xref: /openbmc/linux/drivers/nvme/target/fc.c (revision ed1666f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 #define NVMET_LS_CTX_COUNT		256
23 
24 /* for this implementation, assume small single frame rqst/rsp */
25 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
26 
27 struct nvmet_fc_tgtport;
28 struct nvmet_fc_tgt_assoc;
29 
30 struct nvmet_fc_ls_iod {
31 	struct nvmefc_tgt_ls_req	*lsreq;
32 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
33 
34 	struct list_head		ls_list;	/* tgtport->ls_list */
35 
36 	struct nvmet_fc_tgtport		*tgtport;
37 	struct nvmet_fc_tgt_assoc	*assoc;
38 
39 	u8				*rqstbuf;
40 	u8				*rspbuf;
41 	u16				rqstdatalen;
42 	dma_addr_t			rspdma;
43 
44 	struct scatterlist		sg[2];
45 
46 	struct work_struct		work;
47 } __aligned(sizeof(unsigned long long));
48 
49 /* desired maximum for a single sequence - if sg list allows it */
50 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
51 
52 enum nvmet_fcp_datadir {
53 	NVMET_FCP_NODATA,
54 	NVMET_FCP_WRITE,
55 	NVMET_FCP_READ,
56 	NVMET_FCP_ABORTED,
57 };
58 
59 struct nvmet_fc_fcp_iod {
60 	struct nvmefc_tgt_fcp_req	*fcpreq;
61 
62 	struct nvme_fc_cmd_iu		cmdiubuf;
63 	struct nvme_fc_ersp_iu		rspiubuf;
64 	dma_addr_t			rspdma;
65 	struct scatterlist		*next_sg;
66 	struct scatterlist		*data_sg;
67 	int				data_sg_cnt;
68 	u32				offset;
69 	enum nvmet_fcp_datadir		io_dir;
70 	bool				active;
71 	bool				abort;
72 	bool				aborted;
73 	bool				writedataactive;
74 	spinlock_t			flock;
75 
76 	struct nvmet_req		req;
77 	struct work_struct		defer_work;
78 
79 	struct nvmet_fc_tgtport		*tgtport;
80 	struct nvmet_fc_tgt_queue	*queue;
81 
82 	struct list_head		fcp_list;	/* tgtport->fcp_list */
83 };
84 
85 struct nvmet_fc_tgtport {
86 
87 	struct nvmet_fc_target_port	fc_target_port;
88 
89 	struct list_head		tgt_list; /* nvmet_fc_target_list */
90 	struct device			*dev;	/* dev for dma mapping */
91 	struct nvmet_fc_target_template	*ops;
92 
93 	struct nvmet_fc_ls_iod		*iod;
94 	spinlock_t			lock;
95 	struct list_head		ls_list;
96 	struct list_head		ls_busylist;
97 	struct list_head		assoc_list;
98 	struct ida			assoc_cnt;
99 	struct nvmet_fc_port_entry	*pe;
100 	struct kref			ref;
101 	u32				max_sg_cnt;
102 };
103 
104 struct nvmet_fc_port_entry {
105 	struct nvmet_fc_tgtport		*tgtport;
106 	struct nvmet_port		*port;
107 	u64				node_name;
108 	u64				port_name;
109 	struct list_head		pe_list;
110 };
111 
112 struct nvmet_fc_defer_fcp_req {
113 	struct list_head		req_list;
114 	struct nvmefc_tgt_fcp_req	*fcp_req;
115 };
116 
117 struct nvmet_fc_tgt_queue {
118 	bool				ninetypercent;
119 	u16				qid;
120 	u16				sqsize;
121 	u16				ersp_ratio;
122 	__le16				sqhd;
123 	atomic_t			connected;
124 	atomic_t			sqtail;
125 	atomic_t			zrspcnt;
126 	atomic_t			rsn;
127 	spinlock_t			qlock;
128 	struct nvmet_cq			nvme_cq;
129 	struct nvmet_sq			nvme_sq;
130 	struct nvmet_fc_tgt_assoc	*assoc;
131 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */
132 	struct list_head		fod_list;
133 	struct list_head		pending_cmd_list;
134 	struct list_head		avail_defer_list;
135 	struct workqueue_struct		*work_q;
136 	struct kref			ref;
137 } __aligned(sizeof(unsigned long long));
138 
139 struct nvmet_fc_tgt_assoc {
140 	u64				association_id;
141 	u32				a_id;
142 	struct nvmet_fc_tgtport		*tgtport;
143 	struct list_head		a_list;
144 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
145 	struct kref			ref;
146 	struct work_struct		del_work;
147 };
148 
149 
150 static inline int
151 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
152 {
153 	return (iodptr - iodptr->tgtport->iod);
154 }
155 
156 static inline int
157 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
158 {
159 	return (fodptr - fodptr->queue->fod);
160 }
161 
162 
163 /*
164  * Association and Connection IDs:
165  *
166  * Association ID will have random number in upper 6 bytes and zero
167  *   in lower 2 bytes
168  *
169  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
170  *
171  * note: Association ID = Connection ID for queue 0
172  */
173 #define BYTES_FOR_QID			sizeof(u16)
174 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
175 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
176 
177 static inline u64
178 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
179 {
180 	return (assoc->association_id | qid);
181 }
182 
183 static inline u64
184 nvmet_fc_getassociationid(u64 connectionid)
185 {
186 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
187 }
188 
189 static inline u16
190 nvmet_fc_getqueueid(u64 connectionid)
191 {
192 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
193 }
194 
195 static inline struct nvmet_fc_tgtport *
196 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
197 {
198 	return container_of(targetport, struct nvmet_fc_tgtport,
199 				 fc_target_port);
200 }
201 
202 static inline struct nvmet_fc_fcp_iod *
203 nvmet_req_to_fod(struct nvmet_req *nvme_req)
204 {
205 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
206 }
207 
208 
209 /* *************************** Globals **************************** */
210 
211 
212 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
213 
214 static LIST_HEAD(nvmet_fc_target_list);
215 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
216 static LIST_HEAD(nvmet_fc_portentry_list);
217 
218 
219 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
220 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
221 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
222 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
223 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
224 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
225 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
226 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
227 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
228 					struct nvmet_fc_fcp_iod *fod);
229 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
230 
231 
232 /* *********************** FC-NVME DMA Handling **************************** */
233 
234 /*
235  * The fcloop device passes in a NULL device pointer. Real LLD's will
236  * pass in a valid device pointer. If NULL is passed to the dma mapping
237  * routines, depending on the platform, it may or may not succeed, and
238  * may crash.
239  *
240  * As such:
241  * Wrapper all the dma routines and check the dev pointer.
242  *
243  * If simple mappings (return just a dma address, we'll noop them,
244  * returning a dma address of 0.
245  *
246  * On more complex mappings (dma_map_sg), a pseudo routine fills
247  * in the scatter list, setting all dma addresses to 0.
248  */
249 
250 static inline dma_addr_t
251 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
252 		enum dma_data_direction dir)
253 {
254 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
255 }
256 
257 static inline int
258 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
259 {
260 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
261 }
262 
263 static inline void
264 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
265 	enum dma_data_direction dir)
266 {
267 	if (dev)
268 		dma_unmap_single(dev, addr, size, dir);
269 }
270 
271 static inline void
272 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	if (dev)
276 		dma_sync_single_for_cpu(dev, addr, size, dir);
277 }
278 
279 static inline void
280 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
281 		enum dma_data_direction dir)
282 {
283 	if (dev)
284 		dma_sync_single_for_device(dev, addr, size, dir);
285 }
286 
287 /* pseudo dma_map_sg call */
288 static int
289 fc_map_sg(struct scatterlist *sg, int nents)
290 {
291 	struct scatterlist *s;
292 	int i;
293 
294 	WARN_ON(nents == 0 || sg[0].length == 0);
295 
296 	for_each_sg(sg, s, nents, i) {
297 		s->dma_address = 0L;
298 #ifdef CONFIG_NEED_SG_DMA_LENGTH
299 		s->dma_length = s->length;
300 #endif
301 	}
302 	return nents;
303 }
304 
305 static inline int
306 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
307 		enum dma_data_direction dir)
308 {
309 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
310 }
311 
312 static inline void
313 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
314 		enum dma_data_direction dir)
315 {
316 	if (dev)
317 		dma_unmap_sg(dev, sg, nents, dir);
318 }
319 
320 
321 /* *********************** FC-NVME Port Management ************************ */
322 
323 
324 static int
325 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
326 {
327 	struct nvmet_fc_ls_iod *iod;
328 	int i;
329 
330 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
331 			GFP_KERNEL);
332 	if (!iod)
333 		return -ENOMEM;
334 
335 	tgtport->iod = iod;
336 
337 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
338 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
339 		iod->tgtport = tgtport;
340 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
341 
342 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
343 			GFP_KERNEL);
344 		if (!iod->rqstbuf)
345 			goto out_fail;
346 
347 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
348 
349 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
350 						NVME_FC_MAX_LS_BUFFER_SIZE,
351 						DMA_TO_DEVICE);
352 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
353 			goto out_fail;
354 	}
355 
356 	return 0;
357 
358 out_fail:
359 	kfree(iod->rqstbuf);
360 	list_del(&iod->ls_list);
361 	for (iod--, i--; i >= 0; iod--, i--) {
362 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
363 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
364 		kfree(iod->rqstbuf);
365 		list_del(&iod->ls_list);
366 	}
367 
368 	kfree(iod);
369 
370 	return -EFAULT;
371 }
372 
373 static void
374 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
375 {
376 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
377 	int i;
378 
379 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
380 		fc_dma_unmap_single(tgtport->dev,
381 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
382 				DMA_TO_DEVICE);
383 		kfree(iod->rqstbuf);
384 		list_del(&iod->ls_list);
385 	}
386 	kfree(tgtport->iod);
387 }
388 
389 static struct nvmet_fc_ls_iod *
390 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
391 {
392 	struct nvmet_fc_ls_iod *iod;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&tgtport->lock, flags);
396 	iod = list_first_entry_or_null(&tgtport->ls_list,
397 					struct nvmet_fc_ls_iod, ls_list);
398 	if (iod)
399 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
400 	spin_unlock_irqrestore(&tgtport->lock, flags);
401 	return iod;
402 }
403 
404 
405 static void
406 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
407 			struct nvmet_fc_ls_iod *iod)
408 {
409 	unsigned long flags;
410 
411 	spin_lock_irqsave(&tgtport->lock, flags);
412 	list_move(&iod->ls_list, &tgtport->ls_list);
413 	spin_unlock_irqrestore(&tgtport->lock, flags);
414 }
415 
416 static void
417 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
418 				struct nvmet_fc_tgt_queue *queue)
419 {
420 	struct nvmet_fc_fcp_iod *fod = queue->fod;
421 	int i;
422 
423 	for (i = 0; i < queue->sqsize; fod++, i++) {
424 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
425 		fod->tgtport = tgtport;
426 		fod->queue = queue;
427 		fod->active = false;
428 		fod->abort = false;
429 		fod->aborted = false;
430 		fod->fcpreq = NULL;
431 		list_add_tail(&fod->fcp_list, &queue->fod_list);
432 		spin_lock_init(&fod->flock);
433 
434 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
435 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
436 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
437 			list_del(&fod->fcp_list);
438 			for (fod--, i--; i >= 0; fod--, i--) {
439 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
440 						sizeof(fod->rspiubuf),
441 						DMA_TO_DEVICE);
442 				fod->rspdma = 0L;
443 				list_del(&fod->fcp_list);
444 			}
445 
446 			return;
447 		}
448 	}
449 }
450 
451 static void
452 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
453 				struct nvmet_fc_tgt_queue *queue)
454 {
455 	struct nvmet_fc_fcp_iod *fod = queue->fod;
456 	int i;
457 
458 	for (i = 0; i < queue->sqsize; fod++, i++) {
459 		if (fod->rspdma)
460 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
461 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
462 	}
463 }
464 
465 static struct nvmet_fc_fcp_iod *
466 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
467 {
468 	struct nvmet_fc_fcp_iod *fod;
469 
470 	lockdep_assert_held(&queue->qlock);
471 
472 	fod = list_first_entry_or_null(&queue->fod_list,
473 					struct nvmet_fc_fcp_iod, fcp_list);
474 	if (fod) {
475 		list_del(&fod->fcp_list);
476 		fod->active = true;
477 		/*
478 		 * no queue reference is taken, as it was taken by the
479 		 * queue lookup just prior to the allocation. The iod
480 		 * will "inherit" that reference.
481 		 */
482 	}
483 	return fod;
484 }
485 
486 
487 static void
488 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
489 		       struct nvmet_fc_tgt_queue *queue,
490 		       struct nvmefc_tgt_fcp_req *fcpreq)
491 {
492 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
493 
494 	/*
495 	 * put all admin cmds on hw queue id 0. All io commands go to
496 	 * the respective hw queue based on a modulo basis
497 	 */
498 	fcpreq->hwqid = queue->qid ?
499 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
500 
501 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
502 }
503 
504 static void
505 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
506 {
507 	struct nvmet_fc_fcp_iod *fod =
508 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
509 
510 	/* Submit deferred IO for processing */
511 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
512 
513 }
514 
515 static void
516 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
517 			struct nvmet_fc_fcp_iod *fod)
518 {
519 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
520 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
521 	struct nvmet_fc_defer_fcp_req *deferfcp;
522 	unsigned long flags;
523 
524 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
525 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
526 
527 	fcpreq->nvmet_fc_private = NULL;
528 
529 	fod->active = false;
530 	fod->abort = false;
531 	fod->aborted = false;
532 	fod->writedataactive = false;
533 	fod->fcpreq = NULL;
534 
535 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
536 
537 	/* release the queue lookup reference on the completed IO */
538 	nvmet_fc_tgt_q_put(queue);
539 
540 	spin_lock_irqsave(&queue->qlock, flags);
541 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
542 				struct nvmet_fc_defer_fcp_req, req_list);
543 	if (!deferfcp) {
544 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
545 		spin_unlock_irqrestore(&queue->qlock, flags);
546 		return;
547 	}
548 
549 	/* Re-use the fod for the next pending cmd that was deferred */
550 	list_del(&deferfcp->req_list);
551 
552 	fcpreq = deferfcp->fcp_req;
553 
554 	/* deferfcp can be reused for another IO at a later date */
555 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
556 
557 	spin_unlock_irqrestore(&queue->qlock, flags);
558 
559 	/* Save NVME CMD IO in fod */
560 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
561 
562 	/* Setup new fcpreq to be processed */
563 	fcpreq->rspaddr = NULL;
564 	fcpreq->rsplen  = 0;
565 	fcpreq->nvmet_fc_private = fod;
566 	fod->fcpreq = fcpreq;
567 	fod->active = true;
568 
569 	/* inform LLDD IO is now being processed */
570 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
571 
572 	/*
573 	 * Leave the queue lookup get reference taken when
574 	 * fod was originally allocated.
575 	 */
576 
577 	queue_work(queue->work_q, &fod->defer_work);
578 }
579 
580 static struct nvmet_fc_tgt_queue *
581 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
582 			u16 qid, u16 sqsize)
583 {
584 	struct nvmet_fc_tgt_queue *queue;
585 	unsigned long flags;
586 	int ret;
587 
588 	if (qid > NVMET_NR_QUEUES)
589 		return NULL;
590 
591 	queue = kzalloc((sizeof(*queue) +
592 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
593 				GFP_KERNEL);
594 	if (!queue)
595 		return NULL;
596 
597 	if (!nvmet_fc_tgt_a_get(assoc))
598 		goto out_free_queue;
599 
600 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
601 				assoc->tgtport->fc_target_port.port_num,
602 				assoc->a_id, qid);
603 	if (!queue->work_q)
604 		goto out_a_put;
605 
606 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
607 	queue->qid = qid;
608 	queue->sqsize = sqsize;
609 	queue->assoc = assoc;
610 	INIT_LIST_HEAD(&queue->fod_list);
611 	INIT_LIST_HEAD(&queue->avail_defer_list);
612 	INIT_LIST_HEAD(&queue->pending_cmd_list);
613 	atomic_set(&queue->connected, 0);
614 	atomic_set(&queue->sqtail, 0);
615 	atomic_set(&queue->rsn, 1);
616 	atomic_set(&queue->zrspcnt, 0);
617 	spin_lock_init(&queue->qlock);
618 	kref_init(&queue->ref);
619 
620 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
621 
622 	ret = nvmet_sq_init(&queue->nvme_sq);
623 	if (ret)
624 		goto out_fail_iodlist;
625 
626 	WARN_ON(assoc->queues[qid]);
627 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
628 	assoc->queues[qid] = queue;
629 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
630 
631 	return queue;
632 
633 out_fail_iodlist:
634 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
635 	destroy_workqueue(queue->work_q);
636 out_a_put:
637 	nvmet_fc_tgt_a_put(assoc);
638 out_free_queue:
639 	kfree(queue);
640 	return NULL;
641 }
642 
643 
644 static void
645 nvmet_fc_tgt_queue_free(struct kref *ref)
646 {
647 	struct nvmet_fc_tgt_queue *queue =
648 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
652 	queue->assoc->queues[queue->qid] = NULL;
653 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
654 
655 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
656 
657 	nvmet_fc_tgt_a_put(queue->assoc);
658 
659 	destroy_workqueue(queue->work_q);
660 
661 	kfree(queue);
662 }
663 
664 static void
665 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
666 {
667 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
668 }
669 
670 static int
671 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
672 {
673 	return kref_get_unless_zero(&queue->ref);
674 }
675 
676 
677 static void
678 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
679 {
680 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
681 	struct nvmet_fc_fcp_iod *fod = queue->fod;
682 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
683 	unsigned long flags;
684 	int i, writedataactive;
685 	bool disconnect;
686 
687 	disconnect = atomic_xchg(&queue->connected, 0);
688 
689 	spin_lock_irqsave(&queue->qlock, flags);
690 	/* about outstanding io's */
691 	for (i = 0; i < queue->sqsize; fod++, i++) {
692 		if (fod->active) {
693 			spin_lock(&fod->flock);
694 			fod->abort = true;
695 			writedataactive = fod->writedataactive;
696 			spin_unlock(&fod->flock);
697 			/*
698 			 * only call lldd abort routine if waiting for
699 			 * writedata. other outstanding ops should finish
700 			 * on their own.
701 			 */
702 			if (writedataactive) {
703 				spin_lock(&fod->flock);
704 				fod->aborted = true;
705 				spin_unlock(&fod->flock);
706 				tgtport->ops->fcp_abort(
707 					&tgtport->fc_target_port, fod->fcpreq);
708 			}
709 		}
710 	}
711 
712 	/* Cleanup defer'ed IOs in queue */
713 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
714 				req_list) {
715 		list_del(&deferfcp->req_list);
716 		kfree(deferfcp);
717 	}
718 
719 	for (;;) {
720 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
721 				struct nvmet_fc_defer_fcp_req, req_list);
722 		if (!deferfcp)
723 			break;
724 
725 		list_del(&deferfcp->req_list);
726 		spin_unlock_irqrestore(&queue->qlock, flags);
727 
728 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
729 				deferfcp->fcp_req);
730 
731 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
732 				deferfcp->fcp_req);
733 
734 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
735 				deferfcp->fcp_req);
736 
737 		/* release the queue lookup reference */
738 		nvmet_fc_tgt_q_put(queue);
739 
740 		kfree(deferfcp);
741 
742 		spin_lock_irqsave(&queue->qlock, flags);
743 	}
744 	spin_unlock_irqrestore(&queue->qlock, flags);
745 
746 	flush_workqueue(queue->work_q);
747 
748 	if (disconnect)
749 		nvmet_sq_destroy(&queue->nvme_sq);
750 
751 	nvmet_fc_tgt_q_put(queue);
752 }
753 
754 static struct nvmet_fc_tgt_queue *
755 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
756 				u64 connection_id)
757 {
758 	struct nvmet_fc_tgt_assoc *assoc;
759 	struct nvmet_fc_tgt_queue *queue;
760 	u64 association_id = nvmet_fc_getassociationid(connection_id);
761 	u16 qid = nvmet_fc_getqueueid(connection_id);
762 	unsigned long flags;
763 
764 	if (qid > NVMET_NR_QUEUES)
765 		return NULL;
766 
767 	spin_lock_irqsave(&tgtport->lock, flags);
768 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
769 		if (association_id == assoc->association_id) {
770 			queue = assoc->queues[qid];
771 			if (queue &&
772 			    (!atomic_read(&queue->connected) ||
773 			     !nvmet_fc_tgt_q_get(queue)))
774 				queue = NULL;
775 			spin_unlock_irqrestore(&tgtport->lock, flags);
776 			return queue;
777 		}
778 	}
779 	spin_unlock_irqrestore(&tgtport->lock, flags);
780 	return NULL;
781 }
782 
783 static void
784 nvmet_fc_delete_assoc(struct work_struct *work)
785 {
786 	struct nvmet_fc_tgt_assoc *assoc =
787 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
788 
789 	nvmet_fc_delete_target_assoc(assoc);
790 	nvmet_fc_tgt_a_put(assoc);
791 }
792 
793 static struct nvmet_fc_tgt_assoc *
794 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
795 {
796 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
797 	unsigned long flags;
798 	u64 ran;
799 	int idx;
800 	bool needrandom = true;
801 
802 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
803 	if (!assoc)
804 		return NULL;
805 
806 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
807 	if (idx < 0)
808 		goto out_free_assoc;
809 
810 	if (!nvmet_fc_tgtport_get(tgtport))
811 		goto out_ida_put;
812 
813 	assoc->tgtport = tgtport;
814 	assoc->a_id = idx;
815 	INIT_LIST_HEAD(&assoc->a_list);
816 	kref_init(&assoc->ref);
817 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
818 
819 	while (needrandom) {
820 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
821 		ran = ran << BYTES_FOR_QID_SHIFT;
822 
823 		spin_lock_irqsave(&tgtport->lock, flags);
824 		needrandom = false;
825 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
826 			if (ran == tmpassoc->association_id) {
827 				needrandom = true;
828 				break;
829 			}
830 		if (!needrandom) {
831 			assoc->association_id = ran;
832 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
833 		}
834 		spin_unlock_irqrestore(&tgtport->lock, flags);
835 	}
836 
837 	return assoc;
838 
839 out_ida_put:
840 	ida_simple_remove(&tgtport->assoc_cnt, idx);
841 out_free_assoc:
842 	kfree(assoc);
843 	return NULL;
844 }
845 
846 static void
847 nvmet_fc_target_assoc_free(struct kref *ref)
848 {
849 	struct nvmet_fc_tgt_assoc *assoc =
850 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
851 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&tgtport->lock, flags);
855 	list_del(&assoc->a_list);
856 	spin_unlock_irqrestore(&tgtport->lock, flags);
857 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
858 	kfree(assoc);
859 	nvmet_fc_tgtport_put(tgtport);
860 }
861 
862 static void
863 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
864 {
865 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
866 }
867 
868 static int
869 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
870 {
871 	return kref_get_unless_zero(&assoc->ref);
872 }
873 
874 static void
875 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
876 {
877 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
878 	struct nvmet_fc_tgt_queue *queue;
879 	unsigned long flags;
880 	int i;
881 
882 	spin_lock_irqsave(&tgtport->lock, flags);
883 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
884 		queue = assoc->queues[i];
885 		if (queue) {
886 			if (!nvmet_fc_tgt_q_get(queue))
887 				continue;
888 			spin_unlock_irqrestore(&tgtport->lock, flags);
889 			nvmet_fc_delete_target_queue(queue);
890 			nvmet_fc_tgt_q_put(queue);
891 			spin_lock_irqsave(&tgtport->lock, flags);
892 		}
893 	}
894 	spin_unlock_irqrestore(&tgtport->lock, flags);
895 
896 	nvmet_fc_tgt_a_put(assoc);
897 }
898 
899 static struct nvmet_fc_tgt_assoc *
900 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
901 				u64 association_id)
902 {
903 	struct nvmet_fc_tgt_assoc *assoc;
904 	struct nvmet_fc_tgt_assoc *ret = NULL;
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(&tgtport->lock, flags);
908 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
909 		if (association_id == assoc->association_id) {
910 			ret = assoc;
911 			nvmet_fc_tgt_a_get(assoc);
912 			break;
913 		}
914 	}
915 	spin_unlock_irqrestore(&tgtport->lock, flags);
916 
917 	return ret;
918 }
919 
920 static void
921 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
922 			struct nvmet_fc_port_entry *pe,
923 			struct nvmet_port *port)
924 {
925 	lockdep_assert_held(&nvmet_fc_tgtlock);
926 
927 	pe->tgtport = tgtport;
928 	tgtport->pe = pe;
929 
930 	pe->port = port;
931 	port->priv = pe;
932 
933 	pe->node_name = tgtport->fc_target_port.node_name;
934 	pe->port_name = tgtport->fc_target_port.port_name;
935 	INIT_LIST_HEAD(&pe->pe_list);
936 
937 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
938 }
939 
940 static void
941 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
942 {
943 	unsigned long flags;
944 
945 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
946 	if (pe->tgtport)
947 		pe->tgtport->pe = NULL;
948 	list_del(&pe->pe_list);
949 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
950 }
951 
952 /*
953  * called when a targetport deregisters. Breaks the relationship
954  * with the nvmet port, but leaves the port_entry in place so that
955  * re-registration can resume operation.
956  */
957 static void
958 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
959 {
960 	struct nvmet_fc_port_entry *pe;
961 	unsigned long flags;
962 
963 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
964 	pe = tgtport->pe;
965 	if (pe)
966 		pe->tgtport = NULL;
967 	tgtport->pe = NULL;
968 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
969 }
970 
971 /*
972  * called when a new targetport is registered. Looks in the
973  * existing nvmet port_entries to see if the nvmet layer is
974  * configured for the targetport's wwn's. (the targetport existed,
975  * nvmet configured, the lldd unregistered the tgtport, and is now
976  * reregistering the same targetport).  If so, set the nvmet port
977  * port entry on the targetport.
978  */
979 static void
980 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
981 {
982 	struct nvmet_fc_port_entry *pe;
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
986 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
987 		if (tgtport->fc_target_port.node_name == pe->node_name &&
988 		    tgtport->fc_target_port.port_name == pe->port_name) {
989 			WARN_ON(pe->tgtport);
990 			tgtport->pe = pe;
991 			pe->tgtport = tgtport;
992 			break;
993 		}
994 	}
995 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
996 }
997 
998 /**
999  * nvme_fc_register_targetport - transport entry point called by an
1000  *                              LLDD to register the existence of a local
1001  *                              NVME subystem FC port.
1002  * @pinfo:     pointer to information about the port to be registered
1003  * @template:  LLDD entrypoints and operational parameters for the port
1004  * @dev:       physical hardware device node port corresponds to. Will be
1005  *             used for DMA mappings
1006  * @portptr:   pointer to a local port pointer. Upon success, the routine
1007  *             will allocate a nvme_fc_local_port structure and place its
1008  *             address in the local port pointer. Upon failure, local port
1009  *             pointer will be set to NULL.
1010  *
1011  * Returns:
1012  * a completion status. Must be 0 upon success; a negative errno
1013  * (ex: -ENXIO) upon failure.
1014  */
1015 int
1016 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1017 			struct nvmet_fc_target_template *template,
1018 			struct device *dev,
1019 			struct nvmet_fc_target_port **portptr)
1020 {
1021 	struct nvmet_fc_tgtport *newrec;
1022 	unsigned long flags;
1023 	int ret, idx;
1024 
1025 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1026 	    !template->fcp_abort ||
1027 	    !template->fcp_req_release || !template->targetport_delete ||
1028 	    !template->max_hw_queues || !template->max_sgl_segments ||
1029 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1030 		ret = -EINVAL;
1031 		goto out_regtgt_failed;
1032 	}
1033 
1034 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1035 			 GFP_KERNEL);
1036 	if (!newrec) {
1037 		ret = -ENOMEM;
1038 		goto out_regtgt_failed;
1039 	}
1040 
1041 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1042 	if (idx < 0) {
1043 		ret = -ENOSPC;
1044 		goto out_fail_kfree;
1045 	}
1046 
1047 	if (!get_device(dev) && dev) {
1048 		ret = -ENODEV;
1049 		goto out_ida_put;
1050 	}
1051 
1052 	newrec->fc_target_port.node_name = pinfo->node_name;
1053 	newrec->fc_target_port.port_name = pinfo->port_name;
1054 	newrec->fc_target_port.private = &newrec[1];
1055 	newrec->fc_target_port.port_id = pinfo->port_id;
1056 	newrec->fc_target_port.port_num = idx;
1057 	INIT_LIST_HEAD(&newrec->tgt_list);
1058 	newrec->dev = dev;
1059 	newrec->ops = template;
1060 	spin_lock_init(&newrec->lock);
1061 	INIT_LIST_HEAD(&newrec->ls_list);
1062 	INIT_LIST_HEAD(&newrec->ls_busylist);
1063 	INIT_LIST_HEAD(&newrec->assoc_list);
1064 	kref_init(&newrec->ref);
1065 	ida_init(&newrec->assoc_cnt);
1066 	newrec->max_sg_cnt = template->max_sgl_segments;
1067 
1068 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1069 	if (ret) {
1070 		ret = -ENOMEM;
1071 		goto out_free_newrec;
1072 	}
1073 
1074 	nvmet_fc_portentry_rebind_tgt(newrec);
1075 
1076 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1077 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1078 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1079 
1080 	*portptr = &newrec->fc_target_port;
1081 	return 0;
1082 
1083 out_free_newrec:
1084 	put_device(dev);
1085 out_ida_put:
1086 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1087 out_fail_kfree:
1088 	kfree(newrec);
1089 out_regtgt_failed:
1090 	*portptr = NULL;
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1094 
1095 
1096 static void
1097 nvmet_fc_free_tgtport(struct kref *ref)
1098 {
1099 	struct nvmet_fc_tgtport *tgtport =
1100 		container_of(ref, struct nvmet_fc_tgtport, ref);
1101 	struct device *dev = tgtport->dev;
1102 	unsigned long flags;
1103 
1104 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1105 	list_del(&tgtport->tgt_list);
1106 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1107 
1108 	nvmet_fc_free_ls_iodlist(tgtport);
1109 
1110 	/* let the LLDD know we've finished tearing it down */
1111 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1112 
1113 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1114 			tgtport->fc_target_port.port_num);
1115 
1116 	ida_destroy(&tgtport->assoc_cnt);
1117 
1118 	kfree(tgtport);
1119 
1120 	put_device(dev);
1121 }
1122 
1123 static void
1124 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1125 {
1126 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1127 }
1128 
1129 static int
1130 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1131 {
1132 	return kref_get_unless_zero(&tgtport->ref);
1133 }
1134 
1135 static void
1136 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1137 {
1138 	struct nvmet_fc_tgt_assoc *assoc, *next;
1139 	unsigned long flags;
1140 
1141 	spin_lock_irqsave(&tgtport->lock, flags);
1142 	list_for_each_entry_safe(assoc, next,
1143 				&tgtport->assoc_list, a_list) {
1144 		if (!nvmet_fc_tgt_a_get(assoc))
1145 			continue;
1146 		if (!schedule_work(&assoc->del_work))
1147 			nvmet_fc_tgt_a_put(assoc);
1148 	}
1149 	spin_unlock_irqrestore(&tgtport->lock, flags);
1150 }
1151 
1152 /*
1153  * nvmet layer has called to terminate an association
1154  */
1155 static void
1156 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1157 {
1158 	struct nvmet_fc_tgtport *tgtport, *next;
1159 	struct nvmet_fc_tgt_assoc *assoc;
1160 	struct nvmet_fc_tgt_queue *queue;
1161 	unsigned long flags;
1162 	bool found_ctrl = false;
1163 
1164 	/* this is a bit ugly, but don't want to make locks layered */
1165 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1166 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1167 			tgt_list) {
1168 		if (!nvmet_fc_tgtport_get(tgtport))
1169 			continue;
1170 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1171 
1172 		spin_lock_irqsave(&tgtport->lock, flags);
1173 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1174 			queue = assoc->queues[0];
1175 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1176 				if (nvmet_fc_tgt_a_get(assoc))
1177 					found_ctrl = true;
1178 				break;
1179 			}
1180 		}
1181 		spin_unlock_irqrestore(&tgtport->lock, flags);
1182 
1183 		nvmet_fc_tgtport_put(tgtport);
1184 
1185 		if (found_ctrl) {
1186 			if (!schedule_work(&assoc->del_work))
1187 				nvmet_fc_tgt_a_put(assoc);
1188 			return;
1189 		}
1190 
1191 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1192 	}
1193 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1194 }
1195 
1196 /**
1197  * nvme_fc_unregister_targetport - transport entry point called by an
1198  *                              LLDD to deregister/remove a previously
1199  *                              registered a local NVME subsystem FC port.
1200  * @target_port: pointer to the (registered) target port that is to be
1201  *               deregistered.
1202  *
1203  * Returns:
1204  * a completion status. Must be 0 upon success; a negative errno
1205  * (ex: -ENXIO) upon failure.
1206  */
1207 int
1208 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1209 {
1210 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1211 
1212 	nvmet_fc_portentry_unbind_tgt(tgtport);
1213 
1214 	/* terminate any outstanding associations */
1215 	__nvmet_fc_free_assocs(tgtport);
1216 
1217 	nvmet_fc_tgtport_put(tgtport);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1222 
1223 
1224 /* *********************** FC-NVME LS Handling **************************** */
1225 
1226 
1227 static void
1228 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1229 {
1230 	struct fcnvme_ls_acc_hdr *acc = buf;
1231 
1232 	acc->w0.ls_cmd = ls_cmd;
1233 	acc->desc_list_len = desc_len;
1234 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1235 	acc->rqst.desc_len =
1236 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1237 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1238 }
1239 
1240 static int
1241 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1242 			u8 reason, u8 explanation, u8 vendor)
1243 {
1244 	struct fcnvme_ls_rjt *rjt = buf;
1245 
1246 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1247 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1248 			ls_cmd);
1249 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1250 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1251 	rjt->rjt.reason_code = reason;
1252 	rjt->rjt.reason_explanation = explanation;
1253 	rjt->rjt.vendor = vendor;
1254 
1255 	return sizeof(struct fcnvme_ls_rjt);
1256 }
1257 
1258 /* Validation Error indexes into the string table below */
1259 enum {
1260 	VERR_NO_ERROR		= 0,
1261 	VERR_CR_ASSOC_LEN	= 1,
1262 	VERR_CR_ASSOC_RQST_LEN	= 2,
1263 	VERR_CR_ASSOC_CMD	= 3,
1264 	VERR_CR_ASSOC_CMD_LEN	= 4,
1265 	VERR_ERSP_RATIO		= 5,
1266 	VERR_ASSOC_ALLOC_FAIL	= 6,
1267 	VERR_QUEUE_ALLOC_FAIL	= 7,
1268 	VERR_CR_CONN_LEN	= 8,
1269 	VERR_CR_CONN_RQST_LEN	= 9,
1270 	VERR_ASSOC_ID		= 10,
1271 	VERR_ASSOC_ID_LEN	= 11,
1272 	VERR_NO_ASSOC		= 12,
1273 	VERR_CONN_ID		= 13,
1274 	VERR_CONN_ID_LEN	= 14,
1275 	VERR_NO_CONN		= 15,
1276 	VERR_CR_CONN_CMD	= 16,
1277 	VERR_CR_CONN_CMD_LEN	= 17,
1278 	VERR_DISCONN_LEN	= 18,
1279 	VERR_DISCONN_RQST_LEN	= 19,
1280 	VERR_DISCONN_CMD	= 20,
1281 	VERR_DISCONN_CMD_LEN	= 21,
1282 	VERR_DISCONN_SCOPE	= 22,
1283 	VERR_RS_LEN		= 23,
1284 	VERR_RS_RQST_LEN	= 24,
1285 	VERR_RS_CMD		= 25,
1286 	VERR_RS_CMD_LEN		= 26,
1287 	VERR_RS_RCTL		= 27,
1288 	VERR_RS_RO		= 28,
1289 };
1290 
1291 static char *validation_errors[] = {
1292 	"OK",
1293 	"Bad CR_ASSOC Length",
1294 	"Bad CR_ASSOC Rqst Length",
1295 	"Not CR_ASSOC Cmd",
1296 	"Bad CR_ASSOC Cmd Length",
1297 	"Bad Ersp Ratio",
1298 	"Association Allocation Failed",
1299 	"Queue Allocation Failed",
1300 	"Bad CR_CONN Length",
1301 	"Bad CR_CONN Rqst Length",
1302 	"Not Association ID",
1303 	"Bad Association ID Length",
1304 	"No Association",
1305 	"Not Connection ID",
1306 	"Bad Connection ID Length",
1307 	"No Connection",
1308 	"Not CR_CONN Cmd",
1309 	"Bad CR_CONN Cmd Length",
1310 	"Bad DISCONN Length",
1311 	"Bad DISCONN Rqst Length",
1312 	"Not DISCONN Cmd",
1313 	"Bad DISCONN Cmd Length",
1314 	"Bad Disconnect Scope",
1315 	"Bad RS Length",
1316 	"Bad RS Rqst Length",
1317 	"Not RS Cmd",
1318 	"Bad RS Cmd Length",
1319 	"Bad RS R_CTL",
1320 	"Bad RS Relative Offset",
1321 };
1322 
1323 static void
1324 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1325 			struct nvmet_fc_ls_iod *iod)
1326 {
1327 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1328 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1329 	struct fcnvme_ls_cr_assoc_acc *acc =
1330 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1331 	struct nvmet_fc_tgt_queue *queue;
1332 	int ret = 0;
1333 
1334 	memset(acc, 0, sizeof(*acc));
1335 
1336 	/*
1337 	 * FC-NVME spec changes. There are initiators sending different
1338 	 * lengths as padding sizes for Create Association Cmd descriptor
1339 	 * was incorrect.
1340 	 * Accept anything of "minimum" length. Assume format per 1.15
1341 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1342 	 * trailing pad length is.
1343 	 */
1344 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1345 		ret = VERR_CR_ASSOC_LEN;
1346 	else if (be32_to_cpu(rqst->desc_list_len) <
1347 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1348 		ret = VERR_CR_ASSOC_RQST_LEN;
1349 	else if (rqst->assoc_cmd.desc_tag !=
1350 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1351 		ret = VERR_CR_ASSOC_CMD;
1352 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1353 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1354 		ret = VERR_CR_ASSOC_CMD_LEN;
1355 	else if (!rqst->assoc_cmd.ersp_ratio ||
1356 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1357 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1358 		ret = VERR_ERSP_RATIO;
1359 
1360 	else {
1361 		/* new association w/ admin queue */
1362 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1363 		if (!iod->assoc)
1364 			ret = VERR_ASSOC_ALLOC_FAIL;
1365 		else {
1366 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1367 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1368 			if (!queue)
1369 				ret = VERR_QUEUE_ALLOC_FAIL;
1370 		}
1371 	}
1372 
1373 	if (ret) {
1374 		dev_err(tgtport->dev,
1375 			"Create Association LS failed: %s\n",
1376 			validation_errors[ret]);
1377 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1378 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1379 				FCNVME_RJT_RC_LOGIC,
1380 				FCNVME_RJT_EXP_NONE, 0);
1381 		return;
1382 	}
1383 
1384 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1385 	atomic_set(&queue->connected, 1);
1386 	queue->sqhd = 0;	/* best place to init value */
1387 
1388 	/* format a response */
1389 
1390 	iod->lsreq->rsplen = sizeof(*acc);
1391 
1392 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1393 			fcnvme_lsdesc_len(
1394 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1395 			FCNVME_LS_CREATE_ASSOCIATION);
1396 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1397 	acc->associd.desc_len =
1398 			fcnvme_lsdesc_len(
1399 				sizeof(struct fcnvme_lsdesc_assoc_id));
1400 	acc->associd.association_id =
1401 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1402 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1403 	acc->connectid.desc_len =
1404 			fcnvme_lsdesc_len(
1405 				sizeof(struct fcnvme_lsdesc_conn_id));
1406 	acc->connectid.connection_id = acc->associd.association_id;
1407 }
1408 
1409 static void
1410 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1411 			struct nvmet_fc_ls_iod *iod)
1412 {
1413 	struct fcnvme_ls_cr_conn_rqst *rqst =
1414 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1415 	struct fcnvme_ls_cr_conn_acc *acc =
1416 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1417 	struct nvmet_fc_tgt_queue *queue;
1418 	int ret = 0;
1419 
1420 	memset(acc, 0, sizeof(*acc));
1421 
1422 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1423 		ret = VERR_CR_CONN_LEN;
1424 	else if (rqst->desc_list_len !=
1425 			fcnvme_lsdesc_len(
1426 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1427 		ret = VERR_CR_CONN_RQST_LEN;
1428 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1429 		ret = VERR_ASSOC_ID;
1430 	else if (rqst->associd.desc_len !=
1431 			fcnvme_lsdesc_len(
1432 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1433 		ret = VERR_ASSOC_ID_LEN;
1434 	else if (rqst->connect_cmd.desc_tag !=
1435 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1436 		ret = VERR_CR_CONN_CMD;
1437 	else if (rqst->connect_cmd.desc_len !=
1438 			fcnvme_lsdesc_len(
1439 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1440 		ret = VERR_CR_CONN_CMD_LEN;
1441 	else if (!rqst->connect_cmd.ersp_ratio ||
1442 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1443 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1444 		ret = VERR_ERSP_RATIO;
1445 
1446 	else {
1447 		/* new io queue */
1448 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1449 				be64_to_cpu(rqst->associd.association_id));
1450 		if (!iod->assoc)
1451 			ret = VERR_NO_ASSOC;
1452 		else {
1453 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1454 					be16_to_cpu(rqst->connect_cmd.qid),
1455 					be16_to_cpu(rqst->connect_cmd.sqsize));
1456 			if (!queue)
1457 				ret = VERR_QUEUE_ALLOC_FAIL;
1458 
1459 			/* release get taken in nvmet_fc_find_target_assoc */
1460 			nvmet_fc_tgt_a_put(iod->assoc);
1461 		}
1462 	}
1463 
1464 	if (ret) {
1465 		dev_err(tgtport->dev,
1466 			"Create Connection LS failed: %s\n",
1467 			validation_errors[ret]);
1468 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1469 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1470 				(ret == VERR_NO_ASSOC) ?
1471 					FCNVME_RJT_RC_INV_ASSOC :
1472 					FCNVME_RJT_RC_LOGIC,
1473 				FCNVME_RJT_EXP_NONE, 0);
1474 		return;
1475 	}
1476 
1477 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1478 	atomic_set(&queue->connected, 1);
1479 	queue->sqhd = 0;	/* best place to init value */
1480 
1481 	/* format a response */
1482 
1483 	iod->lsreq->rsplen = sizeof(*acc);
1484 
1485 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1486 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1487 			FCNVME_LS_CREATE_CONNECTION);
1488 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1489 	acc->connectid.desc_len =
1490 			fcnvme_lsdesc_len(
1491 				sizeof(struct fcnvme_lsdesc_conn_id));
1492 	acc->connectid.connection_id =
1493 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1494 				be16_to_cpu(rqst->connect_cmd.qid)));
1495 }
1496 
1497 static void
1498 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1499 			struct nvmet_fc_ls_iod *iod)
1500 {
1501 	struct fcnvme_ls_disconnect_rqst *rqst =
1502 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1503 	struct fcnvme_ls_disconnect_acc *acc =
1504 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1505 	struct nvmet_fc_tgt_assoc *assoc;
1506 	int ret = 0;
1507 
1508 	memset(acc, 0, sizeof(*acc));
1509 
1510 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1511 		ret = VERR_DISCONN_LEN;
1512 	else if (rqst->desc_list_len !=
1513 			fcnvme_lsdesc_len(
1514 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1515 		ret = VERR_DISCONN_RQST_LEN;
1516 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1517 		ret = VERR_ASSOC_ID;
1518 	else if (rqst->associd.desc_len !=
1519 			fcnvme_lsdesc_len(
1520 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1521 		ret = VERR_ASSOC_ID_LEN;
1522 	else if (rqst->discon_cmd.desc_tag !=
1523 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1524 		ret = VERR_DISCONN_CMD;
1525 	else if (rqst->discon_cmd.desc_len !=
1526 			fcnvme_lsdesc_len(
1527 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1528 		ret = VERR_DISCONN_CMD_LEN;
1529 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1530 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1531 		ret = VERR_DISCONN_SCOPE;
1532 	else {
1533 		/* match an active association */
1534 		assoc = nvmet_fc_find_target_assoc(tgtport,
1535 				be64_to_cpu(rqst->associd.association_id));
1536 		iod->assoc = assoc;
1537 		if (!assoc)
1538 			ret = VERR_NO_ASSOC;
1539 	}
1540 
1541 	if (ret) {
1542 		dev_err(tgtport->dev,
1543 			"Disconnect LS failed: %s\n",
1544 			validation_errors[ret]);
1545 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1546 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1547 				(ret == VERR_NO_ASSOC) ?
1548 					FCNVME_RJT_RC_INV_ASSOC :
1549 					(ret == VERR_NO_CONN) ?
1550 						FCNVME_RJT_RC_INV_CONN :
1551 						FCNVME_RJT_RC_LOGIC,
1552 				FCNVME_RJT_EXP_NONE, 0);
1553 		return;
1554 	}
1555 
1556 	/* format a response */
1557 
1558 	iod->lsreq->rsplen = sizeof(*acc);
1559 
1560 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1561 			fcnvme_lsdesc_len(
1562 				sizeof(struct fcnvme_ls_disconnect_acc)),
1563 			FCNVME_LS_DISCONNECT);
1564 
1565 	/* release get taken in nvmet_fc_find_target_assoc */
1566 	nvmet_fc_tgt_a_put(iod->assoc);
1567 
1568 	nvmet_fc_delete_target_assoc(iod->assoc);
1569 }
1570 
1571 
1572 /* *********************** NVME Ctrl Routines **************************** */
1573 
1574 
1575 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1576 
1577 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1578 
1579 static void
1580 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1581 {
1582 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1583 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1584 
1585 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1586 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1587 	nvmet_fc_free_ls_iod(tgtport, iod);
1588 	nvmet_fc_tgtport_put(tgtport);
1589 }
1590 
1591 static void
1592 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1593 				struct nvmet_fc_ls_iod *iod)
1594 {
1595 	int ret;
1596 
1597 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1598 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1599 
1600 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1601 	if (ret)
1602 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1603 }
1604 
1605 /*
1606  * Actual processing routine for received FC-NVME LS Requests from the LLD
1607  */
1608 static void
1609 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1610 			struct nvmet_fc_ls_iod *iod)
1611 {
1612 	struct fcnvme_ls_rqst_w0 *w0 =
1613 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1614 
1615 	iod->lsreq->nvmet_fc_private = iod;
1616 	iod->lsreq->rspbuf = iod->rspbuf;
1617 	iod->lsreq->rspdma = iod->rspdma;
1618 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1619 	/* Be preventative. handlers will later set to valid length */
1620 	iod->lsreq->rsplen = 0;
1621 
1622 	iod->assoc = NULL;
1623 
1624 	/*
1625 	 * handlers:
1626 	 *   parse request input, execute the request, and format the
1627 	 *   LS response
1628 	 */
1629 	switch (w0->ls_cmd) {
1630 	case FCNVME_LS_CREATE_ASSOCIATION:
1631 		/* Creates Association and initial Admin Queue/Connection */
1632 		nvmet_fc_ls_create_association(tgtport, iod);
1633 		break;
1634 	case FCNVME_LS_CREATE_CONNECTION:
1635 		/* Creates an IO Queue/Connection */
1636 		nvmet_fc_ls_create_connection(tgtport, iod);
1637 		break;
1638 	case FCNVME_LS_DISCONNECT:
1639 		/* Terminate a Queue/Connection or the Association */
1640 		nvmet_fc_ls_disconnect(tgtport, iod);
1641 		break;
1642 	default:
1643 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1644 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1645 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1646 	}
1647 
1648 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1649 }
1650 
1651 /*
1652  * Actual processing routine for received FC-NVME LS Requests from the LLD
1653  */
1654 static void
1655 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1656 {
1657 	struct nvmet_fc_ls_iod *iod =
1658 		container_of(work, struct nvmet_fc_ls_iod, work);
1659 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1660 
1661 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1662 }
1663 
1664 
1665 /**
1666  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1667  *                       upon the reception of a NVME LS request.
1668  *
1669  * The nvmet-fc layer will copy payload to an internal structure for
1670  * processing.  As such, upon completion of the routine, the LLDD may
1671  * immediately free/reuse the LS request buffer passed in the call.
1672  *
1673  * If this routine returns error, the LLDD should abort the exchange.
1674  *
1675  * @target_port: pointer to the (registered) target port the LS was
1676  *              received on.
1677  * @lsreq:      pointer to a lsreq request structure to be used to reference
1678  *              the exchange corresponding to the LS.
1679  * @lsreqbuf:   pointer to the buffer containing the LS Request
1680  * @lsreqbuf_len: length, in bytes, of the received LS request
1681  */
1682 int
1683 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1684 			struct nvmefc_tgt_ls_req *lsreq,
1685 			void *lsreqbuf, u32 lsreqbuf_len)
1686 {
1687 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1688 	struct nvmet_fc_ls_iod *iod;
1689 
1690 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1691 		return -E2BIG;
1692 
1693 	if (!nvmet_fc_tgtport_get(tgtport))
1694 		return -ESHUTDOWN;
1695 
1696 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1697 	if (!iod) {
1698 		nvmet_fc_tgtport_put(tgtport);
1699 		return -ENOENT;
1700 	}
1701 
1702 	iod->lsreq = lsreq;
1703 	iod->fcpreq = NULL;
1704 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1705 	iod->rqstdatalen = lsreqbuf_len;
1706 
1707 	schedule_work(&iod->work);
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1712 
1713 
1714 /*
1715  * **********************
1716  * Start of FCP handling
1717  * **********************
1718  */
1719 
1720 static int
1721 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1722 {
1723 	struct scatterlist *sg;
1724 	unsigned int nent;
1725 
1726 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1727 	if (!sg)
1728 		goto out;
1729 
1730 	fod->data_sg = sg;
1731 	fod->data_sg_cnt = nent;
1732 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1733 				((fod->io_dir == NVMET_FCP_WRITE) ?
1734 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1735 				/* note: write from initiator perspective */
1736 	fod->next_sg = fod->data_sg;
1737 
1738 	return 0;
1739 
1740 out:
1741 	return NVME_SC_INTERNAL;
1742 }
1743 
1744 static void
1745 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1746 {
1747 	if (!fod->data_sg || !fod->data_sg_cnt)
1748 		return;
1749 
1750 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1751 				((fod->io_dir == NVMET_FCP_WRITE) ?
1752 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1753 	sgl_free(fod->data_sg);
1754 	fod->data_sg = NULL;
1755 	fod->data_sg_cnt = 0;
1756 }
1757 
1758 
1759 static bool
1760 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1761 {
1762 	u32 sqtail, used;
1763 
1764 	/* egad, this is ugly. And sqtail is just a best guess */
1765 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1766 
1767 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1768 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1769 }
1770 
1771 /*
1772  * Prep RSP payload.
1773  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1774  */
1775 static void
1776 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1777 				struct nvmet_fc_fcp_iod *fod)
1778 {
1779 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1780 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1781 	struct nvme_completion *cqe = &ersp->cqe;
1782 	u32 *cqewd = (u32 *)cqe;
1783 	bool send_ersp = false;
1784 	u32 rsn, rspcnt, xfr_length;
1785 
1786 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1787 		xfr_length = fod->req.transfer_len;
1788 	else
1789 		xfr_length = fod->offset;
1790 
1791 	/*
1792 	 * check to see if we can send a 0's rsp.
1793 	 *   Note: to send a 0's response, the NVME-FC host transport will
1794 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1795 	 *   seen in an ersp), and command_id. Thus it will create a
1796 	 *   zero-filled CQE with those known fields filled in. Transport
1797 	 *   must send an ersp for any condition where the cqe won't match
1798 	 *   this.
1799 	 *
1800 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1801 	 *  every N responses, where N=ersp_ratio
1802 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1803 	 *    practice)
1804 	 *  normal cmds: any time status is non-zero, or status is zero
1805 	 *     but words 0 or 1 are non-zero.
1806 	 *  the SQ is 90% or more full
1807 	 *  the cmd is a fused command
1808 	 *  transferred data length not equal to cmd iu length
1809 	 */
1810 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1811 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1812 	    sqe->opcode == nvme_fabrics_command ||
1813 	    xfr_length != fod->req.transfer_len ||
1814 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1815 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1816 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1817 		send_ersp = true;
1818 
1819 	/* re-set the fields */
1820 	fod->fcpreq->rspaddr = ersp;
1821 	fod->fcpreq->rspdma = fod->rspdma;
1822 
1823 	if (!send_ersp) {
1824 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1825 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1826 	} else {
1827 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1828 		rsn = atomic_inc_return(&fod->queue->rsn);
1829 		ersp->rsn = cpu_to_be32(rsn);
1830 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1831 		fod->fcpreq->rsplen = sizeof(*ersp);
1832 	}
1833 
1834 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1835 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1836 }
1837 
1838 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1839 
1840 static void
1841 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1842 				struct nvmet_fc_fcp_iod *fod)
1843 {
1844 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1845 
1846 	/* data no longer needed */
1847 	nvmet_fc_free_tgt_pgs(fod);
1848 
1849 	/*
1850 	 * if an ABTS was received or we issued the fcp_abort early
1851 	 * don't call abort routine again.
1852 	 */
1853 	/* no need to take lock - lock was taken earlier to get here */
1854 	if (!fod->aborted)
1855 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1856 
1857 	nvmet_fc_free_fcp_iod(fod->queue, fod);
1858 }
1859 
1860 static void
1861 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1862 				struct nvmet_fc_fcp_iod *fod)
1863 {
1864 	int ret;
1865 
1866 	fod->fcpreq->op = NVMET_FCOP_RSP;
1867 	fod->fcpreq->timeout = 0;
1868 
1869 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1870 
1871 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1872 	if (ret)
1873 		nvmet_fc_abort_op(tgtport, fod);
1874 }
1875 
1876 static void
1877 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1878 				struct nvmet_fc_fcp_iod *fod, u8 op)
1879 {
1880 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1881 	struct scatterlist *sg = fod->next_sg;
1882 	unsigned long flags;
1883 	u32 remaininglen = fod->req.transfer_len - fod->offset;
1884 	u32 tlen = 0;
1885 	int ret;
1886 
1887 	fcpreq->op = op;
1888 	fcpreq->offset = fod->offset;
1889 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1890 
1891 	/*
1892 	 * for next sequence:
1893 	 *  break at a sg element boundary
1894 	 *  attempt to keep sequence length capped at
1895 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1896 	 *    be longer if a single sg element is larger
1897 	 *    than that amount. This is done to avoid creating
1898 	 *    a new sg list to use for the tgtport api.
1899 	 */
1900 	fcpreq->sg = sg;
1901 	fcpreq->sg_cnt = 0;
1902 	while (tlen < remaininglen &&
1903 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1904 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1905 		fcpreq->sg_cnt++;
1906 		tlen += sg_dma_len(sg);
1907 		sg = sg_next(sg);
1908 	}
1909 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1910 		fcpreq->sg_cnt++;
1911 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1912 		sg = sg_next(sg);
1913 	}
1914 	if (tlen < remaininglen)
1915 		fod->next_sg = sg;
1916 	else
1917 		fod->next_sg = NULL;
1918 
1919 	fcpreq->transfer_length = tlen;
1920 	fcpreq->transferred_length = 0;
1921 	fcpreq->fcp_error = 0;
1922 	fcpreq->rsplen = 0;
1923 
1924 	/*
1925 	 * If the last READDATA request: check if LLDD supports
1926 	 * combined xfr with response.
1927 	 */
1928 	if ((op == NVMET_FCOP_READDATA) &&
1929 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1930 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1931 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1932 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1933 	}
1934 
1935 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1936 	if (ret) {
1937 		/*
1938 		 * should be ok to set w/o lock as its in the thread of
1939 		 * execution (not an async timer routine) and doesn't
1940 		 * contend with any clearing action
1941 		 */
1942 		fod->abort = true;
1943 
1944 		if (op == NVMET_FCOP_WRITEDATA) {
1945 			spin_lock_irqsave(&fod->flock, flags);
1946 			fod->writedataactive = false;
1947 			spin_unlock_irqrestore(&fod->flock, flags);
1948 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1949 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1950 			fcpreq->fcp_error = ret;
1951 			fcpreq->transferred_length = 0;
1952 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1953 		}
1954 	}
1955 }
1956 
1957 static inline bool
1958 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1959 {
1960 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1961 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1962 
1963 	/* if in the middle of an io and we need to tear down */
1964 	if (abort) {
1965 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1966 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1967 			return true;
1968 		}
1969 
1970 		nvmet_fc_abort_op(tgtport, fod);
1971 		return true;
1972 	}
1973 
1974 	return false;
1975 }
1976 
1977 /*
1978  * actual done handler for FCP operations when completed by the lldd
1979  */
1980 static void
1981 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1982 {
1983 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1984 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1985 	unsigned long flags;
1986 	bool abort;
1987 
1988 	spin_lock_irqsave(&fod->flock, flags);
1989 	abort = fod->abort;
1990 	fod->writedataactive = false;
1991 	spin_unlock_irqrestore(&fod->flock, flags);
1992 
1993 	switch (fcpreq->op) {
1994 
1995 	case NVMET_FCOP_WRITEDATA:
1996 		if (__nvmet_fc_fod_op_abort(fod, abort))
1997 			return;
1998 		if (fcpreq->fcp_error ||
1999 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2000 			spin_lock(&fod->flock);
2001 			fod->abort = true;
2002 			spin_unlock(&fod->flock);
2003 
2004 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2005 			return;
2006 		}
2007 
2008 		fod->offset += fcpreq->transferred_length;
2009 		if (fod->offset != fod->req.transfer_len) {
2010 			spin_lock_irqsave(&fod->flock, flags);
2011 			fod->writedataactive = true;
2012 			spin_unlock_irqrestore(&fod->flock, flags);
2013 
2014 			/* transfer the next chunk */
2015 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2016 						NVMET_FCOP_WRITEDATA);
2017 			return;
2018 		}
2019 
2020 		/* data transfer complete, resume with nvmet layer */
2021 		nvmet_req_execute(&fod->req);
2022 		break;
2023 
2024 	case NVMET_FCOP_READDATA:
2025 	case NVMET_FCOP_READDATA_RSP:
2026 		if (__nvmet_fc_fod_op_abort(fod, abort))
2027 			return;
2028 		if (fcpreq->fcp_error ||
2029 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2030 			nvmet_fc_abort_op(tgtport, fod);
2031 			return;
2032 		}
2033 
2034 		/* success */
2035 
2036 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2037 			/* data no longer needed */
2038 			nvmet_fc_free_tgt_pgs(fod);
2039 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2040 			return;
2041 		}
2042 
2043 		fod->offset += fcpreq->transferred_length;
2044 		if (fod->offset != fod->req.transfer_len) {
2045 			/* transfer the next chunk */
2046 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2047 						NVMET_FCOP_READDATA);
2048 			return;
2049 		}
2050 
2051 		/* data transfer complete, send response */
2052 
2053 		/* data no longer needed */
2054 		nvmet_fc_free_tgt_pgs(fod);
2055 
2056 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2057 
2058 		break;
2059 
2060 	case NVMET_FCOP_RSP:
2061 		if (__nvmet_fc_fod_op_abort(fod, abort))
2062 			return;
2063 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2064 		break;
2065 
2066 	default:
2067 		break;
2068 	}
2069 }
2070 
2071 static void
2072 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2073 {
2074 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2075 
2076 	nvmet_fc_fod_op_done(fod);
2077 }
2078 
2079 /*
2080  * actual completion handler after execution by the nvmet layer
2081  */
2082 static void
2083 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2084 			struct nvmet_fc_fcp_iod *fod, int status)
2085 {
2086 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2087 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2088 	unsigned long flags;
2089 	bool abort;
2090 
2091 	spin_lock_irqsave(&fod->flock, flags);
2092 	abort = fod->abort;
2093 	spin_unlock_irqrestore(&fod->flock, flags);
2094 
2095 	/* if we have a CQE, snoop the last sq_head value */
2096 	if (!status)
2097 		fod->queue->sqhd = cqe->sq_head;
2098 
2099 	if (abort) {
2100 		nvmet_fc_abort_op(tgtport, fod);
2101 		return;
2102 	}
2103 
2104 	/* if an error handling the cmd post initial parsing */
2105 	if (status) {
2106 		/* fudge up a failed CQE status for our transport error */
2107 		memset(cqe, 0, sizeof(*cqe));
2108 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2109 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2110 		cqe->command_id = sqe->command_id;
2111 		cqe->status = cpu_to_le16(status);
2112 	} else {
2113 
2114 		/*
2115 		 * try to push the data even if the SQE status is non-zero.
2116 		 * There may be a status where data still was intended to
2117 		 * be moved
2118 		 */
2119 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2120 			/* push the data over before sending rsp */
2121 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2122 						NVMET_FCOP_READDATA);
2123 			return;
2124 		}
2125 
2126 		/* writes & no data - fall thru */
2127 	}
2128 
2129 	/* data no longer needed */
2130 	nvmet_fc_free_tgt_pgs(fod);
2131 
2132 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2133 }
2134 
2135 
2136 static void
2137 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2138 {
2139 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2140 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2141 
2142 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2143 }
2144 
2145 
2146 /*
2147  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2148  */
2149 static void
2150 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2151 			struct nvmet_fc_fcp_iod *fod)
2152 {
2153 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2154 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2155 	int ret;
2156 
2157 	/*
2158 	 * if there is no nvmet mapping to the targetport there
2159 	 * shouldn't be requests. just terminate them.
2160 	 */
2161 	if (!tgtport->pe)
2162 		goto transport_error;
2163 
2164 	/*
2165 	 * Fused commands are currently not supported in the linux
2166 	 * implementation.
2167 	 *
2168 	 * As such, the implementation of the FC transport does not
2169 	 * look at the fused commands and order delivery to the upper
2170 	 * layer until we have both based on csn.
2171 	 */
2172 
2173 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2174 
2175 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2176 		fod->io_dir = NVMET_FCP_WRITE;
2177 		if (!nvme_is_write(&cmdiu->sqe))
2178 			goto transport_error;
2179 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2180 		fod->io_dir = NVMET_FCP_READ;
2181 		if (nvme_is_write(&cmdiu->sqe))
2182 			goto transport_error;
2183 	} else {
2184 		fod->io_dir = NVMET_FCP_NODATA;
2185 		if (xfrlen)
2186 			goto transport_error;
2187 	}
2188 
2189 	fod->req.cmd = &fod->cmdiubuf.sqe;
2190 	fod->req.rsp = &fod->rspiubuf.cqe;
2191 	fod->req.port = tgtport->pe->port;
2192 
2193 	/* clear any response payload */
2194 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2195 
2196 	fod->data_sg = NULL;
2197 	fod->data_sg_cnt = 0;
2198 
2199 	ret = nvmet_req_init(&fod->req,
2200 				&fod->queue->nvme_cq,
2201 				&fod->queue->nvme_sq,
2202 				&nvmet_fc_tgt_fcp_ops);
2203 	if (!ret) {
2204 		/* bad SQE content or invalid ctrl state */
2205 		/* nvmet layer has already called op done to send rsp. */
2206 		return;
2207 	}
2208 
2209 	fod->req.transfer_len = xfrlen;
2210 
2211 	/* keep a running counter of tail position */
2212 	atomic_inc(&fod->queue->sqtail);
2213 
2214 	if (fod->req.transfer_len) {
2215 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2216 		if (ret) {
2217 			nvmet_req_complete(&fod->req, ret);
2218 			return;
2219 		}
2220 	}
2221 	fod->req.sg = fod->data_sg;
2222 	fod->req.sg_cnt = fod->data_sg_cnt;
2223 	fod->offset = 0;
2224 
2225 	if (fod->io_dir == NVMET_FCP_WRITE) {
2226 		/* pull the data over before invoking nvmet layer */
2227 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2228 		return;
2229 	}
2230 
2231 	/*
2232 	 * Reads or no data:
2233 	 *
2234 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2235 	 * push the data
2236 	 */
2237 	nvmet_req_execute(&fod->req);
2238 	return;
2239 
2240 transport_error:
2241 	nvmet_fc_abort_op(tgtport, fod);
2242 }
2243 
2244 /**
2245  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2246  *                       upon the reception of a NVME FCP CMD IU.
2247  *
2248  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2249  * layer for processing.
2250  *
2251  * The nvmet_fc layer allocates a local job structure (struct
2252  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2253  * CMD IU buffer to the job structure. As such, on a successful
2254  * completion (returns 0), the LLDD may immediately free/reuse
2255  * the CMD IU buffer passed in the call.
2256  *
2257  * However, in some circumstances, due to the packetized nature of FC
2258  * and the api of the FC LLDD which may issue a hw command to send the
2259  * response, but the LLDD may not get the hw completion for that command
2260  * and upcall the nvmet_fc layer before a new command may be
2261  * asynchronously received - its possible for a command to be received
2262  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2263  * the appearance of more commands received than fits in the sq.
2264  * To alleviate this scenario, a temporary queue is maintained in the
2265  * transport for pending LLDD requests waiting for a queue job structure.
2266  * In these "overrun" cases, a temporary queue element is allocated
2267  * the LLDD request and CMD iu buffer information remembered, and the
2268  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2269  * structure is freed, it is immediately reallocated for anything on the
2270  * pending request list. The LLDDs defer_rcv() callback is called,
2271  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2272  * is then started normally with the transport.
2273  *
2274  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2275  * the completion as successful but must not reuse the CMD IU buffer
2276  * until the LLDD's defer_rcv() callback has been called for the
2277  * corresponding struct nvmefc_tgt_fcp_req pointer.
2278  *
2279  * If there is any other condition in which an error occurs, the
2280  * transport will return a non-zero status indicating the error.
2281  * In all cases other than -EOVERFLOW, the transport has not accepted the
2282  * request and the LLDD should abort the exchange.
2283  *
2284  * @target_port: pointer to the (registered) target port the FCP CMD IU
2285  *              was received on.
2286  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2287  *              the exchange corresponding to the FCP Exchange.
2288  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2289  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2290  */
2291 int
2292 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2293 			struct nvmefc_tgt_fcp_req *fcpreq,
2294 			void *cmdiubuf, u32 cmdiubuf_len)
2295 {
2296 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2297 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2298 	struct nvmet_fc_tgt_queue *queue;
2299 	struct nvmet_fc_fcp_iod *fod;
2300 	struct nvmet_fc_defer_fcp_req *deferfcp;
2301 	unsigned long flags;
2302 
2303 	/* validate iu, so the connection id can be used to find the queue */
2304 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2305 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2306 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2307 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2308 		return -EIO;
2309 
2310 	queue = nvmet_fc_find_target_queue(tgtport,
2311 				be64_to_cpu(cmdiu->connection_id));
2312 	if (!queue)
2313 		return -ENOTCONN;
2314 
2315 	/*
2316 	 * note: reference taken by find_target_queue
2317 	 * After successful fod allocation, the fod will inherit the
2318 	 * ownership of that reference and will remove the reference
2319 	 * when the fod is freed.
2320 	 */
2321 
2322 	spin_lock_irqsave(&queue->qlock, flags);
2323 
2324 	fod = nvmet_fc_alloc_fcp_iod(queue);
2325 	if (fod) {
2326 		spin_unlock_irqrestore(&queue->qlock, flags);
2327 
2328 		fcpreq->nvmet_fc_private = fod;
2329 		fod->fcpreq = fcpreq;
2330 
2331 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2332 
2333 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2334 
2335 		return 0;
2336 	}
2337 
2338 	if (!tgtport->ops->defer_rcv) {
2339 		spin_unlock_irqrestore(&queue->qlock, flags);
2340 		/* release the queue lookup reference */
2341 		nvmet_fc_tgt_q_put(queue);
2342 		return -ENOENT;
2343 	}
2344 
2345 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2346 			struct nvmet_fc_defer_fcp_req, req_list);
2347 	if (deferfcp) {
2348 		/* Just re-use one that was previously allocated */
2349 		list_del(&deferfcp->req_list);
2350 	} else {
2351 		spin_unlock_irqrestore(&queue->qlock, flags);
2352 
2353 		/* Now we need to dynamically allocate one */
2354 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2355 		if (!deferfcp) {
2356 			/* release the queue lookup reference */
2357 			nvmet_fc_tgt_q_put(queue);
2358 			return -ENOMEM;
2359 		}
2360 		spin_lock_irqsave(&queue->qlock, flags);
2361 	}
2362 
2363 	/* For now, use rspaddr / rsplen to save payload information */
2364 	fcpreq->rspaddr = cmdiubuf;
2365 	fcpreq->rsplen  = cmdiubuf_len;
2366 	deferfcp->fcp_req = fcpreq;
2367 
2368 	/* defer processing till a fod becomes available */
2369 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2370 
2371 	/* NOTE: the queue lookup reference is still valid */
2372 
2373 	spin_unlock_irqrestore(&queue->qlock, flags);
2374 
2375 	return -EOVERFLOW;
2376 }
2377 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2378 
2379 /**
2380  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2381  *                       upon the reception of an ABTS for a FCP command
2382  *
2383  * Notify the transport that an ABTS has been received for a FCP command
2384  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2385  * LLDD believes the command is still being worked on
2386  * (template_ops->fcp_req_release() has not been called).
2387  *
2388  * The transport will wait for any outstanding work (an op to the LLDD,
2389  * which the lldd should complete with error due to the ABTS; or the
2390  * completion from the nvmet layer of the nvme command), then will
2391  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2392  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2393  * to the ABTS either after return from this function (assuming any
2394  * outstanding op work has been terminated) or upon the callback being
2395  * called.
2396  *
2397  * @target_port: pointer to the (registered) target port the FCP CMD IU
2398  *              was received on.
2399  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2400  *              to the exchange that received the ABTS.
2401  */
2402 void
2403 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2404 			struct nvmefc_tgt_fcp_req *fcpreq)
2405 {
2406 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2407 	struct nvmet_fc_tgt_queue *queue;
2408 	unsigned long flags;
2409 
2410 	if (!fod || fod->fcpreq != fcpreq)
2411 		/* job appears to have already completed, ignore abort */
2412 		return;
2413 
2414 	queue = fod->queue;
2415 
2416 	spin_lock_irqsave(&queue->qlock, flags);
2417 	if (fod->active) {
2418 		/*
2419 		 * mark as abort. The abort handler, invoked upon completion
2420 		 * of any work, will detect the aborted status and do the
2421 		 * callback.
2422 		 */
2423 		spin_lock(&fod->flock);
2424 		fod->abort = true;
2425 		fod->aborted = true;
2426 		spin_unlock(&fod->flock);
2427 	}
2428 	spin_unlock_irqrestore(&queue->qlock, flags);
2429 }
2430 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2431 
2432 
2433 struct nvmet_fc_traddr {
2434 	u64	nn;
2435 	u64	pn;
2436 };
2437 
2438 static int
2439 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2440 {
2441 	u64 token64;
2442 
2443 	if (match_u64(sstr, &token64))
2444 		return -EINVAL;
2445 	*val = token64;
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * This routine validates and extracts the WWN's from the TRADDR string.
2452  * As kernel parsers need the 0x to determine number base, universally
2453  * build string to parse with 0x prefix before parsing name strings.
2454  */
2455 static int
2456 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2457 {
2458 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2459 	substring_t wwn = { name, &name[sizeof(name)-1] };
2460 	int nnoffset, pnoffset;
2461 
2462 	/* validate if string is one of the 2 allowed formats */
2463 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2464 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2465 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2466 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2467 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2468 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2469 						NVME_FC_TRADDR_OXNNLEN;
2470 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2471 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2472 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2473 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2474 		nnoffset = NVME_FC_TRADDR_NNLEN;
2475 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2476 	} else
2477 		goto out_einval;
2478 
2479 	name[0] = '0';
2480 	name[1] = 'x';
2481 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2482 
2483 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2484 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2485 		goto out_einval;
2486 
2487 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2488 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2489 		goto out_einval;
2490 
2491 	return 0;
2492 
2493 out_einval:
2494 	pr_warn("%s: bad traddr string\n", __func__);
2495 	return -EINVAL;
2496 }
2497 
2498 static int
2499 nvmet_fc_add_port(struct nvmet_port *port)
2500 {
2501 	struct nvmet_fc_tgtport *tgtport;
2502 	struct nvmet_fc_port_entry *pe;
2503 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2504 	unsigned long flags;
2505 	int ret;
2506 
2507 	/* validate the address info */
2508 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2509 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2510 		return -EINVAL;
2511 
2512 	/* map the traddr address info to a target port */
2513 
2514 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2515 			sizeof(port->disc_addr.traddr));
2516 	if (ret)
2517 		return ret;
2518 
2519 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2520 	if (!pe)
2521 		return -ENOMEM;
2522 
2523 	ret = -ENXIO;
2524 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2525 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2526 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2527 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2528 			/* a FC port can only be 1 nvmet port id */
2529 			if (!tgtport->pe) {
2530 				nvmet_fc_portentry_bind(tgtport, pe, port);
2531 				ret = 0;
2532 			} else
2533 				ret = -EALREADY;
2534 			break;
2535 		}
2536 	}
2537 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2538 
2539 	if (ret)
2540 		kfree(pe);
2541 
2542 	return ret;
2543 }
2544 
2545 static void
2546 nvmet_fc_remove_port(struct nvmet_port *port)
2547 {
2548 	struct nvmet_fc_port_entry *pe = port->priv;
2549 
2550 	nvmet_fc_portentry_unbind(pe);
2551 
2552 	kfree(pe);
2553 }
2554 
2555 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2556 	.owner			= THIS_MODULE,
2557 	.type			= NVMF_TRTYPE_FC,
2558 	.msdbd			= 1,
2559 	.add_port		= nvmet_fc_add_port,
2560 	.remove_port		= nvmet_fc_remove_port,
2561 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2562 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2563 };
2564 
2565 static int __init nvmet_fc_init_module(void)
2566 {
2567 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2568 }
2569 
2570 static void __exit nvmet_fc_exit_module(void)
2571 {
2572 	/* sanity check - all lports should be removed */
2573 	if (!list_empty(&nvmet_fc_target_list))
2574 		pr_warn("%s: targetport list not empty\n", __func__);
2575 
2576 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2577 
2578 	ida_destroy(&nvmet_fc_tgtport_cnt);
2579 }
2580 
2581 module_init(nvmet_fc_init_module);
2582 module_exit(nvmet_fc_exit_module);
2583 
2584 MODULE_LICENSE("GPL v2");
2585