xref: /openbmc/linux/drivers/nvme/target/fc.c (revision d774a589)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25 
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 #define NVMET_LS_CTX_COUNT		4
35 
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
38 
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41 
42 struct nvmet_fc_ls_iod {
43 	struct nvmefc_tgt_ls_req	*lsreq;
44 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
45 
46 	struct list_head		ls_list;	/* tgtport->ls_list */
47 
48 	struct nvmet_fc_tgtport		*tgtport;
49 	struct nvmet_fc_tgt_assoc	*assoc;
50 
51 	u8				*rqstbuf;
52 	u8				*rspbuf;
53 	u16				rqstdatalen;
54 	dma_addr_t			rspdma;
55 
56 	struct scatterlist		sg[2];
57 
58 	struct work_struct		work;
59 } __aligned(sizeof(unsigned long long));
60 
61 #define NVMET_FC_MAX_KB_PER_XFR		256
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*data_sg;
77 	struct scatterlist		*next_sg;
78 	int				data_sg_cnt;
79 	u32				next_sg_offset;
80 	u32				total_length;
81 	u32				offset;
82 	enum nvmet_fcp_datadir		io_dir;
83 	bool				active;
84 	bool				abort;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 
98 	struct nvmet_fc_target_port	fc_target_port;
99 
100 	struct list_head		tgt_list; /* nvmet_fc_target_list */
101 	struct device			*dev;	/* dev for dma mapping */
102 	struct nvmet_fc_target_template	*ops;
103 
104 	struct nvmet_fc_ls_iod		*iod;
105 	spinlock_t			lock;
106 	struct list_head		ls_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct ida			assoc_cnt;
110 	struct nvmet_port		*port;
111 	struct kref			ref;
112 };
113 
114 struct nvmet_fc_tgt_queue {
115 	bool				ninetypercent;
116 	u16				qid;
117 	u16				sqsize;
118 	u16				ersp_ratio;
119 	u16				sqhd;
120 	int				cpu;
121 	atomic_t			connected;
122 	atomic_t			sqtail;
123 	atomic_t			zrspcnt;
124 	atomic_t			rsn;
125 	spinlock_t			qlock;
126 	struct nvmet_port		*port;
127 	struct nvmet_cq			nvme_cq;
128 	struct nvmet_sq			nvme_sq;
129 	struct nvmet_fc_tgt_assoc	*assoc;
130 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */
131 	struct list_head		fod_list;
132 	struct workqueue_struct		*work_q;
133 	struct kref			ref;
134 } __aligned(sizeof(unsigned long long));
135 
136 struct nvmet_fc_tgt_assoc {
137 	u64				association_id;
138 	u32				a_id;
139 	struct nvmet_fc_tgtport		*tgtport;
140 	struct list_head		a_list;
141 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES];
142 	struct kref			ref;
143 };
144 
145 
146 static inline int
147 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
148 {
149 	return (iodptr - iodptr->tgtport->iod);
150 }
151 
152 static inline int
153 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
154 {
155 	return (fodptr - fodptr->queue->fod);
156 }
157 
158 
159 /*
160  * Association and Connection IDs:
161  *
162  * Association ID will have random number in upper 6 bytes and zero
163  *   in lower 2 bytes
164  *
165  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
166  *
167  * note: Association ID = Connection ID for queue 0
168  */
169 #define BYTES_FOR_QID			sizeof(u16)
170 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
171 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
172 
173 static inline u64
174 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
175 {
176 	return (assoc->association_id | qid);
177 }
178 
179 static inline u64
180 nvmet_fc_getassociationid(u64 connectionid)
181 {
182 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
183 }
184 
185 static inline u16
186 nvmet_fc_getqueueid(u64 connectionid)
187 {
188 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
189 }
190 
191 static inline struct nvmet_fc_tgtport *
192 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
193 {
194 	return container_of(targetport, struct nvmet_fc_tgtport,
195 				 fc_target_port);
196 }
197 
198 static inline struct nvmet_fc_fcp_iod *
199 nvmet_req_to_fod(struct nvmet_req *nvme_req)
200 {
201 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
202 }
203 
204 
205 /* *************************** Globals **************************** */
206 
207 
208 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
209 
210 static LIST_HEAD(nvmet_fc_target_list);
211 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
212 
213 
214 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
215 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
216 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
217 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
218 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
219 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
220 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
221 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
222 
223 
224 /* *********************** FC-NVME DMA Handling **************************** */
225 
226 /*
227  * The fcloop device passes in a NULL device pointer. Real LLD's will
228  * pass in a valid device pointer. If NULL is passed to the dma mapping
229  * routines, depending on the platform, it may or may not succeed, and
230  * may crash.
231  *
232  * As such:
233  * Wrapper all the dma routines and check the dev pointer.
234  *
235  * If simple mappings (return just a dma address, we'll noop them,
236  * returning a dma address of 0.
237  *
238  * On more complex mappings (dma_map_sg), a pseudo routine fills
239  * in the scatter list, setting all dma addresses to 0.
240  */
241 
242 static inline dma_addr_t
243 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
244 		enum dma_data_direction dir)
245 {
246 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
247 }
248 
249 static inline int
250 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
251 {
252 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
253 }
254 
255 static inline void
256 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
257 	enum dma_data_direction dir)
258 {
259 	if (dev)
260 		dma_unmap_single(dev, addr, size, dir);
261 }
262 
263 static inline void
264 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
265 		enum dma_data_direction dir)
266 {
267 	if (dev)
268 		dma_sync_single_for_cpu(dev, addr, size, dir);
269 }
270 
271 static inline void
272 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	if (dev)
276 		dma_sync_single_for_device(dev, addr, size, dir);
277 }
278 
279 /* pseudo dma_map_sg call */
280 static int
281 fc_map_sg(struct scatterlist *sg, int nents)
282 {
283 	struct scatterlist *s;
284 	int i;
285 
286 	WARN_ON(nents == 0 || sg[0].length == 0);
287 
288 	for_each_sg(sg, s, nents, i) {
289 		s->dma_address = 0L;
290 #ifdef CONFIG_NEED_SG_DMA_LENGTH
291 		s->dma_length = s->length;
292 #endif
293 	}
294 	return nents;
295 }
296 
297 static inline int
298 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
299 		enum dma_data_direction dir)
300 {
301 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
302 }
303 
304 static inline void
305 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
306 		enum dma_data_direction dir)
307 {
308 	if (dev)
309 		dma_unmap_sg(dev, sg, nents, dir);
310 }
311 
312 
313 /* *********************** FC-NVME Port Management ************************ */
314 
315 
316 static int
317 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
318 {
319 	struct nvmet_fc_ls_iod *iod;
320 	int i;
321 
322 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
323 			GFP_KERNEL);
324 	if (!iod)
325 		return -ENOMEM;
326 
327 	tgtport->iod = iod;
328 
329 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
330 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
331 		iod->tgtport = tgtport;
332 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
333 
334 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
335 			GFP_KERNEL);
336 		if (!iod->rqstbuf)
337 			goto out_fail;
338 
339 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
340 
341 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
342 						NVME_FC_MAX_LS_BUFFER_SIZE,
343 						DMA_TO_DEVICE);
344 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
345 			goto out_fail;
346 	}
347 
348 	return 0;
349 
350 out_fail:
351 	kfree(iod->rqstbuf);
352 	list_del(&iod->ls_list);
353 	for (iod--, i--; i >= 0; iod--, i--) {
354 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
355 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
356 		kfree(iod->rqstbuf);
357 		list_del(&iod->ls_list);
358 	}
359 
360 	kfree(iod);
361 
362 	return -EFAULT;
363 }
364 
365 static void
366 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
367 {
368 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
369 	int i;
370 
371 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
372 		fc_dma_unmap_single(tgtport->dev,
373 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
374 				DMA_TO_DEVICE);
375 		kfree(iod->rqstbuf);
376 		list_del(&iod->ls_list);
377 	}
378 	kfree(tgtport->iod);
379 }
380 
381 static struct nvmet_fc_ls_iod *
382 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
383 {
384 	static struct nvmet_fc_ls_iod *iod;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(&tgtport->lock, flags);
388 	iod = list_first_entry_or_null(&tgtport->ls_list,
389 					struct nvmet_fc_ls_iod, ls_list);
390 	if (iod)
391 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
392 	spin_unlock_irqrestore(&tgtport->lock, flags);
393 	return iod;
394 }
395 
396 
397 static void
398 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
399 			struct nvmet_fc_ls_iod *iod)
400 {
401 	unsigned long flags;
402 
403 	spin_lock_irqsave(&tgtport->lock, flags);
404 	list_move(&iod->ls_list, &tgtport->ls_list);
405 	spin_unlock_irqrestore(&tgtport->lock, flags);
406 }
407 
408 static void
409 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
410 				struct nvmet_fc_tgt_queue *queue)
411 {
412 	struct nvmet_fc_fcp_iod *fod = queue->fod;
413 	int i;
414 
415 	for (i = 0; i < queue->sqsize; fod++, i++) {
416 		INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
417 		fod->tgtport = tgtport;
418 		fod->queue = queue;
419 		fod->active = false;
420 		list_add_tail(&fod->fcp_list, &queue->fod_list);
421 		spin_lock_init(&fod->flock);
422 
423 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
424 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
425 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
426 			list_del(&fod->fcp_list);
427 			for (fod--, i--; i >= 0; fod--, i--) {
428 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
429 						sizeof(fod->rspiubuf),
430 						DMA_TO_DEVICE);
431 				fod->rspdma = 0L;
432 				list_del(&fod->fcp_list);
433 			}
434 
435 			return;
436 		}
437 	}
438 }
439 
440 static void
441 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
442 				struct nvmet_fc_tgt_queue *queue)
443 {
444 	struct nvmet_fc_fcp_iod *fod = queue->fod;
445 	int i;
446 
447 	for (i = 0; i < queue->sqsize; fod++, i++) {
448 		if (fod->rspdma)
449 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
450 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
451 	}
452 }
453 
454 static struct nvmet_fc_fcp_iod *
455 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
456 {
457 	static struct nvmet_fc_fcp_iod *fod;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&queue->qlock, flags);
461 	fod = list_first_entry_or_null(&queue->fod_list,
462 					struct nvmet_fc_fcp_iod, fcp_list);
463 	if (fod) {
464 		list_del(&fod->fcp_list);
465 		fod->active = true;
466 		fod->abort = false;
467 		/*
468 		 * no queue reference is taken, as it was taken by the
469 		 * queue lookup just prior to the allocation. The iod
470 		 * will "inherit" that reference.
471 		 */
472 	}
473 	spin_unlock_irqrestore(&queue->qlock, flags);
474 	return fod;
475 }
476 
477 
478 static void
479 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
480 			struct nvmet_fc_fcp_iod *fod)
481 {
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&queue->qlock, flags);
485 	list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
486 	fod->active = false;
487 	spin_unlock_irqrestore(&queue->qlock, flags);
488 
489 	/*
490 	 * release the reference taken at queue lookup and fod allocation
491 	 */
492 	nvmet_fc_tgt_q_put(queue);
493 }
494 
495 static int
496 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
497 {
498 	int cpu, idx, cnt;
499 
500 	if (!(tgtport->ops->target_features &
501 			NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED) ||
502 	    tgtport->ops->max_hw_queues == 1)
503 		return WORK_CPU_UNBOUND;
504 
505 	/* Simple cpu selection based on qid modulo active cpu count */
506 	idx = !qid ? 0 : (qid - 1) % num_active_cpus();
507 
508 	/* find the n'th active cpu */
509 	for (cpu = 0, cnt = 0; ; ) {
510 		if (cpu_active(cpu)) {
511 			if (cnt == idx)
512 				break;
513 			cnt++;
514 		}
515 		cpu = (cpu + 1) % num_possible_cpus();
516 	}
517 
518 	return cpu;
519 }
520 
521 static struct nvmet_fc_tgt_queue *
522 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
523 			u16 qid, u16 sqsize)
524 {
525 	struct nvmet_fc_tgt_queue *queue;
526 	unsigned long flags;
527 	int ret;
528 
529 	if (qid >= NVMET_NR_QUEUES)
530 		return NULL;
531 
532 	queue = kzalloc((sizeof(*queue) +
533 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
534 				GFP_KERNEL);
535 	if (!queue)
536 		return NULL;
537 
538 	if (!nvmet_fc_tgt_a_get(assoc))
539 		goto out_free_queue;
540 
541 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
542 				assoc->tgtport->fc_target_port.port_num,
543 				assoc->a_id, qid);
544 	if (!queue->work_q)
545 		goto out_a_put;
546 
547 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
548 	queue->qid = qid;
549 	queue->sqsize = sqsize;
550 	queue->assoc = assoc;
551 	queue->port = assoc->tgtport->port;
552 	queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
553 	INIT_LIST_HEAD(&queue->fod_list);
554 	atomic_set(&queue->connected, 0);
555 	atomic_set(&queue->sqtail, 0);
556 	atomic_set(&queue->rsn, 1);
557 	atomic_set(&queue->zrspcnt, 0);
558 	spin_lock_init(&queue->qlock);
559 	kref_init(&queue->ref);
560 
561 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
562 
563 	ret = nvmet_sq_init(&queue->nvme_sq);
564 	if (ret)
565 		goto out_fail_iodlist;
566 
567 	WARN_ON(assoc->queues[qid]);
568 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
569 	assoc->queues[qid] = queue;
570 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
571 
572 	return queue;
573 
574 out_fail_iodlist:
575 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
576 	destroy_workqueue(queue->work_q);
577 out_a_put:
578 	nvmet_fc_tgt_a_put(assoc);
579 out_free_queue:
580 	kfree(queue);
581 	return NULL;
582 }
583 
584 
585 static void
586 nvmet_fc_tgt_queue_free(struct kref *ref)
587 {
588 	struct nvmet_fc_tgt_queue *queue =
589 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
590 	unsigned long flags;
591 
592 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
593 	queue->assoc->queues[queue->qid] = NULL;
594 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
595 
596 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
597 
598 	nvmet_fc_tgt_a_put(queue->assoc);
599 
600 	destroy_workqueue(queue->work_q);
601 
602 	kfree(queue);
603 }
604 
605 static void
606 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
607 {
608 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
609 }
610 
611 static int
612 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
613 {
614 	return kref_get_unless_zero(&queue->ref);
615 }
616 
617 
618 static void
619 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
620 				struct nvmefc_tgt_fcp_req *fcpreq)
621 {
622 	int ret;
623 
624 	fcpreq->op = NVMET_FCOP_ABORT;
625 	fcpreq->offset = 0;
626 	fcpreq->timeout = 0;
627 	fcpreq->transfer_length = 0;
628 	fcpreq->transferred_length = 0;
629 	fcpreq->fcp_error = 0;
630 	fcpreq->sg_cnt = 0;
631 
632 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fcpreq);
633 	if (ret)
634 		/* should never reach here !! */
635 		WARN_ON(1);
636 }
637 
638 
639 static void
640 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
641 {
642 	struct nvmet_fc_fcp_iod *fod = queue->fod;
643 	unsigned long flags;
644 	int i;
645 	bool disconnect;
646 
647 	disconnect = atomic_xchg(&queue->connected, 0);
648 
649 	spin_lock_irqsave(&queue->qlock, flags);
650 	/* about outstanding io's */
651 	for (i = 0; i < queue->sqsize; fod++, i++) {
652 		if (fod->active) {
653 			spin_lock(&fod->flock);
654 			fod->abort = true;
655 			spin_unlock(&fod->flock);
656 		}
657 	}
658 	spin_unlock_irqrestore(&queue->qlock, flags);
659 
660 	flush_workqueue(queue->work_q);
661 
662 	if (disconnect)
663 		nvmet_sq_destroy(&queue->nvme_sq);
664 
665 	nvmet_fc_tgt_q_put(queue);
666 }
667 
668 static struct nvmet_fc_tgt_queue *
669 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
670 				u64 connection_id)
671 {
672 	struct nvmet_fc_tgt_assoc *assoc;
673 	struct nvmet_fc_tgt_queue *queue;
674 	u64 association_id = nvmet_fc_getassociationid(connection_id);
675 	u16 qid = nvmet_fc_getqueueid(connection_id);
676 	unsigned long flags;
677 
678 	spin_lock_irqsave(&tgtport->lock, flags);
679 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
680 		if (association_id == assoc->association_id) {
681 			queue = assoc->queues[qid];
682 			if (queue &&
683 			    (!atomic_read(&queue->connected) ||
684 			     !nvmet_fc_tgt_q_get(queue)))
685 				queue = NULL;
686 			spin_unlock_irqrestore(&tgtport->lock, flags);
687 			return queue;
688 		}
689 	}
690 	spin_unlock_irqrestore(&tgtport->lock, flags);
691 	return NULL;
692 }
693 
694 static struct nvmet_fc_tgt_assoc *
695 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
696 {
697 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
698 	unsigned long flags;
699 	u64 ran;
700 	int idx;
701 	bool needrandom = true;
702 
703 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
704 	if (!assoc)
705 		return NULL;
706 
707 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
708 	if (idx < 0)
709 		goto out_free_assoc;
710 
711 	if (!nvmet_fc_tgtport_get(tgtport))
712 		goto out_ida_put;
713 
714 	assoc->tgtport = tgtport;
715 	assoc->a_id = idx;
716 	INIT_LIST_HEAD(&assoc->a_list);
717 	kref_init(&assoc->ref);
718 
719 	while (needrandom) {
720 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
721 		ran = ran << BYTES_FOR_QID_SHIFT;
722 
723 		spin_lock_irqsave(&tgtport->lock, flags);
724 		needrandom = false;
725 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
726 			if (ran == tmpassoc->association_id) {
727 				needrandom = true;
728 				break;
729 			}
730 		if (!needrandom) {
731 			assoc->association_id = ran;
732 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
733 		}
734 		spin_unlock_irqrestore(&tgtport->lock, flags);
735 	}
736 
737 	return assoc;
738 
739 out_ida_put:
740 	ida_simple_remove(&tgtport->assoc_cnt, idx);
741 out_free_assoc:
742 	kfree(assoc);
743 	return NULL;
744 }
745 
746 static void
747 nvmet_fc_target_assoc_free(struct kref *ref)
748 {
749 	struct nvmet_fc_tgt_assoc *assoc =
750 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
751 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
752 	unsigned long flags;
753 
754 	spin_lock_irqsave(&tgtport->lock, flags);
755 	list_del(&assoc->a_list);
756 	spin_unlock_irqrestore(&tgtport->lock, flags);
757 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
758 	kfree(assoc);
759 	nvmet_fc_tgtport_put(tgtport);
760 }
761 
762 static void
763 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
764 {
765 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
766 }
767 
768 static int
769 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
770 {
771 	return kref_get_unless_zero(&assoc->ref);
772 }
773 
774 static void
775 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
776 {
777 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
778 	struct nvmet_fc_tgt_queue *queue;
779 	unsigned long flags;
780 	int i;
781 
782 	spin_lock_irqsave(&tgtport->lock, flags);
783 	for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) {
784 		queue = assoc->queues[i];
785 		if (queue) {
786 			if (!nvmet_fc_tgt_q_get(queue))
787 				continue;
788 			spin_unlock_irqrestore(&tgtport->lock, flags);
789 			nvmet_fc_delete_target_queue(queue);
790 			nvmet_fc_tgt_q_put(queue);
791 			spin_lock_irqsave(&tgtport->lock, flags);
792 		}
793 	}
794 	spin_unlock_irqrestore(&tgtport->lock, flags);
795 
796 	nvmet_fc_tgt_a_put(assoc);
797 }
798 
799 static struct nvmet_fc_tgt_assoc *
800 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
801 				u64 association_id)
802 {
803 	struct nvmet_fc_tgt_assoc *assoc;
804 	struct nvmet_fc_tgt_assoc *ret = NULL;
805 	unsigned long flags;
806 
807 	spin_lock_irqsave(&tgtport->lock, flags);
808 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
809 		if (association_id == assoc->association_id) {
810 			ret = assoc;
811 			nvmet_fc_tgt_a_get(assoc);
812 			break;
813 		}
814 	}
815 	spin_unlock_irqrestore(&tgtport->lock, flags);
816 
817 	return ret;
818 }
819 
820 
821 /**
822  * nvme_fc_register_targetport - transport entry point called by an
823  *                              LLDD to register the existence of a local
824  *                              NVME subystem FC port.
825  * @pinfo:     pointer to information about the port to be registered
826  * @template:  LLDD entrypoints and operational parameters for the port
827  * @dev:       physical hardware device node port corresponds to. Will be
828  *             used for DMA mappings
829  * @portptr:   pointer to a local port pointer. Upon success, the routine
830  *             will allocate a nvme_fc_local_port structure and place its
831  *             address in the local port pointer. Upon failure, local port
832  *             pointer will be set to NULL.
833  *
834  * Returns:
835  * a completion status. Must be 0 upon success; a negative errno
836  * (ex: -ENXIO) upon failure.
837  */
838 int
839 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
840 			struct nvmet_fc_target_template *template,
841 			struct device *dev,
842 			struct nvmet_fc_target_port **portptr)
843 {
844 	struct nvmet_fc_tgtport *newrec;
845 	unsigned long flags;
846 	int ret, idx;
847 
848 	if (!template->xmt_ls_rsp || !template->fcp_op ||
849 	    !template->targetport_delete ||
850 	    !template->max_hw_queues || !template->max_sgl_segments ||
851 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
852 		ret = -EINVAL;
853 		goto out_regtgt_failed;
854 	}
855 
856 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
857 			 GFP_KERNEL);
858 	if (!newrec) {
859 		ret = -ENOMEM;
860 		goto out_regtgt_failed;
861 	}
862 
863 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
864 	if (idx < 0) {
865 		ret = -ENOSPC;
866 		goto out_fail_kfree;
867 	}
868 
869 	if (!get_device(dev) && dev) {
870 		ret = -ENODEV;
871 		goto out_ida_put;
872 	}
873 
874 	newrec->fc_target_port.node_name = pinfo->node_name;
875 	newrec->fc_target_port.port_name = pinfo->port_name;
876 	newrec->fc_target_port.private = &newrec[1];
877 	newrec->fc_target_port.port_id = pinfo->port_id;
878 	newrec->fc_target_port.port_num = idx;
879 	INIT_LIST_HEAD(&newrec->tgt_list);
880 	newrec->dev = dev;
881 	newrec->ops = template;
882 	spin_lock_init(&newrec->lock);
883 	INIT_LIST_HEAD(&newrec->ls_list);
884 	INIT_LIST_HEAD(&newrec->ls_busylist);
885 	INIT_LIST_HEAD(&newrec->assoc_list);
886 	kref_init(&newrec->ref);
887 	ida_init(&newrec->assoc_cnt);
888 
889 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
890 	if (ret) {
891 		ret = -ENOMEM;
892 		goto out_free_newrec;
893 	}
894 
895 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
896 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
897 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
898 
899 	*portptr = &newrec->fc_target_port;
900 	return 0;
901 
902 out_free_newrec:
903 	put_device(dev);
904 out_ida_put:
905 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
906 out_fail_kfree:
907 	kfree(newrec);
908 out_regtgt_failed:
909 	*portptr = NULL;
910 	return ret;
911 }
912 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
913 
914 
915 static void
916 nvmet_fc_free_tgtport(struct kref *ref)
917 {
918 	struct nvmet_fc_tgtport *tgtport =
919 		container_of(ref, struct nvmet_fc_tgtport, ref);
920 	struct device *dev = tgtport->dev;
921 	unsigned long flags;
922 
923 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
924 	list_del(&tgtport->tgt_list);
925 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
926 
927 	nvmet_fc_free_ls_iodlist(tgtport);
928 
929 	/* let the LLDD know we've finished tearing it down */
930 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
931 
932 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
933 			tgtport->fc_target_port.port_num);
934 
935 	ida_destroy(&tgtport->assoc_cnt);
936 
937 	kfree(tgtport);
938 
939 	put_device(dev);
940 }
941 
942 static void
943 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
944 {
945 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
946 }
947 
948 static int
949 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
950 {
951 	return kref_get_unless_zero(&tgtport->ref);
952 }
953 
954 static void
955 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
956 {
957 	struct nvmet_fc_tgt_assoc *assoc, *next;
958 	unsigned long flags;
959 
960 	spin_lock_irqsave(&tgtport->lock, flags);
961 	list_for_each_entry_safe(assoc, next,
962 				&tgtport->assoc_list, a_list) {
963 		if (!nvmet_fc_tgt_a_get(assoc))
964 			continue;
965 		spin_unlock_irqrestore(&tgtport->lock, flags);
966 		nvmet_fc_delete_target_assoc(assoc);
967 		nvmet_fc_tgt_a_put(assoc);
968 		spin_lock_irqsave(&tgtport->lock, flags);
969 	}
970 	spin_unlock_irqrestore(&tgtport->lock, flags);
971 }
972 
973 /*
974  * nvmet layer has called to terminate an association
975  */
976 static void
977 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
978 {
979 	struct nvmet_fc_tgtport *tgtport, *next;
980 	struct nvmet_fc_tgt_assoc *assoc;
981 	struct nvmet_fc_tgt_queue *queue;
982 	unsigned long flags;
983 	bool found_ctrl = false;
984 
985 	/* this is a bit ugly, but don't want to make locks layered */
986 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
987 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
988 			tgt_list) {
989 		if (!nvmet_fc_tgtport_get(tgtport))
990 			continue;
991 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
992 
993 		spin_lock_irqsave(&tgtport->lock, flags);
994 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
995 			queue = assoc->queues[0];
996 			if (queue && queue->nvme_sq.ctrl == ctrl) {
997 				if (nvmet_fc_tgt_a_get(assoc))
998 					found_ctrl = true;
999 				break;
1000 			}
1001 		}
1002 		spin_unlock_irqrestore(&tgtport->lock, flags);
1003 
1004 		nvmet_fc_tgtport_put(tgtport);
1005 
1006 		if (found_ctrl) {
1007 			nvmet_fc_delete_target_assoc(assoc);
1008 			nvmet_fc_tgt_a_put(assoc);
1009 			return;
1010 		}
1011 
1012 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1013 	}
1014 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1015 }
1016 
1017 /**
1018  * nvme_fc_unregister_targetport - transport entry point called by an
1019  *                              LLDD to deregister/remove a previously
1020  *                              registered a local NVME subsystem FC port.
1021  * @tgtport: pointer to the (registered) target port that is to be
1022  *           deregistered.
1023  *
1024  * Returns:
1025  * a completion status. Must be 0 upon success; a negative errno
1026  * (ex: -ENXIO) upon failure.
1027  */
1028 int
1029 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1030 {
1031 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1032 
1033 	/* terminate any outstanding associations */
1034 	__nvmet_fc_free_assocs(tgtport);
1035 
1036 	nvmet_fc_tgtport_put(tgtport);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1041 
1042 
1043 /* *********************** FC-NVME LS Handling **************************** */
1044 
1045 
1046 static void
1047 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, u32 desc_len, u8 rqst_ls_cmd)
1048 {
1049 	struct fcnvme_ls_acc_hdr *acc = buf;
1050 
1051 	acc->w0.ls_cmd = ls_cmd;
1052 	acc->desc_list_len = desc_len;
1053 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1054 	acc->rqst.desc_len =
1055 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1056 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1057 }
1058 
1059 static int
1060 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1061 			u8 reason, u8 explanation, u8 vendor)
1062 {
1063 	struct fcnvme_ls_rjt *rjt = buf;
1064 
1065 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1066 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1067 			ls_cmd);
1068 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1069 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1070 	rjt->rjt.reason_code = reason;
1071 	rjt->rjt.reason_explanation = explanation;
1072 	rjt->rjt.vendor = vendor;
1073 
1074 	return sizeof(struct fcnvme_ls_rjt);
1075 }
1076 
1077 /* Validation Error indexes into the string table below */
1078 enum {
1079 	VERR_NO_ERROR		= 0,
1080 	VERR_CR_ASSOC_LEN	= 1,
1081 	VERR_CR_ASSOC_RQST_LEN	= 2,
1082 	VERR_CR_ASSOC_CMD	= 3,
1083 	VERR_CR_ASSOC_CMD_LEN	= 4,
1084 	VERR_ERSP_RATIO		= 5,
1085 	VERR_ASSOC_ALLOC_FAIL	= 6,
1086 	VERR_QUEUE_ALLOC_FAIL	= 7,
1087 	VERR_CR_CONN_LEN	= 8,
1088 	VERR_CR_CONN_RQST_LEN	= 9,
1089 	VERR_ASSOC_ID		= 10,
1090 	VERR_ASSOC_ID_LEN	= 11,
1091 	VERR_NO_ASSOC		= 12,
1092 	VERR_CONN_ID		= 13,
1093 	VERR_CONN_ID_LEN	= 14,
1094 	VERR_NO_CONN		= 15,
1095 	VERR_CR_CONN_CMD	= 16,
1096 	VERR_CR_CONN_CMD_LEN	= 17,
1097 	VERR_DISCONN_LEN	= 18,
1098 	VERR_DISCONN_RQST_LEN	= 19,
1099 	VERR_DISCONN_CMD	= 20,
1100 	VERR_DISCONN_CMD_LEN	= 21,
1101 	VERR_DISCONN_SCOPE	= 22,
1102 	VERR_RS_LEN		= 23,
1103 	VERR_RS_RQST_LEN	= 24,
1104 	VERR_RS_CMD		= 25,
1105 	VERR_RS_CMD_LEN		= 26,
1106 	VERR_RS_RCTL		= 27,
1107 	VERR_RS_RO		= 28,
1108 };
1109 
1110 static char *validation_errors[] = {
1111 	"OK",
1112 	"Bad CR_ASSOC Length",
1113 	"Bad CR_ASSOC Rqst Length",
1114 	"Not CR_ASSOC Cmd",
1115 	"Bad CR_ASSOC Cmd Length",
1116 	"Bad Ersp Ratio",
1117 	"Association Allocation Failed",
1118 	"Queue Allocation Failed",
1119 	"Bad CR_CONN Length",
1120 	"Bad CR_CONN Rqst Length",
1121 	"Not Association ID",
1122 	"Bad Association ID Length",
1123 	"No Association",
1124 	"Not Connection ID",
1125 	"Bad Connection ID Length",
1126 	"No Connection",
1127 	"Not CR_CONN Cmd",
1128 	"Bad CR_CONN Cmd Length",
1129 	"Bad DISCONN Length",
1130 	"Bad DISCONN Rqst Length",
1131 	"Not DISCONN Cmd",
1132 	"Bad DISCONN Cmd Length",
1133 	"Bad Disconnect Scope",
1134 	"Bad RS Length",
1135 	"Bad RS Rqst Length",
1136 	"Not RS Cmd",
1137 	"Bad RS Cmd Length",
1138 	"Bad RS R_CTL",
1139 	"Bad RS Relative Offset",
1140 };
1141 
1142 static void
1143 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1144 			struct nvmet_fc_ls_iod *iod)
1145 {
1146 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1147 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1148 	struct fcnvme_ls_cr_assoc_acc *acc =
1149 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1150 	struct nvmet_fc_tgt_queue *queue;
1151 	int ret = 0;
1152 
1153 	memset(acc, 0, sizeof(*acc));
1154 
1155 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_assoc_rqst))
1156 		ret = VERR_CR_ASSOC_LEN;
1157 	else if (rqst->desc_list_len !=
1158 			fcnvme_lsdesc_len(
1159 				sizeof(struct fcnvme_ls_cr_assoc_rqst)))
1160 		ret = VERR_CR_ASSOC_RQST_LEN;
1161 	else if (rqst->assoc_cmd.desc_tag !=
1162 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1163 		ret = VERR_CR_ASSOC_CMD;
1164 	else if (rqst->assoc_cmd.desc_len !=
1165 			fcnvme_lsdesc_len(
1166 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)))
1167 		ret = VERR_CR_ASSOC_CMD_LEN;
1168 	else if (!rqst->assoc_cmd.ersp_ratio ||
1169 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1170 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1171 		ret = VERR_ERSP_RATIO;
1172 
1173 	else {
1174 		/* new association w/ admin queue */
1175 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1176 		if (!iod->assoc)
1177 			ret = VERR_ASSOC_ALLOC_FAIL;
1178 		else {
1179 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1180 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1181 			if (!queue)
1182 				ret = VERR_QUEUE_ALLOC_FAIL;
1183 		}
1184 	}
1185 
1186 	if (ret) {
1187 		dev_err(tgtport->dev,
1188 			"Create Association LS failed: %s\n",
1189 			validation_errors[ret]);
1190 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1191 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1192 				ELS_RJT_LOGIC,
1193 				ELS_EXPL_NONE, 0);
1194 		return;
1195 	}
1196 
1197 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1198 	atomic_set(&queue->connected, 1);
1199 	queue->sqhd = 0;	/* best place to init value */
1200 
1201 	/* format a response */
1202 
1203 	iod->lsreq->rsplen = sizeof(*acc);
1204 
1205 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1206 			fcnvme_lsdesc_len(
1207 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1208 			FCNVME_LS_CREATE_ASSOCIATION);
1209 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1210 	acc->associd.desc_len =
1211 			fcnvme_lsdesc_len(
1212 				sizeof(struct fcnvme_lsdesc_assoc_id));
1213 	acc->associd.association_id =
1214 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1215 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1216 	acc->connectid.desc_len =
1217 			fcnvme_lsdesc_len(
1218 				sizeof(struct fcnvme_lsdesc_conn_id));
1219 	acc->connectid.connection_id = acc->associd.association_id;
1220 }
1221 
1222 static void
1223 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1224 			struct nvmet_fc_ls_iod *iod)
1225 {
1226 	struct fcnvme_ls_cr_conn_rqst *rqst =
1227 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1228 	struct fcnvme_ls_cr_conn_acc *acc =
1229 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1230 	struct nvmet_fc_tgt_queue *queue;
1231 	int ret = 0;
1232 
1233 	memset(acc, 0, sizeof(*acc));
1234 
1235 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1236 		ret = VERR_CR_CONN_LEN;
1237 	else if (rqst->desc_list_len !=
1238 			fcnvme_lsdesc_len(
1239 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1240 		ret = VERR_CR_CONN_RQST_LEN;
1241 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1242 		ret = VERR_ASSOC_ID;
1243 	else if (rqst->associd.desc_len !=
1244 			fcnvme_lsdesc_len(
1245 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1246 		ret = VERR_ASSOC_ID_LEN;
1247 	else if (rqst->connect_cmd.desc_tag !=
1248 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1249 		ret = VERR_CR_CONN_CMD;
1250 	else if (rqst->connect_cmd.desc_len !=
1251 			fcnvme_lsdesc_len(
1252 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1253 		ret = VERR_CR_CONN_CMD_LEN;
1254 	else if (!rqst->connect_cmd.ersp_ratio ||
1255 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1256 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1257 		ret = VERR_ERSP_RATIO;
1258 
1259 	else {
1260 		/* new io queue */
1261 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1262 				be64_to_cpu(rqst->associd.association_id));
1263 		if (!iod->assoc)
1264 			ret = VERR_NO_ASSOC;
1265 		else {
1266 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1267 					be16_to_cpu(rqst->connect_cmd.qid),
1268 					be16_to_cpu(rqst->connect_cmd.sqsize));
1269 			if (!queue)
1270 				ret = VERR_QUEUE_ALLOC_FAIL;
1271 
1272 			/* release get taken in nvmet_fc_find_target_assoc */
1273 			nvmet_fc_tgt_a_put(iod->assoc);
1274 		}
1275 	}
1276 
1277 	if (ret) {
1278 		dev_err(tgtport->dev,
1279 			"Create Connection LS failed: %s\n",
1280 			validation_errors[ret]);
1281 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1282 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1283 				(ret == VERR_NO_ASSOC) ?
1284 						ELS_RJT_PROT : ELS_RJT_LOGIC,
1285 				ELS_EXPL_NONE, 0);
1286 		return;
1287 	}
1288 
1289 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1290 	atomic_set(&queue->connected, 1);
1291 	queue->sqhd = 0;	/* best place to init value */
1292 
1293 	/* format a response */
1294 
1295 	iod->lsreq->rsplen = sizeof(*acc);
1296 
1297 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1298 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1299 			FCNVME_LS_CREATE_CONNECTION);
1300 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1301 	acc->connectid.desc_len =
1302 			fcnvme_lsdesc_len(
1303 				sizeof(struct fcnvme_lsdesc_conn_id));
1304 	acc->connectid.connection_id =
1305 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1306 				be16_to_cpu(rqst->connect_cmd.qid)));
1307 }
1308 
1309 static void
1310 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1311 			struct nvmet_fc_ls_iod *iod)
1312 {
1313 	struct fcnvme_ls_disconnect_rqst *rqst =
1314 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1315 	struct fcnvme_ls_disconnect_acc *acc =
1316 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1317 	struct nvmet_fc_tgt_queue *queue;
1318 	struct nvmet_fc_tgt_assoc *assoc;
1319 	int ret = 0;
1320 	bool del_assoc = false;
1321 
1322 	memset(acc, 0, sizeof(*acc));
1323 
1324 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1325 		ret = VERR_DISCONN_LEN;
1326 	else if (rqst->desc_list_len !=
1327 			fcnvme_lsdesc_len(
1328 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1329 		ret = VERR_DISCONN_RQST_LEN;
1330 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1331 		ret = VERR_ASSOC_ID;
1332 	else if (rqst->associd.desc_len !=
1333 			fcnvme_lsdesc_len(
1334 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1335 		ret = VERR_ASSOC_ID_LEN;
1336 	else if (rqst->discon_cmd.desc_tag !=
1337 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1338 		ret = VERR_DISCONN_CMD;
1339 	else if (rqst->discon_cmd.desc_len !=
1340 			fcnvme_lsdesc_len(
1341 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1342 		ret = VERR_DISCONN_CMD_LEN;
1343 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1344 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1345 		ret = VERR_DISCONN_SCOPE;
1346 	else {
1347 		/* match an active association */
1348 		assoc = nvmet_fc_find_target_assoc(tgtport,
1349 				be64_to_cpu(rqst->associd.association_id));
1350 		iod->assoc = assoc;
1351 		if (!assoc)
1352 			ret = VERR_NO_ASSOC;
1353 	}
1354 
1355 	if (ret) {
1356 		dev_err(tgtport->dev,
1357 			"Disconnect LS failed: %s\n",
1358 			validation_errors[ret]);
1359 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1360 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1361 				(ret == 8) ? ELS_RJT_PROT : ELS_RJT_LOGIC,
1362 				ELS_EXPL_NONE, 0);
1363 		return;
1364 	}
1365 
1366 	/* format a response */
1367 
1368 	iod->lsreq->rsplen = sizeof(*acc);
1369 
1370 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1371 			fcnvme_lsdesc_len(
1372 				sizeof(struct fcnvme_ls_disconnect_acc)),
1373 			FCNVME_LS_DISCONNECT);
1374 
1375 
1376 	if (rqst->discon_cmd.scope == FCNVME_DISCONN_CONNECTION) {
1377 		queue = nvmet_fc_find_target_queue(tgtport,
1378 					be64_to_cpu(rqst->discon_cmd.id));
1379 		if (queue) {
1380 			int qid = queue->qid;
1381 
1382 			nvmet_fc_delete_target_queue(queue);
1383 
1384 			/* release the get taken by find_target_queue */
1385 			nvmet_fc_tgt_q_put(queue);
1386 
1387 			/* tear association down if io queue terminated */
1388 			if (!qid)
1389 				del_assoc = true;
1390 		}
1391 	}
1392 
1393 	/* release get taken in nvmet_fc_find_target_assoc */
1394 	nvmet_fc_tgt_a_put(iod->assoc);
1395 
1396 	if (del_assoc)
1397 		nvmet_fc_delete_target_assoc(iod->assoc);
1398 }
1399 
1400 
1401 /* *********************** NVME Ctrl Routines **************************** */
1402 
1403 
1404 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1405 
1406 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1407 
1408 static void
1409 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1410 {
1411 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1412 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1413 
1414 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1415 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1416 	nvmet_fc_free_ls_iod(tgtport, iod);
1417 	nvmet_fc_tgtport_put(tgtport);
1418 }
1419 
1420 static void
1421 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1422 				struct nvmet_fc_ls_iod *iod)
1423 {
1424 	int ret;
1425 
1426 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1427 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1428 
1429 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1430 	if (ret)
1431 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1432 }
1433 
1434 /*
1435  * Actual processing routine for received FC-NVME LS Requests from the LLD
1436  */
1437 static void
1438 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1439 			struct nvmet_fc_ls_iod *iod)
1440 {
1441 	struct fcnvme_ls_rqst_w0 *w0 =
1442 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1443 
1444 	iod->lsreq->nvmet_fc_private = iod;
1445 	iod->lsreq->rspbuf = iod->rspbuf;
1446 	iod->lsreq->rspdma = iod->rspdma;
1447 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1448 	/* Be preventative. handlers will later set to valid length */
1449 	iod->lsreq->rsplen = 0;
1450 
1451 	iod->assoc = NULL;
1452 
1453 	/*
1454 	 * handlers:
1455 	 *   parse request input, execute the request, and format the
1456 	 *   LS response
1457 	 */
1458 	switch (w0->ls_cmd) {
1459 	case FCNVME_LS_CREATE_ASSOCIATION:
1460 		/* Creates Association and initial Admin Queue/Connection */
1461 		nvmet_fc_ls_create_association(tgtport, iod);
1462 		break;
1463 	case FCNVME_LS_CREATE_CONNECTION:
1464 		/* Creates an IO Queue/Connection */
1465 		nvmet_fc_ls_create_connection(tgtport, iod);
1466 		break;
1467 	case FCNVME_LS_DISCONNECT:
1468 		/* Terminate a Queue/Connection or the Association */
1469 		nvmet_fc_ls_disconnect(tgtport, iod);
1470 		break;
1471 	default:
1472 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1473 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1474 				ELS_RJT_INVAL, ELS_EXPL_NONE, 0);
1475 	}
1476 
1477 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1478 }
1479 
1480 /*
1481  * Actual processing routine for received FC-NVME LS Requests from the LLD
1482  */
1483 static void
1484 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1485 {
1486 	struct nvmet_fc_ls_iod *iod =
1487 		container_of(work, struct nvmet_fc_ls_iod, work);
1488 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1489 
1490 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1491 }
1492 
1493 
1494 /**
1495  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1496  *                       upon the reception of a NVME LS request.
1497  *
1498  * The nvmet-fc layer will copy payload to an internal structure for
1499  * processing.  As such, upon completion of the routine, the LLDD may
1500  * immediately free/reuse the LS request buffer passed in the call.
1501  *
1502  * If this routine returns error, the LLDD should abort the exchange.
1503  *
1504  * @tgtport:    pointer to the (registered) target port the LS was
1505  *              received on.
1506  * @lsreq:      pointer to a lsreq request structure to be used to reference
1507  *              the exchange corresponding to the LS.
1508  * @lsreqbuf:   pointer to the buffer containing the LS Request
1509  * @lsreqbuf_len: length, in bytes, of the received LS request
1510  */
1511 int
1512 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1513 			struct nvmefc_tgt_ls_req *lsreq,
1514 			void *lsreqbuf, u32 lsreqbuf_len)
1515 {
1516 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1517 	struct nvmet_fc_ls_iod *iod;
1518 
1519 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1520 		return -E2BIG;
1521 
1522 	if (!nvmet_fc_tgtport_get(tgtport))
1523 		return -ESHUTDOWN;
1524 
1525 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1526 	if (!iod) {
1527 		nvmet_fc_tgtport_put(tgtport);
1528 		return -ENOENT;
1529 	}
1530 
1531 	iod->lsreq = lsreq;
1532 	iod->fcpreq = NULL;
1533 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1534 	iod->rqstdatalen = lsreqbuf_len;
1535 
1536 	schedule_work(&iod->work);
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1541 
1542 
1543 /*
1544  * **********************
1545  * Start of FCP handling
1546  * **********************
1547  */
1548 
1549 static int
1550 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1551 {
1552 	struct scatterlist *sg;
1553 	struct page *page;
1554 	unsigned int nent;
1555 	u32 page_len, length;
1556 	int i = 0;
1557 
1558 	length = fod->total_length;
1559 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
1560 	sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1561 	if (!sg)
1562 		goto out;
1563 
1564 	sg_init_table(sg, nent);
1565 
1566 	while (length) {
1567 		page_len = min_t(u32, length, PAGE_SIZE);
1568 
1569 		page = alloc_page(GFP_KERNEL);
1570 		if (!page)
1571 			goto out_free_pages;
1572 
1573 		sg_set_page(&sg[i], page, page_len, 0);
1574 		length -= page_len;
1575 		i++;
1576 	}
1577 
1578 	fod->data_sg = sg;
1579 	fod->data_sg_cnt = nent;
1580 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1581 				((fod->io_dir == NVMET_FCP_WRITE) ?
1582 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1583 				/* note: write from initiator perspective */
1584 
1585 	return 0;
1586 
1587 out_free_pages:
1588 	while (i > 0) {
1589 		i--;
1590 		__free_page(sg_page(&sg[i]));
1591 	}
1592 	kfree(sg);
1593 	fod->data_sg = NULL;
1594 	fod->data_sg_cnt = 0;
1595 out:
1596 	return NVME_SC_INTERNAL;
1597 }
1598 
1599 static void
1600 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1601 {
1602 	struct scatterlist *sg;
1603 	int count;
1604 
1605 	if (!fod->data_sg || !fod->data_sg_cnt)
1606 		return;
1607 
1608 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1609 				((fod->io_dir == NVMET_FCP_WRITE) ?
1610 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1611 	for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1612 		__free_page(sg_page(sg));
1613 	kfree(fod->data_sg);
1614 }
1615 
1616 
1617 static bool
1618 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1619 {
1620 	u32 sqtail, used;
1621 
1622 	/* egad, this is ugly. And sqtail is just a best guess */
1623 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1624 
1625 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1626 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1627 }
1628 
1629 /*
1630  * Prep RSP payload.
1631  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1632  */
1633 static void
1634 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1635 				struct nvmet_fc_fcp_iod *fod)
1636 {
1637 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1638 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1639 	struct nvme_completion *cqe = &ersp->cqe;
1640 	u32 *cqewd = (u32 *)cqe;
1641 	bool send_ersp = false;
1642 	u32 rsn, rspcnt, xfr_length;
1643 
1644 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1645 		xfr_length = fod->total_length;
1646 	else
1647 		xfr_length = fod->offset;
1648 
1649 	/*
1650 	 * check to see if we can send a 0's rsp.
1651 	 *   Note: to send a 0's response, the NVME-FC host transport will
1652 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1653 	 *   seen in an ersp), and command_id. Thus it will create a
1654 	 *   zero-filled CQE with those known fields filled in. Transport
1655 	 *   must send an ersp for any condition where the cqe won't match
1656 	 *   this.
1657 	 *
1658 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1659 	 *  every N responses, where N=ersp_ratio
1660 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1661 	 *    practice)
1662 	 *  normal cmds: any time status is non-zero, or status is zero
1663 	 *     but words 0 or 1 are non-zero.
1664 	 *  the SQ is 90% or more full
1665 	 *  the cmd is a fused command
1666 	 *  transferred data length not equal to cmd iu length
1667 	 */
1668 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1669 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1670 	    sqe->opcode == nvme_fabrics_command ||
1671 	    xfr_length != fod->total_length ||
1672 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1673 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1674 	    queue_90percent_full(fod->queue, cqe->sq_head))
1675 		send_ersp = true;
1676 
1677 	/* re-set the fields */
1678 	fod->fcpreq->rspaddr = ersp;
1679 	fod->fcpreq->rspdma = fod->rspdma;
1680 
1681 	if (!send_ersp) {
1682 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1683 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1684 	} else {
1685 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1686 		rsn = atomic_inc_return(&fod->queue->rsn);
1687 		ersp->rsn = cpu_to_be32(rsn);
1688 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1689 		fod->fcpreq->rsplen = sizeof(*ersp);
1690 	}
1691 
1692 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1693 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1694 }
1695 
1696 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1697 
1698 static void
1699 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1700 				struct nvmet_fc_fcp_iod *fod)
1701 {
1702 	int ret;
1703 
1704 	fod->fcpreq->op = NVMET_FCOP_RSP;
1705 	fod->fcpreq->timeout = 0;
1706 
1707 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1708 
1709 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1710 	if (ret)
1711 		nvmet_fc_abort_op(tgtport, fod->fcpreq);
1712 }
1713 
1714 static void
1715 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1716 				struct nvmet_fc_fcp_iod *fod, u8 op)
1717 {
1718 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1719 	struct scatterlist *sg, *datasg;
1720 	u32 tlen, sg_off;
1721 	int ret;
1722 
1723 	fcpreq->op = op;
1724 	fcpreq->offset = fod->offset;
1725 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1726 	tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024),
1727 			(fod->total_length - fod->offset));
1728 	tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE);
1729 	tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments
1730 					* PAGE_SIZE);
1731 	fcpreq->transfer_length = tlen;
1732 	fcpreq->transferred_length = 0;
1733 	fcpreq->fcp_error = 0;
1734 	fcpreq->rsplen = 0;
1735 
1736 	fcpreq->sg_cnt = 0;
1737 
1738 	datasg = fod->next_sg;
1739 	sg_off = fod->next_sg_offset;
1740 
1741 	for (sg = fcpreq->sg ; tlen; sg++) {
1742 		*sg = *datasg;
1743 		if (sg_off) {
1744 			sg->offset += sg_off;
1745 			sg->length -= sg_off;
1746 			sg->dma_address += sg_off;
1747 			sg_off = 0;
1748 		}
1749 		if (tlen < sg->length) {
1750 			sg->length = tlen;
1751 			fod->next_sg = datasg;
1752 			fod->next_sg_offset += tlen;
1753 		} else if (tlen == sg->length) {
1754 			fod->next_sg_offset = 0;
1755 			fod->next_sg = sg_next(datasg);
1756 		} else {
1757 			fod->next_sg_offset = 0;
1758 			datasg = sg_next(datasg);
1759 		}
1760 		tlen -= sg->length;
1761 		fcpreq->sg_cnt++;
1762 	}
1763 
1764 	/*
1765 	 * If the last READDATA request: check if LLDD supports
1766 	 * combined xfr with response.
1767 	 */
1768 	if ((op == NVMET_FCOP_READDATA) &&
1769 	    ((fod->offset + fcpreq->transfer_length) == fod->total_length) &&
1770 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1771 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1772 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1773 	}
1774 
1775 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1776 	if (ret) {
1777 		/*
1778 		 * should be ok to set w/o lock as its in the thread of
1779 		 * execution (not an async timer routine) and doesn't
1780 		 * contend with any clearing action
1781 		 */
1782 		fod->abort = true;
1783 
1784 		if (op == NVMET_FCOP_WRITEDATA)
1785 			nvmet_req_complete(&fod->req,
1786 					NVME_SC_FC_TRANSPORT_ERROR);
1787 		else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1788 			fcpreq->fcp_error = ret;
1789 			fcpreq->transferred_length = 0;
1790 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1791 		}
1792 	}
1793 }
1794 
1795 static void
1796 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
1797 {
1798 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
1799 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1800 	unsigned long flags;
1801 	bool abort;
1802 
1803 	spin_lock_irqsave(&fod->flock, flags);
1804 	abort = fod->abort;
1805 	spin_unlock_irqrestore(&fod->flock, flags);
1806 
1807 	/* if in the middle of an io and we need to tear down */
1808 	if (abort && fcpreq->op != NVMET_FCOP_ABORT) {
1809 		/* data no longer needed */
1810 		nvmet_fc_free_tgt_pgs(fod);
1811 
1812 		if (fcpreq->fcp_error || abort)
1813 			nvmet_req_complete(&fod->req, fcpreq->fcp_error);
1814 
1815 		return;
1816 	}
1817 
1818 	switch (fcpreq->op) {
1819 
1820 	case NVMET_FCOP_WRITEDATA:
1821 		if (abort || fcpreq->fcp_error ||
1822 		    fcpreq->transferred_length != fcpreq->transfer_length) {
1823 			nvmet_req_complete(&fod->req,
1824 					NVME_SC_FC_TRANSPORT_ERROR);
1825 			return;
1826 		}
1827 
1828 		fod->offset += fcpreq->transferred_length;
1829 		if (fod->offset != fod->total_length) {
1830 			/* transfer the next chunk */
1831 			nvmet_fc_transfer_fcp_data(tgtport, fod,
1832 						NVMET_FCOP_WRITEDATA);
1833 			return;
1834 		}
1835 
1836 		/* data transfer complete, resume with nvmet layer */
1837 
1838 		fod->req.execute(&fod->req);
1839 
1840 		break;
1841 
1842 	case NVMET_FCOP_READDATA:
1843 	case NVMET_FCOP_READDATA_RSP:
1844 		if (abort || fcpreq->fcp_error ||
1845 		    fcpreq->transferred_length != fcpreq->transfer_length) {
1846 			/* data no longer needed */
1847 			nvmet_fc_free_tgt_pgs(fod);
1848 
1849 			nvmet_fc_abort_op(tgtport, fod->fcpreq);
1850 			return;
1851 		}
1852 
1853 		/* success */
1854 
1855 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1856 			/* data no longer needed */
1857 			nvmet_fc_free_tgt_pgs(fod);
1858 			fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
1859 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1860 			nvmet_fc_free_fcp_iod(fod->queue, fod);
1861 			return;
1862 		}
1863 
1864 		fod->offset += fcpreq->transferred_length;
1865 		if (fod->offset != fod->total_length) {
1866 			/* transfer the next chunk */
1867 			nvmet_fc_transfer_fcp_data(tgtport, fod,
1868 						NVMET_FCOP_READDATA);
1869 			return;
1870 		}
1871 
1872 		/* data transfer complete, send response */
1873 
1874 		/* data no longer needed */
1875 		nvmet_fc_free_tgt_pgs(fod);
1876 
1877 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
1878 
1879 		break;
1880 
1881 	case NVMET_FCOP_RSP:
1882 	case NVMET_FCOP_ABORT:
1883 		fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
1884 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1885 		nvmet_fc_free_fcp_iod(fod->queue, fod);
1886 		break;
1887 
1888 	default:
1889 		nvmet_fc_free_tgt_pgs(fod);
1890 		nvmet_fc_abort_op(tgtport, fod->fcpreq);
1891 		break;
1892 	}
1893 }
1894 
1895 /*
1896  * actual completion handler after execution by the nvmet layer
1897  */
1898 static void
1899 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
1900 			struct nvmet_fc_fcp_iod *fod, int status)
1901 {
1902 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1903 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
1904 	unsigned long flags;
1905 	bool abort;
1906 
1907 	spin_lock_irqsave(&fod->flock, flags);
1908 	abort = fod->abort;
1909 	spin_unlock_irqrestore(&fod->flock, flags);
1910 
1911 	/* if we have a CQE, snoop the last sq_head value */
1912 	if (!status)
1913 		fod->queue->sqhd = cqe->sq_head;
1914 
1915 	if (abort) {
1916 		/* data no longer needed */
1917 		nvmet_fc_free_tgt_pgs(fod);
1918 
1919 		nvmet_fc_abort_op(tgtport, fod->fcpreq);
1920 		return;
1921 	}
1922 
1923 	/* if an error handling the cmd post initial parsing */
1924 	if (status) {
1925 		/* fudge up a failed CQE status for our transport error */
1926 		memset(cqe, 0, sizeof(*cqe));
1927 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
1928 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
1929 		cqe->command_id = sqe->command_id;
1930 		cqe->status = cpu_to_le16(status);
1931 	} else {
1932 
1933 		/*
1934 		 * try to push the data even if the SQE status is non-zero.
1935 		 * There may be a status where data still was intended to
1936 		 * be moved
1937 		 */
1938 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
1939 			/* push the data over before sending rsp */
1940 			nvmet_fc_transfer_fcp_data(tgtport, fod,
1941 						NVMET_FCOP_READDATA);
1942 			return;
1943 		}
1944 
1945 		/* writes & no data - fall thru */
1946 	}
1947 
1948 	/* data no longer needed */
1949 	nvmet_fc_free_tgt_pgs(fod);
1950 
1951 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
1952 }
1953 
1954 
1955 static void
1956 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
1957 {
1958 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
1959 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1960 
1961 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
1962 }
1963 
1964 
1965 /*
1966  * Actual processing routine for received FC-NVME LS Requests from the LLD
1967  */
1968 void
1969 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
1970 			struct nvmet_fc_fcp_iod *fod)
1971 {
1972 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
1973 	int ret;
1974 
1975 	/*
1976 	 * Fused commands are currently not supported in the linux
1977 	 * implementation.
1978 	 *
1979 	 * As such, the implementation of the FC transport does not
1980 	 * look at the fused commands and order delivery to the upper
1981 	 * layer until we have both based on csn.
1982 	 */
1983 
1984 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
1985 
1986 	fod->total_length = be32_to_cpu(cmdiu->data_len);
1987 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
1988 		fod->io_dir = NVMET_FCP_WRITE;
1989 		if (!nvme_is_write(&cmdiu->sqe))
1990 			goto transport_error;
1991 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
1992 		fod->io_dir = NVMET_FCP_READ;
1993 		if (nvme_is_write(&cmdiu->sqe))
1994 			goto transport_error;
1995 	} else {
1996 		fod->io_dir = NVMET_FCP_NODATA;
1997 		if (fod->total_length)
1998 			goto transport_error;
1999 	}
2000 
2001 	fod->req.cmd = &fod->cmdiubuf.sqe;
2002 	fod->req.rsp = &fod->rspiubuf.cqe;
2003 	fod->req.port = fod->queue->port;
2004 
2005 	/* ensure nvmet handlers will set cmd handler callback */
2006 	fod->req.execute = NULL;
2007 
2008 	/* clear any response payload */
2009 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2010 
2011 	ret = nvmet_req_init(&fod->req,
2012 				&fod->queue->nvme_cq,
2013 				&fod->queue->nvme_sq,
2014 				&nvmet_fc_tgt_fcp_ops);
2015 	if (!ret) {	/* bad SQE content */
2016 		nvmet_fc_abort_op(tgtport, fod->fcpreq);
2017 		return;
2018 	}
2019 
2020 	/* keep a running counter of tail position */
2021 	atomic_inc(&fod->queue->sqtail);
2022 
2023 	fod->data_sg = NULL;
2024 	fod->data_sg_cnt = 0;
2025 	if (fod->total_length) {
2026 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2027 		if (ret) {
2028 			nvmet_req_complete(&fod->req, ret);
2029 			return;
2030 		}
2031 	}
2032 	fod->req.sg = fod->data_sg;
2033 	fod->req.sg_cnt = fod->data_sg_cnt;
2034 	fod->offset = 0;
2035 	fod->next_sg = fod->data_sg;
2036 	fod->next_sg_offset = 0;
2037 
2038 	if (fod->io_dir == NVMET_FCP_WRITE) {
2039 		/* pull the data over before invoking nvmet layer */
2040 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * Reads or no data:
2046 	 *
2047 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2048 	 * push the data
2049 	 */
2050 
2051 	fod->req.execute(&fod->req);
2052 
2053 	return;
2054 
2055 transport_error:
2056 	nvmet_fc_abort_op(tgtport, fod->fcpreq);
2057 }
2058 
2059 /*
2060  * Actual processing routine for received FC-NVME LS Requests from the LLD
2061  */
2062 static void
2063 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2064 {
2065 	struct nvmet_fc_fcp_iod *fod =
2066 		container_of(work, struct nvmet_fc_fcp_iod, work);
2067 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2068 
2069 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
2070 }
2071 
2072 /**
2073  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2074  *                       upon the reception of a NVME FCP CMD IU.
2075  *
2076  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2077  * layer for processing.
2078  *
2079  * The nvmet-fc layer will copy cmd payload to an internal structure for
2080  * processing.  As such, upon completion of the routine, the LLDD may
2081  * immediately free/reuse the CMD IU buffer passed in the call.
2082  *
2083  * If this routine returns error, the lldd should abort the exchange.
2084  *
2085  * @target_port: pointer to the (registered) target port the FCP CMD IU
2086  *              was receive on.
2087  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2088  *              the exchange corresponding to the FCP Exchange.
2089  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2090  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2091  */
2092 int
2093 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2094 			struct nvmefc_tgt_fcp_req *fcpreq,
2095 			void *cmdiubuf, u32 cmdiubuf_len)
2096 {
2097 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2098 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2099 	struct nvmet_fc_tgt_queue *queue;
2100 	struct nvmet_fc_fcp_iod *fod;
2101 
2102 	/* validate iu, so the connection id can be used to find the queue */
2103 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2104 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2105 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2106 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2107 		return -EIO;
2108 
2109 
2110 	queue = nvmet_fc_find_target_queue(tgtport,
2111 				be64_to_cpu(cmdiu->connection_id));
2112 	if (!queue)
2113 		return -ENOTCONN;
2114 
2115 	/*
2116 	 * note: reference taken by find_target_queue
2117 	 * After successful fod allocation, the fod will inherit the
2118 	 * ownership of that reference and will remove the reference
2119 	 * when the fod is freed.
2120 	 */
2121 
2122 	fod = nvmet_fc_alloc_fcp_iod(queue);
2123 	if (!fod) {
2124 		/* release the queue lookup reference */
2125 		nvmet_fc_tgt_q_put(queue);
2126 		return -ENOENT;
2127 	}
2128 
2129 	fcpreq->nvmet_fc_private = fod;
2130 	fod->fcpreq = fcpreq;
2131 	/*
2132 	 * put all admin cmds on hw queue id 0. All io commands go to
2133 	 * the respective hw queue based on a modulo basis
2134 	 */
2135 	fcpreq->hwqid = queue->qid ?
2136 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
2137 	memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2138 
2139 	queue_work_on(queue->cpu, queue->work_q, &fod->work);
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2144 
2145 enum {
2146 	FCT_TRADDR_ERR		= 0,
2147 	FCT_TRADDR_WWNN		= 1 << 0,
2148 	FCT_TRADDR_WWPN		= 1 << 1,
2149 };
2150 
2151 struct nvmet_fc_traddr {
2152 	u64	nn;
2153 	u64	pn;
2154 };
2155 
2156 static const match_table_t traddr_opt_tokens = {
2157 	{ FCT_TRADDR_WWNN,	"nn-%s"		},
2158 	{ FCT_TRADDR_WWPN,	"pn-%s"		},
2159 	{ FCT_TRADDR_ERR,	NULL		}
2160 };
2161 
2162 static int
2163 nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf)
2164 {
2165 	substring_t args[MAX_OPT_ARGS];
2166 	char *options, *o, *p;
2167 	int token, ret = 0;
2168 	u64 token64;
2169 
2170 	options = o = kstrdup(buf, GFP_KERNEL);
2171 	if (!options)
2172 		return -ENOMEM;
2173 
2174 	while ((p = strsep(&o, ",\n")) != NULL) {
2175 		if (!*p)
2176 			continue;
2177 
2178 		token = match_token(p, traddr_opt_tokens, args);
2179 		switch (token) {
2180 		case FCT_TRADDR_WWNN:
2181 			if (match_u64(args, &token64)) {
2182 				ret = -EINVAL;
2183 				goto out;
2184 			}
2185 			traddr->nn = token64;
2186 			break;
2187 		case FCT_TRADDR_WWPN:
2188 			if (match_u64(args, &token64)) {
2189 				ret = -EINVAL;
2190 				goto out;
2191 			}
2192 			traddr->pn = token64;
2193 			break;
2194 		default:
2195 			pr_warn("unknown traddr token or missing value '%s'\n",
2196 					p);
2197 			ret = -EINVAL;
2198 			goto out;
2199 		}
2200 	}
2201 
2202 out:
2203 	kfree(options);
2204 	return ret;
2205 }
2206 
2207 static int
2208 nvmet_fc_add_port(struct nvmet_port *port)
2209 {
2210 	struct nvmet_fc_tgtport *tgtport;
2211 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2212 	unsigned long flags;
2213 	int ret;
2214 
2215 	/* validate the address info */
2216 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2217 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2218 		return -EINVAL;
2219 
2220 	/* map the traddr address info to a target port */
2221 
2222 	ret = nvmet_fc_parse_traddr(&traddr, port->disc_addr.traddr);
2223 	if (ret)
2224 		return ret;
2225 
2226 	ret = -ENXIO;
2227 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2228 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2229 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2230 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2231 			/* a FC port can only be 1 nvmet port id */
2232 			if (!tgtport->port) {
2233 				tgtport->port = port;
2234 				port->priv = tgtport;
2235 				ret = 0;
2236 			} else
2237 				ret = -EALREADY;
2238 			break;
2239 		}
2240 	}
2241 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2242 	return ret;
2243 }
2244 
2245 static void
2246 nvmet_fc_remove_port(struct nvmet_port *port)
2247 {
2248 	struct nvmet_fc_tgtport *tgtport = port->priv;
2249 	unsigned long flags;
2250 
2251 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2252 	if (tgtport->port == port) {
2253 		nvmet_fc_tgtport_put(tgtport);
2254 		tgtport->port = NULL;
2255 	}
2256 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2257 }
2258 
2259 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2260 	.owner			= THIS_MODULE,
2261 	.type			= NVMF_TRTYPE_FC,
2262 	.msdbd			= 1,
2263 	.add_port		= nvmet_fc_add_port,
2264 	.remove_port		= nvmet_fc_remove_port,
2265 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2266 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2267 };
2268 
2269 static int __init nvmet_fc_init_module(void)
2270 {
2271 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2272 }
2273 
2274 static void __exit nvmet_fc_exit_module(void)
2275 {
2276 	/* sanity check - all lports should be removed */
2277 	if (!list_empty(&nvmet_fc_target_list))
2278 		pr_warn("%s: targetport list not empty\n", __func__);
2279 
2280 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2281 
2282 	ida_destroy(&nvmet_fc_tgtport_cnt);
2283 }
2284 
2285 module_init(nvmet_fc_init_module);
2286 module_exit(nvmet_fc_exit_module);
2287 
2288 MODULE_LICENSE("GPL v2");
2289