xref: /openbmc/linux/drivers/nvme/target/fc.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 
115 	struct work_struct		put_work;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	struct rcu_head			rcu;
151 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 	struct rcu_head			rcu;
174 };
175 
176 
177 static inline int
178 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
179 {
180 	return (iodptr - iodptr->tgtport->iod);
181 }
182 
183 static inline int
184 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
185 {
186 	return (fodptr - fodptr->queue->fod);
187 }
188 
189 
190 /*
191  * Association and Connection IDs:
192  *
193  * Association ID will have random number in upper 6 bytes and zero
194  *   in lower 2 bytes
195  *
196  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
197  *
198  * note: Association ID = Connection ID for queue 0
199  */
200 #define BYTES_FOR_QID			sizeof(u16)
201 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
202 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
203 
204 static inline u64
205 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
206 {
207 	return (assoc->association_id | qid);
208 }
209 
210 static inline u64
211 nvmet_fc_getassociationid(u64 connectionid)
212 {
213 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
214 }
215 
216 static inline u16
217 nvmet_fc_getqueueid(u64 connectionid)
218 {
219 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
220 }
221 
222 static inline struct nvmet_fc_tgtport *
223 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
224 {
225 	return container_of(targetport, struct nvmet_fc_tgtport,
226 				 fc_target_port);
227 }
228 
229 static inline struct nvmet_fc_fcp_iod *
230 nvmet_req_to_fod(struct nvmet_req *nvme_req)
231 {
232 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
233 }
234 
235 
236 /* *************************** Globals **************************** */
237 
238 
239 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
240 
241 static LIST_HEAD(nvmet_fc_target_list);
242 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
243 static LIST_HEAD(nvmet_fc_portentry_list);
244 
245 
246 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
247 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
248 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
249 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
250 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
251 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
252 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
253 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
254 {
255 	struct nvmet_fc_tgtport *tgtport =
256 		container_of(work, struct nvmet_fc_tgtport, put_work);
257 
258 	nvmet_fc_tgtport_put(tgtport);
259 }
260 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
261 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
262 					struct nvmet_fc_fcp_iod *fod);
263 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
264 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
265 				struct nvmet_fc_ls_iod *iod);
266 
267 
268 /* *********************** FC-NVME DMA Handling **************************** */
269 
270 /*
271  * The fcloop device passes in a NULL device pointer. Real LLD's will
272  * pass in a valid device pointer. If NULL is passed to the dma mapping
273  * routines, depending on the platform, it may or may not succeed, and
274  * may crash.
275  *
276  * As such:
277  * Wrapper all the dma routines and check the dev pointer.
278  *
279  * If simple mappings (return just a dma address, we'll noop them,
280  * returning a dma address of 0.
281  *
282  * On more complex mappings (dma_map_sg), a pseudo routine fills
283  * in the scatter list, setting all dma addresses to 0.
284  */
285 
286 static inline dma_addr_t
287 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
288 		enum dma_data_direction dir)
289 {
290 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
291 }
292 
293 static inline int
294 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
295 {
296 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
297 }
298 
299 static inline void
300 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
301 	enum dma_data_direction dir)
302 {
303 	if (dev)
304 		dma_unmap_single(dev, addr, size, dir);
305 }
306 
307 static inline void
308 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
309 		enum dma_data_direction dir)
310 {
311 	if (dev)
312 		dma_sync_single_for_cpu(dev, addr, size, dir);
313 }
314 
315 static inline void
316 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
317 		enum dma_data_direction dir)
318 {
319 	if (dev)
320 		dma_sync_single_for_device(dev, addr, size, dir);
321 }
322 
323 /* pseudo dma_map_sg call */
324 static int
325 fc_map_sg(struct scatterlist *sg, int nents)
326 {
327 	struct scatterlist *s;
328 	int i;
329 
330 	WARN_ON(nents == 0 || sg[0].length == 0);
331 
332 	for_each_sg(sg, s, nents, i) {
333 		s->dma_address = 0L;
334 #ifdef CONFIG_NEED_SG_DMA_LENGTH
335 		s->dma_length = s->length;
336 #endif
337 	}
338 	return nents;
339 }
340 
341 static inline int
342 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
343 		enum dma_data_direction dir)
344 {
345 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
346 }
347 
348 static inline void
349 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
350 		enum dma_data_direction dir)
351 {
352 	if (dev)
353 		dma_unmap_sg(dev, sg, nents, dir);
354 }
355 
356 
357 /* ********************** FC-NVME LS XMT Handling ************************* */
358 
359 
360 static void
361 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
362 {
363 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
364 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&tgtport->lock, flags);
368 
369 	if (!lsop->req_queued) {
370 		spin_unlock_irqrestore(&tgtport->lock, flags);
371 		goto out_putwork;
372 	}
373 
374 	list_del(&lsop->lsreq_list);
375 
376 	lsop->req_queued = false;
377 
378 	spin_unlock_irqrestore(&tgtport->lock, flags);
379 
380 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
381 				  (lsreq->rqstlen + lsreq->rsplen),
382 				  DMA_BIDIRECTIONAL);
383 
384 out_putwork:
385 	queue_work(nvmet_wq, &tgtport->put_work);
386 }
387 
388 static int
389 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
390 		struct nvmet_fc_ls_req_op *lsop,
391 		void (*done)(struct nvmefc_ls_req *req, int status))
392 {
393 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
394 	unsigned long flags;
395 	int ret = 0;
396 
397 	if (!tgtport->ops->ls_req)
398 		return -EOPNOTSUPP;
399 
400 	if (!nvmet_fc_tgtport_get(tgtport))
401 		return -ESHUTDOWN;
402 
403 	lsreq->done = done;
404 	lsop->req_queued = false;
405 	INIT_LIST_HEAD(&lsop->lsreq_list);
406 
407 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
408 				  lsreq->rqstlen + lsreq->rsplen,
409 				  DMA_BIDIRECTIONAL);
410 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
411 		ret = -EFAULT;
412 		goto out_puttgtport;
413 	}
414 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
415 
416 	spin_lock_irqsave(&tgtport->lock, flags);
417 
418 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
419 
420 	lsop->req_queued = true;
421 
422 	spin_unlock_irqrestore(&tgtport->lock, flags);
423 
424 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
425 				   lsreq);
426 	if (ret)
427 		goto out_unlink;
428 
429 	return 0;
430 
431 out_unlink:
432 	lsop->ls_error = ret;
433 	spin_lock_irqsave(&tgtport->lock, flags);
434 	lsop->req_queued = false;
435 	list_del(&lsop->lsreq_list);
436 	spin_unlock_irqrestore(&tgtport->lock, flags);
437 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
438 				  (lsreq->rqstlen + lsreq->rsplen),
439 				  DMA_BIDIRECTIONAL);
440 out_puttgtport:
441 	nvmet_fc_tgtport_put(tgtport);
442 
443 	return ret;
444 }
445 
446 static int
447 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
448 		struct nvmet_fc_ls_req_op *lsop,
449 		void (*done)(struct nvmefc_ls_req *req, int status))
450 {
451 	/* don't wait for completion */
452 
453 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
454 }
455 
456 static void
457 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
458 {
459 	struct nvmet_fc_ls_req_op *lsop =
460 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
461 
462 	__nvmet_fc_finish_ls_req(lsop);
463 
464 	/* fc-nvme target doesn't care about success or failure of cmd */
465 
466 	kfree(lsop);
467 }
468 
469 /*
470  * This routine sends a FC-NVME LS to disconnect (aka terminate)
471  * the FC-NVME Association.  Terminating the association also
472  * terminates the FC-NVME connections (per queue, both admin and io
473  * queues) that are part of the association. E.g. things are torn
474  * down, and the related FC-NVME Association ID and Connection IDs
475  * become invalid.
476  *
477  * The behavior of the fc-nvme target is such that it's
478  * understanding of the association and connections will implicitly
479  * be torn down. The action is implicit as it may be due to a loss of
480  * connectivity with the fc-nvme host, so the target may never get a
481  * response even if it tried.  As such, the action of this routine
482  * is to asynchronously send the LS, ignore any results of the LS, and
483  * continue on with terminating the association. If the fc-nvme host
484  * is present and receives the LS, it too can tear down.
485  */
486 static void
487 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
488 {
489 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
490 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
491 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
492 	struct nvmet_fc_ls_req_op *lsop;
493 	struct nvmefc_ls_req *lsreq;
494 	int ret;
495 
496 	/*
497 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
498 	 * message is normal. Otherwise, send unless the hostport has
499 	 * already been invalidated by the lldd.
500 	 */
501 	if (!tgtport->ops->ls_req || !assoc->hostport ||
502 	    assoc->hostport->invalid)
503 		return;
504 
505 	lsop = kzalloc((sizeof(*lsop) +
506 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
507 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
508 	if (!lsop) {
509 		dev_info(tgtport->dev,
510 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
511 			tgtport->fc_target_port.port_num, assoc->a_id);
512 		return;
513 	}
514 
515 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
516 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
517 	lsreq = &lsop->ls_req;
518 	if (tgtport->ops->lsrqst_priv_sz)
519 		lsreq->private = (void *)&discon_acc[1];
520 	else
521 		lsreq->private = NULL;
522 
523 	lsop->tgtport = tgtport;
524 	lsop->hosthandle = assoc->hostport->hosthandle;
525 
526 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
527 				assoc->association_id);
528 
529 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
530 				nvmet_fc_disconnect_assoc_done);
531 	if (ret) {
532 		dev_info(tgtport->dev,
533 			"{%d:%d} XMT Disconnect Association failed: %d\n",
534 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
535 		kfree(lsop);
536 	}
537 }
538 
539 
540 /* *********************** FC-NVME Port Management ************************ */
541 
542 
543 static int
544 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
545 {
546 	struct nvmet_fc_ls_iod *iod;
547 	int i;
548 
549 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
550 			GFP_KERNEL);
551 	if (!iod)
552 		return -ENOMEM;
553 
554 	tgtport->iod = iod;
555 
556 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
557 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
558 		iod->tgtport = tgtport;
559 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
560 
561 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
562 				       sizeof(union nvmefc_ls_responses),
563 				       GFP_KERNEL);
564 		if (!iod->rqstbuf)
565 			goto out_fail;
566 
567 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
568 
569 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
570 						sizeof(*iod->rspbuf),
571 						DMA_TO_DEVICE);
572 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
573 			goto out_fail;
574 	}
575 
576 	return 0;
577 
578 out_fail:
579 	kfree(iod->rqstbuf);
580 	list_del(&iod->ls_rcv_list);
581 	for (iod--, i--; i >= 0; iod--, i--) {
582 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
583 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
584 		kfree(iod->rqstbuf);
585 		list_del(&iod->ls_rcv_list);
586 	}
587 
588 	kfree(iod);
589 
590 	return -EFAULT;
591 }
592 
593 static void
594 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
595 {
596 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
597 	int i;
598 
599 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
600 		fc_dma_unmap_single(tgtport->dev,
601 				iod->rspdma, sizeof(*iod->rspbuf),
602 				DMA_TO_DEVICE);
603 		kfree(iod->rqstbuf);
604 		list_del(&iod->ls_rcv_list);
605 	}
606 	kfree(tgtport->iod);
607 }
608 
609 static struct nvmet_fc_ls_iod *
610 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
611 {
612 	struct nvmet_fc_ls_iod *iod;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tgtport->lock, flags);
616 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
617 					struct nvmet_fc_ls_iod, ls_rcv_list);
618 	if (iod)
619 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
620 	spin_unlock_irqrestore(&tgtport->lock, flags);
621 	return iod;
622 }
623 
624 
625 static void
626 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
627 			struct nvmet_fc_ls_iod *iod)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&tgtport->lock, flags);
632 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
633 	spin_unlock_irqrestore(&tgtport->lock, flags);
634 }
635 
636 static void
637 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
638 				struct nvmet_fc_tgt_queue *queue)
639 {
640 	struct nvmet_fc_fcp_iod *fod = queue->fod;
641 	int i;
642 
643 	for (i = 0; i < queue->sqsize; fod++, i++) {
644 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
645 		fod->tgtport = tgtport;
646 		fod->queue = queue;
647 		fod->active = false;
648 		fod->abort = false;
649 		fod->aborted = false;
650 		fod->fcpreq = NULL;
651 		list_add_tail(&fod->fcp_list, &queue->fod_list);
652 		spin_lock_init(&fod->flock);
653 
654 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
655 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
656 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
657 			list_del(&fod->fcp_list);
658 			for (fod--, i--; i >= 0; fod--, i--) {
659 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
660 						sizeof(fod->rspiubuf),
661 						DMA_TO_DEVICE);
662 				fod->rspdma = 0L;
663 				list_del(&fod->fcp_list);
664 			}
665 
666 			return;
667 		}
668 	}
669 }
670 
671 static void
672 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
673 				struct nvmet_fc_tgt_queue *queue)
674 {
675 	struct nvmet_fc_fcp_iod *fod = queue->fod;
676 	int i;
677 
678 	for (i = 0; i < queue->sqsize; fod++, i++) {
679 		if (fod->rspdma)
680 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
681 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
682 	}
683 }
684 
685 static struct nvmet_fc_fcp_iod *
686 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
687 {
688 	struct nvmet_fc_fcp_iod *fod;
689 
690 	lockdep_assert_held(&queue->qlock);
691 
692 	fod = list_first_entry_or_null(&queue->fod_list,
693 					struct nvmet_fc_fcp_iod, fcp_list);
694 	if (fod) {
695 		list_del(&fod->fcp_list);
696 		fod->active = true;
697 		/*
698 		 * no queue reference is taken, as it was taken by the
699 		 * queue lookup just prior to the allocation. The iod
700 		 * will "inherit" that reference.
701 		 */
702 	}
703 	return fod;
704 }
705 
706 
707 static void
708 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
709 		       struct nvmet_fc_tgt_queue *queue,
710 		       struct nvmefc_tgt_fcp_req *fcpreq)
711 {
712 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
713 
714 	/*
715 	 * put all admin cmds on hw queue id 0. All io commands go to
716 	 * the respective hw queue based on a modulo basis
717 	 */
718 	fcpreq->hwqid = queue->qid ?
719 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
720 
721 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
722 }
723 
724 static void
725 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
726 {
727 	struct nvmet_fc_fcp_iod *fod =
728 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
729 
730 	/* Submit deferred IO for processing */
731 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
732 
733 }
734 
735 static void
736 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
737 			struct nvmet_fc_fcp_iod *fod)
738 {
739 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
740 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
741 	struct nvmet_fc_defer_fcp_req *deferfcp;
742 	unsigned long flags;
743 
744 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
745 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
746 
747 	fcpreq->nvmet_fc_private = NULL;
748 
749 	fod->active = false;
750 	fod->abort = false;
751 	fod->aborted = false;
752 	fod->writedataactive = false;
753 	fod->fcpreq = NULL;
754 
755 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
756 
757 	/* release the queue lookup reference on the completed IO */
758 	nvmet_fc_tgt_q_put(queue);
759 
760 	spin_lock_irqsave(&queue->qlock, flags);
761 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
762 				struct nvmet_fc_defer_fcp_req, req_list);
763 	if (!deferfcp) {
764 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
765 		spin_unlock_irqrestore(&queue->qlock, flags);
766 		return;
767 	}
768 
769 	/* Re-use the fod for the next pending cmd that was deferred */
770 	list_del(&deferfcp->req_list);
771 
772 	fcpreq = deferfcp->fcp_req;
773 
774 	/* deferfcp can be reused for another IO at a later date */
775 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
776 
777 	spin_unlock_irqrestore(&queue->qlock, flags);
778 
779 	/* Save NVME CMD IO in fod */
780 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
781 
782 	/* Setup new fcpreq to be processed */
783 	fcpreq->rspaddr = NULL;
784 	fcpreq->rsplen  = 0;
785 	fcpreq->nvmet_fc_private = fod;
786 	fod->fcpreq = fcpreq;
787 	fod->active = true;
788 
789 	/* inform LLDD IO is now being processed */
790 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
791 
792 	/*
793 	 * Leave the queue lookup get reference taken when
794 	 * fod was originally allocated.
795 	 */
796 
797 	queue_work(queue->work_q, &fod->defer_work);
798 }
799 
800 static struct nvmet_fc_tgt_queue *
801 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
802 			u16 qid, u16 sqsize)
803 {
804 	struct nvmet_fc_tgt_queue *queue;
805 	int ret;
806 
807 	if (qid > NVMET_NR_QUEUES)
808 		return NULL;
809 
810 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
811 	if (!queue)
812 		return NULL;
813 
814 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
815 				assoc->tgtport->fc_target_port.port_num,
816 				assoc->a_id, qid);
817 	if (!queue->work_q)
818 		goto out_free_queue;
819 
820 	queue->qid = qid;
821 	queue->sqsize = sqsize;
822 	queue->assoc = assoc;
823 	INIT_LIST_HEAD(&queue->fod_list);
824 	INIT_LIST_HEAD(&queue->avail_defer_list);
825 	INIT_LIST_HEAD(&queue->pending_cmd_list);
826 	atomic_set(&queue->connected, 0);
827 	atomic_set(&queue->sqtail, 0);
828 	atomic_set(&queue->rsn, 1);
829 	atomic_set(&queue->zrspcnt, 0);
830 	spin_lock_init(&queue->qlock);
831 	kref_init(&queue->ref);
832 
833 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
834 
835 	ret = nvmet_sq_init(&queue->nvme_sq);
836 	if (ret)
837 		goto out_fail_iodlist;
838 
839 	WARN_ON(assoc->queues[qid]);
840 	assoc->queues[qid] = queue;
841 
842 	return queue;
843 
844 out_fail_iodlist:
845 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
846 	destroy_workqueue(queue->work_q);
847 out_free_queue:
848 	kfree(queue);
849 	return NULL;
850 }
851 
852 
853 static void
854 nvmet_fc_tgt_queue_free(struct kref *ref)
855 {
856 	struct nvmet_fc_tgt_queue *queue =
857 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
858 
859 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
860 
861 	destroy_workqueue(queue->work_q);
862 
863 	kfree_rcu(queue, rcu);
864 }
865 
866 static void
867 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
868 {
869 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
870 }
871 
872 static int
873 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
874 {
875 	return kref_get_unless_zero(&queue->ref);
876 }
877 
878 
879 static void
880 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
881 {
882 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
883 	struct nvmet_fc_fcp_iod *fod = queue->fod;
884 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
885 	unsigned long flags;
886 	int i;
887 	bool disconnect;
888 
889 	disconnect = atomic_xchg(&queue->connected, 0);
890 
891 	/* if not connected, nothing to do */
892 	if (!disconnect)
893 		return;
894 
895 	spin_lock_irqsave(&queue->qlock, flags);
896 	/* abort outstanding io's */
897 	for (i = 0; i < queue->sqsize; fod++, i++) {
898 		if (fod->active) {
899 			spin_lock(&fod->flock);
900 			fod->abort = true;
901 			/*
902 			 * only call lldd abort routine if waiting for
903 			 * writedata. other outstanding ops should finish
904 			 * on their own.
905 			 */
906 			if (fod->writedataactive) {
907 				fod->aborted = true;
908 				spin_unlock(&fod->flock);
909 				tgtport->ops->fcp_abort(
910 					&tgtport->fc_target_port, fod->fcpreq);
911 			} else
912 				spin_unlock(&fod->flock);
913 		}
914 	}
915 
916 	/* Cleanup defer'ed IOs in queue */
917 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
918 				req_list) {
919 		list_del(&deferfcp->req_list);
920 		kfree(deferfcp);
921 	}
922 
923 	for (;;) {
924 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
925 				struct nvmet_fc_defer_fcp_req, req_list);
926 		if (!deferfcp)
927 			break;
928 
929 		list_del(&deferfcp->req_list);
930 		spin_unlock_irqrestore(&queue->qlock, flags);
931 
932 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
933 				deferfcp->fcp_req);
934 
935 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
936 				deferfcp->fcp_req);
937 
938 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
939 				deferfcp->fcp_req);
940 
941 		/* release the queue lookup reference */
942 		nvmet_fc_tgt_q_put(queue);
943 
944 		kfree(deferfcp);
945 
946 		spin_lock_irqsave(&queue->qlock, flags);
947 	}
948 	spin_unlock_irqrestore(&queue->qlock, flags);
949 
950 	flush_workqueue(queue->work_q);
951 
952 	nvmet_sq_destroy(&queue->nvme_sq);
953 
954 	nvmet_fc_tgt_q_put(queue);
955 }
956 
957 static struct nvmet_fc_tgt_queue *
958 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
959 				u64 connection_id)
960 {
961 	struct nvmet_fc_tgt_assoc *assoc;
962 	struct nvmet_fc_tgt_queue *queue;
963 	u64 association_id = nvmet_fc_getassociationid(connection_id);
964 	u16 qid = nvmet_fc_getqueueid(connection_id);
965 
966 	if (qid > NVMET_NR_QUEUES)
967 		return NULL;
968 
969 	rcu_read_lock();
970 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
971 		if (association_id == assoc->association_id) {
972 			queue = assoc->queues[qid];
973 			if (queue &&
974 			    (!atomic_read(&queue->connected) ||
975 			     !nvmet_fc_tgt_q_get(queue)))
976 				queue = NULL;
977 			rcu_read_unlock();
978 			return queue;
979 		}
980 	}
981 	rcu_read_unlock();
982 	return NULL;
983 }
984 
985 static void
986 nvmet_fc_hostport_free(struct kref *ref)
987 {
988 	struct nvmet_fc_hostport *hostport =
989 		container_of(ref, struct nvmet_fc_hostport, ref);
990 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&tgtport->lock, flags);
994 	list_del(&hostport->host_list);
995 	spin_unlock_irqrestore(&tgtport->lock, flags);
996 	if (tgtport->ops->host_release && hostport->invalid)
997 		tgtport->ops->host_release(hostport->hosthandle);
998 	kfree(hostport);
999 	nvmet_fc_tgtport_put(tgtport);
1000 }
1001 
1002 static void
1003 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1004 {
1005 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1006 }
1007 
1008 static int
1009 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1010 {
1011 	return kref_get_unless_zero(&hostport->ref);
1012 }
1013 
1014 static void
1015 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1016 {
1017 	/* if LLDD not implemented, leave as NULL */
1018 	if (!hostport || !hostport->hosthandle)
1019 		return;
1020 
1021 	nvmet_fc_hostport_put(hostport);
1022 }
1023 
1024 static struct nvmet_fc_hostport *
1025 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1026 {
1027 	struct nvmet_fc_hostport *host;
1028 
1029 	lockdep_assert_held(&tgtport->lock);
1030 
1031 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1032 		if (host->hosthandle == hosthandle && !host->invalid) {
1033 			if (nvmet_fc_hostport_get(host))
1034 				return (host);
1035 		}
1036 	}
1037 
1038 	return NULL;
1039 }
1040 
1041 static struct nvmet_fc_hostport *
1042 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1043 {
1044 	struct nvmet_fc_hostport *newhost, *match = NULL;
1045 	unsigned long flags;
1046 
1047 	/* if LLDD not implemented, leave as NULL */
1048 	if (!hosthandle)
1049 		return NULL;
1050 
1051 	/*
1052 	 * take reference for what will be the newly allocated hostport if
1053 	 * we end up using a new allocation
1054 	 */
1055 	if (!nvmet_fc_tgtport_get(tgtport))
1056 		return ERR_PTR(-EINVAL);
1057 
1058 	spin_lock_irqsave(&tgtport->lock, flags);
1059 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1060 	spin_unlock_irqrestore(&tgtport->lock, flags);
1061 
1062 	if (match) {
1063 		/* no new allocation - release reference */
1064 		nvmet_fc_tgtport_put(tgtport);
1065 		return match;
1066 	}
1067 
1068 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1069 	if (!newhost) {
1070 		/* no new allocation - release reference */
1071 		nvmet_fc_tgtport_put(tgtport);
1072 		return ERR_PTR(-ENOMEM);
1073 	}
1074 
1075 	spin_lock_irqsave(&tgtport->lock, flags);
1076 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1077 	if (match) {
1078 		/* new allocation not needed */
1079 		kfree(newhost);
1080 		newhost = match;
1081 	} else {
1082 		newhost->tgtport = tgtport;
1083 		newhost->hosthandle = hosthandle;
1084 		INIT_LIST_HEAD(&newhost->host_list);
1085 		kref_init(&newhost->ref);
1086 
1087 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1088 	}
1089 	spin_unlock_irqrestore(&tgtport->lock, flags);
1090 
1091 	return newhost;
1092 }
1093 
1094 static void
1095 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1096 {
1097 	nvmet_fc_delete_target_assoc(assoc);
1098 	nvmet_fc_tgt_a_put(assoc);
1099 }
1100 
1101 static void
1102 nvmet_fc_delete_assoc_work(struct work_struct *work)
1103 {
1104 	struct nvmet_fc_tgt_assoc *assoc =
1105 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1106 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1107 
1108 	nvmet_fc_delete_assoc(assoc);
1109 	nvmet_fc_tgtport_put(tgtport);
1110 }
1111 
1112 static void
1113 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1114 {
1115 	nvmet_fc_tgtport_get(assoc->tgtport);
1116 	queue_work(nvmet_wq, &assoc->del_work);
1117 }
1118 
1119 static struct nvmet_fc_tgt_assoc *
1120 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1121 {
1122 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1123 	unsigned long flags;
1124 	u64 ran;
1125 	int idx;
1126 	bool needrandom = true;
1127 
1128 	if (!tgtport->pe)
1129 		return NULL;
1130 
1131 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1132 	if (!assoc)
1133 		return NULL;
1134 
1135 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1136 	if (idx < 0)
1137 		goto out_free_assoc;
1138 
1139 	if (!nvmet_fc_tgtport_get(tgtport))
1140 		goto out_ida;
1141 
1142 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1143 	if (IS_ERR(assoc->hostport))
1144 		goto out_put;
1145 
1146 	assoc->tgtport = tgtport;
1147 	assoc->a_id = idx;
1148 	INIT_LIST_HEAD(&assoc->a_list);
1149 	kref_init(&assoc->ref);
1150 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1151 	atomic_set(&assoc->terminating, 0);
1152 
1153 	while (needrandom) {
1154 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1155 		ran = ran << BYTES_FOR_QID_SHIFT;
1156 
1157 		spin_lock_irqsave(&tgtport->lock, flags);
1158 		needrandom = false;
1159 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1160 			if (ran == tmpassoc->association_id) {
1161 				needrandom = true;
1162 				break;
1163 			}
1164 		}
1165 		if (!needrandom) {
1166 			assoc->association_id = ran;
1167 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1168 		}
1169 		spin_unlock_irqrestore(&tgtport->lock, flags);
1170 	}
1171 
1172 	return assoc;
1173 
1174 out_put:
1175 	nvmet_fc_tgtport_put(tgtport);
1176 out_ida:
1177 	ida_free(&tgtport->assoc_cnt, idx);
1178 out_free_assoc:
1179 	kfree(assoc);
1180 	return NULL;
1181 }
1182 
1183 static void
1184 nvmet_fc_target_assoc_free(struct kref *ref)
1185 {
1186 	struct nvmet_fc_tgt_assoc *assoc =
1187 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1188 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1189 	struct nvmet_fc_ls_iod	*oldls;
1190 	unsigned long flags;
1191 	int i;
1192 
1193 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1194 		if (assoc->queues[i])
1195 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1196 	}
1197 
1198 	/* Send Disconnect now that all i/o has completed */
1199 	nvmet_fc_xmt_disconnect_assoc(assoc);
1200 
1201 	nvmet_fc_free_hostport(assoc->hostport);
1202 	spin_lock_irqsave(&tgtport->lock, flags);
1203 	oldls = assoc->rcv_disconn;
1204 	spin_unlock_irqrestore(&tgtport->lock, flags);
1205 	/* if pending Rcv Disconnect Association LS, send rsp now */
1206 	if (oldls)
1207 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1208 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1209 	dev_info(tgtport->dev,
1210 		"{%d:%d} Association freed\n",
1211 		tgtport->fc_target_port.port_num, assoc->a_id);
1212 	kfree_rcu(assoc, rcu);
1213 	nvmet_fc_tgtport_put(tgtport);
1214 }
1215 
1216 static void
1217 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1218 {
1219 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1220 }
1221 
1222 static int
1223 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1224 {
1225 	return kref_get_unless_zero(&assoc->ref);
1226 }
1227 
1228 static void
1229 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1230 {
1231 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1232 	unsigned long flags;
1233 	int i, terminating;
1234 
1235 	terminating = atomic_xchg(&assoc->terminating, 1);
1236 
1237 	/* if already terminating, do nothing */
1238 	if (terminating)
1239 		return;
1240 
1241 	spin_lock_irqsave(&tgtport->lock, flags);
1242 	list_del_rcu(&assoc->a_list);
1243 	spin_unlock_irqrestore(&tgtport->lock, flags);
1244 
1245 	synchronize_rcu();
1246 
1247 	/* ensure all in-flight I/Os have been processed */
1248 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1249 		if (assoc->queues[i])
1250 			flush_workqueue(assoc->queues[i]->work_q);
1251 	}
1252 
1253 	dev_info(tgtport->dev,
1254 		"{%d:%d} Association deleted\n",
1255 		tgtport->fc_target_port.port_num, assoc->a_id);
1256 }
1257 
1258 static struct nvmet_fc_tgt_assoc *
1259 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1260 				u64 association_id)
1261 {
1262 	struct nvmet_fc_tgt_assoc *assoc;
1263 	struct nvmet_fc_tgt_assoc *ret = NULL;
1264 
1265 	rcu_read_lock();
1266 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1267 		if (association_id == assoc->association_id) {
1268 			ret = assoc;
1269 			if (!nvmet_fc_tgt_a_get(assoc))
1270 				ret = NULL;
1271 			break;
1272 		}
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	return ret;
1277 }
1278 
1279 static void
1280 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1281 			struct nvmet_fc_port_entry *pe,
1282 			struct nvmet_port *port)
1283 {
1284 	lockdep_assert_held(&nvmet_fc_tgtlock);
1285 
1286 	pe->tgtport = tgtport;
1287 	tgtport->pe = pe;
1288 
1289 	pe->port = port;
1290 	port->priv = pe;
1291 
1292 	pe->node_name = tgtport->fc_target_port.node_name;
1293 	pe->port_name = tgtport->fc_target_port.port_name;
1294 	INIT_LIST_HEAD(&pe->pe_list);
1295 
1296 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1297 }
1298 
1299 static void
1300 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1301 {
1302 	unsigned long flags;
1303 
1304 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1305 	if (pe->tgtport)
1306 		pe->tgtport->pe = NULL;
1307 	list_del(&pe->pe_list);
1308 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1309 }
1310 
1311 /*
1312  * called when a targetport deregisters. Breaks the relationship
1313  * with the nvmet port, but leaves the port_entry in place so that
1314  * re-registration can resume operation.
1315  */
1316 static void
1317 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1318 {
1319 	struct nvmet_fc_port_entry *pe;
1320 	unsigned long flags;
1321 
1322 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1323 	pe = tgtport->pe;
1324 	if (pe)
1325 		pe->tgtport = NULL;
1326 	tgtport->pe = NULL;
1327 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1328 }
1329 
1330 /*
1331  * called when a new targetport is registered. Looks in the
1332  * existing nvmet port_entries to see if the nvmet layer is
1333  * configured for the targetport's wwn's. (the targetport existed,
1334  * nvmet configured, the lldd unregistered the tgtport, and is now
1335  * reregistering the same targetport).  If so, set the nvmet port
1336  * port entry on the targetport.
1337  */
1338 static void
1339 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1340 {
1341 	struct nvmet_fc_port_entry *pe;
1342 	unsigned long flags;
1343 
1344 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1345 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1346 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1347 		    tgtport->fc_target_port.port_name == pe->port_name) {
1348 			WARN_ON(pe->tgtport);
1349 			tgtport->pe = pe;
1350 			pe->tgtport = tgtport;
1351 			break;
1352 		}
1353 	}
1354 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1355 }
1356 
1357 /**
1358  * nvmet_fc_register_targetport - transport entry point called by an
1359  *                              LLDD to register the existence of a local
1360  *                              NVME subystem FC port.
1361  * @pinfo:     pointer to information about the port to be registered
1362  * @template:  LLDD entrypoints and operational parameters for the port
1363  * @dev:       physical hardware device node port corresponds to. Will be
1364  *             used for DMA mappings
1365  * @portptr:   pointer to a local port pointer. Upon success, the routine
1366  *             will allocate a nvme_fc_local_port structure and place its
1367  *             address in the local port pointer. Upon failure, local port
1368  *             pointer will be set to NULL.
1369  *
1370  * Returns:
1371  * a completion status. Must be 0 upon success; a negative errno
1372  * (ex: -ENXIO) upon failure.
1373  */
1374 int
1375 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1376 			struct nvmet_fc_target_template *template,
1377 			struct device *dev,
1378 			struct nvmet_fc_target_port **portptr)
1379 {
1380 	struct nvmet_fc_tgtport *newrec;
1381 	unsigned long flags;
1382 	int ret, idx;
1383 
1384 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1385 	    !template->fcp_abort ||
1386 	    !template->fcp_req_release || !template->targetport_delete ||
1387 	    !template->max_hw_queues || !template->max_sgl_segments ||
1388 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1389 		ret = -EINVAL;
1390 		goto out_regtgt_failed;
1391 	}
1392 
1393 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1394 			 GFP_KERNEL);
1395 	if (!newrec) {
1396 		ret = -ENOMEM;
1397 		goto out_regtgt_failed;
1398 	}
1399 
1400 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1401 	if (idx < 0) {
1402 		ret = -ENOSPC;
1403 		goto out_fail_kfree;
1404 	}
1405 
1406 	if (!get_device(dev) && dev) {
1407 		ret = -ENODEV;
1408 		goto out_ida_put;
1409 	}
1410 
1411 	newrec->fc_target_port.node_name = pinfo->node_name;
1412 	newrec->fc_target_port.port_name = pinfo->port_name;
1413 	if (template->target_priv_sz)
1414 		newrec->fc_target_port.private = &newrec[1];
1415 	else
1416 		newrec->fc_target_port.private = NULL;
1417 	newrec->fc_target_port.port_id = pinfo->port_id;
1418 	newrec->fc_target_port.port_num = idx;
1419 	INIT_LIST_HEAD(&newrec->tgt_list);
1420 	newrec->dev = dev;
1421 	newrec->ops = template;
1422 	spin_lock_init(&newrec->lock);
1423 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1424 	INIT_LIST_HEAD(&newrec->ls_req_list);
1425 	INIT_LIST_HEAD(&newrec->ls_busylist);
1426 	INIT_LIST_HEAD(&newrec->assoc_list);
1427 	INIT_LIST_HEAD(&newrec->host_list);
1428 	kref_init(&newrec->ref);
1429 	ida_init(&newrec->assoc_cnt);
1430 	newrec->max_sg_cnt = template->max_sgl_segments;
1431 	INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1432 
1433 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1434 	if (ret) {
1435 		ret = -ENOMEM;
1436 		goto out_free_newrec;
1437 	}
1438 
1439 	nvmet_fc_portentry_rebind_tgt(newrec);
1440 
1441 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1442 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1443 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1444 
1445 	*portptr = &newrec->fc_target_port;
1446 	return 0;
1447 
1448 out_free_newrec:
1449 	put_device(dev);
1450 out_ida_put:
1451 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1452 out_fail_kfree:
1453 	kfree(newrec);
1454 out_regtgt_failed:
1455 	*portptr = NULL;
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1459 
1460 
1461 static void
1462 nvmet_fc_free_tgtport(struct kref *ref)
1463 {
1464 	struct nvmet_fc_tgtport *tgtport =
1465 		container_of(ref, struct nvmet_fc_tgtport, ref);
1466 	struct device *dev = tgtport->dev;
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1470 	list_del(&tgtport->tgt_list);
1471 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1472 
1473 	nvmet_fc_free_ls_iodlist(tgtport);
1474 
1475 	/* let the LLDD know we've finished tearing it down */
1476 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1477 
1478 	ida_free(&nvmet_fc_tgtport_cnt,
1479 			tgtport->fc_target_port.port_num);
1480 
1481 	ida_destroy(&tgtport->assoc_cnt);
1482 
1483 	kfree(tgtport);
1484 
1485 	put_device(dev);
1486 }
1487 
1488 static void
1489 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1490 {
1491 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1492 }
1493 
1494 static int
1495 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1496 {
1497 	return kref_get_unless_zero(&tgtport->ref);
1498 }
1499 
1500 static void
1501 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1502 {
1503 	struct nvmet_fc_tgt_assoc *assoc;
1504 
1505 	rcu_read_lock();
1506 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1507 		if (!nvmet_fc_tgt_a_get(assoc))
1508 			continue;
1509 		nvmet_fc_schedule_delete_assoc(assoc);
1510 		nvmet_fc_tgt_a_put(assoc);
1511 	}
1512 	rcu_read_unlock();
1513 }
1514 
1515 /**
1516  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1517  *                       to remove references to a hosthandle for LS's.
1518  *
1519  * The nvmet-fc layer ensures that any references to the hosthandle
1520  * on the targetport are forgotten (set to NULL).  The LLDD will
1521  * typically call this when a login with a remote host port has been
1522  * lost, thus LS's for the remote host port are no longer possible.
1523  *
1524  * If an LS request is outstanding to the targetport/hosthandle (or
1525  * issued concurrently with the call to invalidate the host), the
1526  * LLDD is responsible for terminating/aborting the LS and completing
1527  * the LS request. It is recommended that these terminations/aborts
1528  * occur after calling to invalidate the host handle to avoid additional
1529  * retries by the nvmet-fc transport. The nvmet-fc transport may
1530  * continue to reference host handle while it cleans up outstanding
1531  * NVME associations. The nvmet-fc transport will call the
1532  * ops->host_release() callback to notify the LLDD that all references
1533  * are complete and the related host handle can be recovered.
1534  * Note: if there are no references, the callback may be called before
1535  * the invalidate host call returns.
1536  *
1537  * @target_port: pointer to the (registered) target port that a prior
1538  *              LS was received on and which supplied the transport the
1539  *              hosthandle.
1540  * @hosthandle: the handle (pointer) that represents the host port
1541  *              that no longer has connectivity and that LS's should
1542  *              no longer be directed to.
1543  */
1544 void
1545 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1546 			void *hosthandle)
1547 {
1548 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1549 	struct nvmet_fc_tgt_assoc *assoc, *next;
1550 	unsigned long flags;
1551 	bool noassoc = true;
1552 
1553 	spin_lock_irqsave(&tgtport->lock, flags);
1554 	list_for_each_entry_safe(assoc, next,
1555 				&tgtport->assoc_list, a_list) {
1556 		if (!assoc->hostport ||
1557 		    assoc->hostport->hosthandle != hosthandle)
1558 			continue;
1559 		if (!nvmet_fc_tgt_a_get(assoc))
1560 			continue;
1561 		assoc->hostport->invalid = 1;
1562 		noassoc = false;
1563 		nvmet_fc_schedule_delete_assoc(assoc);
1564 		nvmet_fc_tgt_a_put(assoc);
1565 	}
1566 	spin_unlock_irqrestore(&tgtport->lock, flags);
1567 
1568 	/* if there's nothing to wait for - call the callback */
1569 	if (noassoc && tgtport->ops->host_release)
1570 		tgtport->ops->host_release(hosthandle);
1571 }
1572 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1573 
1574 /*
1575  * nvmet layer has called to terminate an association
1576  */
1577 static void
1578 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1579 {
1580 	struct nvmet_fc_tgtport *tgtport, *next;
1581 	struct nvmet_fc_tgt_assoc *assoc;
1582 	struct nvmet_fc_tgt_queue *queue;
1583 	unsigned long flags;
1584 	bool found_ctrl = false;
1585 
1586 	/* this is a bit ugly, but don't want to make locks layered */
1587 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1588 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1589 			tgt_list) {
1590 		if (!nvmet_fc_tgtport_get(tgtport))
1591 			continue;
1592 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1593 
1594 		rcu_read_lock();
1595 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1596 			queue = assoc->queues[0];
1597 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1598 				if (nvmet_fc_tgt_a_get(assoc))
1599 					found_ctrl = true;
1600 				break;
1601 			}
1602 		}
1603 		rcu_read_unlock();
1604 
1605 		nvmet_fc_tgtport_put(tgtport);
1606 
1607 		if (found_ctrl) {
1608 			nvmet_fc_schedule_delete_assoc(assoc);
1609 			nvmet_fc_tgt_a_put(assoc);
1610 			return;
1611 		}
1612 
1613 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1614 	}
1615 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1616 }
1617 
1618 /**
1619  * nvmet_fc_unregister_targetport - transport entry point called by an
1620  *                              LLDD to deregister/remove a previously
1621  *                              registered a local NVME subsystem FC port.
1622  * @target_port: pointer to the (registered) target port that is to be
1623  *               deregistered.
1624  *
1625  * Returns:
1626  * a completion status. Must be 0 upon success; a negative errno
1627  * (ex: -ENXIO) upon failure.
1628  */
1629 int
1630 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1631 {
1632 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1633 
1634 	nvmet_fc_portentry_unbind_tgt(tgtport);
1635 
1636 	/* terminate any outstanding associations */
1637 	__nvmet_fc_free_assocs(tgtport);
1638 
1639 	flush_workqueue(nvmet_wq);
1640 
1641 	/*
1642 	 * should terminate LS's as well. However, LS's will be generated
1643 	 * at the tail end of association termination, so they likely don't
1644 	 * exist yet. And even if they did, it's worthwhile to just let
1645 	 * them finish and targetport ref counting will clean things up.
1646 	 */
1647 
1648 	nvmet_fc_tgtport_put(tgtport);
1649 
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1653 
1654 
1655 /* ********************** FC-NVME LS RCV Handling ************************* */
1656 
1657 
1658 static void
1659 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1660 			struct nvmet_fc_ls_iod *iod)
1661 {
1662 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1663 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1664 	struct nvmet_fc_tgt_queue *queue;
1665 	int ret = 0;
1666 
1667 	memset(acc, 0, sizeof(*acc));
1668 
1669 	/*
1670 	 * FC-NVME spec changes. There are initiators sending different
1671 	 * lengths as padding sizes for Create Association Cmd descriptor
1672 	 * was incorrect.
1673 	 * Accept anything of "minimum" length. Assume format per 1.15
1674 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1675 	 * trailing pad length is.
1676 	 */
1677 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1678 		ret = VERR_CR_ASSOC_LEN;
1679 	else if (be32_to_cpu(rqst->desc_list_len) <
1680 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1681 		ret = VERR_CR_ASSOC_RQST_LEN;
1682 	else if (rqst->assoc_cmd.desc_tag !=
1683 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1684 		ret = VERR_CR_ASSOC_CMD;
1685 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1686 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1687 		ret = VERR_CR_ASSOC_CMD_LEN;
1688 	else if (!rqst->assoc_cmd.ersp_ratio ||
1689 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1690 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1691 		ret = VERR_ERSP_RATIO;
1692 
1693 	else {
1694 		/* new association w/ admin queue */
1695 		iod->assoc = nvmet_fc_alloc_target_assoc(
1696 						tgtport, iod->hosthandle);
1697 		if (!iod->assoc)
1698 			ret = VERR_ASSOC_ALLOC_FAIL;
1699 		else {
1700 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1701 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1702 			if (!queue) {
1703 				ret = VERR_QUEUE_ALLOC_FAIL;
1704 				nvmet_fc_tgt_a_put(iod->assoc);
1705 			}
1706 		}
1707 	}
1708 
1709 	if (ret) {
1710 		dev_err(tgtport->dev,
1711 			"Create Association LS failed: %s\n",
1712 			validation_errors[ret]);
1713 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1714 				sizeof(*acc), rqst->w0.ls_cmd,
1715 				FCNVME_RJT_RC_LOGIC,
1716 				FCNVME_RJT_EXP_NONE, 0);
1717 		return;
1718 	}
1719 
1720 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1721 	atomic_set(&queue->connected, 1);
1722 	queue->sqhd = 0;	/* best place to init value */
1723 
1724 	dev_info(tgtport->dev,
1725 		"{%d:%d} Association created\n",
1726 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1727 
1728 	/* format a response */
1729 
1730 	iod->lsrsp->rsplen = sizeof(*acc);
1731 
1732 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1733 			fcnvme_lsdesc_len(
1734 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1735 			FCNVME_LS_CREATE_ASSOCIATION);
1736 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1737 	acc->associd.desc_len =
1738 			fcnvme_lsdesc_len(
1739 				sizeof(struct fcnvme_lsdesc_assoc_id));
1740 	acc->associd.association_id =
1741 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1742 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1743 	acc->connectid.desc_len =
1744 			fcnvme_lsdesc_len(
1745 				sizeof(struct fcnvme_lsdesc_conn_id));
1746 	acc->connectid.connection_id = acc->associd.association_id;
1747 }
1748 
1749 static void
1750 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1751 			struct nvmet_fc_ls_iod *iod)
1752 {
1753 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1754 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1755 	struct nvmet_fc_tgt_queue *queue;
1756 	int ret = 0;
1757 
1758 	memset(acc, 0, sizeof(*acc));
1759 
1760 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1761 		ret = VERR_CR_CONN_LEN;
1762 	else if (rqst->desc_list_len !=
1763 			fcnvme_lsdesc_len(
1764 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1765 		ret = VERR_CR_CONN_RQST_LEN;
1766 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1767 		ret = VERR_ASSOC_ID;
1768 	else if (rqst->associd.desc_len !=
1769 			fcnvme_lsdesc_len(
1770 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1771 		ret = VERR_ASSOC_ID_LEN;
1772 	else if (rqst->connect_cmd.desc_tag !=
1773 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1774 		ret = VERR_CR_CONN_CMD;
1775 	else if (rqst->connect_cmd.desc_len !=
1776 			fcnvme_lsdesc_len(
1777 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1778 		ret = VERR_CR_CONN_CMD_LEN;
1779 	else if (!rqst->connect_cmd.ersp_ratio ||
1780 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1781 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1782 		ret = VERR_ERSP_RATIO;
1783 
1784 	else {
1785 		/* new io queue */
1786 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1787 				be64_to_cpu(rqst->associd.association_id));
1788 		if (!iod->assoc)
1789 			ret = VERR_NO_ASSOC;
1790 		else {
1791 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1792 					be16_to_cpu(rqst->connect_cmd.qid),
1793 					be16_to_cpu(rqst->connect_cmd.sqsize));
1794 			if (!queue)
1795 				ret = VERR_QUEUE_ALLOC_FAIL;
1796 
1797 			/* release get taken in nvmet_fc_find_target_assoc */
1798 			nvmet_fc_tgt_a_put(iod->assoc);
1799 		}
1800 	}
1801 
1802 	if (ret) {
1803 		dev_err(tgtport->dev,
1804 			"Create Connection LS failed: %s\n",
1805 			validation_errors[ret]);
1806 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1807 				sizeof(*acc), rqst->w0.ls_cmd,
1808 				(ret == VERR_NO_ASSOC) ?
1809 					FCNVME_RJT_RC_INV_ASSOC :
1810 					FCNVME_RJT_RC_LOGIC,
1811 				FCNVME_RJT_EXP_NONE, 0);
1812 		return;
1813 	}
1814 
1815 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1816 	atomic_set(&queue->connected, 1);
1817 	queue->sqhd = 0;	/* best place to init value */
1818 
1819 	/* format a response */
1820 
1821 	iod->lsrsp->rsplen = sizeof(*acc);
1822 
1823 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1824 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1825 			FCNVME_LS_CREATE_CONNECTION);
1826 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1827 	acc->connectid.desc_len =
1828 			fcnvme_lsdesc_len(
1829 				sizeof(struct fcnvme_lsdesc_conn_id));
1830 	acc->connectid.connection_id =
1831 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1832 				be16_to_cpu(rqst->connect_cmd.qid)));
1833 }
1834 
1835 /*
1836  * Returns true if the LS response is to be transmit
1837  * Returns false if the LS response is to be delayed
1838  */
1839 static int
1840 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1841 			struct nvmet_fc_ls_iod *iod)
1842 {
1843 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1844 						&iod->rqstbuf->rq_dis_assoc;
1845 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1846 						&iod->rspbuf->rsp_dis_assoc;
1847 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1848 	struct nvmet_fc_ls_iod *oldls = NULL;
1849 	unsigned long flags;
1850 	int ret = 0;
1851 
1852 	memset(acc, 0, sizeof(*acc));
1853 
1854 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1855 	if (!ret) {
1856 		/* match an active association - takes an assoc ref if !NULL */
1857 		assoc = nvmet_fc_find_target_assoc(tgtport,
1858 				be64_to_cpu(rqst->associd.association_id));
1859 		iod->assoc = assoc;
1860 		if (!assoc)
1861 			ret = VERR_NO_ASSOC;
1862 	}
1863 
1864 	if (ret || !assoc) {
1865 		dev_err(tgtport->dev,
1866 			"Disconnect LS failed: %s\n",
1867 			validation_errors[ret]);
1868 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1869 				sizeof(*acc), rqst->w0.ls_cmd,
1870 				(ret == VERR_NO_ASSOC) ?
1871 					FCNVME_RJT_RC_INV_ASSOC :
1872 					FCNVME_RJT_RC_LOGIC,
1873 				FCNVME_RJT_EXP_NONE, 0);
1874 		return true;
1875 	}
1876 
1877 	/* format a response */
1878 
1879 	iod->lsrsp->rsplen = sizeof(*acc);
1880 
1881 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1882 			fcnvme_lsdesc_len(
1883 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1884 			FCNVME_LS_DISCONNECT_ASSOC);
1885 
1886 	/*
1887 	 * The rules for LS response says the response cannot
1888 	 * go back until ABTS's have been sent for all outstanding
1889 	 * I/O and a Disconnect Association LS has been sent.
1890 	 * So... save off the Disconnect LS to send the response
1891 	 * later. If there was a prior LS already saved, replace
1892 	 * it with the newer one and send a can't perform reject
1893 	 * on the older one.
1894 	 */
1895 	spin_lock_irqsave(&tgtport->lock, flags);
1896 	oldls = assoc->rcv_disconn;
1897 	assoc->rcv_disconn = iod;
1898 	spin_unlock_irqrestore(&tgtport->lock, flags);
1899 
1900 	if (oldls) {
1901 		dev_info(tgtport->dev,
1902 			"{%d:%d} Multiple Disconnect Association LS's "
1903 			"received\n",
1904 			tgtport->fc_target_port.port_num, assoc->a_id);
1905 		/* overwrite good response with bogus failure */
1906 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1907 						sizeof(*iod->rspbuf),
1908 						/* ok to use rqst, LS is same */
1909 						rqst->w0.ls_cmd,
1910 						FCNVME_RJT_RC_UNAB,
1911 						FCNVME_RJT_EXP_NONE, 0);
1912 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1913 	}
1914 
1915 	nvmet_fc_schedule_delete_assoc(assoc);
1916 	nvmet_fc_tgt_a_put(assoc);
1917 
1918 	return false;
1919 }
1920 
1921 
1922 /* *********************** NVME Ctrl Routines **************************** */
1923 
1924 
1925 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1926 
1927 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1928 
1929 static void
1930 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1931 {
1932 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1933 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1934 
1935 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1936 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1937 	nvmet_fc_free_ls_iod(tgtport, iod);
1938 	nvmet_fc_tgtport_put(tgtport);
1939 }
1940 
1941 static void
1942 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1943 				struct nvmet_fc_ls_iod *iod)
1944 {
1945 	int ret;
1946 
1947 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1948 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1949 
1950 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1951 	if (ret)
1952 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1953 }
1954 
1955 /*
1956  * Actual processing routine for received FC-NVME LS Requests from the LLD
1957  */
1958 static void
1959 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1960 			struct nvmet_fc_ls_iod *iod)
1961 {
1962 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1963 	bool sendrsp = true;
1964 
1965 	iod->lsrsp->nvme_fc_private = iod;
1966 	iod->lsrsp->rspbuf = iod->rspbuf;
1967 	iod->lsrsp->rspdma = iod->rspdma;
1968 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1969 	/* Be preventative. handlers will later set to valid length */
1970 	iod->lsrsp->rsplen = 0;
1971 
1972 	iod->assoc = NULL;
1973 
1974 	/*
1975 	 * handlers:
1976 	 *   parse request input, execute the request, and format the
1977 	 *   LS response
1978 	 */
1979 	switch (w0->ls_cmd) {
1980 	case FCNVME_LS_CREATE_ASSOCIATION:
1981 		/* Creates Association and initial Admin Queue/Connection */
1982 		nvmet_fc_ls_create_association(tgtport, iod);
1983 		break;
1984 	case FCNVME_LS_CREATE_CONNECTION:
1985 		/* Creates an IO Queue/Connection */
1986 		nvmet_fc_ls_create_connection(tgtport, iod);
1987 		break;
1988 	case FCNVME_LS_DISCONNECT_ASSOC:
1989 		/* Terminate a Queue/Connection or the Association */
1990 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1991 		break;
1992 	default:
1993 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1994 				sizeof(*iod->rspbuf), w0->ls_cmd,
1995 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1996 	}
1997 
1998 	if (sendrsp)
1999 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
2000 }
2001 
2002 /*
2003  * Actual processing routine for received FC-NVME LS Requests from the LLD
2004  */
2005 static void
2006 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2007 {
2008 	struct nvmet_fc_ls_iod *iod =
2009 		container_of(work, struct nvmet_fc_ls_iod, work);
2010 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2011 
2012 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2013 }
2014 
2015 
2016 /**
2017  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2018  *                       upon the reception of a NVME LS request.
2019  *
2020  * The nvmet-fc layer will copy payload to an internal structure for
2021  * processing.  As such, upon completion of the routine, the LLDD may
2022  * immediately free/reuse the LS request buffer passed in the call.
2023  *
2024  * If this routine returns error, the LLDD should abort the exchange.
2025  *
2026  * @target_port: pointer to the (registered) target port the LS was
2027  *              received on.
2028  * @hosthandle: pointer to the host specific data, gets stored in iod.
2029  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2030  *              the exchange corresponding to the LS.
2031  * @lsreqbuf:   pointer to the buffer containing the LS Request
2032  * @lsreqbuf_len: length, in bytes, of the received LS request
2033  */
2034 int
2035 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2036 			void *hosthandle,
2037 			struct nvmefc_ls_rsp *lsrsp,
2038 			void *lsreqbuf, u32 lsreqbuf_len)
2039 {
2040 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2041 	struct nvmet_fc_ls_iod *iod;
2042 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2043 
2044 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2045 		dev_info(tgtport->dev,
2046 			"RCV %s LS failed: payload too large (%d)\n",
2047 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2048 				nvmefc_ls_names[w0->ls_cmd] : "",
2049 			lsreqbuf_len);
2050 		return -E2BIG;
2051 	}
2052 
2053 	if (!nvmet_fc_tgtport_get(tgtport)) {
2054 		dev_info(tgtport->dev,
2055 			"RCV %s LS failed: target deleting\n",
2056 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2057 				nvmefc_ls_names[w0->ls_cmd] : "");
2058 		return -ESHUTDOWN;
2059 	}
2060 
2061 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2062 	if (!iod) {
2063 		dev_info(tgtport->dev,
2064 			"RCV %s LS failed: context allocation failed\n",
2065 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2066 				nvmefc_ls_names[w0->ls_cmd] : "");
2067 		nvmet_fc_tgtport_put(tgtport);
2068 		return -ENOENT;
2069 	}
2070 
2071 	iod->lsrsp = lsrsp;
2072 	iod->fcpreq = NULL;
2073 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2074 	iod->rqstdatalen = lsreqbuf_len;
2075 	iod->hosthandle = hosthandle;
2076 
2077 	queue_work(nvmet_wq, &iod->work);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2082 
2083 
2084 /*
2085  * **********************
2086  * Start of FCP handling
2087  * **********************
2088  */
2089 
2090 static int
2091 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2092 {
2093 	struct scatterlist *sg;
2094 	unsigned int nent;
2095 
2096 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2097 	if (!sg)
2098 		goto out;
2099 
2100 	fod->data_sg = sg;
2101 	fod->data_sg_cnt = nent;
2102 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2103 				((fod->io_dir == NVMET_FCP_WRITE) ?
2104 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2105 				/* note: write from initiator perspective */
2106 	fod->next_sg = fod->data_sg;
2107 
2108 	return 0;
2109 
2110 out:
2111 	return NVME_SC_INTERNAL;
2112 }
2113 
2114 static void
2115 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2116 {
2117 	if (!fod->data_sg || !fod->data_sg_cnt)
2118 		return;
2119 
2120 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2121 				((fod->io_dir == NVMET_FCP_WRITE) ?
2122 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2123 	sgl_free(fod->data_sg);
2124 	fod->data_sg = NULL;
2125 	fod->data_sg_cnt = 0;
2126 }
2127 
2128 
2129 static bool
2130 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2131 {
2132 	u32 sqtail, used;
2133 
2134 	/* egad, this is ugly. And sqtail is just a best guess */
2135 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2136 
2137 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2138 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2139 }
2140 
2141 /*
2142  * Prep RSP payload.
2143  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2144  */
2145 static void
2146 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2147 				struct nvmet_fc_fcp_iod *fod)
2148 {
2149 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2150 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2151 	struct nvme_completion *cqe = &ersp->cqe;
2152 	u32 *cqewd = (u32 *)cqe;
2153 	bool send_ersp = false;
2154 	u32 rsn, rspcnt, xfr_length;
2155 
2156 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2157 		xfr_length = fod->req.transfer_len;
2158 	else
2159 		xfr_length = fod->offset;
2160 
2161 	/*
2162 	 * check to see if we can send a 0's rsp.
2163 	 *   Note: to send a 0's response, the NVME-FC host transport will
2164 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2165 	 *   seen in an ersp), and command_id. Thus it will create a
2166 	 *   zero-filled CQE with those known fields filled in. Transport
2167 	 *   must send an ersp for any condition where the cqe won't match
2168 	 *   this.
2169 	 *
2170 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2171 	 *  every N responses, where N=ersp_ratio
2172 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2173 	 *    practice)
2174 	 *  normal cmds: any time status is non-zero, or status is zero
2175 	 *     but words 0 or 1 are non-zero.
2176 	 *  the SQ is 90% or more full
2177 	 *  the cmd is a fused command
2178 	 *  transferred data length not equal to cmd iu length
2179 	 */
2180 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2181 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2182 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2183 	    xfr_length != fod->req.transfer_len ||
2184 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2185 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2186 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2187 		send_ersp = true;
2188 
2189 	/* re-set the fields */
2190 	fod->fcpreq->rspaddr = ersp;
2191 	fod->fcpreq->rspdma = fod->rspdma;
2192 
2193 	if (!send_ersp) {
2194 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2195 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2196 	} else {
2197 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2198 		rsn = atomic_inc_return(&fod->queue->rsn);
2199 		ersp->rsn = cpu_to_be32(rsn);
2200 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2201 		fod->fcpreq->rsplen = sizeof(*ersp);
2202 	}
2203 
2204 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2205 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2206 }
2207 
2208 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2209 
2210 static void
2211 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2212 				struct nvmet_fc_fcp_iod *fod)
2213 {
2214 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2215 
2216 	/* data no longer needed */
2217 	nvmet_fc_free_tgt_pgs(fod);
2218 
2219 	/*
2220 	 * if an ABTS was received or we issued the fcp_abort early
2221 	 * don't call abort routine again.
2222 	 */
2223 	/* no need to take lock - lock was taken earlier to get here */
2224 	if (!fod->aborted)
2225 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2226 
2227 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2228 }
2229 
2230 static void
2231 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2232 				struct nvmet_fc_fcp_iod *fod)
2233 {
2234 	int ret;
2235 
2236 	fod->fcpreq->op = NVMET_FCOP_RSP;
2237 	fod->fcpreq->timeout = 0;
2238 
2239 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2240 
2241 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2242 	if (ret)
2243 		nvmet_fc_abort_op(tgtport, fod);
2244 }
2245 
2246 static void
2247 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2248 				struct nvmet_fc_fcp_iod *fod, u8 op)
2249 {
2250 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2251 	struct scatterlist *sg = fod->next_sg;
2252 	unsigned long flags;
2253 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2254 	u32 tlen = 0;
2255 	int ret;
2256 
2257 	fcpreq->op = op;
2258 	fcpreq->offset = fod->offset;
2259 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2260 
2261 	/*
2262 	 * for next sequence:
2263 	 *  break at a sg element boundary
2264 	 *  attempt to keep sequence length capped at
2265 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2266 	 *    be longer if a single sg element is larger
2267 	 *    than that amount. This is done to avoid creating
2268 	 *    a new sg list to use for the tgtport api.
2269 	 */
2270 	fcpreq->sg = sg;
2271 	fcpreq->sg_cnt = 0;
2272 	while (tlen < remaininglen &&
2273 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2274 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2275 		fcpreq->sg_cnt++;
2276 		tlen += sg_dma_len(sg);
2277 		sg = sg_next(sg);
2278 	}
2279 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2280 		fcpreq->sg_cnt++;
2281 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2282 		sg = sg_next(sg);
2283 	}
2284 	if (tlen < remaininglen)
2285 		fod->next_sg = sg;
2286 	else
2287 		fod->next_sg = NULL;
2288 
2289 	fcpreq->transfer_length = tlen;
2290 	fcpreq->transferred_length = 0;
2291 	fcpreq->fcp_error = 0;
2292 	fcpreq->rsplen = 0;
2293 
2294 	/*
2295 	 * If the last READDATA request: check if LLDD supports
2296 	 * combined xfr with response.
2297 	 */
2298 	if ((op == NVMET_FCOP_READDATA) &&
2299 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2300 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2301 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2302 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2303 	}
2304 
2305 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2306 	if (ret) {
2307 		/*
2308 		 * should be ok to set w/o lock as its in the thread of
2309 		 * execution (not an async timer routine) and doesn't
2310 		 * contend with any clearing action
2311 		 */
2312 		fod->abort = true;
2313 
2314 		if (op == NVMET_FCOP_WRITEDATA) {
2315 			spin_lock_irqsave(&fod->flock, flags);
2316 			fod->writedataactive = false;
2317 			spin_unlock_irqrestore(&fod->flock, flags);
2318 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2319 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2320 			fcpreq->fcp_error = ret;
2321 			fcpreq->transferred_length = 0;
2322 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2323 		}
2324 	}
2325 }
2326 
2327 static inline bool
2328 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2329 {
2330 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2331 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2332 
2333 	/* if in the middle of an io and we need to tear down */
2334 	if (abort) {
2335 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2336 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2337 			return true;
2338 		}
2339 
2340 		nvmet_fc_abort_op(tgtport, fod);
2341 		return true;
2342 	}
2343 
2344 	return false;
2345 }
2346 
2347 /*
2348  * actual done handler for FCP operations when completed by the lldd
2349  */
2350 static void
2351 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2352 {
2353 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2354 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2355 	unsigned long flags;
2356 	bool abort;
2357 
2358 	spin_lock_irqsave(&fod->flock, flags);
2359 	abort = fod->abort;
2360 	fod->writedataactive = false;
2361 	spin_unlock_irqrestore(&fod->flock, flags);
2362 
2363 	switch (fcpreq->op) {
2364 
2365 	case NVMET_FCOP_WRITEDATA:
2366 		if (__nvmet_fc_fod_op_abort(fod, abort))
2367 			return;
2368 		if (fcpreq->fcp_error ||
2369 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2370 			spin_lock_irqsave(&fod->flock, flags);
2371 			fod->abort = true;
2372 			spin_unlock_irqrestore(&fod->flock, flags);
2373 
2374 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2375 			return;
2376 		}
2377 
2378 		fod->offset += fcpreq->transferred_length;
2379 		if (fod->offset != fod->req.transfer_len) {
2380 			spin_lock_irqsave(&fod->flock, flags);
2381 			fod->writedataactive = true;
2382 			spin_unlock_irqrestore(&fod->flock, flags);
2383 
2384 			/* transfer the next chunk */
2385 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2386 						NVMET_FCOP_WRITEDATA);
2387 			return;
2388 		}
2389 
2390 		/* data transfer complete, resume with nvmet layer */
2391 		fod->req.execute(&fod->req);
2392 		break;
2393 
2394 	case NVMET_FCOP_READDATA:
2395 	case NVMET_FCOP_READDATA_RSP:
2396 		if (__nvmet_fc_fod_op_abort(fod, abort))
2397 			return;
2398 		if (fcpreq->fcp_error ||
2399 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2400 			nvmet_fc_abort_op(tgtport, fod);
2401 			return;
2402 		}
2403 
2404 		/* success */
2405 
2406 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2407 			/* data no longer needed */
2408 			nvmet_fc_free_tgt_pgs(fod);
2409 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2410 			return;
2411 		}
2412 
2413 		fod->offset += fcpreq->transferred_length;
2414 		if (fod->offset != fod->req.transfer_len) {
2415 			/* transfer the next chunk */
2416 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2417 						NVMET_FCOP_READDATA);
2418 			return;
2419 		}
2420 
2421 		/* data transfer complete, send response */
2422 
2423 		/* data no longer needed */
2424 		nvmet_fc_free_tgt_pgs(fod);
2425 
2426 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2427 
2428 		break;
2429 
2430 	case NVMET_FCOP_RSP:
2431 		if (__nvmet_fc_fod_op_abort(fod, abort))
2432 			return;
2433 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2434 		break;
2435 
2436 	default:
2437 		break;
2438 	}
2439 }
2440 
2441 static void
2442 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2443 {
2444 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2445 
2446 	nvmet_fc_fod_op_done(fod);
2447 }
2448 
2449 /*
2450  * actual completion handler after execution by the nvmet layer
2451  */
2452 static void
2453 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2454 			struct nvmet_fc_fcp_iod *fod, int status)
2455 {
2456 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2457 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2458 	unsigned long flags;
2459 	bool abort;
2460 
2461 	spin_lock_irqsave(&fod->flock, flags);
2462 	abort = fod->abort;
2463 	spin_unlock_irqrestore(&fod->flock, flags);
2464 
2465 	/* if we have a CQE, snoop the last sq_head value */
2466 	if (!status)
2467 		fod->queue->sqhd = cqe->sq_head;
2468 
2469 	if (abort) {
2470 		nvmet_fc_abort_op(tgtport, fod);
2471 		return;
2472 	}
2473 
2474 	/* if an error handling the cmd post initial parsing */
2475 	if (status) {
2476 		/* fudge up a failed CQE status for our transport error */
2477 		memset(cqe, 0, sizeof(*cqe));
2478 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2479 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2480 		cqe->command_id = sqe->command_id;
2481 		cqe->status = cpu_to_le16(status);
2482 	} else {
2483 
2484 		/*
2485 		 * try to push the data even if the SQE status is non-zero.
2486 		 * There may be a status where data still was intended to
2487 		 * be moved
2488 		 */
2489 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2490 			/* push the data over before sending rsp */
2491 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2492 						NVMET_FCOP_READDATA);
2493 			return;
2494 		}
2495 
2496 		/* writes & no data - fall thru */
2497 	}
2498 
2499 	/* data no longer needed */
2500 	nvmet_fc_free_tgt_pgs(fod);
2501 
2502 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2503 }
2504 
2505 
2506 static void
2507 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2508 {
2509 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2510 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2511 
2512 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2513 }
2514 
2515 
2516 /*
2517  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2518  */
2519 static void
2520 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2521 			struct nvmet_fc_fcp_iod *fod)
2522 {
2523 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2524 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2525 	int ret;
2526 
2527 	/*
2528 	 * Fused commands are currently not supported in the linux
2529 	 * implementation.
2530 	 *
2531 	 * As such, the implementation of the FC transport does not
2532 	 * look at the fused commands and order delivery to the upper
2533 	 * layer until we have both based on csn.
2534 	 */
2535 
2536 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2537 
2538 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2539 		fod->io_dir = NVMET_FCP_WRITE;
2540 		if (!nvme_is_write(&cmdiu->sqe))
2541 			goto transport_error;
2542 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2543 		fod->io_dir = NVMET_FCP_READ;
2544 		if (nvme_is_write(&cmdiu->sqe))
2545 			goto transport_error;
2546 	} else {
2547 		fod->io_dir = NVMET_FCP_NODATA;
2548 		if (xfrlen)
2549 			goto transport_error;
2550 	}
2551 
2552 	fod->req.cmd = &fod->cmdiubuf.sqe;
2553 	fod->req.cqe = &fod->rspiubuf.cqe;
2554 	if (!tgtport->pe)
2555 		goto transport_error;
2556 	fod->req.port = tgtport->pe->port;
2557 
2558 	/* clear any response payload */
2559 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2560 
2561 	fod->data_sg = NULL;
2562 	fod->data_sg_cnt = 0;
2563 
2564 	ret = nvmet_req_init(&fod->req,
2565 				&fod->queue->nvme_cq,
2566 				&fod->queue->nvme_sq,
2567 				&nvmet_fc_tgt_fcp_ops);
2568 	if (!ret) {
2569 		/* bad SQE content or invalid ctrl state */
2570 		/* nvmet layer has already called op done to send rsp. */
2571 		return;
2572 	}
2573 
2574 	fod->req.transfer_len = xfrlen;
2575 
2576 	/* keep a running counter of tail position */
2577 	atomic_inc(&fod->queue->sqtail);
2578 
2579 	if (fod->req.transfer_len) {
2580 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2581 		if (ret) {
2582 			nvmet_req_complete(&fod->req, ret);
2583 			return;
2584 		}
2585 	}
2586 	fod->req.sg = fod->data_sg;
2587 	fod->req.sg_cnt = fod->data_sg_cnt;
2588 	fod->offset = 0;
2589 
2590 	if (fod->io_dir == NVMET_FCP_WRITE) {
2591 		/* pull the data over before invoking nvmet layer */
2592 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2593 		return;
2594 	}
2595 
2596 	/*
2597 	 * Reads or no data:
2598 	 *
2599 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2600 	 * push the data
2601 	 */
2602 	fod->req.execute(&fod->req);
2603 	return;
2604 
2605 transport_error:
2606 	nvmet_fc_abort_op(tgtport, fod);
2607 }
2608 
2609 /**
2610  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2611  *                       upon the reception of a NVME FCP CMD IU.
2612  *
2613  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2614  * layer for processing.
2615  *
2616  * The nvmet_fc layer allocates a local job structure (struct
2617  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2618  * CMD IU buffer to the job structure. As such, on a successful
2619  * completion (returns 0), the LLDD may immediately free/reuse
2620  * the CMD IU buffer passed in the call.
2621  *
2622  * However, in some circumstances, due to the packetized nature of FC
2623  * and the api of the FC LLDD which may issue a hw command to send the
2624  * response, but the LLDD may not get the hw completion for that command
2625  * and upcall the nvmet_fc layer before a new command may be
2626  * asynchronously received - its possible for a command to be received
2627  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2628  * the appearance of more commands received than fits in the sq.
2629  * To alleviate this scenario, a temporary queue is maintained in the
2630  * transport for pending LLDD requests waiting for a queue job structure.
2631  * In these "overrun" cases, a temporary queue element is allocated
2632  * the LLDD request and CMD iu buffer information remembered, and the
2633  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2634  * structure is freed, it is immediately reallocated for anything on the
2635  * pending request list. The LLDDs defer_rcv() callback is called,
2636  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2637  * is then started normally with the transport.
2638  *
2639  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2640  * the completion as successful but must not reuse the CMD IU buffer
2641  * until the LLDD's defer_rcv() callback has been called for the
2642  * corresponding struct nvmefc_tgt_fcp_req pointer.
2643  *
2644  * If there is any other condition in which an error occurs, the
2645  * transport will return a non-zero status indicating the error.
2646  * In all cases other than -EOVERFLOW, the transport has not accepted the
2647  * request and the LLDD should abort the exchange.
2648  *
2649  * @target_port: pointer to the (registered) target port the FCP CMD IU
2650  *              was received on.
2651  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2652  *              the exchange corresponding to the FCP Exchange.
2653  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2654  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2655  */
2656 int
2657 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2658 			struct nvmefc_tgt_fcp_req *fcpreq,
2659 			void *cmdiubuf, u32 cmdiubuf_len)
2660 {
2661 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2662 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2663 	struct nvmet_fc_tgt_queue *queue;
2664 	struct nvmet_fc_fcp_iod *fod;
2665 	struct nvmet_fc_defer_fcp_req *deferfcp;
2666 	unsigned long flags;
2667 
2668 	/* validate iu, so the connection id can be used to find the queue */
2669 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2670 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2671 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2672 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2673 		return -EIO;
2674 
2675 	queue = nvmet_fc_find_target_queue(tgtport,
2676 				be64_to_cpu(cmdiu->connection_id));
2677 	if (!queue)
2678 		return -ENOTCONN;
2679 
2680 	/*
2681 	 * note: reference taken by find_target_queue
2682 	 * After successful fod allocation, the fod will inherit the
2683 	 * ownership of that reference and will remove the reference
2684 	 * when the fod is freed.
2685 	 */
2686 
2687 	spin_lock_irqsave(&queue->qlock, flags);
2688 
2689 	fod = nvmet_fc_alloc_fcp_iod(queue);
2690 	if (fod) {
2691 		spin_unlock_irqrestore(&queue->qlock, flags);
2692 
2693 		fcpreq->nvmet_fc_private = fod;
2694 		fod->fcpreq = fcpreq;
2695 
2696 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2697 
2698 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2699 
2700 		return 0;
2701 	}
2702 
2703 	if (!tgtport->ops->defer_rcv) {
2704 		spin_unlock_irqrestore(&queue->qlock, flags);
2705 		/* release the queue lookup reference */
2706 		nvmet_fc_tgt_q_put(queue);
2707 		return -ENOENT;
2708 	}
2709 
2710 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2711 			struct nvmet_fc_defer_fcp_req, req_list);
2712 	if (deferfcp) {
2713 		/* Just re-use one that was previously allocated */
2714 		list_del(&deferfcp->req_list);
2715 	} else {
2716 		spin_unlock_irqrestore(&queue->qlock, flags);
2717 
2718 		/* Now we need to dynamically allocate one */
2719 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2720 		if (!deferfcp) {
2721 			/* release the queue lookup reference */
2722 			nvmet_fc_tgt_q_put(queue);
2723 			return -ENOMEM;
2724 		}
2725 		spin_lock_irqsave(&queue->qlock, flags);
2726 	}
2727 
2728 	/* For now, use rspaddr / rsplen to save payload information */
2729 	fcpreq->rspaddr = cmdiubuf;
2730 	fcpreq->rsplen  = cmdiubuf_len;
2731 	deferfcp->fcp_req = fcpreq;
2732 
2733 	/* defer processing till a fod becomes available */
2734 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2735 
2736 	/* NOTE: the queue lookup reference is still valid */
2737 
2738 	spin_unlock_irqrestore(&queue->qlock, flags);
2739 
2740 	return -EOVERFLOW;
2741 }
2742 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2743 
2744 /**
2745  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2746  *                       upon the reception of an ABTS for a FCP command
2747  *
2748  * Notify the transport that an ABTS has been received for a FCP command
2749  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2750  * LLDD believes the command is still being worked on
2751  * (template_ops->fcp_req_release() has not been called).
2752  *
2753  * The transport will wait for any outstanding work (an op to the LLDD,
2754  * which the lldd should complete with error due to the ABTS; or the
2755  * completion from the nvmet layer of the nvme command), then will
2756  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2757  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2758  * to the ABTS either after return from this function (assuming any
2759  * outstanding op work has been terminated) or upon the callback being
2760  * called.
2761  *
2762  * @target_port: pointer to the (registered) target port the FCP CMD IU
2763  *              was received on.
2764  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2765  *              to the exchange that received the ABTS.
2766  */
2767 void
2768 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2769 			struct nvmefc_tgt_fcp_req *fcpreq)
2770 {
2771 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2772 	struct nvmet_fc_tgt_queue *queue;
2773 	unsigned long flags;
2774 
2775 	if (!fod || fod->fcpreq != fcpreq)
2776 		/* job appears to have already completed, ignore abort */
2777 		return;
2778 
2779 	queue = fod->queue;
2780 
2781 	spin_lock_irqsave(&queue->qlock, flags);
2782 	if (fod->active) {
2783 		/*
2784 		 * mark as abort. The abort handler, invoked upon completion
2785 		 * of any work, will detect the aborted status and do the
2786 		 * callback.
2787 		 */
2788 		spin_lock(&fod->flock);
2789 		fod->abort = true;
2790 		fod->aborted = true;
2791 		spin_unlock(&fod->flock);
2792 	}
2793 	spin_unlock_irqrestore(&queue->qlock, flags);
2794 }
2795 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2796 
2797 
2798 struct nvmet_fc_traddr {
2799 	u64	nn;
2800 	u64	pn;
2801 };
2802 
2803 static int
2804 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2805 {
2806 	u64 token64;
2807 
2808 	if (match_u64(sstr, &token64))
2809 		return -EINVAL;
2810 	*val = token64;
2811 
2812 	return 0;
2813 }
2814 
2815 /*
2816  * This routine validates and extracts the WWN's from the TRADDR string.
2817  * As kernel parsers need the 0x to determine number base, universally
2818  * build string to parse with 0x prefix before parsing name strings.
2819  */
2820 static int
2821 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2822 {
2823 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2824 	substring_t wwn = { name, &name[sizeof(name)-1] };
2825 	int nnoffset, pnoffset;
2826 
2827 	/* validate if string is one of the 2 allowed formats */
2828 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2829 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2830 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2831 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2832 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2833 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2834 						NVME_FC_TRADDR_OXNNLEN;
2835 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2836 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2837 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2838 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2839 		nnoffset = NVME_FC_TRADDR_NNLEN;
2840 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2841 	} else
2842 		goto out_einval;
2843 
2844 	name[0] = '0';
2845 	name[1] = 'x';
2846 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2847 
2848 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2849 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2850 		goto out_einval;
2851 
2852 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2853 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2854 		goto out_einval;
2855 
2856 	return 0;
2857 
2858 out_einval:
2859 	pr_warn("%s: bad traddr string\n", __func__);
2860 	return -EINVAL;
2861 }
2862 
2863 static int
2864 nvmet_fc_add_port(struct nvmet_port *port)
2865 {
2866 	struct nvmet_fc_tgtport *tgtport;
2867 	struct nvmet_fc_port_entry *pe;
2868 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2869 	unsigned long flags;
2870 	int ret;
2871 
2872 	/* validate the address info */
2873 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2874 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2875 		return -EINVAL;
2876 
2877 	/* map the traddr address info to a target port */
2878 
2879 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2880 			sizeof(port->disc_addr.traddr));
2881 	if (ret)
2882 		return ret;
2883 
2884 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2885 	if (!pe)
2886 		return -ENOMEM;
2887 
2888 	ret = -ENXIO;
2889 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2890 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2891 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2892 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2893 			/* a FC port can only be 1 nvmet port id */
2894 			if (!tgtport->pe) {
2895 				nvmet_fc_portentry_bind(tgtport, pe, port);
2896 				ret = 0;
2897 			} else
2898 				ret = -EALREADY;
2899 			break;
2900 		}
2901 	}
2902 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2903 
2904 	if (ret)
2905 		kfree(pe);
2906 
2907 	return ret;
2908 }
2909 
2910 static void
2911 nvmet_fc_remove_port(struct nvmet_port *port)
2912 {
2913 	struct nvmet_fc_port_entry *pe = port->priv;
2914 
2915 	nvmet_fc_portentry_unbind(pe);
2916 
2917 	/* terminate any outstanding associations */
2918 	__nvmet_fc_free_assocs(pe->tgtport);
2919 
2920 	kfree(pe);
2921 }
2922 
2923 static void
2924 nvmet_fc_discovery_chg(struct nvmet_port *port)
2925 {
2926 	struct nvmet_fc_port_entry *pe = port->priv;
2927 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2928 
2929 	if (tgtport && tgtport->ops->discovery_event)
2930 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2931 }
2932 
2933 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2934 	.owner			= THIS_MODULE,
2935 	.type			= NVMF_TRTYPE_FC,
2936 	.msdbd			= 1,
2937 	.add_port		= nvmet_fc_add_port,
2938 	.remove_port		= nvmet_fc_remove_port,
2939 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2940 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2941 	.discovery_chg		= nvmet_fc_discovery_chg,
2942 };
2943 
2944 static int __init nvmet_fc_init_module(void)
2945 {
2946 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2947 }
2948 
2949 static void __exit nvmet_fc_exit_module(void)
2950 {
2951 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
2952 	flush_workqueue(nvmet_wq);
2953 
2954 	/* sanity check - all lports should be removed */
2955 	if (!list_empty(&nvmet_fc_target_list))
2956 		pr_warn("%s: targetport list not empty\n", __func__);
2957 
2958 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2959 
2960 	ida_destroy(&nvmet_fc_tgtport_cnt);
2961 }
2962 
2963 module_init(nvmet_fc_init_module);
2964 module_exit(nvmet_fc_exit_module);
2965 
2966 MODULE_LICENSE("GPL v2");
2967