1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 4 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 #define NVMET_FC_MAX_KB_PER_XFR 256 62 63 enum nvmet_fcp_datadir { 64 NVMET_FCP_NODATA, 65 NVMET_FCP_WRITE, 66 NVMET_FCP_READ, 67 NVMET_FCP_ABORTED, 68 }; 69 70 struct nvmet_fc_fcp_iod { 71 struct nvmefc_tgt_fcp_req *fcpreq; 72 73 struct nvme_fc_cmd_iu cmdiubuf; 74 struct nvme_fc_ersp_iu rspiubuf; 75 dma_addr_t rspdma; 76 struct scatterlist *data_sg; 77 struct scatterlist *next_sg; 78 int data_sg_cnt; 79 u32 next_sg_offset; 80 u32 total_length; 81 u32 offset; 82 enum nvmet_fcp_datadir io_dir; 83 bool active; 84 bool abort; 85 spinlock_t flock; 86 87 struct nvmet_req req; 88 struct work_struct work; 89 90 struct nvmet_fc_tgtport *tgtport; 91 struct nvmet_fc_tgt_queue *queue; 92 93 struct list_head fcp_list; /* tgtport->fcp_list */ 94 }; 95 96 struct nvmet_fc_tgtport { 97 98 struct nvmet_fc_target_port fc_target_port; 99 100 struct list_head tgt_list; /* nvmet_fc_target_list */ 101 struct device *dev; /* dev for dma mapping */ 102 struct nvmet_fc_target_template *ops; 103 104 struct nvmet_fc_ls_iod *iod; 105 spinlock_t lock; 106 struct list_head ls_list; 107 struct list_head ls_busylist; 108 struct list_head assoc_list; 109 struct ida assoc_cnt; 110 struct nvmet_port *port; 111 struct kref ref; 112 }; 113 114 struct nvmet_fc_tgt_queue { 115 bool ninetypercent; 116 u16 qid; 117 u16 sqsize; 118 u16 ersp_ratio; 119 u16 sqhd; 120 int cpu; 121 atomic_t connected; 122 atomic_t sqtail; 123 atomic_t zrspcnt; 124 atomic_t rsn; 125 spinlock_t qlock; 126 struct nvmet_port *port; 127 struct nvmet_cq nvme_cq; 128 struct nvmet_sq nvme_sq; 129 struct nvmet_fc_tgt_assoc *assoc; 130 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 131 struct list_head fod_list; 132 struct workqueue_struct *work_q; 133 struct kref ref; 134 } __aligned(sizeof(unsigned long long)); 135 136 struct nvmet_fc_tgt_assoc { 137 u64 association_id; 138 u32 a_id; 139 struct nvmet_fc_tgtport *tgtport; 140 struct list_head a_list; 141 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES]; 142 struct kref ref; 143 }; 144 145 146 static inline int 147 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 148 { 149 return (iodptr - iodptr->tgtport->iod); 150 } 151 152 static inline int 153 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 154 { 155 return (fodptr - fodptr->queue->fod); 156 } 157 158 159 /* 160 * Association and Connection IDs: 161 * 162 * Association ID will have random number in upper 6 bytes and zero 163 * in lower 2 bytes 164 * 165 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 166 * 167 * note: Association ID = Connection ID for queue 0 168 */ 169 #define BYTES_FOR_QID sizeof(u16) 170 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 171 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 172 173 static inline u64 174 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 175 { 176 return (assoc->association_id | qid); 177 } 178 179 static inline u64 180 nvmet_fc_getassociationid(u64 connectionid) 181 { 182 return connectionid & ~NVMET_FC_QUEUEID_MASK; 183 } 184 185 static inline u16 186 nvmet_fc_getqueueid(u64 connectionid) 187 { 188 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 189 } 190 191 static inline struct nvmet_fc_tgtport * 192 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 193 { 194 return container_of(targetport, struct nvmet_fc_tgtport, 195 fc_target_port); 196 } 197 198 static inline struct nvmet_fc_fcp_iod * 199 nvmet_req_to_fod(struct nvmet_req *nvme_req) 200 { 201 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 202 } 203 204 205 /* *************************** Globals **************************** */ 206 207 208 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 209 210 static LIST_HEAD(nvmet_fc_target_list); 211 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 212 213 214 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 215 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); 216 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 217 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 218 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 219 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 220 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 221 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 222 223 224 /* *********************** FC-NVME DMA Handling **************************** */ 225 226 /* 227 * The fcloop device passes in a NULL device pointer. Real LLD's will 228 * pass in a valid device pointer. If NULL is passed to the dma mapping 229 * routines, depending on the platform, it may or may not succeed, and 230 * may crash. 231 * 232 * As such: 233 * Wrapper all the dma routines and check the dev pointer. 234 * 235 * If simple mappings (return just a dma address, we'll noop them, 236 * returning a dma address of 0. 237 * 238 * On more complex mappings (dma_map_sg), a pseudo routine fills 239 * in the scatter list, setting all dma addresses to 0. 240 */ 241 242 static inline dma_addr_t 243 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 244 enum dma_data_direction dir) 245 { 246 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 247 } 248 249 static inline int 250 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 251 { 252 return dev ? dma_mapping_error(dev, dma_addr) : 0; 253 } 254 255 static inline void 256 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 257 enum dma_data_direction dir) 258 { 259 if (dev) 260 dma_unmap_single(dev, addr, size, dir); 261 } 262 263 static inline void 264 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 265 enum dma_data_direction dir) 266 { 267 if (dev) 268 dma_sync_single_for_cpu(dev, addr, size, dir); 269 } 270 271 static inline void 272 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 273 enum dma_data_direction dir) 274 { 275 if (dev) 276 dma_sync_single_for_device(dev, addr, size, dir); 277 } 278 279 /* pseudo dma_map_sg call */ 280 static int 281 fc_map_sg(struct scatterlist *sg, int nents) 282 { 283 struct scatterlist *s; 284 int i; 285 286 WARN_ON(nents == 0 || sg[0].length == 0); 287 288 for_each_sg(sg, s, nents, i) { 289 s->dma_address = 0L; 290 #ifdef CONFIG_NEED_SG_DMA_LENGTH 291 s->dma_length = s->length; 292 #endif 293 } 294 return nents; 295 } 296 297 static inline int 298 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 299 enum dma_data_direction dir) 300 { 301 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 302 } 303 304 static inline void 305 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 306 enum dma_data_direction dir) 307 { 308 if (dev) 309 dma_unmap_sg(dev, sg, nents, dir); 310 } 311 312 313 /* *********************** FC-NVME Port Management ************************ */ 314 315 316 static int 317 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 318 { 319 struct nvmet_fc_ls_iod *iod; 320 int i; 321 322 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 323 GFP_KERNEL); 324 if (!iod) 325 return -ENOMEM; 326 327 tgtport->iod = iod; 328 329 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 330 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 331 iod->tgtport = tgtport; 332 list_add_tail(&iod->ls_list, &tgtport->ls_list); 333 334 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 335 GFP_KERNEL); 336 if (!iod->rqstbuf) 337 goto out_fail; 338 339 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 340 341 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 342 NVME_FC_MAX_LS_BUFFER_SIZE, 343 DMA_TO_DEVICE); 344 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 345 goto out_fail; 346 } 347 348 return 0; 349 350 out_fail: 351 kfree(iod->rqstbuf); 352 list_del(&iod->ls_list); 353 for (iod--, i--; i >= 0; iod--, i--) { 354 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 355 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 356 kfree(iod->rqstbuf); 357 list_del(&iod->ls_list); 358 } 359 360 kfree(iod); 361 362 return -EFAULT; 363 } 364 365 static void 366 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 367 { 368 struct nvmet_fc_ls_iod *iod = tgtport->iod; 369 int i; 370 371 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 372 fc_dma_unmap_single(tgtport->dev, 373 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 374 DMA_TO_DEVICE); 375 kfree(iod->rqstbuf); 376 list_del(&iod->ls_list); 377 } 378 kfree(tgtport->iod); 379 } 380 381 static struct nvmet_fc_ls_iod * 382 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 383 { 384 static struct nvmet_fc_ls_iod *iod; 385 unsigned long flags; 386 387 spin_lock_irqsave(&tgtport->lock, flags); 388 iod = list_first_entry_or_null(&tgtport->ls_list, 389 struct nvmet_fc_ls_iod, ls_list); 390 if (iod) 391 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 392 spin_unlock_irqrestore(&tgtport->lock, flags); 393 return iod; 394 } 395 396 397 static void 398 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 399 struct nvmet_fc_ls_iod *iod) 400 { 401 unsigned long flags; 402 403 spin_lock_irqsave(&tgtport->lock, flags); 404 list_move(&iod->ls_list, &tgtport->ls_list); 405 spin_unlock_irqrestore(&tgtport->lock, flags); 406 } 407 408 static void 409 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 410 struct nvmet_fc_tgt_queue *queue) 411 { 412 struct nvmet_fc_fcp_iod *fod = queue->fod; 413 int i; 414 415 for (i = 0; i < queue->sqsize; fod++, i++) { 416 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); 417 fod->tgtport = tgtport; 418 fod->queue = queue; 419 fod->active = false; 420 list_add_tail(&fod->fcp_list, &queue->fod_list); 421 spin_lock_init(&fod->flock); 422 423 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 424 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 425 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 426 list_del(&fod->fcp_list); 427 for (fod--, i--; i >= 0; fod--, i--) { 428 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 429 sizeof(fod->rspiubuf), 430 DMA_TO_DEVICE); 431 fod->rspdma = 0L; 432 list_del(&fod->fcp_list); 433 } 434 435 return; 436 } 437 } 438 } 439 440 static void 441 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 442 struct nvmet_fc_tgt_queue *queue) 443 { 444 struct nvmet_fc_fcp_iod *fod = queue->fod; 445 int i; 446 447 for (i = 0; i < queue->sqsize; fod++, i++) { 448 if (fod->rspdma) 449 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 450 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 451 } 452 } 453 454 static struct nvmet_fc_fcp_iod * 455 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 456 { 457 static struct nvmet_fc_fcp_iod *fod; 458 unsigned long flags; 459 460 spin_lock_irqsave(&queue->qlock, flags); 461 fod = list_first_entry_or_null(&queue->fod_list, 462 struct nvmet_fc_fcp_iod, fcp_list); 463 if (fod) { 464 list_del(&fod->fcp_list); 465 fod->active = true; 466 fod->abort = false; 467 /* 468 * no queue reference is taken, as it was taken by the 469 * queue lookup just prior to the allocation. The iod 470 * will "inherit" that reference. 471 */ 472 } 473 spin_unlock_irqrestore(&queue->qlock, flags); 474 return fod; 475 } 476 477 478 static void 479 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 480 struct nvmet_fc_fcp_iod *fod) 481 { 482 unsigned long flags; 483 484 spin_lock_irqsave(&queue->qlock, flags); 485 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 486 fod->active = false; 487 spin_unlock_irqrestore(&queue->qlock, flags); 488 489 /* 490 * release the reference taken at queue lookup and fod allocation 491 */ 492 nvmet_fc_tgt_q_put(queue); 493 } 494 495 static int 496 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) 497 { 498 int cpu, idx, cnt; 499 500 if (!(tgtport->ops->target_features & 501 NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED) || 502 tgtport->ops->max_hw_queues == 1) 503 return WORK_CPU_UNBOUND; 504 505 /* Simple cpu selection based on qid modulo active cpu count */ 506 idx = !qid ? 0 : (qid - 1) % num_active_cpus(); 507 508 /* find the n'th active cpu */ 509 for (cpu = 0, cnt = 0; ; ) { 510 if (cpu_active(cpu)) { 511 if (cnt == idx) 512 break; 513 cnt++; 514 } 515 cpu = (cpu + 1) % num_possible_cpus(); 516 } 517 518 return cpu; 519 } 520 521 static struct nvmet_fc_tgt_queue * 522 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 523 u16 qid, u16 sqsize) 524 { 525 struct nvmet_fc_tgt_queue *queue; 526 unsigned long flags; 527 int ret; 528 529 if (qid >= NVMET_NR_QUEUES) 530 return NULL; 531 532 queue = kzalloc((sizeof(*queue) + 533 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 534 GFP_KERNEL); 535 if (!queue) 536 return NULL; 537 538 if (!nvmet_fc_tgt_a_get(assoc)) 539 goto out_free_queue; 540 541 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 542 assoc->tgtport->fc_target_port.port_num, 543 assoc->a_id, qid); 544 if (!queue->work_q) 545 goto out_a_put; 546 547 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 548 queue->qid = qid; 549 queue->sqsize = sqsize; 550 queue->assoc = assoc; 551 queue->port = assoc->tgtport->port; 552 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); 553 INIT_LIST_HEAD(&queue->fod_list); 554 atomic_set(&queue->connected, 0); 555 atomic_set(&queue->sqtail, 0); 556 atomic_set(&queue->rsn, 1); 557 atomic_set(&queue->zrspcnt, 0); 558 spin_lock_init(&queue->qlock); 559 kref_init(&queue->ref); 560 561 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 562 563 ret = nvmet_sq_init(&queue->nvme_sq); 564 if (ret) 565 goto out_fail_iodlist; 566 567 WARN_ON(assoc->queues[qid]); 568 spin_lock_irqsave(&assoc->tgtport->lock, flags); 569 assoc->queues[qid] = queue; 570 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 571 572 return queue; 573 574 out_fail_iodlist: 575 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 576 destroy_workqueue(queue->work_q); 577 out_a_put: 578 nvmet_fc_tgt_a_put(assoc); 579 out_free_queue: 580 kfree(queue); 581 return NULL; 582 } 583 584 585 static void 586 nvmet_fc_tgt_queue_free(struct kref *ref) 587 { 588 struct nvmet_fc_tgt_queue *queue = 589 container_of(ref, struct nvmet_fc_tgt_queue, ref); 590 unsigned long flags; 591 592 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 593 queue->assoc->queues[queue->qid] = NULL; 594 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 595 596 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 597 598 nvmet_fc_tgt_a_put(queue->assoc); 599 600 destroy_workqueue(queue->work_q); 601 602 kfree(queue); 603 } 604 605 static void 606 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 607 { 608 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 609 } 610 611 static int 612 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 613 { 614 return kref_get_unless_zero(&queue->ref); 615 } 616 617 618 static void 619 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 620 struct nvmefc_tgt_fcp_req *fcpreq) 621 { 622 int ret; 623 624 fcpreq->op = NVMET_FCOP_ABORT; 625 fcpreq->offset = 0; 626 fcpreq->timeout = 0; 627 fcpreq->transfer_length = 0; 628 fcpreq->transferred_length = 0; 629 fcpreq->fcp_error = 0; 630 fcpreq->sg_cnt = 0; 631 632 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fcpreq); 633 if (ret) 634 /* should never reach here !! */ 635 WARN_ON(1); 636 } 637 638 639 static void 640 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 641 { 642 struct nvmet_fc_fcp_iod *fod = queue->fod; 643 unsigned long flags; 644 int i; 645 bool disconnect; 646 647 disconnect = atomic_xchg(&queue->connected, 0); 648 649 spin_lock_irqsave(&queue->qlock, flags); 650 /* about outstanding io's */ 651 for (i = 0; i < queue->sqsize; fod++, i++) { 652 if (fod->active) { 653 spin_lock(&fod->flock); 654 fod->abort = true; 655 spin_unlock(&fod->flock); 656 } 657 } 658 spin_unlock_irqrestore(&queue->qlock, flags); 659 660 flush_workqueue(queue->work_q); 661 662 if (disconnect) 663 nvmet_sq_destroy(&queue->nvme_sq); 664 665 nvmet_fc_tgt_q_put(queue); 666 } 667 668 static struct nvmet_fc_tgt_queue * 669 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 670 u64 connection_id) 671 { 672 struct nvmet_fc_tgt_assoc *assoc; 673 struct nvmet_fc_tgt_queue *queue; 674 u64 association_id = nvmet_fc_getassociationid(connection_id); 675 u16 qid = nvmet_fc_getqueueid(connection_id); 676 unsigned long flags; 677 678 spin_lock_irqsave(&tgtport->lock, flags); 679 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 680 if (association_id == assoc->association_id) { 681 queue = assoc->queues[qid]; 682 if (queue && 683 (!atomic_read(&queue->connected) || 684 !nvmet_fc_tgt_q_get(queue))) 685 queue = NULL; 686 spin_unlock_irqrestore(&tgtport->lock, flags); 687 return queue; 688 } 689 } 690 spin_unlock_irqrestore(&tgtport->lock, flags); 691 return NULL; 692 } 693 694 static struct nvmet_fc_tgt_assoc * 695 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 696 { 697 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 698 unsigned long flags; 699 u64 ran; 700 int idx; 701 bool needrandom = true; 702 703 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 704 if (!assoc) 705 return NULL; 706 707 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 708 if (idx < 0) 709 goto out_free_assoc; 710 711 if (!nvmet_fc_tgtport_get(tgtport)) 712 goto out_ida_put; 713 714 assoc->tgtport = tgtport; 715 assoc->a_id = idx; 716 INIT_LIST_HEAD(&assoc->a_list); 717 kref_init(&assoc->ref); 718 719 while (needrandom) { 720 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 721 ran = ran << BYTES_FOR_QID_SHIFT; 722 723 spin_lock_irqsave(&tgtport->lock, flags); 724 needrandom = false; 725 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 726 if (ran == tmpassoc->association_id) { 727 needrandom = true; 728 break; 729 } 730 if (!needrandom) { 731 assoc->association_id = ran; 732 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 733 } 734 spin_unlock_irqrestore(&tgtport->lock, flags); 735 } 736 737 return assoc; 738 739 out_ida_put: 740 ida_simple_remove(&tgtport->assoc_cnt, idx); 741 out_free_assoc: 742 kfree(assoc); 743 return NULL; 744 } 745 746 static void 747 nvmet_fc_target_assoc_free(struct kref *ref) 748 { 749 struct nvmet_fc_tgt_assoc *assoc = 750 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 751 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 752 unsigned long flags; 753 754 spin_lock_irqsave(&tgtport->lock, flags); 755 list_del(&assoc->a_list); 756 spin_unlock_irqrestore(&tgtport->lock, flags); 757 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 758 kfree(assoc); 759 nvmet_fc_tgtport_put(tgtport); 760 } 761 762 static void 763 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 764 { 765 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 766 } 767 768 static int 769 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 770 { 771 return kref_get_unless_zero(&assoc->ref); 772 } 773 774 static void 775 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 776 { 777 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 778 struct nvmet_fc_tgt_queue *queue; 779 unsigned long flags; 780 int i; 781 782 spin_lock_irqsave(&tgtport->lock, flags); 783 for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) { 784 queue = assoc->queues[i]; 785 if (queue) { 786 if (!nvmet_fc_tgt_q_get(queue)) 787 continue; 788 spin_unlock_irqrestore(&tgtport->lock, flags); 789 nvmet_fc_delete_target_queue(queue); 790 nvmet_fc_tgt_q_put(queue); 791 spin_lock_irqsave(&tgtport->lock, flags); 792 } 793 } 794 spin_unlock_irqrestore(&tgtport->lock, flags); 795 796 nvmet_fc_tgt_a_put(assoc); 797 } 798 799 static struct nvmet_fc_tgt_assoc * 800 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 801 u64 association_id) 802 { 803 struct nvmet_fc_tgt_assoc *assoc; 804 struct nvmet_fc_tgt_assoc *ret = NULL; 805 unsigned long flags; 806 807 spin_lock_irqsave(&tgtport->lock, flags); 808 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 809 if (association_id == assoc->association_id) { 810 ret = assoc; 811 nvmet_fc_tgt_a_get(assoc); 812 break; 813 } 814 } 815 spin_unlock_irqrestore(&tgtport->lock, flags); 816 817 return ret; 818 } 819 820 821 /** 822 * nvme_fc_register_targetport - transport entry point called by an 823 * LLDD to register the existence of a local 824 * NVME subystem FC port. 825 * @pinfo: pointer to information about the port to be registered 826 * @template: LLDD entrypoints and operational parameters for the port 827 * @dev: physical hardware device node port corresponds to. Will be 828 * used for DMA mappings 829 * @portptr: pointer to a local port pointer. Upon success, the routine 830 * will allocate a nvme_fc_local_port structure and place its 831 * address in the local port pointer. Upon failure, local port 832 * pointer will be set to NULL. 833 * 834 * Returns: 835 * a completion status. Must be 0 upon success; a negative errno 836 * (ex: -ENXIO) upon failure. 837 */ 838 int 839 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 840 struct nvmet_fc_target_template *template, 841 struct device *dev, 842 struct nvmet_fc_target_port **portptr) 843 { 844 struct nvmet_fc_tgtport *newrec; 845 unsigned long flags; 846 int ret, idx; 847 848 if (!template->xmt_ls_rsp || !template->fcp_op || 849 !template->targetport_delete || 850 !template->max_hw_queues || !template->max_sgl_segments || 851 !template->max_dif_sgl_segments || !template->dma_boundary) { 852 ret = -EINVAL; 853 goto out_regtgt_failed; 854 } 855 856 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 857 GFP_KERNEL); 858 if (!newrec) { 859 ret = -ENOMEM; 860 goto out_regtgt_failed; 861 } 862 863 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 864 if (idx < 0) { 865 ret = -ENOSPC; 866 goto out_fail_kfree; 867 } 868 869 if (!get_device(dev) && dev) { 870 ret = -ENODEV; 871 goto out_ida_put; 872 } 873 874 newrec->fc_target_port.node_name = pinfo->node_name; 875 newrec->fc_target_port.port_name = pinfo->port_name; 876 newrec->fc_target_port.private = &newrec[1]; 877 newrec->fc_target_port.port_id = pinfo->port_id; 878 newrec->fc_target_port.port_num = idx; 879 INIT_LIST_HEAD(&newrec->tgt_list); 880 newrec->dev = dev; 881 newrec->ops = template; 882 spin_lock_init(&newrec->lock); 883 INIT_LIST_HEAD(&newrec->ls_list); 884 INIT_LIST_HEAD(&newrec->ls_busylist); 885 INIT_LIST_HEAD(&newrec->assoc_list); 886 kref_init(&newrec->ref); 887 ida_init(&newrec->assoc_cnt); 888 889 ret = nvmet_fc_alloc_ls_iodlist(newrec); 890 if (ret) { 891 ret = -ENOMEM; 892 goto out_free_newrec; 893 } 894 895 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 896 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 897 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 898 899 *portptr = &newrec->fc_target_port; 900 return 0; 901 902 out_free_newrec: 903 put_device(dev); 904 out_ida_put: 905 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 906 out_fail_kfree: 907 kfree(newrec); 908 out_regtgt_failed: 909 *portptr = NULL; 910 return ret; 911 } 912 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 913 914 915 static void 916 nvmet_fc_free_tgtport(struct kref *ref) 917 { 918 struct nvmet_fc_tgtport *tgtport = 919 container_of(ref, struct nvmet_fc_tgtport, ref); 920 struct device *dev = tgtport->dev; 921 unsigned long flags; 922 923 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 924 list_del(&tgtport->tgt_list); 925 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 926 927 nvmet_fc_free_ls_iodlist(tgtport); 928 929 /* let the LLDD know we've finished tearing it down */ 930 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 931 932 ida_simple_remove(&nvmet_fc_tgtport_cnt, 933 tgtport->fc_target_port.port_num); 934 935 ida_destroy(&tgtport->assoc_cnt); 936 937 kfree(tgtport); 938 939 put_device(dev); 940 } 941 942 static void 943 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 944 { 945 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 946 } 947 948 static int 949 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 950 { 951 return kref_get_unless_zero(&tgtport->ref); 952 } 953 954 static void 955 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 956 { 957 struct nvmet_fc_tgt_assoc *assoc, *next; 958 unsigned long flags; 959 960 spin_lock_irqsave(&tgtport->lock, flags); 961 list_for_each_entry_safe(assoc, next, 962 &tgtport->assoc_list, a_list) { 963 if (!nvmet_fc_tgt_a_get(assoc)) 964 continue; 965 spin_unlock_irqrestore(&tgtport->lock, flags); 966 nvmet_fc_delete_target_assoc(assoc); 967 nvmet_fc_tgt_a_put(assoc); 968 spin_lock_irqsave(&tgtport->lock, flags); 969 } 970 spin_unlock_irqrestore(&tgtport->lock, flags); 971 } 972 973 /* 974 * nvmet layer has called to terminate an association 975 */ 976 static void 977 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 978 { 979 struct nvmet_fc_tgtport *tgtport, *next; 980 struct nvmet_fc_tgt_assoc *assoc; 981 struct nvmet_fc_tgt_queue *queue; 982 unsigned long flags; 983 bool found_ctrl = false; 984 985 /* this is a bit ugly, but don't want to make locks layered */ 986 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 987 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 988 tgt_list) { 989 if (!nvmet_fc_tgtport_get(tgtport)) 990 continue; 991 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 992 993 spin_lock_irqsave(&tgtport->lock, flags); 994 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 995 queue = assoc->queues[0]; 996 if (queue && queue->nvme_sq.ctrl == ctrl) { 997 if (nvmet_fc_tgt_a_get(assoc)) 998 found_ctrl = true; 999 break; 1000 } 1001 } 1002 spin_unlock_irqrestore(&tgtport->lock, flags); 1003 1004 nvmet_fc_tgtport_put(tgtport); 1005 1006 if (found_ctrl) { 1007 nvmet_fc_delete_target_assoc(assoc); 1008 nvmet_fc_tgt_a_put(assoc); 1009 return; 1010 } 1011 1012 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1013 } 1014 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1015 } 1016 1017 /** 1018 * nvme_fc_unregister_targetport - transport entry point called by an 1019 * LLDD to deregister/remove a previously 1020 * registered a local NVME subsystem FC port. 1021 * @tgtport: pointer to the (registered) target port that is to be 1022 * deregistered. 1023 * 1024 * Returns: 1025 * a completion status. Must be 0 upon success; a negative errno 1026 * (ex: -ENXIO) upon failure. 1027 */ 1028 int 1029 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1030 { 1031 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1032 1033 /* terminate any outstanding associations */ 1034 __nvmet_fc_free_assocs(tgtport); 1035 1036 nvmet_fc_tgtport_put(tgtport); 1037 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1041 1042 1043 /* *********************** FC-NVME LS Handling **************************** */ 1044 1045 1046 static void 1047 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, u32 desc_len, u8 rqst_ls_cmd) 1048 { 1049 struct fcnvme_ls_acc_hdr *acc = buf; 1050 1051 acc->w0.ls_cmd = ls_cmd; 1052 acc->desc_list_len = desc_len; 1053 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1054 acc->rqst.desc_len = 1055 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1056 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1057 } 1058 1059 static int 1060 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1061 u8 reason, u8 explanation, u8 vendor) 1062 { 1063 struct fcnvme_ls_rjt *rjt = buf; 1064 1065 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1066 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1067 ls_cmd); 1068 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1069 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1070 rjt->rjt.reason_code = reason; 1071 rjt->rjt.reason_explanation = explanation; 1072 rjt->rjt.vendor = vendor; 1073 1074 return sizeof(struct fcnvme_ls_rjt); 1075 } 1076 1077 /* Validation Error indexes into the string table below */ 1078 enum { 1079 VERR_NO_ERROR = 0, 1080 VERR_CR_ASSOC_LEN = 1, 1081 VERR_CR_ASSOC_RQST_LEN = 2, 1082 VERR_CR_ASSOC_CMD = 3, 1083 VERR_CR_ASSOC_CMD_LEN = 4, 1084 VERR_ERSP_RATIO = 5, 1085 VERR_ASSOC_ALLOC_FAIL = 6, 1086 VERR_QUEUE_ALLOC_FAIL = 7, 1087 VERR_CR_CONN_LEN = 8, 1088 VERR_CR_CONN_RQST_LEN = 9, 1089 VERR_ASSOC_ID = 10, 1090 VERR_ASSOC_ID_LEN = 11, 1091 VERR_NO_ASSOC = 12, 1092 VERR_CONN_ID = 13, 1093 VERR_CONN_ID_LEN = 14, 1094 VERR_NO_CONN = 15, 1095 VERR_CR_CONN_CMD = 16, 1096 VERR_CR_CONN_CMD_LEN = 17, 1097 VERR_DISCONN_LEN = 18, 1098 VERR_DISCONN_RQST_LEN = 19, 1099 VERR_DISCONN_CMD = 20, 1100 VERR_DISCONN_CMD_LEN = 21, 1101 VERR_DISCONN_SCOPE = 22, 1102 VERR_RS_LEN = 23, 1103 VERR_RS_RQST_LEN = 24, 1104 VERR_RS_CMD = 25, 1105 VERR_RS_CMD_LEN = 26, 1106 VERR_RS_RCTL = 27, 1107 VERR_RS_RO = 28, 1108 }; 1109 1110 static char *validation_errors[] = { 1111 "OK", 1112 "Bad CR_ASSOC Length", 1113 "Bad CR_ASSOC Rqst Length", 1114 "Not CR_ASSOC Cmd", 1115 "Bad CR_ASSOC Cmd Length", 1116 "Bad Ersp Ratio", 1117 "Association Allocation Failed", 1118 "Queue Allocation Failed", 1119 "Bad CR_CONN Length", 1120 "Bad CR_CONN Rqst Length", 1121 "Not Association ID", 1122 "Bad Association ID Length", 1123 "No Association", 1124 "Not Connection ID", 1125 "Bad Connection ID Length", 1126 "No Connection", 1127 "Not CR_CONN Cmd", 1128 "Bad CR_CONN Cmd Length", 1129 "Bad DISCONN Length", 1130 "Bad DISCONN Rqst Length", 1131 "Not DISCONN Cmd", 1132 "Bad DISCONN Cmd Length", 1133 "Bad Disconnect Scope", 1134 "Bad RS Length", 1135 "Bad RS Rqst Length", 1136 "Not RS Cmd", 1137 "Bad RS Cmd Length", 1138 "Bad RS R_CTL", 1139 "Bad RS Relative Offset", 1140 }; 1141 1142 static void 1143 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1144 struct nvmet_fc_ls_iod *iod) 1145 { 1146 struct fcnvme_ls_cr_assoc_rqst *rqst = 1147 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1148 struct fcnvme_ls_cr_assoc_acc *acc = 1149 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1150 struct nvmet_fc_tgt_queue *queue; 1151 int ret = 0; 1152 1153 memset(acc, 0, sizeof(*acc)); 1154 1155 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_assoc_rqst)) 1156 ret = VERR_CR_ASSOC_LEN; 1157 else if (rqst->desc_list_len != 1158 fcnvme_lsdesc_len( 1159 sizeof(struct fcnvme_ls_cr_assoc_rqst))) 1160 ret = VERR_CR_ASSOC_RQST_LEN; 1161 else if (rqst->assoc_cmd.desc_tag != 1162 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1163 ret = VERR_CR_ASSOC_CMD; 1164 else if (rqst->assoc_cmd.desc_len != 1165 fcnvme_lsdesc_len( 1166 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd))) 1167 ret = VERR_CR_ASSOC_CMD_LEN; 1168 else if (!rqst->assoc_cmd.ersp_ratio || 1169 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1170 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1171 ret = VERR_ERSP_RATIO; 1172 1173 else { 1174 /* new association w/ admin queue */ 1175 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1176 if (!iod->assoc) 1177 ret = VERR_ASSOC_ALLOC_FAIL; 1178 else { 1179 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1180 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1181 if (!queue) 1182 ret = VERR_QUEUE_ALLOC_FAIL; 1183 } 1184 } 1185 1186 if (ret) { 1187 dev_err(tgtport->dev, 1188 "Create Association LS failed: %s\n", 1189 validation_errors[ret]); 1190 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1191 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1192 ELS_RJT_LOGIC, 1193 ELS_EXPL_NONE, 0); 1194 return; 1195 } 1196 1197 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1198 atomic_set(&queue->connected, 1); 1199 queue->sqhd = 0; /* best place to init value */ 1200 1201 /* format a response */ 1202 1203 iod->lsreq->rsplen = sizeof(*acc); 1204 1205 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1206 fcnvme_lsdesc_len( 1207 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1208 FCNVME_LS_CREATE_ASSOCIATION); 1209 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1210 acc->associd.desc_len = 1211 fcnvme_lsdesc_len( 1212 sizeof(struct fcnvme_lsdesc_assoc_id)); 1213 acc->associd.association_id = 1214 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1215 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1216 acc->connectid.desc_len = 1217 fcnvme_lsdesc_len( 1218 sizeof(struct fcnvme_lsdesc_conn_id)); 1219 acc->connectid.connection_id = acc->associd.association_id; 1220 } 1221 1222 static void 1223 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1224 struct nvmet_fc_ls_iod *iod) 1225 { 1226 struct fcnvme_ls_cr_conn_rqst *rqst = 1227 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1228 struct fcnvme_ls_cr_conn_acc *acc = 1229 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1230 struct nvmet_fc_tgt_queue *queue; 1231 int ret = 0; 1232 1233 memset(acc, 0, sizeof(*acc)); 1234 1235 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1236 ret = VERR_CR_CONN_LEN; 1237 else if (rqst->desc_list_len != 1238 fcnvme_lsdesc_len( 1239 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1240 ret = VERR_CR_CONN_RQST_LEN; 1241 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1242 ret = VERR_ASSOC_ID; 1243 else if (rqst->associd.desc_len != 1244 fcnvme_lsdesc_len( 1245 sizeof(struct fcnvme_lsdesc_assoc_id))) 1246 ret = VERR_ASSOC_ID_LEN; 1247 else if (rqst->connect_cmd.desc_tag != 1248 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1249 ret = VERR_CR_CONN_CMD; 1250 else if (rqst->connect_cmd.desc_len != 1251 fcnvme_lsdesc_len( 1252 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1253 ret = VERR_CR_CONN_CMD_LEN; 1254 else if (!rqst->connect_cmd.ersp_ratio || 1255 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1256 be16_to_cpu(rqst->connect_cmd.sqsize))) 1257 ret = VERR_ERSP_RATIO; 1258 1259 else { 1260 /* new io queue */ 1261 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1262 be64_to_cpu(rqst->associd.association_id)); 1263 if (!iod->assoc) 1264 ret = VERR_NO_ASSOC; 1265 else { 1266 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1267 be16_to_cpu(rqst->connect_cmd.qid), 1268 be16_to_cpu(rqst->connect_cmd.sqsize)); 1269 if (!queue) 1270 ret = VERR_QUEUE_ALLOC_FAIL; 1271 1272 /* release get taken in nvmet_fc_find_target_assoc */ 1273 nvmet_fc_tgt_a_put(iod->assoc); 1274 } 1275 } 1276 1277 if (ret) { 1278 dev_err(tgtport->dev, 1279 "Create Connection LS failed: %s\n", 1280 validation_errors[ret]); 1281 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1282 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1283 (ret == VERR_NO_ASSOC) ? 1284 ELS_RJT_PROT : ELS_RJT_LOGIC, 1285 ELS_EXPL_NONE, 0); 1286 return; 1287 } 1288 1289 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1290 atomic_set(&queue->connected, 1); 1291 queue->sqhd = 0; /* best place to init value */ 1292 1293 /* format a response */ 1294 1295 iod->lsreq->rsplen = sizeof(*acc); 1296 1297 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1298 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1299 FCNVME_LS_CREATE_CONNECTION); 1300 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1301 acc->connectid.desc_len = 1302 fcnvme_lsdesc_len( 1303 sizeof(struct fcnvme_lsdesc_conn_id)); 1304 acc->connectid.connection_id = 1305 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1306 be16_to_cpu(rqst->connect_cmd.qid))); 1307 } 1308 1309 static void 1310 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1311 struct nvmet_fc_ls_iod *iod) 1312 { 1313 struct fcnvme_ls_disconnect_rqst *rqst = 1314 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1315 struct fcnvme_ls_disconnect_acc *acc = 1316 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1317 struct nvmet_fc_tgt_queue *queue = NULL; 1318 struct nvmet_fc_tgt_assoc *assoc; 1319 int ret = 0; 1320 bool del_assoc = false; 1321 1322 memset(acc, 0, sizeof(*acc)); 1323 1324 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1325 ret = VERR_DISCONN_LEN; 1326 else if (rqst->desc_list_len != 1327 fcnvme_lsdesc_len( 1328 sizeof(struct fcnvme_ls_disconnect_rqst))) 1329 ret = VERR_DISCONN_RQST_LEN; 1330 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1331 ret = VERR_ASSOC_ID; 1332 else if (rqst->associd.desc_len != 1333 fcnvme_lsdesc_len( 1334 sizeof(struct fcnvme_lsdesc_assoc_id))) 1335 ret = VERR_ASSOC_ID_LEN; 1336 else if (rqst->discon_cmd.desc_tag != 1337 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1338 ret = VERR_DISCONN_CMD; 1339 else if (rqst->discon_cmd.desc_len != 1340 fcnvme_lsdesc_len( 1341 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1342 ret = VERR_DISCONN_CMD_LEN; 1343 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1344 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1345 ret = VERR_DISCONN_SCOPE; 1346 else { 1347 /* match an active association */ 1348 assoc = nvmet_fc_find_target_assoc(tgtport, 1349 be64_to_cpu(rqst->associd.association_id)); 1350 iod->assoc = assoc; 1351 if (assoc) { 1352 if (rqst->discon_cmd.scope == 1353 FCNVME_DISCONN_CONNECTION) { 1354 queue = nvmet_fc_find_target_queue(tgtport, 1355 be64_to_cpu( 1356 rqst->discon_cmd.id)); 1357 if (!queue) { 1358 nvmet_fc_tgt_a_put(assoc); 1359 ret = VERR_NO_CONN; 1360 } 1361 } 1362 } else 1363 ret = VERR_NO_ASSOC; 1364 } 1365 1366 if (ret) { 1367 dev_err(tgtport->dev, 1368 "Disconnect LS failed: %s\n", 1369 validation_errors[ret]); 1370 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1371 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1372 (ret == 8) ? ELS_RJT_PROT : ELS_RJT_LOGIC, 1373 ELS_EXPL_NONE, 0); 1374 return; 1375 } 1376 1377 /* format a response */ 1378 1379 iod->lsreq->rsplen = sizeof(*acc); 1380 1381 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1382 fcnvme_lsdesc_len( 1383 sizeof(struct fcnvme_ls_disconnect_acc)), 1384 FCNVME_LS_DISCONNECT); 1385 1386 1387 /* are we to delete a Connection ID (queue) */ 1388 if (queue) { 1389 int qid = queue->qid; 1390 1391 nvmet_fc_delete_target_queue(queue); 1392 1393 /* release the get taken by find_target_queue */ 1394 nvmet_fc_tgt_q_put(queue); 1395 1396 /* tear association down if io queue terminated */ 1397 if (!qid) 1398 del_assoc = true; 1399 } 1400 1401 /* release get taken in nvmet_fc_find_target_assoc */ 1402 nvmet_fc_tgt_a_put(iod->assoc); 1403 1404 if (del_assoc) 1405 nvmet_fc_delete_target_assoc(iod->assoc); 1406 } 1407 1408 1409 /* *********************** NVME Ctrl Routines **************************** */ 1410 1411 1412 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1413 1414 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1415 1416 static void 1417 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1418 { 1419 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1420 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1421 1422 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1423 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1424 nvmet_fc_free_ls_iod(tgtport, iod); 1425 nvmet_fc_tgtport_put(tgtport); 1426 } 1427 1428 static void 1429 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1430 struct nvmet_fc_ls_iod *iod) 1431 { 1432 int ret; 1433 1434 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1435 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1436 1437 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1438 if (ret) 1439 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1440 } 1441 1442 /* 1443 * Actual processing routine for received FC-NVME LS Requests from the LLD 1444 */ 1445 static void 1446 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1447 struct nvmet_fc_ls_iod *iod) 1448 { 1449 struct fcnvme_ls_rqst_w0 *w0 = 1450 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1451 1452 iod->lsreq->nvmet_fc_private = iod; 1453 iod->lsreq->rspbuf = iod->rspbuf; 1454 iod->lsreq->rspdma = iod->rspdma; 1455 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1456 /* Be preventative. handlers will later set to valid length */ 1457 iod->lsreq->rsplen = 0; 1458 1459 iod->assoc = NULL; 1460 1461 /* 1462 * handlers: 1463 * parse request input, execute the request, and format the 1464 * LS response 1465 */ 1466 switch (w0->ls_cmd) { 1467 case FCNVME_LS_CREATE_ASSOCIATION: 1468 /* Creates Association and initial Admin Queue/Connection */ 1469 nvmet_fc_ls_create_association(tgtport, iod); 1470 break; 1471 case FCNVME_LS_CREATE_CONNECTION: 1472 /* Creates an IO Queue/Connection */ 1473 nvmet_fc_ls_create_connection(tgtport, iod); 1474 break; 1475 case FCNVME_LS_DISCONNECT: 1476 /* Terminate a Queue/Connection or the Association */ 1477 nvmet_fc_ls_disconnect(tgtport, iod); 1478 break; 1479 default: 1480 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1481 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1482 ELS_RJT_INVAL, ELS_EXPL_NONE, 0); 1483 } 1484 1485 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1486 } 1487 1488 /* 1489 * Actual processing routine for received FC-NVME LS Requests from the LLD 1490 */ 1491 static void 1492 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1493 { 1494 struct nvmet_fc_ls_iod *iod = 1495 container_of(work, struct nvmet_fc_ls_iod, work); 1496 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1497 1498 nvmet_fc_handle_ls_rqst(tgtport, iod); 1499 } 1500 1501 1502 /** 1503 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1504 * upon the reception of a NVME LS request. 1505 * 1506 * The nvmet-fc layer will copy payload to an internal structure for 1507 * processing. As such, upon completion of the routine, the LLDD may 1508 * immediately free/reuse the LS request buffer passed in the call. 1509 * 1510 * If this routine returns error, the LLDD should abort the exchange. 1511 * 1512 * @tgtport: pointer to the (registered) target port the LS was 1513 * received on. 1514 * @lsreq: pointer to a lsreq request structure to be used to reference 1515 * the exchange corresponding to the LS. 1516 * @lsreqbuf: pointer to the buffer containing the LS Request 1517 * @lsreqbuf_len: length, in bytes, of the received LS request 1518 */ 1519 int 1520 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1521 struct nvmefc_tgt_ls_req *lsreq, 1522 void *lsreqbuf, u32 lsreqbuf_len) 1523 { 1524 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1525 struct nvmet_fc_ls_iod *iod; 1526 1527 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1528 return -E2BIG; 1529 1530 if (!nvmet_fc_tgtport_get(tgtport)) 1531 return -ESHUTDOWN; 1532 1533 iod = nvmet_fc_alloc_ls_iod(tgtport); 1534 if (!iod) { 1535 nvmet_fc_tgtport_put(tgtport); 1536 return -ENOENT; 1537 } 1538 1539 iod->lsreq = lsreq; 1540 iod->fcpreq = NULL; 1541 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1542 iod->rqstdatalen = lsreqbuf_len; 1543 1544 schedule_work(&iod->work); 1545 1546 return 0; 1547 } 1548 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1549 1550 1551 /* 1552 * ********************** 1553 * Start of FCP handling 1554 * ********************** 1555 */ 1556 1557 static int 1558 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1559 { 1560 struct scatterlist *sg; 1561 struct page *page; 1562 unsigned int nent; 1563 u32 page_len, length; 1564 int i = 0; 1565 1566 length = fod->total_length; 1567 nent = DIV_ROUND_UP(length, PAGE_SIZE); 1568 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 1569 if (!sg) 1570 goto out; 1571 1572 sg_init_table(sg, nent); 1573 1574 while (length) { 1575 page_len = min_t(u32, length, PAGE_SIZE); 1576 1577 page = alloc_page(GFP_KERNEL); 1578 if (!page) 1579 goto out_free_pages; 1580 1581 sg_set_page(&sg[i], page, page_len, 0); 1582 length -= page_len; 1583 i++; 1584 } 1585 1586 fod->data_sg = sg; 1587 fod->data_sg_cnt = nent; 1588 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1589 ((fod->io_dir == NVMET_FCP_WRITE) ? 1590 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1591 /* note: write from initiator perspective */ 1592 1593 return 0; 1594 1595 out_free_pages: 1596 while (i > 0) { 1597 i--; 1598 __free_page(sg_page(&sg[i])); 1599 } 1600 kfree(sg); 1601 fod->data_sg = NULL; 1602 fod->data_sg_cnt = 0; 1603 out: 1604 return NVME_SC_INTERNAL; 1605 } 1606 1607 static void 1608 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1609 { 1610 struct scatterlist *sg; 1611 int count; 1612 1613 if (!fod->data_sg || !fod->data_sg_cnt) 1614 return; 1615 1616 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1617 ((fod->io_dir == NVMET_FCP_WRITE) ? 1618 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1619 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count) 1620 __free_page(sg_page(sg)); 1621 kfree(fod->data_sg); 1622 } 1623 1624 1625 static bool 1626 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1627 { 1628 u32 sqtail, used; 1629 1630 /* egad, this is ugly. And sqtail is just a best guess */ 1631 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1632 1633 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1634 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1635 } 1636 1637 /* 1638 * Prep RSP payload. 1639 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1640 */ 1641 static void 1642 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1643 struct nvmet_fc_fcp_iod *fod) 1644 { 1645 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1646 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1647 struct nvme_completion *cqe = &ersp->cqe; 1648 u32 *cqewd = (u32 *)cqe; 1649 bool send_ersp = false; 1650 u32 rsn, rspcnt, xfr_length; 1651 1652 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1653 xfr_length = fod->total_length; 1654 else 1655 xfr_length = fod->offset; 1656 1657 /* 1658 * check to see if we can send a 0's rsp. 1659 * Note: to send a 0's response, the NVME-FC host transport will 1660 * recreate the CQE. The host transport knows: sq id, SQHD (last 1661 * seen in an ersp), and command_id. Thus it will create a 1662 * zero-filled CQE with those known fields filled in. Transport 1663 * must send an ersp for any condition where the cqe won't match 1664 * this. 1665 * 1666 * Here are the FC-NVME mandated cases where we must send an ersp: 1667 * every N responses, where N=ersp_ratio 1668 * force fabric commands to send ersp's (not in FC-NVME but good 1669 * practice) 1670 * normal cmds: any time status is non-zero, or status is zero 1671 * but words 0 or 1 are non-zero. 1672 * the SQ is 90% or more full 1673 * the cmd is a fused command 1674 * transferred data length not equal to cmd iu length 1675 */ 1676 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1677 if (!(rspcnt % fod->queue->ersp_ratio) || 1678 sqe->opcode == nvme_fabrics_command || 1679 xfr_length != fod->total_length || 1680 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1681 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1682 queue_90percent_full(fod->queue, cqe->sq_head)) 1683 send_ersp = true; 1684 1685 /* re-set the fields */ 1686 fod->fcpreq->rspaddr = ersp; 1687 fod->fcpreq->rspdma = fod->rspdma; 1688 1689 if (!send_ersp) { 1690 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1691 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1692 } else { 1693 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1694 rsn = atomic_inc_return(&fod->queue->rsn); 1695 ersp->rsn = cpu_to_be32(rsn); 1696 ersp->xfrd_len = cpu_to_be32(xfr_length); 1697 fod->fcpreq->rsplen = sizeof(*ersp); 1698 } 1699 1700 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1701 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1702 } 1703 1704 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1705 1706 static void 1707 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1708 struct nvmet_fc_fcp_iod *fod) 1709 { 1710 int ret; 1711 1712 fod->fcpreq->op = NVMET_FCOP_RSP; 1713 fod->fcpreq->timeout = 0; 1714 1715 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1716 1717 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1718 if (ret) 1719 nvmet_fc_abort_op(tgtport, fod->fcpreq); 1720 } 1721 1722 static void 1723 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1724 struct nvmet_fc_fcp_iod *fod, u8 op) 1725 { 1726 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1727 struct scatterlist *sg, *datasg; 1728 u32 tlen, sg_off; 1729 int ret; 1730 1731 fcpreq->op = op; 1732 fcpreq->offset = fod->offset; 1733 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1734 tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024), 1735 (fod->total_length - fod->offset)); 1736 tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE); 1737 tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments 1738 * PAGE_SIZE); 1739 fcpreq->transfer_length = tlen; 1740 fcpreq->transferred_length = 0; 1741 fcpreq->fcp_error = 0; 1742 fcpreq->rsplen = 0; 1743 1744 fcpreq->sg_cnt = 0; 1745 1746 datasg = fod->next_sg; 1747 sg_off = fod->next_sg_offset; 1748 1749 for (sg = fcpreq->sg ; tlen; sg++) { 1750 *sg = *datasg; 1751 if (sg_off) { 1752 sg->offset += sg_off; 1753 sg->length -= sg_off; 1754 sg->dma_address += sg_off; 1755 sg_off = 0; 1756 } 1757 if (tlen < sg->length) { 1758 sg->length = tlen; 1759 fod->next_sg = datasg; 1760 fod->next_sg_offset += tlen; 1761 } else if (tlen == sg->length) { 1762 fod->next_sg_offset = 0; 1763 fod->next_sg = sg_next(datasg); 1764 } else { 1765 fod->next_sg_offset = 0; 1766 datasg = sg_next(datasg); 1767 } 1768 tlen -= sg->length; 1769 fcpreq->sg_cnt++; 1770 } 1771 1772 /* 1773 * If the last READDATA request: check if LLDD supports 1774 * combined xfr with response. 1775 */ 1776 if ((op == NVMET_FCOP_READDATA) && 1777 ((fod->offset + fcpreq->transfer_length) == fod->total_length) && 1778 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1779 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1780 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1781 } 1782 1783 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1784 if (ret) { 1785 /* 1786 * should be ok to set w/o lock as its in the thread of 1787 * execution (not an async timer routine) and doesn't 1788 * contend with any clearing action 1789 */ 1790 fod->abort = true; 1791 1792 if (op == NVMET_FCOP_WRITEDATA) 1793 nvmet_req_complete(&fod->req, 1794 NVME_SC_FC_TRANSPORT_ERROR); 1795 else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1796 fcpreq->fcp_error = ret; 1797 fcpreq->transferred_length = 0; 1798 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1799 } 1800 } 1801 } 1802 1803 static void 1804 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 1805 { 1806 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 1807 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1808 unsigned long flags; 1809 bool abort; 1810 1811 spin_lock_irqsave(&fod->flock, flags); 1812 abort = fod->abort; 1813 spin_unlock_irqrestore(&fod->flock, flags); 1814 1815 /* if in the middle of an io and we need to tear down */ 1816 if (abort && fcpreq->op != NVMET_FCOP_ABORT) { 1817 /* data no longer needed */ 1818 nvmet_fc_free_tgt_pgs(fod); 1819 1820 nvmet_req_complete(&fod->req, fcpreq->fcp_error); 1821 return; 1822 } 1823 1824 switch (fcpreq->op) { 1825 1826 case NVMET_FCOP_WRITEDATA: 1827 if (fcpreq->fcp_error || 1828 fcpreq->transferred_length != fcpreq->transfer_length) { 1829 nvmet_req_complete(&fod->req, 1830 NVME_SC_FC_TRANSPORT_ERROR); 1831 return; 1832 } 1833 1834 fod->offset += fcpreq->transferred_length; 1835 if (fod->offset != fod->total_length) { 1836 /* transfer the next chunk */ 1837 nvmet_fc_transfer_fcp_data(tgtport, fod, 1838 NVMET_FCOP_WRITEDATA); 1839 return; 1840 } 1841 1842 /* data transfer complete, resume with nvmet layer */ 1843 1844 fod->req.execute(&fod->req); 1845 1846 break; 1847 1848 case NVMET_FCOP_READDATA: 1849 case NVMET_FCOP_READDATA_RSP: 1850 if (fcpreq->fcp_error || 1851 fcpreq->transferred_length != fcpreq->transfer_length) { 1852 /* data no longer needed */ 1853 nvmet_fc_free_tgt_pgs(fod); 1854 1855 nvmet_fc_abort_op(tgtport, fod->fcpreq); 1856 return; 1857 } 1858 1859 /* success */ 1860 1861 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 1862 /* data no longer needed */ 1863 nvmet_fc_free_tgt_pgs(fod); 1864 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 1865 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1866 nvmet_fc_free_fcp_iod(fod->queue, fod); 1867 return; 1868 } 1869 1870 fod->offset += fcpreq->transferred_length; 1871 if (fod->offset != fod->total_length) { 1872 /* transfer the next chunk */ 1873 nvmet_fc_transfer_fcp_data(tgtport, fod, 1874 NVMET_FCOP_READDATA); 1875 return; 1876 } 1877 1878 /* data transfer complete, send response */ 1879 1880 /* data no longer needed */ 1881 nvmet_fc_free_tgt_pgs(fod); 1882 1883 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 1884 1885 break; 1886 1887 case NVMET_FCOP_RSP: 1888 case NVMET_FCOP_ABORT: 1889 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 1890 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1891 nvmet_fc_free_fcp_iod(fod->queue, fod); 1892 break; 1893 1894 default: 1895 nvmet_fc_free_tgt_pgs(fod); 1896 nvmet_fc_abort_op(tgtport, fod->fcpreq); 1897 break; 1898 } 1899 } 1900 1901 /* 1902 * actual completion handler after execution by the nvmet layer 1903 */ 1904 static void 1905 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 1906 struct nvmet_fc_fcp_iod *fod, int status) 1907 { 1908 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1909 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 1910 unsigned long flags; 1911 bool abort; 1912 1913 spin_lock_irqsave(&fod->flock, flags); 1914 abort = fod->abort; 1915 spin_unlock_irqrestore(&fod->flock, flags); 1916 1917 /* if we have a CQE, snoop the last sq_head value */ 1918 if (!status) 1919 fod->queue->sqhd = cqe->sq_head; 1920 1921 if (abort) { 1922 /* data no longer needed */ 1923 nvmet_fc_free_tgt_pgs(fod); 1924 1925 nvmet_fc_abort_op(tgtport, fod->fcpreq); 1926 return; 1927 } 1928 1929 /* if an error handling the cmd post initial parsing */ 1930 if (status) { 1931 /* fudge up a failed CQE status for our transport error */ 1932 memset(cqe, 0, sizeof(*cqe)); 1933 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 1934 cqe->sq_id = cpu_to_le16(fod->queue->qid); 1935 cqe->command_id = sqe->command_id; 1936 cqe->status = cpu_to_le16(status); 1937 } else { 1938 1939 /* 1940 * try to push the data even if the SQE status is non-zero. 1941 * There may be a status where data still was intended to 1942 * be moved 1943 */ 1944 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 1945 /* push the data over before sending rsp */ 1946 nvmet_fc_transfer_fcp_data(tgtport, fod, 1947 NVMET_FCOP_READDATA); 1948 return; 1949 } 1950 1951 /* writes & no data - fall thru */ 1952 } 1953 1954 /* data no longer needed */ 1955 nvmet_fc_free_tgt_pgs(fod); 1956 1957 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 1958 } 1959 1960 1961 static void 1962 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 1963 { 1964 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 1965 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1966 1967 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 1968 } 1969 1970 1971 /* 1972 * Actual processing routine for received FC-NVME LS Requests from the LLD 1973 */ 1974 void 1975 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 1976 struct nvmet_fc_fcp_iod *fod) 1977 { 1978 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 1979 int ret; 1980 1981 /* 1982 * Fused commands are currently not supported in the linux 1983 * implementation. 1984 * 1985 * As such, the implementation of the FC transport does not 1986 * look at the fused commands and order delivery to the upper 1987 * layer until we have both based on csn. 1988 */ 1989 1990 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 1991 1992 fod->total_length = be32_to_cpu(cmdiu->data_len); 1993 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 1994 fod->io_dir = NVMET_FCP_WRITE; 1995 if (!nvme_is_write(&cmdiu->sqe)) 1996 goto transport_error; 1997 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 1998 fod->io_dir = NVMET_FCP_READ; 1999 if (nvme_is_write(&cmdiu->sqe)) 2000 goto transport_error; 2001 } else { 2002 fod->io_dir = NVMET_FCP_NODATA; 2003 if (fod->total_length) 2004 goto transport_error; 2005 } 2006 2007 fod->req.cmd = &fod->cmdiubuf.sqe; 2008 fod->req.rsp = &fod->rspiubuf.cqe; 2009 fod->req.port = fod->queue->port; 2010 2011 /* ensure nvmet handlers will set cmd handler callback */ 2012 fod->req.execute = NULL; 2013 2014 /* clear any response payload */ 2015 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2016 2017 ret = nvmet_req_init(&fod->req, 2018 &fod->queue->nvme_cq, 2019 &fod->queue->nvme_sq, 2020 &nvmet_fc_tgt_fcp_ops); 2021 if (!ret) { /* bad SQE content */ 2022 nvmet_fc_abort_op(tgtport, fod->fcpreq); 2023 return; 2024 } 2025 2026 /* keep a running counter of tail position */ 2027 atomic_inc(&fod->queue->sqtail); 2028 2029 fod->data_sg = NULL; 2030 fod->data_sg_cnt = 0; 2031 if (fod->total_length) { 2032 ret = nvmet_fc_alloc_tgt_pgs(fod); 2033 if (ret) { 2034 nvmet_req_complete(&fod->req, ret); 2035 return; 2036 } 2037 } 2038 fod->req.sg = fod->data_sg; 2039 fod->req.sg_cnt = fod->data_sg_cnt; 2040 fod->offset = 0; 2041 fod->next_sg = fod->data_sg; 2042 fod->next_sg_offset = 0; 2043 2044 if (fod->io_dir == NVMET_FCP_WRITE) { 2045 /* pull the data over before invoking nvmet layer */ 2046 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2047 return; 2048 } 2049 2050 /* 2051 * Reads or no data: 2052 * 2053 * can invoke the nvmet_layer now. If read data, cmd completion will 2054 * push the data 2055 */ 2056 2057 fod->req.execute(&fod->req); 2058 2059 return; 2060 2061 transport_error: 2062 nvmet_fc_abort_op(tgtport, fod->fcpreq); 2063 } 2064 2065 /* 2066 * Actual processing routine for received FC-NVME LS Requests from the LLD 2067 */ 2068 static void 2069 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) 2070 { 2071 struct nvmet_fc_fcp_iod *fod = 2072 container_of(work, struct nvmet_fc_fcp_iod, work); 2073 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2074 2075 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2076 } 2077 2078 /** 2079 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2080 * upon the reception of a NVME FCP CMD IU. 2081 * 2082 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2083 * layer for processing. 2084 * 2085 * The nvmet-fc layer will copy cmd payload to an internal structure for 2086 * processing. As such, upon completion of the routine, the LLDD may 2087 * immediately free/reuse the CMD IU buffer passed in the call. 2088 * 2089 * If this routine returns error, the lldd should abort the exchange. 2090 * 2091 * @target_port: pointer to the (registered) target port the FCP CMD IU 2092 * was receive on. 2093 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2094 * the exchange corresponding to the FCP Exchange. 2095 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2096 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2097 */ 2098 int 2099 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2100 struct nvmefc_tgt_fcp_req *fcpreq, 2101 void *cmdiubuf, u32 cmdiubuf_len) 2102 { 2103 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2104 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2105 struct nvmet_fc_tgt_queue *queue; 2106 struct nvmet_fc_fcp_iod *fod; 2107 2108 /* validate iu, so the connection id can be used to find the queue */ 2109 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2110 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2111 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2112 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2113 return -EIO; 2114 2115 2116 queue = nvmet_fc_find_target_queue(tgtport, 2117 be64_to_cpu(cmdiu->connection_id)); 2118 if (!queue) 2119 return -ENOTCONN; 2120 2121 /* 2122 * note: reference taken by find_target_queue 2123 * After successful fod allocation, the fod will inherit the 2124 * ownership of that reference and will remove the reference 2125 * when the fod is freed. 2126 */ 2127 2128 fod = nvmet_fc_alloc_fcp_iod(queue); 2129 if (!fod) { 2130 /* release the queue lookup reference */ 2131 nvmet_fc_tgt_q_put(queue); 2132 return -ENOENT; 2133 } 2134 2135 fcpreq->nvmet_fc_private = fod; 2136 fod->fcpreq = fcpreq; 2137 /* 2138 * put all admin cmds on hw queue id 0. All io commands go to 2139 * the respective hw queue based on a modulo basis 2140 */ 2141 fcpreq->hwqid = queue->qid ? 2142 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 2143 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2144 2145 queue_work_on(queue->cpu, queue->work_q, &fod->work); 2146 2147 return 0; 2148 } 2149 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2150 2151 enum { 2152 FCT_TRADDR_ERR = 0, 2153 FCT_TRADDR_WWNN = 1 << 0, 2154 FCT_TRADDR_WWPN = 1 << 1, 2155 }; 2156 2157 struct nvmet_fc_traddr { 2158 u64 nn; 2159 u64 pn; 2160 }; 2161 2162 static const match_table_t traddr_opt_tokens = { 2163 { FCT_TRADDR_WWNN, "nn-%s" }, 2164 { FCT_TRADDR_WWPN, "pn-%s" }, 2165 { FCT_TRADDR_ERR, NULL } 2166 }; 2167 2168 static int 2169 nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf) 2170 { 2171 substring_t args[MAX_OPT_ARGS]; 2172 char *options, *o, *p; 2173 int token, ret = 0; 2174 u64 token64; 2175 2176 options = o = kstrdup(buf, GFP_KERNEL); 2177 if (!options) 2178 return -ENOMEM; 2179 2180 while ((p = strsep(&o, ",\n")) != NULL) { 2181 if (!*p) 2182 continue; 2183 2184 token = match_token(p, traddr_opt_tokens, args); 2185 switch (token) { 2186 case FCT_TRADDR_WWNN: 2187 if (match_u64(args, &token64)) { 2188 ret = -EINVAL; 2189 goto out; 2190 } 2191 traddr->nn = token64; 2192 break; 2193 case FCT_TRADDR_WWPN: 2194 if (match_u64(args, &token64)) { 2195 ret = -EINVAL; 2196 goto out; 2197 } 2198 traddr->pn = token64; 2199 break; 2200 default: 2201 pr_warn("unknown traddr token or missing value '%s'\n", 2202 p); 2203 ret = -EINVAL; 2204 goto out; 2205 } 2206 } 2207 2208 out: 2209 kfree(options); 2210 return ret; 2211 } 2212 2213 static int 2214 nvmet_fc_add_port(struct nvmet_port *port) 2215 { 2216 struct nvmet_fc_tgtport *tgtport; 2217 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2218 unsigned long flags; 2219 int ret; 2220 2221 /* validate the address info */ 2222 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2223 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2224 return -EINVAL; 2225 2226 /* map the traddr address info to a target port */ 2227 2228 ret = nvmet_fc_parse_traddr(&traddr, port->disc_addr.traddr); 2229 if (ret) 2230 return ret; 2231 2232 ret = -ENXIO; 2233 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2234 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2235 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2236 (tgtport->fc_target_port.port_name == traddr.pn)) { 2237 /* a FC port can only be 1 nvmet port id */ 2238 if (!tgtport->port) { 2239 tgtport->port = port; 2240 port->priv = tgtport; 2241 ret = 0; 2242 } else 2243 ret = -EALREADY; 2244 break; 2245 } 2246 } 2247 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2248 return ret; 2249 } 2250 2251 static void 2252 nvmet_fc_remove_port(struct nvmet_port *port) 2253 { 2254 struct nvmet_fc_tgtport *tgtport = port->priv; 2255 unsigned long flags; 2256 2257 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2258 if (tgtport->port == port) { 2259 nvmet_fc_tgtport_put(tgtport); 2260 tgtport->port = NULL; 2261 } 2262 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2263 } 2264 2265 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2266 .owner = THIS_MODULE, 2267 .type = NVMF_TRTYPE_FC, 2268 .msdbd = 1, 2269 .add_port = nvmet_fc_add_port, 2270 .remove_port = nvmet_fc_remove_port, 2271 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2272 .delete_ctrl = nvmet_fc_delete_ctrl, 2273 }; 2274 2275 static int __init nvmet_fc_init_module(void) 2276 { 2277 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2278 } 2279 2280 static void __exit nvmet_fc_exit_module(void) 2281 { 2282 /* sanity check - all lports should be removed */ 2283 if (!list_empty(&nvmet_fc_target_list)) 2284 pr_warn("%s: targetport list not empty\n", __func__); 2285 2286 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2287 2288 ida_destroy(&nvmet_fc_tgtport_cnt); 2289 } 2290 2291 module_init(nvmet_fc_init_module); 2292 module_exit(nvmet_fc_exit_module); 2293 2294 MODULE_LICENSE("GPL v2"); 2295