); 453 } 454 } 455