xref: /openbmc/linux/drivers/nvme/target/fc.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25 
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 #define NVMET_LS_CTX_COUNT		256
35 
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
38 
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41 
42 struct nvmet_fc_ls_iod {
43 	struct nvmefc_tgt_ls_req	*lsreq;
44 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
45 
46 	struct list_head		ls_list;	/* tgtport->ls_list */
47 
48 	struct nvmet_fc_tgtport		*tgtport;
49 	struct nvmet_fc_tgt_assoc	*assoc;
50 
51 	u8				*rqstbuf;
52 	u8				*rspbuf;
53 	u16				rqstdatalen;
54 	dma_addr_t			rspdma;
55 
56 	struct scatterlist		sg[2];
57 
58 	struct work_struct		work;
59 } __aligned(sizeof(unsigned long long));
60 
61 /* desired maximum for a single sequence - if sg list allows it */
62 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
63 
64 enum nvmet_fcp_datadir {
65 	NVMET_FCP_NODATA,
66 	NVMET_FCP_WRITE,
67 	NVMET_FCP_READ,
68 	NVMET_FCP_ABORTED,
69 };
70 
71 struct nvmet_fc_fcp_iod {
72 	struct nvmefc_tgt_fcp_req	*fcpreq;
73 
74 	struct nvme_fc_cmd_iu		cmdiubuf;
75 	struct nvme_fc_ersp_iu		rspiubuf;
76 	dma_addr_t			rspdma;
77 	struct scatterlist		*next_sg;
78 	struct scatterlist		*data_sg;
79 	int				data_sg_cnt;
80 	u32				offset;
81 	enum nvmet_fcp_datadir		io_dir;
82 	bool				active;
83 	bool				abort;
84 	bool				aborted;
85 	bool				writedataactive;
86 	spinlock_t			flock;
87 
88 	struct nvmet_req		req;
89 	struct work_struct		work;
90 	struct work_struct		done_work;
91 	struct work_struct		defer_work;
92 
93 	struct nvmet_fc_tgtport		*tgtport;
94 	struct nvmet_fc_tgt_queue	*queue;
95 
96 	struct list_head		fcp_list;	/* tgtport->fcp_list */
97 };
98 
99 struct nvmet_fc_tgtport {
100 
101 	struct nvmet_fc_target_port	fc_target_port;
102 
103 	struct list_head		tgt_list; /* nvmet_fc_target_list */
104 	struct device			*dev;	/* dev for dma mapping */
105 	struct nvmet_fc_target_template	*ops;
106 
107 	struct nvmet_fc_ls_iod		*iod;
108 	spinlock_t			lock;
109 	struct list_head		ls_list;
110 	struct list_head		ls_busylist;
111 	struct list_head		assoc_list;
112 	struct ida			assoc_cnt;
113 	struct nvmet_port		*port;
114 	struct kref			ref;
115 	u32				max_sg_cnt;
116 };
117 
118 struct nvmet_fc_defer_fcp_req {
119 	struct list_head		req_list;
120 	struct nvmefc_tgt_fcp_req	*fcp_req;
121 };
122 
123 struct nvmet_fc_tgt_queue {
124 	bool				ninetypercent;
125 	u16				qid;
126 	u16				sqsize;
127 	u16				ersp_ratio;
128 	__le16				sqhd;
129 	int				cpu;
130 	atomic_t			connected;
131 	atomic_t			sqtail;
132 	atomic_t			zrspcnt;
133 	atomic_t			rsn;
134 	spinlock_t			qlock;
135 	struct nvmet_port		*port;
136 	struct nvmet_cq			nvme_cq;
137 	struct nvmet_sq			nvme_sq;
138 	struct nvmet_fc_tgt_assoc	*assoc;
139 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */
140 	struct list_head		fod_list;
141 	struct list_head		pending_cmd_list;
142 	struct list_head		avail_defer_list;
143 	struct workqueue_struct		*work_q;
144 	struct kref			ref;
145 } __aligned(sizeof(unsigned long long));
146 
147 struct nvmet_fc_tgt_assoc {
148 	u64				association_id;
149 	u32				a_id;
150 	struct nvmet_fc_tgtport		*tgtport;
151 	struct list_head		a_list;
152 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
153 	struct kref			ref;
154 	struct work_struct		del_work;
155 };
156 
157 
158 static inline int
159 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
160 {
161 	return (iodptr - iodptr->tgtport->iod);
162 }
163 
164 static inline int
165 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
166 {
167 	return (fodptr - fodptr->queue->fod);
168 }
169 
170 
171 /*
172  * Association and Connection IDs:
173  *
174  * Association ID will have random number in upper 6 bytes and zero
175  *   in lower 2 bytes
176  *
177  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
178  *
179  * note: Association ID = Connection ID for queue 0
180  */
181 #define BYTES_FOR_QID			sizeof(u16)
182 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
183 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
184 
185 static inline u64
186 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
187 {
188 	return (assoc->association_id | qid);
189 }
190 
191 static inline u64
192 nvmet_fc_getassociationid(u64 connectionid)
193 {
194 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
195 }
196 
197 static inline u16
198 nvmet_fc_getqueueid(u64 connectionid)
199 {
200 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
201 }
202 
203 static inline struct nvmet_fc_tgtport *
204 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
205 {
206 	return container_of(targetport, struct nvmet_fc_tgtport,
207 				 fc_target_port);
208 }
209 
210 static inline struct nvmet_fc_fcp_iod *
211 nvmet_req_to_fod(struct nvmet_req *nvme_req)
212 {
213 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
214 }
215 
216 
217 /* *************************** Globals **************************** */
218 
219 
220 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
221 
222 static LIST_HEAD(nvmet_fc_target_list);
223 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
224 
225 
226 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
227 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
228 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
229 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
230 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
231 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
232 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
233 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
234 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
235 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
236 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
237 					struct nvmet_fc_fcp_iod *fod);
238 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
239 
240 
241 /* *********************** FC-NVME DMA Handling **************************** */
242 
243 /*
244  * The fcloop device passes in a NULL device pointer. Real LLD's will
245  * pass in a valid device pointer. If NULL is passed to the dma mapping
246  * routines, depending on the platform, it may or may not succeed, and
247  * may crash.
248  *
249  * As such:
250  * Wrapper all the dma routines and check the dev pointer.
251  *
252  * If simple mappings (return just a dma address, we'll noop them,
253  * returning a dma address of 0.
254  *
255  * On more complex mappings (dma_map_sg), a pseudo routine fills
256  * in the scatter list, setting all dma addresses to 0.
257  */
258 
259 static inline dma_addr_t
260 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
261 		enum dma_data_direction dir)
262 {
263 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
264 }
265 
266 static inline int
267 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
268 {
269 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
270 }
271 
272 static inline void
273 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
274 	enum dma_data_direction dir)
275 {
276 	if (dev)
277 		dma_unmap_single(dev, addr, size, dir);
278 }
279 
280 static inline void
281 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
282 		enum dma_data_direction dir)
283 {
284 	if (dev)
285 		dma_sync_single_for_cpu(dev, addr, size, dir);
286 }
287 
288 static inline void
289 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
290 		enum dma_data_direction dir)
291 {
292 	if (dev)
293 		dma_sync_single_for_device(dev, addr, size, dir);
294 }
295 
296 /* pseudo dma_map_sg call */
297 static int
298 fc_map_sg(struct scatterlist *sg, int nents)
299 {
300 	struct scatterlist *s;
301 	int i;
302 
303 	WARN_ON(nents == 0 || sg[0].length == 0);
304 
305 	for_each_sg(sg, s, nents, i) {
306 		s->dma_address = 0L;
307 #ifdef CONFIG_NEED_SG_DMA_LENGTH
308 		s->dma_length = s->length;
309 #endif
310 	}
311 	return nents;
312 }
313 
314 static inline int
315 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
316 		enum dma_data_direction dir)
317 {
318 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
319 }
320 
321 static inline void
322 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
323 		enum dma_data_direction dir)
324 {
325 	if (dev)
326 		dma_unmap_sg(dev, sg, nents, dir);
327 }
328 
329 
330 /* *********************** FC-NVME Port Management ************************ */
331 
332 
333 static int
334 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
335 {
336 	struct nvmet_fc_ls_iod *iod;
337 	int i;
338 
339 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
340 			GFP_KERNEL);
341 	if (!iod)
342 		return -ENOMEM;
343 
344 	tgtport->iod = iod;
345 
346 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
347 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
348 		iod->tgtport = tgtport;
349 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
350 
351 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
352 			GFP_KERNEL);
353 		if (!iod->rqstbuf)
354 			goto out_fail;
355 
356 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
357 
358 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
359 						NVME_FC_MAX_LS_BUFFER_SIZE,
360 						DMA_TO_DEVICE);
361 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
362 			goto out_fail;
363 	}
364 
365 	return 0;
366 
367 out_fail:
368 	kfree(iod->rqstbuf);
369 	list_del(&iod->ls_list);
370 	for (iod--, i--; i >= 0; iod--, i--) {
371 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
372 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
373 		kfree(iod->rqstbuf);
374 		list_del(&iod->ls_list);
375 	}
376 
377 	kfree(iod);
378 
379 	return -EFAULT;
380 }
381 
382 static void
383 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
384 {
385 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
386 	int i;
387 
388 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
389 		fc_dma_unmap_single(tgtport->dev,
390 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
391 				DMA_TO_DEVICE);
392 		kfree(iod->rqstbuf);
393 		list_del(&iod->ls_list);
394 	}
395 	kfree(tgtport->iod);
396 }
397 
398 static struct nvmet_fc_ls_iod *
399 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
400 {
401 	struct nvmet_fc_ls_iod *iod;
402 	unsigned long flags;
403 
404 	spin_lock_irqsave(&tgtport->lock, flags);
405 	iod = list_first_entry_or_null(&tgtport->ls_list,
406 					struct nvmet_fc_ls_iod, ls_list);
407 	if (iod)
408 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
409 	spin_unlock_irqrestore(&tgtport->lock, flags);
410 	return iod;
411 }
412 
413 
414 static void
415 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
416 			struct nvmet_fc_ls_iod *iod)
417 {
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(&tgtport->lock, flags);
421 	list_move(&iod->ls_list, &tgtport->ls_list);
422 	spin_unlock_irqrestore(&tgtport->lock, flags);
423 }
424 
425 static void
426 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
427 				struct nvmet_fc_tgt_queue *queue)
428 {
429 	struct nvmet_fc_fcp_iod *fod = queue->fod;
430 	int i;
431 
432 	for (i = 0; i < queue->sqsize; fod++, i++) {
433 		INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
434 		INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
435 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
436 		fod->tgtport = tgtport;
437 		fod->queue = queue;
438 		fod->active = false;
439 		fod->abort = false;
440 		fod->aborted = false;
441 		fod->fcpreq = NULL;
442 		list_add_tail(&fod->fcp_list, &queue->fod_list);
443 		spin_lock_init(&fod->flock);
444 
445 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
446 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
447 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
448 			list_del(&fod->fcp_list);
449 			for (fod--, i--; i >= 0; fod--, i--) {
450 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
451 						sizeof(fod->rspiubuf),
452 						DMA_TO_DEVICE);
453 				fod->rspdma = 0L;
454 				list_del(&fod->fcp_list);
455 			}
456 
457 			return;
458 		}
459 	}
460 }
461 
462 static void
463 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
464 				struct nvmet_fc_tgt_queue *queue)
465 {
466 	struct nvmet_fc_fcp_iod *fod = queue->fod;
467 	int i;
468 
469 	for (i = 0; i < queue->sqsize; fod++, i++) {
470 		if (fod->rspdma)
471 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
472 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
473 	}
474 }
475 
476 static struct nvmet_fc_fcp_iod *
477 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
478 {
479 	struct nvmet_fc_fcp_iod *fod;
480 
481 	lockdep_assert_held(&queue->qlock);
482 
483 	fod = list_first_entry_or_null(&queue->fod_list,
484 					struct nvmet_fc_fcp_iod, fcp_list);
485 	if (fod) {
486 		list_del(&fod->fcp_list);
487 		fod->active = true;
488 		/*
489 		 * no queue reference is taken, as it was taken by the
490 		 * queue lookup just prior to the allocation. The iod
491 		 * will "inherit" that reference.
492 		 */
493 	}
494 	return fod;
495 }
496 
497 
498 static void
499 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
500 		       struct nvmet_fc_tgt_queue *queue,
501 		       struct nvmefc_tgt_fcp_req *fcpreq)
502 {
503 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
504 
505 	/*
506 	 * put all admin cmds on hw queue id 0. All io commands go to
507 	 * the respective hw queue based on a modulo basis
508 	 */
509 	fcpreq->hwqid = queue->qid ?
510 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
511 
512 	if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
513 		queue_work_on(queue->cpu, queue->work_q, &fod->work);
514 	else
515 		nvmet_fc_handle_fcp_rqst(tgtport, fod);
516 }
517 
518 static void
519 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
520 {
521 	struct nvmet_fc_fcp_iod *fod =
522 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
523 
524 	/* Submit deferred IO for processing */
525 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
526 
527 }
528 
529 static void
530 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
531 			struct nvmet_fc_fcp_iod *fod)
532 {
533 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
534 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
535 	struct nvmet_fc_defer_fcp_req *deferfcp;
536 	unsigned long flags;
537 
538 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
539 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
540 
541 	fcpreq->nvmet_fc_private = NULL;
542 
543 	fod->active = false;
544 	fod->abort = false;
545 	fod->aborted = false;
546 	fod->writedataactive = false;
547 	fod->fcpreq = NULL;
548 
549 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
550 
551 	/* release the queue lookup reference on the completed IO */
552 	nvmet_fc_tgt_q_put(queue);
553 
554 	spin_lock_irqsave(&queue->qlock, flags);
555 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
556 				struct nvmet_fc_defer_fcp_req, req_list);
557 	if (!deferfcp) {
558 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
559 		spin_unlock_irqrestore(&queue->qlock, flags);
560 		return;
561 	}
562 
563 	/* Re-use the fod for the next pending cmd that was deferred */
564 	list_del(&deferfcp->req_list);
565 
566 	fcpreq = deferfcp->fcp_req;
567 
568 	/* deferfcp can be reused for another IO at a later date */
569 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
570 
571 	spin_unlock_irqrestore(&queue->qlock, flags);
572 
573 	/* Save NVME CMD IO in fod */
574 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
575 
576 	/* Setup new fcpreq to be processed */
577 	fcpreq->rspaddr = NULL;
578 	fcpreq->rsplen  = 0;
579 	fcpreq->nvmet_fc_private = fod;
580 	fod->fcpreq = fcpreq;
581 	fod->active = true;
582 
583 	/* inform LLDD IO is now being processed */
584 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
585 
586 	/*
587 	 * Leave the queue lookup get reference taken when
588 	 * fod was originally allocated.
589 	 */
590 
591 	queue_work(queue->work_q, &fod->defer_work);
592 }
593 
594 static int
595 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
596 {
597 	int cpu, idx, cnt;
598 
599 	if (tgtport->ops->max_hw_queues == 1)
600 		return WORK_CPU_UNBOUND;
601 
602 	/* Simple cpu selection based on qid modulo active cpu count */
603 	idx = !qid ? 0 : (qid - 1) % num_active_cpus();
604 
605 	/* find the n'th active cpu */
606 	for (cpu = 0, cnt = 0; ; ) {
607 		if (cpu_active(cpu)) {
608 			if (cnt == idx)
609 				break;
610 			cnt++;
611 		}
612 		cpu = (cpu + 1) % num_possible_cpus();
613 	}
614 
615 	return cpu;
616 }
617 
618 static struct nvmet_fc_tgt_queue *
619 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
620 			u16 qid, u16 sqsize)
621 {
622 	struct nvmet_fc_tgt_queue *queue;
623 	unsigned long flags;
624 	int ret;
625 
626 	if (qid > NVMET_NR_QUEUES)
627 		return NULL;
628 
629 	queue = kzalloc((sizeof(*queue) +
630 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
631 				GFP_KERNEL);
632 	if (!queue)
633 		return NULL;
634 
635 	if (!nvmet_fc_tgt_a_get(assoc))
636 		goto out_free_queue;
637 
638 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
639 				assoc->tgtport->fc_target_port.port_num,
640 				assoc->a_id, qid);
641 	if (!queue->work_q)
642 		goto out_a_put;
643 
644 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
645 	queue->qid = qid;
646 	queue->sqsize = sqsize;
647 	queue->assoc = assoc;
648 	queue->port = assoc->tgtport->port;
649 	queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
650 	INIT_LIST_HEAD(&queue->fod_list);
651 	INIT_LIST_HEAD(&queue->avail_defer_list);
652 	INIT_LIST_HEAD(&queue->pending_cmd_list);
653 	atomic_set(&queue->connected, 0);
654 	atomic_set(&queue->sqtail, 0);
655 	atomic_set(&queue->rsn, 1);
656 	atomic_set(&queue->zrspcnt, 0);
657 	spin_lock_init(&queue->qlock);
658 	kref_init(&queue->ref);
659 
660 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
661 
662 	ret = nvmet_sq_init(&queue->nvme_sq);
663 	if (ret)
664 		goto out_fail_iodlist;
665 
666 	WARN_ON(assoc->queues[qid]);
667 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
668 	assoc->queues[qid] = queue;
669 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
670 
671 	return queue;
672 
673 out_fail_iodlist:
674 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
675 	destroy_workqueue(queue->work_q);
676 out_a_put:
677 	nvmet_fc_tgt_a_put(assoc);
678 out_free_queue:
679 	kfree(queue);
680 	return NULL;
681 }
682 
683 
684 static void
685 nvmet_fc_tgt_queue_free(struct kref *ref)
686 {
687 	struct nvmet_fc_tgt_queue *queue =
688 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
692 	queue->assoc->queues[queue->qid] = NULL;
693 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
694 
695 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
696 
697 	nvmet_fc_tgt_a_put(queue->assoc);
698 
699 	destroy_workqueue(queue->work_q);
700 
701 	kfree(queue);
702 }
703 
704 static void
705 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
706 {
707 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
708 }
709 
710 static int
711 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
712 {
713 	return kref_get_unless_zero(&queue->ref);
714 }
715 
716 
717 static void
718 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
719 {
720 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
721 	struct nvmet_fc_fcp_iod *fod = queue->fod;
722 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
723 	unsigned long flags;
724 	int i, writedataactive;
725 	bool disconnect;
726 
727 	disconnect = atomic_xchg(&queue->connected, 0);
728 
729 	spin_lock_irqsave(&queue->qlock, flags);
730 	/* about outstanding io's */
731 	for (i = 0; i < queue->sqsize; fod++, i++) {
732 		if (fod->active) {
733 			spin_lock(&fod->flock);
734 			fod->abort = true;
735 			writedataactive = fod->writedataactive;
736 			spin_unlock(&fod->flock);
737 			/*
738 			 * only call lldd abort routine if waiting for
739 			 * writedata. other outstanding ops should finish
740 			 * on their own.
741 			 */
742 			if (writedataactive) {
743 				spin_lock(&fod->flock);
744 				fod->aborted = true;
745 				spin_unlock(&fod->flock);
746 				tgtport->ops->fcp_abort(
747 					&tgtport->fc_target_port, fod->fcpreq);
748 			}
749 		}
750 	}
751 
752 	/* Cleanup defer'ed IOs in queue */
753 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
754 				req_list) {
755 		list_del(&deferfcp->req_list);
756 		kfree(deferfcp);
757 	}
758 
759 	for (;;) {
760 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
761 				struct nvmet_fc_defer_fcp_req, req_list);
762 		if (!deferfcp)
763 			break;
764 
765 		list_del(&deferfcp->req_list);
766 		spin_unlock_irqrestore(&queue->qlock, flags);
767 
768 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
769 				deferfcp->fcp_req);
770 
771 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
772 				deferfcp->fcp_req);
773 
774 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
775 				deferfcp->fcp_req);
776 
777 		/* release the queue lookup reference */
778 		nvmet_fc_tgt_q_put(queue);
779 
780 		kfree(deferfcp);
781 
782 		spin_lock_irqsave(&queue->qlock, flags);
783 	}
784 	spin_unlock_irqrestore(&queue->qlock, flags);
785 
786 	flush_workqueue(queue->work_q);
787 
788 	if (disconnect)
789 		nvmet_sq_destroy(&queue->nvme_sq);
790 
791 	nvmet_fc_tgt_q_put(queue);
792 }
793 
794 static struct nvmet_fc_tgt_queue *
795 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
796 				u64 connection_id)
797 {
798 	struct nvmet_fc_tgt_assoc *assoc;
799 	struct nvmet_fc_tgt_queue *queue;
800 	u64 association_id = nvmet_fc_getassociationid(connection_id);
801 	u16 qid = nvmet_fc_getqueueid(connection_id);
802 	unsigned long flags;
803 
804 	if (qid > NVMET_NR_QUEUES)
805 		return NULL;
806 
807 	spin_lock_irqsave(&tgtport->lock, flags);
808 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
809 		if (association_id == assoc->association_id) {
810 			queue = assoc->queues[qid];
811 			if (queue &&
812 			    (!atomic_read(&queue->connected) ||
813 			     !nvmet_fc_tgt_q_get(queue)))
814 				queue = NULL;
815 			spin_unlock_irqrestore(&tgtport->lock, flags);
816 			return queue;
817 		}
818 	}
819 	spin_unlock_irqrestore(&tgtport->lock, flags);
820 	return NULL;
821 }
822 
823 static void
824 nvmet_fc_delete_assoc(struct work_struct *work)
825 {
826 	struct nvmet_fc_tgt_assoc *assoc =
827 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
828 
829 	nvmet_fc_delete_target_assoc(assoc);
830 	nvmet_fc_tgt_a_put(assoc);
831 }
832 
833 static struct nvmet_fc_tgt_assoc *
834 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
835 {
836 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
837 	unsigned long flags;
838 	u64 ran;
839 	int idx;
840 	bool needrandom = true;
841 
842 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
843 	if (!assoc)
844 		return NULL;
845 
846 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
847 	if (idx < 0)
848 		goto out_free_assoc;
849 
850 	if (!nvmet_fc_tgtport_get(tgtport))
851 		goto out_ida_put;
852 
853 	assoc->tgtport = tgtport;
854 	assoc->a_id = idx;
855 	INIT_LIST_HEAD(&assoc->a_list);
856 	kref_init(&assoc->ref);
857 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
858 
859 	while (needrandom) {
860 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
861 		ran = ran << BYTES_FOR_QID_SHIFT;
862 
863 		spin_lock_irqsave(&tgtport->lock, flags);
864 		needrandom = false;
865 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
866 			if (ran == tmpassoc->association_id) {
867 				needrandom = true;
868 				break;
869 			}
870 		if (!needrandom) {
871 			assoc->association_id = ran;
872 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
873 		}
874 		spin_unlock_irqrestore(&tgtport->lock, flags);
875 	}
876 
877 	return assoc;
878 
879 out_ida_put:
880 	ida_simple_remove(&tgtport->assoc_cnt, idx);
881 out_free_assoc:
882 	kfree(assoc);
883 	return NULL;
884 }
885 
886 static void
887 nvmet_fc_target_assoc_free(struct kref *ref)
888 {
889 	struct nvmet_fc_tgt_assoc *assoc =
890 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
891 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
892 	unsigned long flags;
893 
894 	spin_lock_irqsave(&tgtport->lock, flags);
895 	list_del(&assoc->a_list);
896 	spin_unlock_irqrestore(&tgtport->lock, flags);
897 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
898 	kfree(assoc);
899 	nvmet_fc_tgtport_put(tgtport);
900 }
901 
902 static void
903 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
904 {
905 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
906 }
907 
908 static int
909 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
910 {
911 	return kref_get_unless_zero(&assoc->ref);
912 }
913 
914 static void
915 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
916 {
917 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
918 	struct nvmet_fc_tgt_queue *queue;
919 	unsigned long flags;
920 	int i;
921 
922 	spin_lock_irqsave(&tgtport->lock, flags);
923 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
924 		queue = assoc->queues[i];
925 		if (queue) {
926 			if (!nvmet_fc_tgt_q_get(queue))
927 				continue;
928 			spin_unlock_irqrestore(&tgtport->lock, flags);
929 			nvmet_fc_delete_target_queue(queue);
930 			nvmet_fc_tgt_q_put(queue);
931 			spin_lock_irqsave(&tgtport->lock, flags);
932 		}
933 	}
934 	spin_unlock_irqrestore(&tgtport->lock, flags);
935 
936 	nvmet_fc_tgt_a_put(assoc);
937 }
938 
939 static struct nvmet_fc_tgt_assoc *
940 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
941 				u64 association_id)
942 {
943 	struct nvmet_fc_tgt_assoc *assoc;
944 	struct nvmet_fc_tgt_assoc *ret = NULL;
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&tgtport->lock, flags);
948 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
949 		if (association_id == assoc->association_id) {
950 			ret = assoc;
951 			nvmet_fc_tgt_a_get(assoc);
952 			break;
953 		}
954 	}
955 	spin_unlock_irqrestore(&tgtport->lock, flags);
956 
957 	return ret;
958 }
959 
960 
961 /**
962  * nvme_fc_register_targetport - transport entry point called by an
963  *                              LLDD to register the existence of a local
964  *                              NVME subystem FC port.
965  * @pinfo:     pointer to information about the port to be registered
966  * @template:  LLDD entrypoints and operational parameters for the port
967  * @dev:       physical hardware device node port corresponds to. Will be
968  *             used for DMA mappings
969  * @portptr:   pointer to a local port pointer. Upon success, the routine
970  *             will allocate a nvme_fc_local_port structure and place its
971  *             address in the local port pointer. Upon failure, local port
972  *             pointer will be set to NULL.
973  *
974  * Returns:
975  * a completion status. Must be 0 upon success; a negative errno
976  * (ex: -ENXIO) upon failure.
977  */
978 int
979 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
980 			struct nvmet_fc_target_template *template,
981 			struct device *dev,
982 			struct nvmet_fc_target_port **portptr)
983 {
984 	struct nvmet_fc_tgtport *newrec;
985 	unsigned long flags;
986 	int ret, idx;
987 
988 	if (!template->xmt_ls_rsp || !template->fcp_op ||
989 	    !template->fcp_abort ||
990 	    !template->fcp_req_release || !template->targetport_delete ||
991 	    !template->max_hw_queues || !template->max_sgl_segments ||
992 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
993 		ret = -EINVAL;
994 		goto out_regtgt_failed;
995 	}
996 
997 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
998 			 GFP_KERNEL);
999 	if (!newrec) {
1000 		ret = -ENOMEM;
1001 		goto out_regtgt_failed;
1002 	}
1003 
1004 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1005 	if (idx < 0) {
1006 		ret = -ENOSPC;
1007 		goto out_fail_kfree;
1008 	}
1009 
1010 	if (!get_device(dev) && dev) {
1011 		ret = -ENODEV;
1012 		goto out_ida_put;
1013 	}
1014 
1015 	newrec->fc_target_port.node_name = pinfo->node_name;
1016 	newrec->fc_target_port.port_name = pinfo->port_name;
1017 	newrec->fc_target_port.private = &newrec[1];
1018 	newrec->fc_target_port.port_id = pinfo->port_id;
1019 	newrec->fc_target_port.port_num = idx;
1020 	INIT_LIST_HEAD(&newrec->tgt_list);
1021 	newrec->dev = dev;
1022 	newrec->ops = template;
1023 	spin_lock_init(&newrec->lock);
1024 	INIT_LIST_HEAD(&newrec->ls_list);
1025 	INIT_LIST_HEAD(&newrec->ls_busylist);
1026 	INIT_LIST_HEAD(&newrec->assoc_list);
1027 	kref_init(&newrec->ref);
1028 	ida_init(&newrec->assoc_cnt);
1029 	newrec->max_sg_cnt = template->max_sgl_segments;
1030 
1031 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1032 	if (ret) {
1033 		ret = -ENOMEM;
1034 		goto out_free_newrec;
1035 	}
1036 
1037 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1038 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1039 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1040 
1041 	*portptr = &newrec->fc_target_port;
1042 	return 0;
1043 
1044 out_free_newrec:
1045 	put_device(dev);
1046 out_ida_put:
1047 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1048 out_fail_kfree:
1049 	kfree(newrec);
1050 out_regtgt_failed:
1051 	*portptr = NULL;
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1055 
1056 
1057 static void
1058 nvmet_fc_free_tgtport(struct kref *ref)
1059 {
1060 	struct nvmet_fc_tgtport *tgtport =
1061 		container_of(ref, struct nvmet_fc_tgtport, ref);
1062 	struct device *dev = tgtport->dev;
1063 	unsigned long flags;
1064 
1065 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1066 	list_del(&tgtport->tgt_list);
1067 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1068 
1069 	nvmet_fc_free_ls_iodlist(tgtport);
1070 
1071 	/* let the LLDD know we've finished tearing it down */
1072 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1073 
1074 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1075 			tgtport->fc_target_port.port_num);
1076 
1077 	ida_destroy(&tgtport->assoc_cnt);
1078 
1079 	kfree(tgtport);
1080 
1081 	put_device(dev);
1082 }
1083 
1084 static void
1085 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1086 {
1087 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1088 }
1089 
1090 static int
1091 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1092 {
1093 	return kref_get_unless_zero(&tgtport->ref);
1094 }
1095 
1096 static void
1097 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1098 {
1099 	struct nvmet_fc_tgt_assoc *assoc, *next;
1100 	unsigned long flags;
1101 
1102 	spin_lock_irqsave(&tgtport->lock, flags);
1103 	list_for_each_entry_safe(assoc, next,
1104 				&tgtport->assoc_list, a_list) {
1105 		if (!nvmet_fc_tgt_a_get(assoc))
1106 			continue;
1107 		spin_unlock_irqrestore(&tgtport->lock, flags);
1108 		nvmet_fc_delete_target_assoc(assoc);
1109 		nvmet_fc_tgt_a_put(assoc);
1110 		spin_lock_irqsave(&tgtport->lock, flags);
1111 	}
1112 	spin_unlock_irqrestore(&tgtport->lock, flags);
1113 }
1114 
1115 /*
1116  * nvmet layer has called to terminate an association
1117  */
1118 static void
1119 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1120 {
1121 	struct nvmet_fc_tgtport *tgtport, *next;
1122 	struct nvmet_fc_tgt_assoc *assoc;
1123 	struct nvmet_fc_tgt_queue *queue;
1124 	unsigned long flags;
1125 	bool found_ctrl = false;
1126 
1127 	/* this is a bit ugly, but don't want to make locks layered */
1128 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1129 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1130 			tgt_list) {
1131 		if (!nvmet_fc_tgtport_get(tgtport))
1132 			continue;
1133 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1134 
1135 		spin_lock_irqsave(&tgtport->lock, flags);
1136 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1137 			queue = assoc->queues[0];
1138 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1139 				if (nvmet_fc_tgt_a_get(assoc))
1140 					found_ctrl = true;
1141 				break;
1142 			}
1143 		}
1144 		spin_unlock_irqrestore(&tgtport->lock, flags);
1145 
1146 		nvmet_fc_tgtport_put(tgtport);
1147 
1148 		if (found_ctrl) {
1149 			schedule_work(&assoc->del_work);
1150 			return;
1151 		}
1152 
1153 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1154 	}
1155 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1156 }
1157 
1158 /**
1159  * nvme_fc_unregister_targetport - transport entry point called by an
1160  *                              LLDD to deregister/remove a previously
1161  *                              registered a local NVME subsystem FC port.
1162  * @tgtport: pointer to the (registered) target port that is to be
1163  *           deregistered.
1164  *
1165  * Returns:
1166  * a completion status. Must be 0 upon success; a negative errno
1167  * (ex: -ENXIO) upon failure.
1168  */
1169 int
1170 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1171 {
1172 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1173 
1174 	/* terminate any outstanding associations */
1175 	__nvmet_fc_free_assocs(tgtport);
1176 
1177 	nvmet_fc_tgtport_put(tgtport);
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1182 
1183 
1184 /* *********************** FC-NVME LS Handling **************************** */
1185 
1186 
1187 static void
1188 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1189 {
1190 	struct fcnvme_ls_acc_hdr *acc = buf;
1191 
1192 	acc->w0.ls_cmd = ls_cmd;
1193 	acc->desc_list_len = desc_len;
1194 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1195 	acc->rqst.desc_len =
1196 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1197 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1198 }
1199 
1200 static int
1201 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1202 			u8 reason, u8 explanation, u8 vendor)
1203 {
1204 	struct fcnvme_ls_rjt *rjt = buf;
1205 
1206 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1207 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1208 			ls_cmd);
1209 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1210 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1211 	rjt->rjt.reason_code = reason;
1212 	rjt->rjt.reason_explanation = explanation;
1213 	rjt->rjt.vendor = vendor;
1214 
1215 	return sizeof(struct fcnvme_ls_rjt);
1216 }
1217 
1218 /* Validation Error indexes into the string table below */
1219 enum {
1220 	VERR_NO_ERROR		= 0,
1221 	VERR_CR_ASSOC_LEN	= 1,
1222 	VERR_CR_ASSOC_RQST_LEN	= 2,
1223 	VERR_CR_ASSOC_CMD	= 3,
1224 	VERR_CR_ASSOC_CMD_LEN	= 4,
1225 	VERR_ERSP_RATIO		= 5,
1226 	VERR_ASSOC_ALLOC_FAIL	= 6,
1227 	VERR_QUEUE_ALLOC_FAIL	= 7,
1228 	VERR_CR_CONN_LEN	= 8,
1229 	VERR_CR_CONN_RQST_LEN	= 9,
1230 	VERR_ASSOC_ID		= 10,
1231 	VERR_ASSOC_ID_LEN	= 11,
1232 	VERR_NO_ASSOC		= 12,
1233 	VERR_CONN_ID		= 13,
1234 	VERR_CONN_ID_LEN	= 14,
1235 	VERR_NO_CONN		= 15,
1236 	VERR_CR_CONN_CMD	= 16,
1237 	VERR_CR_CONN_CMD_LEN	= 17,
1238 	VERR_DISCONN_LEN	= 18,
1239 	VERR_DISCONN_RQST_LEN	= 19,
1240 	VERR_DISCONN_CMD	= 20,
1241 	VERR_DISCONN_CMD_LEN	= 21,
1242 	VERR_DISCONN_SCOPE	= 22,
1243 	VERR_RS_LEN		= 23,
1244 	VERR_RS_RQST_LEN	= 24,
1245 	VERR_RS_CMD		= 25,
1246 	VERR_RS_CMD_LEN		= 26,
1247 	VERR_RS_RCTL		= 27,
1248 	VERR_RS_RO		= 28,
1249 };
1250 
1251 static char *validation_errors[] = {
1252 	"OK",
1253 	"Bad CR_ASSOC Length",
1254 	"Bad CR_ASSOC Rqst Length",
1255 	"Not CR_ASSOC Cmd",
1256 	"Bad CR_ASSOC Cmd Length",
1257 	"Bad Ersp Ratio",
1258 	"Association Allocation Failed",
1259 	"Queue Allocation Failed",
1260 	"Bad CR_CONN Length",
1261 	"Bad CR_CONN Rqst Length",
1262 	"Not Association ID",
1263 	"Bad Association ID Length",
1264 	"No Association",
1265 	"Not Connection ID",
1266 	"Bad Connection ID Length",
1267 	"No Connection",
1268 	"Not CR_CONN Cmd",
1269 	"Bad CR_CONN Cmd Length",
1270 	"Bad DISCONN Length",
1271 	"Bad DISCONN Rqst Length",
1272 	"Not DISCONN Cmd",
1273 	"Bad DISCONN Cmd Length",
1274 	"Bad Disconnect Scope",
1275 	"Bad RS Length",
1276 	"Bad RS Rqst Length",
1277 	"Not RS Cmd",
1278 	"Bad RS Cmd Length",
1279 	"Bad RS R_CTL",
1280 	"Bad RS Relative Offset",
1281 };
1282 
1283 static void
1284 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1285 			struct nvmet_fc_ls_iod *iod)
1286 {
1287 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1288 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1289 	struct fcnvme_ls_cr_assoc_acc *acc =
1290 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1291 	struct nvmet_fc_tgt_queue *queue;
1292 	int ret = 0;
1293 
1294 	memset(acc, 0, sizeof(*acc));
1295 
1296 	/*
1297 	 * FC-NVME spec changes. There are initiators sending different
1298 	 * lengths as padding sizes for Create Association Cmd descriptor
1299 	 * was incorrect.
1300 	 * Accept anything of "minimum" length. Assume format per 1.15
1301 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1302 	 * trailing pad length is.
1303 	 */
1304 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1305 		ret = VERR_CR_ASSOC_LEN;
1306 	else if (be32_to_cpu(rqst->desc_list_len) <
1307 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1308 		ret = VERR_CR_ASSOC_RQST_LEN;
1309 	else if (rqst->assoc_cmd.desc_tag !=
1310 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1311 		ret = VERR_CR_ASSOC_CMD;
1312 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1313 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1314 		ret = VERR_CR_ASSOC_CMD_LEN;
1315 	else if (!rqst->assoc_cmd.ersp_ratio ||
1316 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1317 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1318 		ret = VERR_ERSP_RATIO;
1319 
1320 	else {
1321 		/* new association w/ admin queue */
1322 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1323 		if (!iod->assoc)
1324 			ret = VERR_ASSOC_ALLOC_FAIL;
1325 		else {
1326 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1327 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1328 			if (!queue)
1329 				ret = VERR_QUEUE_ALLOC_FAIL;
1330 		}
1331 	}
1332 
1333 	if (ret) {
1334 		dev_err(tgtport->dev,
1335 			"Create Association LS failed: %s\n",
1336 			validation_errors[ret]);
1337 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1338 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1339 				FCNVME_RJT_RC_LOGIC,
1340 				FCNVME_RJT_EXP_NONE, 0);
1341 		return;
1342 	}
1343 
1344 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1345 	atomic_set(&queue->connected, 1);
1346 	queue->sqhd = 0;	/* best place to init value */
1347 
1348 	/* format a response */
1349 
1350 	iod->lsreq->rsplen = sizeof(*acc);
1351 
1352 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1353 			fcnvme_lsdesc_len(
1354 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1355 			FCNVME_LS_CREATE_ASSOCIATION);
1356 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1357 	acc->associd.desc_len =
1358 			fcnvme_lsdesc_len(
1359 				sizeof(struct fcnvme_lsdesc_assoc_id));
1360 	acc->associd.association_id =
1361 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1362 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1363 	acc->connectid.desc_len =
1364 			fcnvme_lsdesc_len(
1365 				sizeof(struct fcnvme_lsdesc_conn_id));
1366 	acc->connectid.connection_id = acc->associd.association_id;
1367 }
1368 
1369 static void
1370 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1371 			struct nvmet_fc_ls_iod *iod)
1372 {
1373 	struct fcnvme_ls_cr_conn_rqst *rqst =
1374 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1375 	struct fcnvme_ls_cr_conn_acc *acc =
1376 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1377 	struct nvmet_fc_tgt_queue *queue;
1378 	int ret = 0;
1379 
1380 	memset(acc, 0, sizeof(*acc));
1381 
1382 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1383 		ret = VERR_CR_CONN_LEN;
1384 	else if (rqst->desc_list_len !=
1385 			fcnvme_lsdesc_len(
1386 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1387 		ret = VERR_CR_CONN_RQST_LEN;
1388 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1389 		ret = VERR_ASSOC_ID;
1390 	else if (rqst->associd.desc_len !=
1391 			fcnvme_lsdesc_len(
1392 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1393 		ret = VERR_ASSOC_ID_LEN;
1394 	else if (rqst->connect_cmd.desc_tag !=
1395 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1396 		ret = VERR_CR_CONN_CMD;
1397 	else if (rqst->connect_cmd.desc_len !=
1398 			fcnvme_lsdesc_len(
1399 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1400 		ret = VERR_CR_CONN_CMD_LEN;
1401 	else if (!rqst->connect_cmd.ersp_ratio ||
1402 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1403 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1404 		ret = VERR_ERSP_RATIO;
1405 
1406 	else {
1407 		/* new io queue */
1408 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1409 				be64_to_cpu(rqst->associd.association_id));
1410 		if (!iod->assoc)
1411 			ret = VERR_NO_ASSOC;
1412 		else {
1413 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1414 					be16_to_cpu(rqst->connect_cmd.qid),
1415 					be16_to_cpu(rqst->connect_cmd.sqsize));
1416 			if (!queue)
1417 				ret = VERR_QUEUE_ALLOC_FAIL;
1418 
1419 			/* release get taken in nvmet_fc_find_target_assoc */
1420 			nvmet_fc_tgt_a_put(iod->assoc);
1421 		}
1422 	}
1423 
1424 	if (ret) {
1425 		dev_err(tgtport->dev,
1426 			"Create Connection LS failed: %s\n",
1427 			validation_errors[ret]);
1428 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1429 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1430 				(ret == VERR_NO_ASSOC) ?
1431 					FCNVME_RJT_RC_INV_ASSOC :
1432 					FCNVME_RJT_RC_LOGIC,
1433 				FCNVME_RJT_EXP_NONE, 0);
1434 		return;
1435 	}
1436 
1437 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1438 	atomic_set(&queue->connected, 1);
1439 	queue->sqhd = 0;	/* best place to init value */
1440 
1441 	/* format a response */
1442 
1443 	iod->lsreq->rsplen = sizeof(*acc);
1444 
1445 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1446 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1447 			FCNVME_LS_CREATE_CONNECTION);
1448 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1449 	acc->connectid.desc_len =
1450 			fcnvme_lsdesc_len(
1451 				sizeof(struct fcnvme_lsdesc_conn_id));
1452 	acc->connectid.connection_id =
1453 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1454 				be16_to_cpu(rqst->connect_cmd.qid)));
1455 }
1456 
1457 static void
1458 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1459 			struct nvmet_fc_ls_iod *iod)
1460 {
1461 	struct fcnvme_ls_disconnect_rqst *rqst =
1462 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1463 	struct fcnvme_ls_disconnect_acc *acc =
1464 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1465 	struct nvmet_fc_tgt_queue *queue = NULL;
1466 	struct nvmet_fc_tgt_assoc *assoc;
1467 	int ret = 0;
1468 	bool del_assoc = false;
1469 
1470 	memset(acc, 0, sizeof(*acc));
1471 
1472 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1473 		ret = VERR_DISCONN_LEN;
1474 	else if (rqst->desc_list_len !=
1475 			fcnvme_lsdesc_len(
1476 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1477 		ret = VERR_DISCONN_RQST_LEN;
1478 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1479 		ret = VERR_ASSOC_ID;
1480 	else if (rqst->associd.desc_len !=
1481 			fcnvme_lsdesc_len(
1482 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1483 		ret = VERR_ASSOC_ID_LEN;
1484 	else if (rqst->discon_cmd.desc_tag !=
1485 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1486 		ret = VERR_DISCONN_CMD;
1487 	else if (rqst->discon_cmd.desc_len !=
1488 			fcnvme_lsdesc_len(
1489 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1490 		ret = VERR_DISCONN_CMD_LEN;
1491 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1492 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1493 		ret = VERR_DISCONN_SCOPE;
1494 	else {
1495 		/* match an active association */
1496 		assoc = nvmet_fc_find_target_assoc(tgtport,
1497 				be64_to_cpu(rqst->associd.association_id));
1498 		iod->assoc = assoc;
1499 		if (assoc) {
1500 			if (rqst->discon_cmd.scope ==
1501 					FCNVME_DISCONN_CONNECTION) {
1502 				queue = nvmet_fc_find_target_queue(tgtport,
1503 						be64_to_cpu(
1504 							rqst->discon_cmd.id));
1505 				if (!queue) {
1506 					nvmet_fc_tgt_a_put(assoc);
1507 					ret = VERR_NO_CONN;
1508 				}
1509 			}
1510 		} else
1511 			ret = VERR_NO_ASSOC;
1512 	}
1513 
1514 	if (ret) {
1515 		dev_err(tgtport->dev,
1516 			"Disconnect LS failed: %s\n",
1517 			validation_errors[ret]);
1518 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1519 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1520 				(ret == VERR_NO_ASSOC) ?
1521 					FCNVME_RJT_RC_INV_ASSOC :
1522 					(ret == VERR_NO_CONN) ?
1523 						FCNVME_RJT_RC_INV_CONN :
1524 						FCNVME_RJT_RC_LOGIC,
1525 				FCNVME_RJT_EXP_NONE, 0);
1526 		return;
1527 	}
1528 
1529 	/* format a response */
1530 
1531 	iod->lsreq->rsplen = sizeof(*acc);
1532 
1533 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1534 			fcnvme_lsdesc_len(
1535 				sizeof(struct fcnvme_ls_disconnect_acc)),
1536 			FCNVME_LS_DISCONNECT);
1537 
1538 
1539 	/* are we to delete a Connection ID (queue) */
1540 	if (queue) {
1541 		int qid = queue->qid;
1542 
1543 		nvmet_fc_delete_target_queue(queue);
1544 
1545 		/* release the get taken by find_target_queue */
1546 		nvmet_fc_tgt_q_put(queue);
1547 
1548 		/* tear association down if io queue terminated */
1549 		if (!qid)
1550 			del_assoc = true;
1551 	}
1552 
1553 	/* release get taken in nvmet_fc_find_target_assoc */
1554 	nvmet_fc_tgt_a_put(iod->assoc);
1555 
1556 	if (del_assoc)
1557 		nvmet_fc_delete_target_assoc(iod->assoc);
1558 }
1559 
1560 
1561 /* *********************** NVME Ctrl Routines **************************** */
1562 
1563 
1564 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1565 
1566 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1567 
1568 static void
1569 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1570 {
1571 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1572 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1573 
1574 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1575 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1576 	nvmet_fc_free_ls_iod(tgtport, iod);
1577 	nvmet_fc_tgtport_put(tgtport);
1578 }
1579 
1580 static void
1581 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1582 				struct nvmet_fc_ls_iod *iod)
1583 {
1584 	int ret;
1585 
1586 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1587 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1588 
1589 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1590 	if (ret)
1591 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1592 }
1593 
1594 /*
1595  * Actual processing routine for received FC-NVME LS Requests from the LLD
1596  */
1597 static void
1598 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1599 			struct nvmet_fc_ls_iod *iod)
1600 {
1601 	struct fcnvme_ls_rqst_w0 *w0 =
1602 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1603 
1604 	iod->lsreq->nvmet_fc_private = iod;
1605 	iod->lsreq->rspbuf = iod->rspbuf;
1606 	iod->lsreq->rspdma = iod->rspdma;
1607 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1608 	/* Be preventative. handlers will later set to valid length */
1609 	iod->lsreq->rsplen = 0;
1610 
1611 	iod->assoc = NULL;
1612 
1613 	/*
1614 	 * handlers:
1615 	 *   parse request input, execute the request, and format the
1616 	 *   LS response
1617 	 */
1618 	switch (w0->ls_cmd) {
1619 	case FCNVME_LS_CREATE_ASSOCIATION:
1620 		/* Creates Association and initial Admin Queue/Connection */
1621 		nvmet_fc_ls_create_association(tgtport, iod);
1622 		break;
1623 	case FCNVME_LS_CREATE_CONNECTION:
1624 		/* Creates an IO Queue/Connection */
1625 		nvmet_fc_ls_create_connection(tgtport, iod);
1626 		break;
1627 	case FCNVME_LS_DISCONNECT:
1628 		/* Terminate a Queue/Connection or the Association */
1629 		nvmet_fc_ls_disconnect(tgtport, iod);
1630 		break;
1631 	default:
1632 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1633 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1634 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1635 	}
1636 
1637 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1638 }
1639 
1640 /*
1641  * Actual processing routine for received FC-NVME LS Requests from the LLD
1642  */
1643 static void
1644 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1645 {
1646 	struct nvmet_fc_ls_iod *iod =
1647 		container_of(work, struct nvmet_fc_ls_iod, work);
1648 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1649 
1650 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1651 }
1652 
1653 
1654 /**
1655  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1656  *                       upon the reception of a NVME LS request.
1657  *
1658  * The nvmet-fc layer will copy payload to an internal structure for
1659  * processing.  As such, upon completion of the routine, the LLDD may
1660  * immediately free/reuse the LS request buffer passed in the call.
1661  *
1662  * If this routine returns error, the LLDD should abort the exchange.
1663  *
1664  * @tgtport:    pointer to the (registered) target port the LS was
1665  *              received on.
1666  * @lsreq:      pointer to a lsreq request structure to be used to reference
1667  *              the exchange corresponding to the LS.
1668  * @lsreqbuf:   pointer to the buffer containing the LS Request
1669  * @lsreqbuf_len: length, in bytes, of the received LS request
1670  */
1671 int
1672 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1673 			struct nvmefc_tgt_ls_req *lsreq,
1674 			void *lsreqbuf, u32 lsreqbuf_len)
1675 {
1676 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1677 	struct nvmet_fc_ls_iod *iod;
1678 
1679 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1680 		return -E2BIG;
1681 
1682 	if (!nvmet_fc_tgtport_get(tgtport))
1683 		return -ESHUTDOWN;
1684 
1685 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1686 	if (!iod) {
1687 		nvmet_fc_tgtport_put(tgtport);
1688 		return -ENOENT;
1689 	}
1690 
1691 	iod->lsreq = lsreq;
1692 	iod->fcpreq = NULL;
1693 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1694 	iod->rqstdatalen = lsreqbuf_len;
1695 
1696 	schedule_work(&iod->work);
1697 
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1701 
1702 
1703 /*
1704  * **********************
1705  * Start of FCP handling
1706  * **********************
1707  */
1708 
1709 static int
1710 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1711 {
1712 	struct scatterlist *sg;
1713 	unsigned int nent;
1714 
1715 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1716 	if (!sg)
1717 		goto out;
1718 
1719 	fod->data_sg = sg;
1720 	fod->data_sg_cnt = nent;
1721 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1722 				((fod->io_dir == NVMET_FCP_WRITE) ?
1723 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1724 				/* note: write from initiator perspective */
1725 	fod->next_sg = fod->data_sg;
1726 
1727 	return 0;
1728 
1729 out:
1730 	return NVME_SC_INTERNAL;
1731 }
1732 
1733 static void
1734 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1735 {
1736 	if (!fod->data_sg || !fod->data_sg_cnt)
1737 		return;
1738 
1739 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1740 				((fod->io_dir == NVMET_FCP_WRITE) ?
1741 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1742 	sgl_free(fod->data_sg);
1743 	fod->data_sg = NULL;
1744 	fod->data_sg_cnt = 0;
1745 }
1746 
1747 
1748 static bool
1749 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1750 {
1751 	u32 sqtail, used;
1752 
1753 	/* egad, this is ugly. And sqtail is just a best guess */
1754 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1755 
1756 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1757 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1758 }
1759 
1760 /*
1761  * Prep RSP payload.
1762  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1763  */
1764 static void
1765 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1766 				struct nvmet_fc_fcp_iod *fod)
1767 {
1768 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1769 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1770 	struct nvme_completion *cqe = &ersp->cqe;
1771 	u32 *cqewd = (u32 *)cqe;
1772 	bool send_ersp = false;
1773 	u32 rsn, rspcnt, xfr_length;
1774 
1775 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1776 		xfr_length = fod->req.transfer_len;
1777 	else
1778 		xfr_length = fod->offset;
1779 
1780 	/*
1781 	 * check to see if we can send a 0's rsp.
1782 	 *   Note: to send a 0's response, the NVME-FC host transport will
1783 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1784 	 *   seen in an ersp), and command_id. Thus it will create a
1785 	 *   zero-filled CQE with those known fields filled in. Transport
1786 	 *   must send an ersp for any condition where the cqe won't match
1787 	 *   this.
1788 	 *
1789 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1790 	 *  every N responses, where N=ersp_ratio
1791 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1792 	 *    practice)
1793 	 *  normal cmds: any time status is non-zero, or status is zero
1794 	 *     but words 0 or 1 are non-zero.
1795 	 *  the SQ is 90% or more full
1796 	 *  the cmd is a fused command
1797 	 *  transferred data length not equal to cmd iu length
1798 	 */
1799 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1800 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1801 	    sqe->opcode == nvme_fabrics_command ||
1802 	    xfr_length != fod->req.transfer_len ||
1803 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1804 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1805 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1806 		send_ersp = true;
1807 
1808 	/* re-set the fields */
1809 	fod->fcpreq->rspaddr = ersp;
1810 	fod->fcpreq->rspdma = fod->rspdma;
1811 
1812 	if (!send_ersp) {
1813 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1814 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1815 	} else {
1816 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1817 		rsn = atomic_inc_return(&fod->queue->rsn);
1818 		ersp->rsn = cpu_to_be32(rsn);
1819 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1820 		fod->fcpreq->rsplen = sizeof(*ersp);
1821 	}
1822 
1823 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1824 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1825 }
1826 
1827 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1828 
1829 static void
1830 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1831 				struct nvmet_fc_fcp_iod *fod)
1832 {
1833 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1834 
1835 	/* data no longer needed */
1836 	nvmet_fc_free_tgt_pgs(fod);
1837 
1838 	/*
1839 	 * if an ABTS was received or we issued the fcp_abort early
1840 	 * don't call abort routine again.
1841 	 */
1842 	/* no need to take lock - lock was taken earlier to get here */
1843 	if (!fod->aborted)
1844 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1845 
1846 	nvmet_fc_free_fcp_iod(fod->queue, fod);
1847 }
1848 
1849 static void
1850 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1851 				struct nvmet_fc_fcp_iod *fod)
1852 {
1853 	int ret;
1854 
1855 	fod->fcpreq->op = NVMET_FCOP_RSP;
1856 	fod->fcpreq->timeout = 0;
1857 
1858 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1859 
1860 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1861 	if (ret)
1862 		nvmet_fc_abort_op(tgtport, fod);
1863 }
1864 
1865 static void
1866 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1867 				struct nvmet_fc_fcp_iod *fod, u8 op)
1868 {
1869 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1870 	struct scatterlist *sg = fod->next_sg;
1871 	unsigned long flags;
1872 	u32 remaininglen = fod->req.transfer_len - fod->offset;
1873 	u32 tlen = 0;
1874 	int ret;
1875 
1876 	fcpreq->op = op;
1877 	fcpreq->offset = fod->offset;
1878 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1879 
1880 	/*
1881 	 * for next sequence:
1882 	 *  break at a sg element boundary
1883 	 *  attempt to keep sequence length capped at
1884 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1885 	 *    be longer if a single sg element is larger
1886 	 *    than that amount. This is done to avoid creating
1887 	 *    a new sg list to use for the tgtport api.
1888 	 */
1889 	fcpreq->sg = sg;
1890 	fcpreq->sg_cnt = 0;
1891 	while (tlen < remaininglen &&
1892 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1893 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1894 		fcpreq->sg_cnt++;
1895 		tlen += sg_dma_len(sg);
1896 		sg = sg_next(sg);
1897 	}
1898 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1899 		fcpreq->sg_cnt++;
1900 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1901 		sg = sg_next(sg);
1902 	}
1903 	if (tlen < remaininglen)
1904 		fod->next_sg = sg;
1905 	else
1906 		fod->next_sg = NULL;
1907 
1908 	fcpreq->transfer_length = tlen;
1909 	fcpreq->transferred_length = 0;
1910 	fcpreq->fcp_error = 0;
1911 	fcpreq->rsplen = 0;
1912 
1913 	/*
1914 	 * If the last READDATA request: check if LLDD supports
1915 	 * combined xfr with response.
1916 	 */
1917 	if ((op == NVMET_FCOP_READDATA) &&
1918 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1919 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1920 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1921 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1922 	}
1923 
1924 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1925 	if (ret) {
1926 		/*
1927 		 * should be ok to set w/o lock as its in the thread of
1928 		 * execution (not an async timer routine) and doesn't
1929 		 * contend with any clearing action
1930 		 */
1931 		fod->abort = true;
1932 
1933 		if (op == NVMET_FCOP_WRITEDATA) {
1934 			spin_lock_irqsave(&fod->flock, flags);
1935 			fod->writedataactive = false;
1936 			spin_unlock_irqrestore(&fod->flock, flags);
1937 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1938 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1939 			fcpreq->fcp_error = ret;
1940 			fcpreq->transferred_length = 0;
1941 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1942 		}
1943 	}
1944 }
1945 
1946 static inline bool
1947 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1948 {
1949 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1950 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1951 
1952 	/* if in the middle of an io and we need to tear down */
1953 	if (abort) {
1954 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1955 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1956 			return true;
1957 		}
1958 
1959 		nvmet_fc_abort_op(tgtport, fod);
1960 		return true;
1961 	}
1962 
1963 	return false;
1964 }
1965 
1966 /*
1967  * actual done handler for FCP operations when completed by the lldd
1968  */
1969 static void
1970 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1971 {
1972 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1973 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1974 	unsigned long flags;
1975 	bool abort;
1976 
1977 	spin_lock_irqsave(&fod->flock, flags);
1978 	abort = fod->abort;
1979 	fod->writedataactive = false;
1980 	spin_unlock_irqrestore(&fod->flock, flags);
1981 
1982 	switch (fcpreq->op) {
1983 
1984 	case NVMET_FCOP_WRITEDATA:
1985 		if (__nvmet_fc_fod_op_abort(fod, abort))
1986 			return;
1987 		if (fcpreq->fcp_error ||
1988 		    fcpreq->transferred_length != fcpreq->transfer_length) {
1989 			spin_lock(&fod->flock);
1990 			fod->abort = true;
1991 			spin_unlock(&fod->flock);
1992 
1993 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1994 			return;
1995 		}
1996 
1997 		fod->offset += fcpreq->transferred_length;
1998 		if (fod->offset != fod->req.transfer_len) {
1999 			spin_lock_irqsave(&fod->flock, flags);
2000 			fod->writedataactive = true;
2001 			spin_unlock_irqrestore(&fod->flock, flags);
2002 
2003 			/* transfer the next chunk */
2004 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2005 						NVMET_FCOP_WRITEDATA);
2006 			return;
2007 		}
2008 
2009 		/* data transfer complete, resume with nvmet layer */
2010 		nvmet_req_execute(&fod->req);
2011 		break;
2012 
2013 	case NVMET_FCOP_READDATA:
2014 	case NVMET_FCOP_READDATA_RSP:
2015 		if (__nvmet_fc_fod_op_abort(fod, abort))
2016 			return;
2017 		if (fcpreq->fcp_error ||
2018 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2019 			nvmet_fc_abort_op(tgtport, fod);
2020 			return;
2021 		}
2022 
2023 		/* success */
2024 
2025 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2026 			/* data no longer needed */
2027 			nvmet_fc_free_tgt_pgs(fod);
2028 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2029 			return;
2030 		}
2031 
2032 		fod->offset += fcpreq->transferred_length;
2033 		if (fod->offset != fod->req.transfer_len) {
2034 			/* transfer the next chunk */
2035 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2036 						NVMET_FCOP_READDATA);
2037 			return;
2038 		}
2039 
2040 		/* data transfer complete, send response */
2041 
2042 		/* data no longer needed */
2043 		nvmet_fc_free_tgt_pgs(fod);
2044 
2045 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2046 
2047 		break;
2048 
2049 	case NVMET_FCOP_RSP:
2050 		if (__nvmet_fc_fod_op_abort(fod, abort))
2051 			return;
2052 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2053 		break;
2054 
2055 	default:
2056 		break;
2057 	}
2058 }
2059 
2060 static void
2061 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2062 {
2063 	struct nvmet_fc_fcp_iod *fod =
2064 		container_of(work, struct nvmet_fc_fcp_iod, done_work);
2065 
2066 	nvmet_fc_fod_op_done(fod);
2067 }
2068 
2069 static void
2070 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2071 {
2072 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2073 	struct nvmet_fc_tgt_queue *queue = fod->queue;
2074 
2075 	if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2076 		/* context switch so completion is not in ISR context */
2077 		queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2078 	else
2079 		nvmet_fc_fod_op_done(fod);
2080 }
2081 
2082 /*
2083  * actual completion handler after execution by the nvmet layer
2084  */
2085 static void
2086 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2087 			struct nvmet_fc_fcp_iod *fod, int status)
2088 {
2089 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2090 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2091 	unsigned long flags;
2092 	bool abort;
2093 
2094 	spin_lock_irqsave(&fod->flock, flags);
2095 	abort = fod->abort;
2096 	spin_unlock_irqrestore(&fod->flock, flags);
2097 
2098 	/* if we have a CQE, snoop the last sq_head value */
2099 	if (!status)
2100 		fod->queue->sqhd = cqe->sq_head;
2101 
2102 	if (abort) {
2103 		nvmet_fc_abort_op(tgtport, fod);
2104 		return;
2105 	}
2106 
2107 	/* if an error handling the cmd post initial parsing */
2108 	if (status) {
2109 		/* fudge up a failed CQE status for our transport error */
2110 		memset(cqe, 0, sizeof(*cqe));
2111 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2112 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2113 		cqe->command_id = sqe->command_id;
2114 		cqe->status = cpu_to_le16(status);
2115 	} else {
2116 
2117 		/*
2118 		 * try to push the data even if the SQE status is non-zero.
2119 		 * There may be a status where data still was intended to
2120 		 * be moved
2121 		 */
2122 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2123 			/* push the data over before sending rsp */
2124 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2125 						NVMET_FCOP_READDATA);
2126 			return;
2127 		}
2128 
2129 		/* writes & no data - fall thru */
2130 	}
2131 
2132 	/* data no longer needed */
2133 	nvmet_fc_free_tgt_pgs(fod);
2134 
2135 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2136 }
2137 
2138 
2139 static void
2140 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2141 {
2142 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2143 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2144 
2145 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2146 }
2147 
2148 
2149 /*
2150  * Actual processing routine for received FC-NVME LS Requests from the LLD
2151  */
2152 static void
2153 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2154 			struct nvmet_fc_fcp_iod *fod)
2155 {
2156 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2157 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2158 	int ret;
2159 
2160 	/*
2161 	 * Fused commands are currently not supported in the linux
2162 	 * implementation.
2163 	 *
2164 	 * As such, the implementation of the FC transport does not
2165 	 * look at the fused commands and order delivery to the upper
2166 	 * layer until we have both based on csn.
2167 	 */
2168 
2169 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2170 
2171 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2172 		fod->io_dir = NVMET_FCP_WRITE;
2173 		if (!nvme_is_write(&cmdiu->sqe))
2174 			goto transport_error;
2175 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2176 		fod->io_dir = NVMET_FCP_READ;
2177 		if (nvme_is_write(&cmdiu->sqe))
2178 			goto transport_error;
2179 	} else {
2180 		fod->io_dir = NVMET_FCP_NODATA;
2181 		if (xfrlen)
2182 			goto transport_error;
2183 	}
2184 
2185 	fod->req.cmd = &fod->cmdiubuf.sqe;
2186 	fod->req.rsp = &fod->rspiubuf.cqe;
2187 	fod->req.port = fod->queue->port;
2188 
2189 	/* clear any response payload */
2190 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2191 
2192 	fod->data_sg = NULL;
2193 	fod->data_sg_cnt = 0;
2194 
2195 	ret = nvmet_req_init(&fod->req,
2196 				&fod->queue->nvme_cq,
2197 				&fod->queue->nvme_sq,
2198 				&nvmet_fc_tgt_fcp_ops);
2199 	if (!ret) {
2200 		/* bad SQE content or invalid ctrl state */
2201 		/* nvmet layer has already called op done to send rsp. */
2202 		return;
2203 	}
2204 
2205 	fod->req.transfer_len = xfrlen;
2206 
2207 	/* keep a running counter of tail position */
2208 	atomic_inc(&fod->queue->sqtail);
2209 
2210 	if (fod->req.transfer_len) {
2211 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2212 		if (ret) {
2213 			nvmet_req_complete(&fod->req, ret);
2214 			return;
2215 		}
2216 	}
2217 	fod->req.sg = fod->data_sg;
2218 	fod->req.sg_cnt = fod->data_sg_cnt;
2219 	fod->offset = 0;
2220 
2221 	if (fod->io_dir == NVMET_FCP_WRITE) {
2222 		/* pull the data over before invoking nvmet layer */
2223 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2224 		return;
2225 	}
2226 
2227 	/*
2228 	 * Reads or no data:
2229 	 *
2230 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2231 	 * push the data
2232 	 */
2233 	nvmet_req_execute(&fod->req);
2234 	return;
2235 
2236 transport_error:
2237 	nvmet_fc_abort_op(tgtport, fod);
2238 }
2239 
2240 /*
2241  * Actual processing routine for received FC-NVME LS Requests from the LLD
2242  */
2243 static void
2244 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2245 {
2246 	struct nvmet_fc_fcp_iod *fod =
2247 		container_of(work, struct nvmet_fc_fcp_iod, work);
2248 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2249 
2250 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
2251 }
2252 
2253 /**
2254  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2255  *                       upon the reception of a NVME FCP CMD IU.
2256  *
2257  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2258  * layer for processing.
2259  *
2260  * The nvmet_fc layer allocates a local job structure (struct
2261  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2262  * CMD IU buffer to the job structure. As such, on a successful
2263  * completion (returns 0), the LLDD may immediately free/reuse
2264  * the CMD IU buffer passed in the call.
2265  *
2266  * However, in some circumstances, due to the packetized nature of FC
2267  * and the api of the FC LLDD which may issue a hw command to send the
2268  * response, but the LLDD may not get the hw completion for that command
2269  * and upcall the nvmet_fc layer before a new command may be
2270  * asynchronously received - its possible for a command to be received
2271  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2272  * the appearance of more commands received than fits in the sq.
2273  * To alleviate this scenario, a temporary queue is maintained in the
2274  * transport for pending LLDD requests waiting for a queue job structure.
2275  * In these "overrun" cases, a temporary queue element is allocated
2276  * the LLDD request and CMD iu buffer information remembered, and the
2277  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2278  * structure is freed, it is immediately reallocated for anything on the
2279  * pending request list. The LLDDs defer_rcv() callback is called,
2280  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2281  * is then started normally with the transport.
2282  *
2283  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2284  * the completion as successful but must not reuse the CMD IU buffer
2285  * until the LLDD's defer_rcv() callback has been called for the
2286  * corresponding struct nvmefc_tgt_fcp_req pointer.
2287  *
2288  * If there is any other condition in which an error occurs, the
2289  * transport will return a non-zero status indicating the error.
2290  * In all cases other than -EOVERFLOW, the transport has not accepted the
2291  * request and the LLDD should abort the exchange.
2292  *
2293  * @target_port: pointer to the (registered) target port the FCP CMD IU
2294  *              was received on.
2295  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2296  *              the exchange corresponding to the FCP Exchange.
2297  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2298  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2299  */
2300 int
2301 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2302 			struct nvmefc_tgt_fcp_req *fcpreq,
2303 			void *cmdiubuf, u32 cmdiubuf_len)
2304 {
2305 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2306 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2307 	struct nvmet_fc_tgt_queue *queue;
2308 	struct nvmet_fc_fcp_iod *fod;
2309 	struct nvmet_fc_defer_fcp_req *deferfcp;
2310 	unsigned long flags;
2311 
2312 	/* validate iu, so the connection id can be used to find the queue */
2313 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2314 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2315 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2316 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2317 		return -EIO;
2318 
2319 	queue = nvmet_fc_find_target_queue(tgtport,
2320 				be64_to_cpu(cmdiu->connection_id));
2321 	if (!queue)
2322 		return -ENOTCONN;
2323 
2324 	/*
2325 	 * note: reference taken by find_target_queue
2326 	 * After successful fod allocation, the fod will inherit the
2327 	 * ownership of that reference and will remove the reference
2328 	 * when the fod is freed.
2329 	 */
2330 
2331 	spin_lock_irqsave(&queue->qlock, flags);
2332 
2333 	fod = nvmet_fc_alloc_fcp_iod(queue);
2334 	if (fod) {
2335 		spin_unlock_irqrestore(&queue->qlock, flags);
2336 
2337 		fcpreq->nvmet_fc_private = fod;
2338 		fod->fcpreq = fcpreq;
2339 
2340 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2341 
2342 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2343 
2344 		return 0;
2345 	}
2346 
2347 	if (!tgtport->ops->defer_rcv) {
2348 		spin_unlock_irqrestore(&queue->qlock, flags);
2349 		/* release the queue lookup reference */
2350 		nvmet_fc_tgt_q_put(queue);
2351 		return -ENOENT;
2352 	}
2353 
2354 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2355 			struct nvmet_fc_defer_fcp_req, req_list);
2356 	if (deferfcp) {
2357 		/* Just re-use one that was previously allocated */
2358 		list_del(&deferfcp->req_list);
2359 	} else {
2360 		spin_unlock_irqrestore(&queue->qlock, flags);
2361 
2362 		/* Now we need to dynamically allocate one */
2363 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2364 		if (!deferfcp) {
2365 			/* release the queue lookup reference */
2366 			nvmet_fc_tgt_q_put(queue);
2367 			return -ENOMEM;
2368 		}
2369 		spin_lock_irqsave(&queue->qlock, flags);
2370 	}
2371 
2372 	/* For now, use rspaddr / rsplen to save payload information */
2373 	fcpreq->rspaddr = cmdiubuf;
2374 	fcpreq->rsplen  = cmdiubuf_len;
2375 	deferfcp->fcp_req = fcpreq;
2376 
2377 	/* defer processing till a fod becomes available */
2378 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2379 
2380 	/* NOTE: the queue lookup reference is still valid */
2381 
2382 	spin_unlock_irqrestore(&queue->qlock, flags);
2383 
2384 	return -EOVERFLOW;
2385 }
2386 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2387 
2388 /**
2389  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2390  *                       upon the reception of an ABTS for a FCP command
2391  *
2392  * Notify the transport that an ABTS has been received for a FCP command
2393  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2394  * LLDD believes the command is still being worked on
2395  * (template_ops->fcp_req_release() has not been called).
2396  *
2397  * The transport will wait for any outstanding work (an op to the LLDD,
2398  * which the lldd should complete with error due to the ABTS; or the
2399  * completion from the nvmet layer of the nvme command), then will
2400  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2401  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2402  * to the ABTS either after return from this function (assuming any
2403  * outstanding op work has been terminated) or upon the callback being
2404  * called.
2405  *
2406  * @target_port: pointer to the (registered) target port the FCP CMD IU
2407  *              was received on.
2408  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2409  *              to the exchange that received the ABTS.
2410  */
2411 void
2412 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2413 			struct nvmefc_tgt_fcp_req *fcpreq)
2414 {
2415 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2416 	struct nvmet_fc_tgt_queue *queue;
2417 	unsigned long flags;
2418 
2419 	if (!fod || fod->fcpreq != fcpreq)
2420 		/* job appears to have already completed, ignore abort */
2421 		return;
2422 
2423 	queue = fod->queue;
2424 
2425 	spin_lock_irqsave(&queue->qlock, flags);
2426 	if (fod->active) {
2427 		/*
2428 		 * mark as abort. The abort handler, invoked upon completion
2429 		 * of any work, will detect the aborted status and do the
2430 		 * callback.
2431 		 */
2432 		spin_lock(&fod->flock);
2433 		fod->abort = true;
2434 		fod->aborted = true;
2435 		spin_unlock(&fod->flock);
2436 	}
2437 	spin_unlock_irqrestore(&queue->qlock, flags);
2438 }
2439 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2440 
2441 
2442 struct nvmet_fc_traddr {
2443 	u64	nn;
2444 	u64	pn;
2445 };
2446 
2447 static int
2448 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2449 {
2450 	u64 token64;
2451 
2452 	if (match_u64(sstr, &token64))
2453 		return -EINVAL;
2454 	*val = token64;
2455 
2456 	return 0;
2457 }
2458 
2459 /*
2460  * This routine validates and extracts the WWN's from the TRADDR string.
2461  * As kernel parsers need the 0x to determine number base, universally
2462  * build string to parse with 0x prefix before parsing name strings.
2463  */
2464 static int
2465 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2466 {
2467 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2468 	substring_t wwn = { name, &name[sizeof(name)-1] };
2469 	int nnoffset, pnoffset;
2470 
2471 	/* validate it string one of the 2 allowed formats */
2472 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2473 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2474 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2475 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2476 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2477 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2478 						NVME_FC_TRADDR_OXNNLEN;
2479 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2480 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2481 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2482 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2483 		nnoffset = NVME_FC_TRADDR_NNLEN;
2484 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2485 	} else
2486 		goto out_einval;
2487 
2488 	name[0] = '0';
2489 	name[1] = 'x';
2490 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2491 
2492 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2493 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2494 		goto out_einval;
2495 
2496 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2497 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2498 		goto out_einval;
2499 
2500 	return 0;
2501 
2502 out_einval:
2503 	pr_warn("%s: bad traddr string\n", __func__);
2504 	return -EINVAL;
2505 }
2506 
2507 static int
2508 nvmet_fc_add_port(struct nvmet_port *port)
2509 {
2510 	struct nvmet_fc_tgtport *tgtport;
2511 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2512 	unsigned long flags;
2513 	int ret;
2514 
2515 	/* validate the address info */
2516 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2517 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2518 		return -EINVAL;
2519 
2520 	/* map the traddr address info to a target port */
2521 
2522 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2523 			sizeof(port->disc_addr.traddr));
2524 	if (ret)
2525 		return ret;
2526 
2527 	ret = -ENXIO;
2528 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2529 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2530 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2531 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2532 			tgtport->port = port;
2533 			ret = 0;
2534 			break;
2535 		}
2536 	}
2537 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2538 	return ret;
2539 }
2540 
2541 static void
2542 nvmet_fc_remove_port(struct nvmet_port *port)
2543 {
2544 	/* nothing to do */
2545 }
2546 
2547 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2548 	.owner			= THIS_MODULE,
2549 	.type			= NVMF_TRTYPE_FC,
2550 	.msdbd			= 1,
2551 	.add_port		= nvmet_fc_add_port,
2552 	.remove_port		= nvmet_fc_remove_port,
2553 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2554 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2555 };
2556 
2557 static int __init nvmet_fc_init_module(void)
2558 {
2559 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2560 }
2561 
2562 static void __exit nvmet_fc_exit_module(void)
2563 {
2564 	/* sanity check - all lports should be removed */
2565 	if (!list_empty(&nvmet_fc_target_list))
2566 		pr_warn("%s: targetport list not empty\n", __func__);
2567 
2568 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2569 
2570 	ida_destroy(&nvmet_fc_tgtport_cnt);
2571 }
2572 
2573 module_init(nvmet_fc_init_module);
2574 module_exit(nvmet_fc_exit_module);
2575 
2576 MODULE_LICENSE("GPL v2");
2577