1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 4 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 62 #define NVMET_FC_MAX_XFR_SGENTS (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE) 63 64 enum nvmet_fcp_datadir { 65 NVMET_FCP_NODATA, 66 NVMET_FCP_WRITE, 67 NVMET_FCP_READ, 68 NVMET_FCP_ABORTED, 69 }; 70 71 struct nvmet_fc_fcp_iod { 72 struct nvmefc_tgt_fcp_req *fcpreq; 73 74 struct nvme_fc_cmd_iu cmdiubuf; 75 struct nvme_fc_ersp_iu rspiubuf; 76 dma_addr_t rspdma; 77 struct scatterlist *data_sg; 78 int data_sg_cnt; 79 u32 total_length; 80 u32 offset; 81 enum nvmet_fcp_datadir io_dir; 82 bool active; 83 bool abort; 84 bool aborted; 85 bool writedataactive; 86 spinlock_t flock; 87 88 struct nvmet_req req; 89 struct work_struct work; 90 struct work_struct done_work; 91 92 struct nvmet_fc_tgtport *tgtport; 93 struct nvmet_fc_tgt_queue *queue; 94 95 struct list_head fcp_list; /* tgtport->fcp_list */ 96 }; 97 98 struct nvmet_fc_tgtport { 99 100 struct nvmet_fc_target_port fc_target_port; 101 102 struct list_head tgt_list; /* nvmet_fc_target_list */ 103 struct device *dev; /* dev for dma mapping */ 104 struct nvmet_fc_target_template *ops; 105 106 struct nvmet_fc_ls_iod *iod; 107 spinlock_t lock; 108 struct list_head ls_list; 109 struct list_head ls_busylist; 110 struct list_head assoc_list; 111 struct ida assoc_cnt; 112 struct nvmet_port *port; 113 struct kref ref; 114 u32 max_sg_cnt; 115 }; 116 117 struct nvmet_fc_defer_fcp_req { 118 struct list_head req_list; 119 struct nvmefc_tgt_fcp_req *fcp_req; 120 }; 121 122 struct nvmet_fc_tgt_queue { 123 bool ninetypercent; 124 u16 qid; 125 u16 sqsize; 126 u16 ersp_ratio; 127 __le16 sqhd; 128 int cpu; 129 atomic_t connected; 130 atomic_t sqtail; 131 atomic_t zrspcnt; 132 atomic_t rsn; 133 spinlock_t qlock; 134 struct nvmet_port *port; 135 struct nvmet_cq nvme_cq; 136 struct nvmet_sq nvme_sq; 137 struct nvmet_fc_tgt_assoc *assoc; 138 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 139 struct list_head fod_list; 140 struct list_head pending_cmd_list; 141 struct list_head avail_defer_list; 142 struct workqueue_struct *work_q; 143 struct kref ref; 144 } __aligned(sizeof(unsigned long long)); 145 146 struct nvmet_fc_tgt_assoc { 147 u64 association_id; 148 u32 a_id; 149 struct nvmet_fc_tgtport *tgtport; 150 struct list_head a_list; 151 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES]; 152 struct kref ref; 153 }; 154 155 156 static inline int 157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 158 { 159 return (iodptr - iodptr->tgtport->iod); 160 } 161 162 static inline int 163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 164 { 165 return (fodptr - fodptr->queue->fod); 166 } 167 168 169 /* 170 * Association and Connection IDs: 171 * 172 * Association ID will have random number in upper 6 bytes and zero 173 * in lower 2 bytes 174 * 175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 176 * 177 * note: Association ID = Connection ID for queue 0 178 */ 179 #define BYTES_FOR_QID sizeof(u16) 180 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 181 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 182 183 static inline u64 184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 185 { 186 return (assoc->association_id | qid); 187 } 188 189 static inline u64 190 nvmet_fc_getassociationid(u64 connectionid) 191 { 192 return connectionid & ~NVMET_FC_QUEUEID_MASK; 193 } 194 195 static inline u16 196 nvmet_fc_getqueueid(u64 connectionid) 197 { 198 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 199 } 200 201 static inline struct nvmet_fc_tgtport * 202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 203 { 204 return container_of(targetport, struct nvmet_fc_tgtport, 205 fc_target_port); 206 } 207 208 static inline struct nvmet_fc_fcp_iod * 209 nvmet_req_to_fod(struct nvmet_req *nvme_req) 210 { 211 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 212 } 213 214 215 /* *************************** Globals **************************** */ 216 217 218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 219 220 static LIST_HEAD(nvmet_fc_target_list); 221 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 222 223 224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); 226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work); 227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 234 struct nvmet_fc_fcp_iod *fod); 235 236 237 /* *********************** FC-NVME DMA Handling **************************** */ 238 239 /* 240 * The fcloop device passes in a NULL device pointer. Real LLD's will 241 * pass in a valid device pointer. If NULL is passed to the dma mapping 242 * routines, depending on the platform, it may or may not succeed, and 243 * may crash. 244 * 245 * As such: 246 * Wrapper all the dma routines and check the dev pointer. 247 * 248 * If simple mappings (return just a dma address, we'll noop them, 249 * returning a dma address of 0. 250 * 251 * On more complex mappings (dma_map_sg), a pseudo routine fills 252 * in the scatter list, setting all dma addresses to 0. 253 */ 254 255 static inline dma_addr_t 256 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 257 enum dma_data_direction dir) 258 { 259 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 260 } 261 262 static inline int 263 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 264 { 265 return dev ? dma_mapping_error(dev, dma_addr) : 0; 266 } 267 268 static inline void 269 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 270 enum dma_data_direction dir) 271 { 272 if (dev) 273 dma_unmap_single(dev, addr, size, dir); 274 } 275 276 static inline void 277 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 278 enum dma_data_direction dir) 279 { 280 if (dev) 281 dma_sync_single_for_cpu(dev, addr, size, dir); 282 } 283 284 static inline void 285 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 286 enum dma_data_direction dir) 287 { 288 if (dev) 289 dma_sync_single_for_device(dev, addr, size, dir); 290 } 291 292 /* pseudo dma_map_sg call */ 293 static int 294 fc_map_sg(struct scatterlist *sg, int nents) 295 { 296 struct scatterlist *s; 297 int i; 298 299 WARN_ON(nents == 0 || sg[0].length == 0); 300 301 for_each_sg(sg, s, nents, i) { 302 s->dma_address = 0L; 303 #ifdef CONFIG_NEED_SG_DMA_LENGTH 304 s->dma_length = s->length; 305 #endif 306 } 307 return nents; 308 } 309 310 static inline int 311 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 312 enum dma_data_direction dir) 313 { 314 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 315 } 316 317 static inline void 318 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 319 enum dma_data_direction dir) 320 { 321 if (dev) 322 dma_unmap_sg(dev, sg, nents, dir); 323 } 324 325 326 /* *********************** FC-NVME Port Management ************************ */ 327 328 329 static int 330 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 331 { 332 struct nvmet_fc_ls_iod *iod; 333 int i; 334 335 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 336 GFP_KERNEL); 337 if (!iod) 338 return -ENOMEM; 339 340 tgtport->iod = iod; 341 342 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 343 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 344 iod->tgtport = tgtport; 345 list_add_tail(&iod->ls_list, &tgtport->ls_list); 346 347 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 348 GFP_KERNEL); 349 if (!iod->rqstbuf) 350 goto out_fail; 351 352 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 353 354 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 355 NVME_FC_MAX_LS_BUFFER_SIZE, 356 DMA_TO_DEVICE); 357 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 358 goto out_fail; 359 } 360 361 return 0; 362 363 out_fail: 364 kfree(iod->rqstbuf); 365 list_del(&iod->ls_list); 366 for (iod--, i--; i >= 0; iod--, i--) { 367 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 368 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 369 kfree(iod->rqstbuf); 370 list_del(&iod->ls_list); 371 } 372 373 kfree(iod); 374 375 return -EFAULT; 376 } 377 378 static void 379 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 380 { 381 struct nvmet_fc_ls_iod *iod = tgtport->iod; 382 int i; 383 384 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 385 fc_dma_unmap_single(tgtport->dev, 386 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 387 DMA_TO_DEVICE); 388 kfree(iod->rqstbuf); 389 list_del(&iod->ls_list); 390 } 391 kfree(tgtport->iod); 392 } 393 394 static struct nvmet_fc_ls_iod * 395 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 396 { 397 struct nvmet_fc_ls_iod *iod; 398 unsigned long flags; 399 400 spin_lock_irqsave(&tgtport->lock, flags); 401 iod = list_first_entry_or_null(&tgtport->ls_list, 402 struct nvmet_fc_ls_iod, ls_list); 403 if (iod) 404 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 405 spin_unlock_irqrestore(&tgtport->lock, flags); 406 return iod; 407 } 408 409 410 static void 411 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 412 struct nvmet_fc_ls_iod *iod) 413 { 414 unsigned long flags; 415 416 spin_lock_irqsave(&tgtport->lock, flags); 417 list_move(&iod->ls_list, &tgtport->ls_list); 418 spin_unlock_irqrestore(&tgtport->lock, flags); 419 } 420 421 static void 422 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 423 struct nvmet_fc_tgt_queue *queue) 424 { 425 struct nvmet_fc_fcp_iod *fod = queue->fod; 426 int i; 427 428 for (i = 0; i < queue->sqsize; fod++, i++) { 429 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); 430 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work); 431 fod->tgtport = tgtport; 432 fod->queue = queue; 433 fod->active = false; 434 fod->abort = false; 435 fod->aborted = false; 436 fod->fcpreq = NULL; 437 list_add_tail(&fod->fcp_list, &queue->fod_list); 438 spin_lock_init(&fod->flock); 439 440 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 441 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 442 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 443 list_del(&fod->fcp_list); 444 for (fod--, i--; i >= 0; fod--, i--) { 445 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 446 sizeof(fod->rspiubuf), 447 DMA_TO_DEVICE); 448 fod->rspdma = 0L; 449 list_del(&fod->fcp_list); 450 } 451 452 return; 453 } 454 } 455 } 456 457 static void 458 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 459 struct nvmet_fc_tgt_queue *queue) 460 { 461 struct nvmet_fc_fcp_iod *fod = queue->fod; 462 int i; 463 464 for (i = 0; i < queue->sqsize; fod++, i++) { 465 if (fod->rspdma) 466 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 467 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 468 } 469 } 470 471 static struct nvmet_fc_fcp_iod * 472 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 473 { 474 struct nvmet_fc_fcp_iod *fod; 475 476 lockdep_assert_held(&queue->qlock); 477 478 fod = list_first_entry_or_null(&queue->fod_list, 479 struct nvmet_fc_fcp_iod, fcp_list); 480 if (fod) { 481 list_del(&fod->fcp_list); 482 fod->active = true; 483 /* 484 * no queue reference is taken, as it was taken by the 485 * queue lookup just prior to the allocation. The iod 486 * will "inherit" that reference. 487 */ 488 } 489 return fod; 490 } 491 492 493 static void 494 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 495 struct nvmet_fc_tgt_queue *queue, 496 struct nvmefc_tgt_fcp_req *fcpreq) 497 { 498 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 499 500 /* 501 * put all admin cmds on hw queue id 0. All io commands go to 502 * the respective hw queue based on a modulo basis 503 */ 504 fcpreq->hwqid = queue->qid ? 505 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 506 507 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR) 508 queue_work_on(queue->cpu, queue->work_q, &fod->work); 509 else 510 nvmet_fc_handle_fcp_rqst(tgtport, fod); 511 } 512 513 static void 514 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 515 struct nvmet_fc_fcp_iod *fod) 516 { 517 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 518 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 519 struct nvmet_fc_defer_fcp_req *deferfcp; 520 unsigned long flags; 521 522 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 523 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 524 525 fcpreq->nvmet_fc_private = NULL; 526 527 fod->active = false; 528 fod->abort = false; 529 fod->aborted = false; 530 fod->writedataactive = false; 531 fod->fcpreq = NULL; 532 533 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 534 535 spin_lock_irqsave(&queue->qlock, flags); 536 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 537 struct nvmet_fc_defer_fcp_req, req_list); 538 if (!deferfcp) { 539 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 540 spin_unlock_irqrestore(&queue->qlock, flags); 541 542 /* Release reference taken at queue lookup and fod allocation */ 543 nvmet_fc_tgt_q_put(queue); 544 return; 545 } 546 547 /* Re-use the fod for the next pending cmd that was deferred */ 548 list_del(&deferfcp->req_list); 549 550 fcpreq = deferfcp->fcp_req; 551 552 /* deferfcp can be reused for another IO at a later date */ 553 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 554 555 spin_unlock_irqrestore(&queue->qlock, flags); 556 557 /* Save NVME CMD IO in fod */ 558 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 559 560 /* Setup new fcpreq to be processed */ 561 fcpreq->rspaddr = NULL; 562 fcpreq->rsplen = 0; 563 fcpreq->nvmet_fc_private = fod; 564 fod->fcpreq = fcpreq; 565 fod->active = true; 566 567 /* inform LLDD IO is now being processed */ 568 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 569 570 /* Submit deferred IO for processing */ 571 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 572 573 /* 574 * Leave the queue lookup get reference taken when 575 * fod was originally allocated. 576 */ 577 } 578 579 static int 580 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) 581 { 582 int cpu, idx, cnt; 583 584 if (tgtport->ops->max_hw_queues == 1) 585 return WORK_CPU_UNBOUND; 586 587 /* Simple cpu selection based on qid modulo active cpu count */ 588 idx = !qid ? 0 : (qid - 1) % num_active_cpus(); 589 590 /* find the n'th active cpu */ 591 for (cpu = 0, cnt = 0; ; ) { 592 if (cpu_active(cpu)) { 593 if (cnt == idx) 594 break; 595 cnt++; 596 } 597 cpu = (cpu + 1) % num_possible_cpus(); 598 } 599 600 return cpu; 601 } 602 603 static struct nvmet_fc_tgt_queue * 604 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 605 u16 qid, u16 sqsize) 606 { 607 struct nvmet_fc_tgt_queue *queue; 608 unsigned long flags; 609 int ret; 610 611 if (qid >= NVMET_NR_QUEUES) 612 return NULL; 613 614 queue = kzalloc((sizeof(*queue) + 615 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 616 GFP_KERNEL); 617 if (!queue) 618 return NULL; 619 620 if (!nvmet_fc_tgt_a_get(assoc)) 621 goto out_free_queue; 622 623 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 624 assoc->tgtport->fc_target_port.port_num, 625 assoc->a_id, qid); 626 if (!queue->work_q) 627 goto out_a_put; 628 629 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 630 queue->qid = qid; 631 queue->sqsize = sqsize; 632 queue->assoc = assoc; 633 queue->port = assoc->tgtport->port; 634 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); 635 INIT_LIST_HEAD(&queue->fod_list); 636 INIT_LIST_HEAD(&queue->avail_defer_list); 637 INIT_LIST_HEAD(&queue->pending_cmd_list); 638 atomic_set(&queue->connected, 0); 639 atomic_set(&queue->sqtail, 0); 640 atomic_set(&queue->rsn, 1); 641 atomic_set(&queue->zrspcnt, 0); 642 spin_lock_init(&queue->qlock); 643 kref_init(&queue->ref); 644 645 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 646 647 ret = nvmet_sq_init(&queue->nvme_sq); 648 if (ret) 649 goto out_fail_iodlist; 650 651 WARN_ON(assoc->queues[qid]); 652 spin_lock_irqsave(&assoc->tgtport->lock, flags); 653 assoc->queues[qid] = queue; 654 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 655 656 return queue; 657 658 out_fail_iodlist: 659 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 660 destroy_workqueue(queue->work_q); 661 out_a_put: 662 nvmet_fc_tgt_a_put(assoc); 663 out_free_queue: 664 kfree(queue); 665 return NULL; 666 } 667 668 669 static void 670 nvmet_fc_tgt_queue_free(struct kref *ref) 671 { 672 struct nvmet_fc_tgt_queue *queue = 673 container_of(ref, struct nvmet_fc_tgt_queue, ref); 674 unsigned long flags; 675 676 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 677 queue->assoc->queues[queue->qid] = NULL; 678 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 679 680 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 681 682 nvmet_fc_tgt_a_put(queue->assoc); 683 684 destroy_workqueue(queue->work_q); 685 686 kfree(queue); 687 } 688 689 static void 690 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 691 { 692 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 693 } 694 695 static int 696 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 697 { 698 return kref_get_unless_zero(&queue->ref); 699 } 700 701 702 static void 703 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 704 { 705 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 706 struct nvmet_fc_fcp_iod *fod = queue->fod; 707 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 708 unsigned long flags; 709 int i, writedataactive; 710 bool disconnect; 711 712 disconnect = atomic_xchg(&queue->connected, 0); 713 714 spin_lock_irqsave(&queue->qlock, flags); 715 /* about outstanding io's */ 716 for (i = 0; i < queue->sqsize; fod++, i++) { 717 if (fod->active) { 718 spin_lock(&fod->flock); 719 fod->abort = true; 720 writedataactive = fod->writedataactive; 721 spin_unlock(&fod->flock); 722 /* 723 * only call lldd abort routine if waiting for 724 * writedata. other outstanding ops should finish 725 * on their own. 726 */ 727 if (writedataactive) { 728 spin_lock(&fod->flock); 729 fod->aborted = true; 730 spin_unlock(&fod->flock); 731 tgtport->ops->fcp_abort( 732 &tgtport->fc_target_port, fod->fcpreq); 733 } 734 } 735 } 736 737 /* Cleanup defer'ed IOs in queue */ 738 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 739 req_list) { 740 list_del(&deferfcp->req_list); 741 kfree(deferfcp); 742 } 743 744 for (;;) { 745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 746 struct nvmet_fc_defer_fcp_req, req_list); 747 if (!deferfcp) 748 break; 749 750 list_del(&deferfcp->req_list); 751 spin_unlock_irqrestore(&queue->qlock, flags); 752 753 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 754 deferfcp->fcp_req); 755 756 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 757 deferfcp->fcp_req); 758 759 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 760 deferfcp->fcp_req); 761 762 kfree(deferfcp); 763 764 spin_lock_irqsave(&queue->qlock, flags); 765 } 766 spin_unlock_irqrestore(&queue->qlock, flags); 767 768 flush_workqueue(queue->work_q); 769 770 if (disconnect) 771 nvmet_sq_destroy(&queue->nvme_sq); 772 773 nvmet_fc_tgt_q_put(queue); 774 } 775 776 static struct nvmet_fc_tgt_queue * 777 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 778 u64 connection_id) 779 { 780 struct nvmet_fc_tgt_assoc *assoc; 781 struct nvmet_fc_tgt_queue *queue; 782 u64 association_id = nvmet_fc_getassociationid(connection_id); 783 u16 qid = nvmet_fc_getqueueid(connection_id); 784 unsigned long flags; 785 786 spin_lock_irqsave(&tgtport->lock, flags); 787 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 788 if (association_id == assoc->association_id) { 789 queue = assoc->queues[qid]; 790 if (queue && 791 (!atomic_read(&queue->connected) || 792 !nvmet_fc_tgt_q_get(queue))) 793 queue = NULL; 794 spin_unlock_irqrestore(&tgtport->lock, flags); 795 return queue; 796 } 797 } 798 spin_unlock_irqrestore(&tgtport->lock, flags); 799 return NULL; 800 } 801 802 static struct nvmet_fc_tgt_assoc * 803 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 804 { 805 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 806 unsigned long flags; 807 u64 ran; 808 int idx; 809 bool needrandom = true; 810 811 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 812 if (!assoc) 813 return NULL; 814 815 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 816 if (idx < 0) 817 goto out_free_assoc; 818 819 if (!nvmet_fc_tgtport_get(tgtport)) 820 goto out_ida_put; 821 822 assoc->tgtport = tgtport; 823 assoc->a_id = idx; 824 INIT_LIST_HEAD(&assoc->a_list); 825 kref_init(&assoc->ref); 826 827 while (needrandom) { 828 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 829 ran = ran << BYTES_FOR_QID_SHIFT; 830 831 spin_lock_irqsave(&tgtport->lock, flags); 832 needrandom = false; 833 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 834 if (ran == tmpassoc->association_id) { 835 needrandom = true; 836 break; 837 } 838 if (!needrandom) { 839 assoc->association_id = ran; 840 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 841 } 842 spin_unlock_irqrestore(&tgtport->lock, flags); 843 } 844 845 return assoc; 846 847 out_ida_put: 848 ida_simple_remove(&tgtport->assoc_cnt, idx); 849 out_free_assoc: 850 kfree(assoc); 851 return NULL; 852 } 853 854 static void 855 nvmet_fc_target_assoc_free(struct kref *ref) 856 { 857 struct nvmet_fc_tgt_assoc *assoc = 858 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 859 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 860 unsigned long flags; 861 862 spin_lock_irqsave(&tgtport->lock, flags); 863 list_del(&assoc->a_list); 864 spin_unlock_irqrestore(&tgtport->lock, flags); 865 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 866 kfree(assoc); 867 nvmet_fc_tgtport_put(tgtport); 868 } 869 870 static void 871 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 872 { 873 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 874 } 875 876 static int 877 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 878 { 879 return kref_get_unless_zero(&assoc->ref); 880 } 881 882 static void 883 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 884 { 885 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 886 struct nvmet_fc_tgt_queue *queue; 887 unsigned long flags; 888 int i; 889 890 spin_lock_irqsave(&tgtport->lock, flags); 891 for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) { 892 queue = assoc->queues[i]; 893 if (queue) { 894 if (!nvmet_fc_tgt_q_get(queue)) 895 continue; 896 spin_unlock_irqrestore(&tgtport->lock, flags); 897 nvmet_fc_delete_target_queue(queue); 898 nvmet_fc_tgt_q_put(queue); 899 spin_lock_irqsave(&tgtport->lock, flags); 900 } 901 } 902 spin_unlock_irqrestore(&tgtport->lock, flags); 903 904 nvmet_fc_tgt_a_put(assoc); 905 } 906 907 static struct nvmet_fc_tgt_assoc * 908 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 909 u64 association_id) 910 { 911 struct nvmet_fc_tgt_assoc *assoc; 912 struct nvmet_fc_tgt_assoc *ret = NULL; 913 unsigned long flags; 914 915 spin_lock_irqsave(&tgtport->lock, flags); 916 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 917 if (association_id == assoc->association_id) { 918 ret = assoc; 919 nvmet_fc_tgt_a_get(assoc); 920 break; 921 } 922 } 923 spin_unlock_irqrestore(&tgtport->lock, flags); 924 925 return ret; 926 } 927 928 929 /** 930 * nvme_fc_register_targetport - transport entry point called by an 931 * LLDD to register the existence of a local 932 * NVME subystem FC port. 933 * @pinfo: pointer to information about the port to be registered 934 * @template: LLDD entrypoints and operational parameters for the port 935 * @dev: physical hardware device node port corresponds to. Will be 936 * used for DMA mappings 937 * @portptr: pointer to a local port pointer. Upon success, the routine 938 * will allocate a nvme_fc_local_port structure and place its 939 * address in the local port pointer. Upon failure, local port 940 * pointer will be set to NULL. 941 * 942 * Returns: 943 * a completion status. Must be 0 upon success; a negative errno 944 * (ex: -ENXIO) upon failure. 945 */ 946 int 947 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 948 struct nvmet_fc_target_template *template, 949 struct device *dev, 950 struct nvmet_fc_target_port **portptr) 951 { 952 struct nvmet_fc_tgtport *newrec; 953 unsigned long flags; 954 int ret, idx; 955 956 if (!template->xmt_ls_rsp || !template->fcp_op || 957 !template->fcp_abort || 958 !template->fcp_req_release || !template->targetport_delete || 959 !template->max_hw_queues || !template->max_sgl_segments || 960 !template->max_dif_sgl_segments || !template->dma_boundary) { 961 ret = -EINVAL; 962 goto out_regtgt_failed; 963 } 964 965 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 966 GFP_KERNEL); 967 if (!newrec) { 968 ret = -ENOMEM; 969 goto out_regtgt_failed; 970 } 971 972 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 973 if (idx < 0) { 974 ret = -ENOSPC; 975 goto out_fail_kfree; 976 } 977 978 if (!get_device(dev) && dev) { 979 ret = -ENODEV; 980 goto out_ida_put; 981 } 982 983 newrec->fc_target_port.node_name = pinfo->node_name; 984 newrec->fc_target_port.port_name = pinfo->port_name; 985 newrec->fc_target_port.private = &newrec[1]; 986 newrec->fc_target_port.port_id = pinfo->port_id; 987 newrec->fc_target_port.port_num = idx; 988 INIT_LIST_HEAD(&newrec->tgt_list); 989 newrec->dev = dev; 990 newrec->ops = template; 991 spin_lock_init(&newrec->lock); 992 INIT_LIST_HEAD(&newrec->ls_list); 993 INIT_LIST_HEAD(&newrec->ls_busylist); 994 INIT_LIST_HEAD(&newrec->assoc_list); 995 kref_init(&newrec->ref); 996 ida_init(&newrec->assoc_cnt); 997 newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS, 998 template->max_sgl_segments); 999 1000 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1001 if (ret) { 1002 ret = -ENOMEM; 1003 goto out_free_newrec; 1004 } 1005 1006 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1007 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1008 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1009 1010 *portptr = &newrec->fc_target_port; 1011 return 0; 1012 1013 out_free_newrec: 1014 put_device(dev); 1015 out_ida_put: 1016 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1017 out_fail_kfree: 1018 kfree(newrec); 1019 out_regtgt_failed: 1020 *portptr = NULL; 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1024 1025 1026 static void 1027 nvmet_fc_free_tgtport(struct kref *ref) 1028 { 1029 struct nvmet_fc_tgtport *tgtport = 1030 container_of(ref, struct nvmet_fc_tgtport, ref); 1031 struct device *dev = tgtport->dev; 1032 unsigned long flags; 1033 1034 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1035 list_del(&tgtport->tgt_list); 1036 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1037 1038 nvmet_fc_free_ls_iodlist(tgtport); 1039 1040 /* let the LLDD know we've finished tearing it down */ 1041 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1042 1043 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1044 tgtport->fc_target_port.port_num); 1045 1046 ida_destroy(&tgtport->assoc_cnt); 1047 1048 kfree(tgtport); 1049 1050 put_device(dev); 1051 } 1052 1053 static void 1054 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1055 { 1056 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1057 } 1058 1059 static int 1060 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1061 { 1062 return kref_get_unless_zero(&tgtport->ref); 1063 } 1064 1065 static void 1066 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1067 { 1068 struct nvmet_fc_tgt_assoc *assoc, *next; 1069 unsigned long flags; 1070 1071 spin_lock_irqsave(&tgtport->lock, flags); 1072 list_for_each_entry_safe(assoc, next, 1073 &tgtport->assoc_list, a_list) { 1074 if (!nvmet_fc_tgt_a_get(assoc)) 1075 continue; 1076 spin_unlock_irqrestore(&tgtport->lock, flags); 1077 nvmet_fc_delete_target_assoc(assoc); 1078 nvmet_fc_tgt_a_put(assoc); 1079 spin_lock_irqsave(&tgtport->lock, flags); 1080 } 1081 spin_unlock_irqrestore(&tgtport->lock, flags); 1082 } 1083 1084 /* 1085 * nvmet layer has called to terminate an association 1086 */ 1087 static void 1088 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1089 { 1090 struct nvmet_fc_tgtport *tgtport, *next; 1091 struct nvmet_fc_tgt_assoc *assoc; 1092 struct nvmet_fc_tgt_queue *queue; 1093 unsigned long flags; 1094 bool found_ctrl = false; 1095 1096 /* this is a bit ugly, but don't want to make locks layered */ 1097 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1098 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1099 tgt_list) { 1100 if (!nvmet_fc_tgtport_get(tgtport)) 1101 continue; 1102 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1103 1104 spin_lock_irqsave(&tgtport->lock, flags); 1105 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1106 queue = assoc->queues[0]; 1107 if (queue && queue->nvme_sq.ctrl == ctrl) { 1108 if (nvmet_fc_tgt_a_get(assoc)) 1109 found_ctrl = true; 1110 break; 1111 } 1112 } 1113 spin_unlock_irqrestore(&tgtport->lock, flags); 1114 1115 nvmet_fc_tgtport_put(tgtport); 1116 1117 if (found_ctrl) { 1118 nvmet_fc_delete_target_assoc(assoc); 1119 nvmet_fc_tgt_a_put(assoc); 1120 return; 1121 } 1122 1123 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1124 } 1125 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1126 } 1127 1128 /** 1129 * nvme_fc_unregister_targetport - transport entry point called by an 1130 * LLDD to deregister/remove a previously 1131 * registered a local NVME subsystem FC port. 1132 * @tgtport: pointer to the (registered) target port that is to be 1133 * deregistered. 1134 * 1135 * Returns: 1136 * a completion status. Must be 0 upon success; a negative errno 1137 * (ex: -ENXIO) upon failure. 1138 */ 1139 int 1140 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1141 { 1142 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1143 1144 /* terminate any outstanding associations */ 1145 __nvmet_fc_free_assocs(tgtport); 1146 1147 nvmet_fc_tgtport_put(tgtport); 1148 1149 return 0; 1150 } 1151 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1152 1153 1154 /* *********************** FC-NVME LS Handling **************************** */ 1155 1156 1157 static void 1158 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1159 { 1160 struct fcnvme_ls_acc_hdr *acc = buf; 1161 1162 acc->w0.ls_cmd = ls_cmd; 1163 acc->desc_list_len = desc_len; 1164 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1165 acc->rqst.desc_len = 1166 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1167 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1168 } 1169 1170 static int 1171 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1172 u8 reason, u8 explanation, u8 vendor) 1173 { 1174 struct fcnvme_ls_rjt *rjt = buf; 1175 1176 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1177 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1178 ls_cmd); 1179 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1180 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1181 rjt->rjt.reason_code = reason; 1182 rjt->rjt.reason_explanation = explanation; 1183 rjt->rjt.vendor = vendor; 1184 1185 return sizeof(struct fcnvme_ls_rjt); 1186 } 1187 1188 /* Validation Error indexes into the string table below */ 1189 enum { 1190 VERR_NO_ERROR = 0, 1191 VERR_CR_ASSOC_LEN = 1, 1192 VERR_CR_ASSOC_RQST_LEN = 2, 1193 VERR_CR_ASSOC_CMD = 3, 1194 VERR_CR_ASSOC_CMD_LEN = 4, 1195 VERR_ERSP_RATIO = 5, 1196 VERR_ASSOC_ALLOC_FAIL = 6, 1197 VERR_QUEUE_ALLOC_FAIL = 7, 1198 VERR_CR_CONN_LEN = 8, 1199 VERR_CR_CONN_RQST_LEN = 9, 1200 VERR_ASSOC_ID = 10, 1201 VERR_ASSOC_ID_LEN = 11, 1202 VERR_NO_ASSOC = 12, 1203 VERR_CONN_ID = 13, 1204 VERR_CONN_ID_LEN = 14, 1205 VERR_NO_CONN = 15, 1206 VERR_CR_CONN_CMD = 16, 1207 VERR_CR_CONN_CMD_LEN = 17, 1208 VERR_DISCONN_LEN = 18, 1209 VERR_DISCONN_RQST_LEN = 19, 1210 VERR_DISCONN_CMD = 20, 1211 VERR_DISCONN_CMD_LEN = 21, 1212 VERR_DISCONN_SCOPE = 22, 1213 VERR_RS_LEN = 23, 1214 VERR_RS_RQST_LEN = 24, 1215 VERR_RS_CMD = 25, 1216 VERR_RS_CMD_LEN = 26, 1217 VERR_RS_RCTL = 27, 1218 VERR_RS_RO = 28, 1219 }; 1220 1221 static char *validation_errors[] = { 1222 "OK", 1223 "Bad CR_ASSOC Length", 1224 "Bad CR_ASSOC Rqst Length", 1225 "Not CR_ASSOC Cmd", 1226 "Bad CR_ASSOC Cmd Length", 1227 "Bad Ersp Ratio", 1228 "Association Allocation Failed", 1229 "Queue Allocation Failed", 1230 "Bad CR_CONN Length", 1231 "Bad CR_CONN Rqst Length", 1232 "Not Association ID", 1233 "Bad Association ID Length", 1234 "No Association", 1235 "Not Connection ID", 1236 "Bad Connection ID Length", 1237 "No Connection", 1238 "Not CR_CONN Cmd", 1239 "Bad CR_CONN Cmd Length", 1240 "Bad DISCONN Length", 1241 "Bad DISCONN Rqst Length", 1242 "Not DISCONN Cmd", 1243 "Bad DISCONN Cmd Length", 1244 "Bad Disconnect Scope", 1245 "Bad RS Length", 1246 "Bad RS Rqst Length", 1247 "Not RS Cmd", 1248 "Bad RS Cmd Length", 1249 "Bad RS R_CTL", 1250 "Bad RS Relative Offset", 1251 }; 1252 1253 static void 1254 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1255 struct nvmet_fc_ls_iod *iod) 1256 { 1257 struct fcnvme_ls_cr_assoc_rqst *rqst = 1258 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1259 struct fcnvme_ls_cr_assoc_acc *acc = 1260 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1261 struct nvmet_fc_tgt_queue *queue; 1262 int ret = 0; 1263 1264 memset(acc, 0, sizeof(*acc)); 1265 1266 /* 1267 * FC-NVME spec changes. There are initiators sending different 1268 * lengths as padding sizes for Create Association Cmd descriptor 1269 * was incorrect. 1270 * Accept anything of "minimum" length. Assume format per 1.15 1271 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1272 * trailing pad length is. 1273 */ 1274 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1275 ret = VERR_CR_ASSOC_LEN; 1276 else if (be32_to_cpu(rqst->desc_list_len) < 1277 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1278 ret = VERR_CR_ASSOC_RQST_LEN; 1279 else if (rqst->assoc_cmd.desc_tag != 1280 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1281 ret = VERR_CR_ASSOC_CMD; 1282 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1283 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1284 ret = VERR_CR_ASSOC_CMD_LEN; 1285 else if (!rqst->assoc_cmd.ersp_ratio || 1286 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1287 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1288 ret = VERR_ERSP_RATIO; 1289 1290 else { 1291 /* new association w/ admin queue */ 1292 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1293 if (!iod->assoc) 1294 ret = VERR_ASSOC_ALLOC_FAIL; 1295 else { 1296 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1297 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1298 if (!queue) 1299 ret = VERR_QUEUE_ALLOC_FAIL; 1300 } 1301 } 1302 1303 if (ret) { 1304 dev_err(tgtport->dev, 1305 "Create Association LS failed: %s\n", 1306 validation_errors[ret]); 1307 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1308 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1309 FCNVME_RJT_RC_LOGIC, 1310 FCNVME_RJT_EXP_NONE, 0); 1311 return; 1312 } 1313 1314 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1315 atomic_set(&queue->connected, 1); 1316 queue->sqhd = 0; /* best place to init value */ 1317 1318 /* format a response */ 1319 1320 iod->lsreq->rsplen = sizeof(*acc); 1321 1322 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1323 fcnvme_lsdesc_len( 1324 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1325 FCNVME_LS_CREATE_ASSOCIATION); 1326 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1327 acc->associd.desc_len = 1328 fcnvme_lsdesc_len( 1329 sizeof(struct fcnvme_lsdesc_assoc_id)); 1330 acc->associd.association_id = 1331 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1332 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1333 acc->connectid.desc_len = 1334 fcnvme_lsdesc_len( 1335 sizeof(struct fcnvme_lsdesc_conn_id)); 1336 acc->connectid.connection_id = acc->associd.association_id; 1337 } 1338 1339 static void 1340 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1341 struct nvmet_fc_ls_iod *iod) 1342 { 1343 struct fcnvme_ls_cr_conn_rqst *rqst = 1344 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1345 struct fcnvme_ls_cr_conn_acc *acc = 1346 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1347 struct nvmet_fc_tgt_queue *queue; 1348 int ret = 0; 1349 1350 memset(acc, 0, sizeof(*acc)); 1351 1352 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1353 ret = VERR_CR_CONN_LEN; 1354 else if (rqst->desc_list_len != 1355 fcnvme_lsdesc_len( 1356 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1357 ret = VERR_CR_CONN_RQST_LEN; 1358 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1359 ret = VERR_ASSOC_ID; 1360 else if (rqst->associd.desc_len != 1361 fcnvme_lsdesc_len( 1362 sizeof(struct fcnvme_lsdesc_assoc_id))) 1363 ret = VERR_ASSOC_ID_LEN; 1364 else if (rqst->connect_cmd.desc_tag != 1365 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1366 ret = VERR_CR_CONN_CMD; 1367 else if (rqst->connect_cmd.desc_len != 1368 fcnvme_lsdesc_len( 1369 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1370 ret = VERR_CR_CONN_CMD_LEN; 1371 else if (!rqst->connect_cmd.ersp_ratio || 1372 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1373 be16_to_cpu(rqst->connect_cmd.sqsize))) 1374 ret = VERR_ERSP_RATIO; 1375 1376 else { 1377 /* new io queue */ 1378 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1379 be64_to_cpu(rqst->associd.association_id)); 1380 if (!iod->assoc) 1381 ret = VERR_NO_ASSOC; 1382 else { 1383 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1384 be16_to_cpu(rqst->connect_cmd.qid), 1385 be16_to_cpu(rqst->connect_cmd.sqsize)); 1386 if (!queue) 1387 ret = VERR_QUEUE_ALLOC_FAIL; 1388 1389 /* release get taken in nvmet_fc_find_target_assoc */ 1390 nvmet_fc_tgt_a_put(iod->assoc); 1391 } 1392 } 1393 1394 if (ret) { 1395 dev_err(tgtport->dev, 1396 "Create Connection LS failed: %s\n", 1397 validation_errors[ret]); 1398 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1399 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1400 (ret == VERR_NO_ASSOC) ? 1401 FCNVME_RJT_RC_INV_ASSOC : 1402 FCNVME_RJT_RC_LOGIC, 1403 FCNVME_RJT_EXP_NONE, 0); 1404 return; 1405 } 1406 1407 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1408 atomic_set(&queue->connected, 1); 1409 queue->sqhd = 0; /* best place to init value */ 1410 1411 /* format a response */ 1412 1413 iod->lsreq->rsplen = sizeof(*acc); 1414 1415 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1416 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1417 FCNVME_LS_CREATE_CONNECTION); 1418 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1419 acc->connectid.desc_len = 1420 fcnvme_lsdesc_len( 1421 sizeof(struct fcnvme_lsdesc_conn_id)); 1422 acc->connectid.connection_id = 1423 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1424 be16_to_cpu(rqst->connect_cmd.qid))); 1425 } 1426 1427 static void 1428 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1429 struct nvmet_fc_ls_iod *iod) 1430 { 1431 struct fcnvme_ls_disconnect_rqst *rqst = 1432 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1433 struct fcnvme_ls_disconnect_acc *acc = 1434 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1435 struct nvmet_fc_tgt_queue *queue = NULL; 1436 struct nvmet_fc_tgt_assoc *assoc; 1437 int ret = 0; 1438 bool del_assoc = false; 1439 1440 memset(acc, 0, sizeof(*acc)); 1441 1442 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1443 ret = VERR_DISCONN_LEN; 1444 else if (rqst->desc_list_len != 1445 fcnvme_lsdesc_len( 1446 sizeof(struct fcnvme_ls_disconnect_rqst))) 1447 ret = VERR_DISCONN_RQST_LEN; 1448 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1449 ret = VERR_ASSOC_ID; 1450 else if (rqst->associd.desc_len != 1451 fcnvme_lsdesc_len( 1452 sizeof(struct fcnvme_lsdesc_assoc_id))) 1453 ret = VERR_ASSOC_ID_LEN; 1454 else if (rqst->discon_cmd.desc_tag != 1455 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1456 ret = VERR_DISCONN_CMD; 1457 else if (rqst->discon_cmd.desc_len != 1458 fcnvme_lsdesc_len( 1459 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1460 ret = VERR_DISCONN_CMD_LEN; 1461 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1462 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1463 ret = VERR_DISCONN_SCOPE; 1464 else { 1465 /* match an active association */ 1466 assoc = nvmet_fc_find_target_assoc(tgtport, 1467 be64_to_cpu(rqst->associd.association_id)); 1468 iod->assoc = assoc; 1469 if (assoc) { 1470 if (rqst->discon_cmd.scope == 1471 FCNVME_DISCONN_CONNECTION) { 1472 queue = nvmet_fc_find_target_queue(tgtport, 1473 be64_to_cpu( 1474 rqst->discon_cmd.id)); 1475 if (!queue) { 1476 nvmet_fc_tgt_a_put(assoc); 1477 ret = VERR_NO_CONN; 1478 } 1479 } 1480 } else 1481 ret = VERR_NO_ASSOC; 1482 } 1483 1484 if (ret) { 1485 dev_err(tgtport->dev, 1486 "Disconnect LS failed: %s\n", 1487 validation_errors[ret]); 1488 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1489 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1490 (ret == VERR_NO_ASSOC) ? 1491 FCNVME_RJT_RC_INV_ASSOC : 1492 (ret == VERR_NO_CONN) ? 1493 FCNVME_RJT_RC_INV_CONN : 1494 FCNVME_RJT_RC_LOGIC, 1495 FCNVME_RJT_EXP_NONE, 0); 1496 return; 1497 } 1498 1499 /* format a response */ 1500 1501 iod->lsreq->rsplen = sizeof(*acc); 1502 1503 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1504 fcnvme_lsdesc_len( 1505 sizeof(struct fcnvme_ls_disconnect_acc)), 1506 FCNVME_LS_DISCONNECT); 1507 1508 1509 /* are we to delete a Connection ID (queue) */ 1510 if (queue) { 1511 int qid = queue->qid; 1512 1513 nvmet_fc_delete_target_queue(queue); 1514 1515 /* release the get taken by find_target_queue */ 1516 nvmet_fc_tgt_q_put(queue); 1517 1518 /* tear association down if io queue terminated */ 1519 if (!qid) 1520 del_assoc = true; 1521 } 1522 1523 /* release get taken in nvmet_fc_find_target_assoc */ 1524 nvmet_fc_tgt_a_put(iod->assoc); 1525 1526 if (del_assoc) 1527 nvmet_fc_delete_target_assoc(iod->assoc); 1528 } 1529 1530 1531 /* *********************** NVME Ctrl Routines **************************** */ 1532 1533 1534 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1535 1536 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1537 1538 static void 1539 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1540 { 1541 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1542 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1543 1544 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1545 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1546 nvmet_fc_free_ls_iod(tgtport, iod); 1547 nvmet_fc_tgtport_put(tgtport); 1548 } 1549 1550 static void 1551 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1552 struct nvmet_fc_ls_iod *iod) 1553 { 1554 int ret; 1555 1556 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1557 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1558 1559 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1560 if (ret) 1561 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1562 } 1563 1564 /* 1565 * Actual processing routine for received FC-NVME LS Requests from the LLD 1566 */ 1567 static void 1568 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1569 struct nvmet_fc_ls_iod *iod) 1570 { 1571 struct fcnvme_ls_rqst_w0 *w0 = 1572 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1573 1574 iod->lsreq->nvmet_fc_private = iod; 1575 iod->lsreq->rspbuf = iod->rspbuf; 1576 iod->lsreq->rspdma = iod->rspdma; 1577 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1578 /* Be preventative. handlers will later set to valid length */ 1579 iod->lsreq->rsplen = 0; 1580 1581 iod->assoc = NULL; 1582 1583 /* 1584 * handlers: 1585 * parse request input, execute the request, and format the 1586 * LS response 1587 */ 1588 switch (w0->ls_cmd) { 1589 case FCNVME_LS_CREATE_ASSOCIATION: 1590 /* Creates Association and initial Admin Queue/Connection */ 1591 nvmet_fc_ls_create_association(tgtport, iod); 1592 break; 1593 case FCNVME_LS_CREATE_CONNECTION: 1594 /* Creates an IO Queue/Connection */ 1595 nvmet_fc_ls_create_connection(tgtport, iod); 1596 break; 1597 case FCNVME_LS_DISCONNECT: 1598 /* Terminate a Queue/Connection or the Association */ 1599 nvmet_fc_ls_disconnect(tgtport, iod); 1600 break; 1601 default: 1602 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1603 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1604 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1605 } 1606 1607 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1608 } 1609 1610 /* 1611 * Actual processing routine for received FC-NVME LS Requests from the LLD 1612 */ 1613 static void 1614 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1615 { 1616 struct nvmet_fc_ls_iod *iod = 1617 container_of(work, struct nvmet_fc_ls_iod, work); 1618 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1619 1620 nvmet_fc_handle_ls_rqst(tgtport, iod); 1621 } 1622 1623 1624 /** 1625 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1626 * upon the reception of a NVME LS request. 1627 * 1628 * The nvmet-fc layer will copy payload to an internal structure for 1629 * processing. As such, upon completion of the routine, the LLDD may 1630 * immediately free/reuse the LS request buffer passed in the call. 1631 * 1632 * If this routine returns error, the LLDD should abort the exchange. 1633 * 1634 * @tgtport: pointer to the (registered) target port the LS was 1635 * received on. 1636 * @lsreq: pointer to a lsreq request structure to be used to reference 1637 * the exchange corresponding to the LS. 1638 * @lsreqbuf: pointer to the buffer containing the LS Request 1639 * @lsreqbuf_len: length, in bytes, of the received LS request 1640 */ 1641 int 1642 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1643 struct nvmefc_tgt_ls_req *lsreq, 1644 void *lsreqbuf, u32 lsreqbuf_len) 1645 { 1646 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1647 struct nvmet_fc_ls_iod *iod; 1648 1649 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1650 return -E2BIG; 1651 1652 if (!nvmet_fc_tgtport_get(tgtport)) 1653 return -ESHUTDOWN; 1654 1655 iod = nvmet_fc_alloc_ls_iod(tgtport); 1656 if (!iod) { 1657 nvmet_fc_tgtport_put(tgtport); 1658 return -ENOENT; 1659 } 1660 1661 iod->lsreq = lsreq; 1662 iod->fcpreq = NULL; 1663 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1664 iod->rqstdatalen = lsreqbuf_len; 1665 1666 schedule_work(&iod->work); 1667 1668 return 0; 1669 } 1670 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1671 1672 1673 /* 1674 * ********************** 1675 * Start of FCP handling 1676 * ********************** 1677 */ 1678 1679 static int 1680 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1681 { 1682 struct scatterlist *sg; 1683 struct page *page; 1684 unsigned int nent; 1685 u32 page_len, length; 1686 int i = 0; 1687 1688 length = fod->total_length; 1689 nent = DIV_ROUND_UP(length, PAGE_SIZE); 1690 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 1691 if (!sg) 1692 goto out; 1693 1694 sg_init_table(sg, nent); 1695 1696 while (length) { 1697 page_len = min_t(u32, length, PAGE_SIZE); 1698 1699 page = alloc_page(GFP_KERNEL); 1700 if (!page) 1701 goto out_free_pages; 1702 1703 sg_set_page(&sg[i], page, page_len, 0); 1704 length -= page_len; 1705 i++; 1706 } 1707 1708 fod->data_sg = sg; 1709 fod->data_sg_cnt = nent; 1710 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1711 ((fod->io_dir == NVMET_FCP_WRITE) ? 1712 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1713 /* note: write from initiator perspective */ 1714 1715 return 0; 1716 1717 out_free_pages: 1718 while (i > 0) { 1719 i--; 1720 __free_page(sg_page(&sg[i])); 1721 } 1722 kfree(sg); 1723 fod->data_sg = NULL; 1724 fod->data_sg_cnt = 0; 1725 out: 1726 return NVME_SC_INTERNAL; 1727 } 1728 1729 static void 1730 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1731 { 1732 struct scatterlist *sg; 1733 int count; 1734 1735 if (!fod->data_sg || !fod->data_sg_cnt) 1736 return; 1737 1738 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1739 ((fod->io_dir == NVMET_FCP_WRITE) ? 1740 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1741 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count) 1742 __free_page(sg_page(sg)); 1743 kfree(fod->data_sg); 1744 fod->data_sg = NULL; 1745 fod->data_sg_cnt = 0; 1746 } 1747 1748 1749 static bool 1750 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1751 { 1752 u32 sqtail, used; 1753 1754 /* egad, this is ugly. And sqtail is just a best guess */ 1755 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1756 1757 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1758 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1759 } 1760 1761 /* 1762 * Prep RSP payload. 1763 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1764 */ 1765 static void 1766 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1767 struct nvmet_fc_fcp_iod *fod) 1768 { 1769 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1770 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1771 struct nvme_completion *cqe = &ersp->cqe; 1772 u32 *cqewd = (u32 *)cqe; 1773 bool send_ersp = false; 1774 u32 rsn, rspcnt, xfr_length; 1775 1776 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1777 xfr_length = fod->total_length; 1778 else 1779 xfr_length = fod->offset; 1780 1781 /* 1782 * check to see if we can send a 0's rsp. 1783 * Note: to send a 0's response, the NVME-FC host transport will 1784 * recreate the CQE. The host transport knows: sq id, SQHD (last 1785 * seen in an ersp), and command_id. Thus it will create a 1786 * zero-filled CQE with those known fields filled in. Transport 1787 * must send an ersp for any condition where the cqe won't match 1788 * this. 1789 * 1790 * Here are the FC-NVME mandated cases where we must send an ersp: 1791 * every N responses, where N=ersp_ratio 1792 * force fabric commands to send ersp's (not in FC-NVME but good 1793 * practice) 1794 * normal cmds: any time status is non-zero, or status is zero 1795 * but words 0 or 1 are non-zero. 1796 * the SQ is 90% or more full 1797 * the cmd is a fused command 1798 * transferred data length not equal to cmd iu length 1799 */ 1800 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1801 if (!(rspcnt % fod->queue->ersp_ratio) || 1802 sqe->opcode == nvme_fabrics_command || 1803 xfr_length != fod->total_length || 1804 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1805 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1806 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1807 send_ersp = true; 1808 1809 /* re-set the fields */ 1810 fod->fcpreq->rspaddr = ersp; 1811 fod->fcpreq->rspdma = fod->rspdma; 1812 1813 if (!send_ersp) { 1814 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1815 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1816 } else { 1817 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1818 rsn = atomic_inc_return(&fod->queue->rsn); 1819 ersp->rsn = cpu_to_be32(rsn); 1820 ersp->xfrd_len = cpu_to_be32(xfr_length); 1821 fod->fcpreq->rsplen = sizeof(*ersp); 1822 } 1823 1824 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1825 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1826 } 1827 1828 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1829 1830 static void 1831 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1832 struct nvmet_fc_fcp_iod *fod) 1833 { 1834 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1835 1836 /* data no longer needed */ 1837 nvmet_fc_free_tgt_pgs(fod); 1838 1839 /* 1840 * if an ABTS was received or we issued the fcp_abort early 1841 * don't call abort routine again. 1842 */ 1843 /* no need to take lock - lock was taken earlier to get here */ 1844 if (!fod->aborted) 1845 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1846 1847 nvmet_fc_free_fcp_iod(fod->queue, fod); 1848 } 1849 1850 static void 1851 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1852 struct nvmet_fc_fcp_iod *fod) 1853 { 1854 int ret; 1855 1856 fod->fcpreq->op = NVMET_FCOP_RSP; 1857 fod->fcpreq->timeout = 0; 1858 1859 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1860 1861 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1862 if (ret) 1863 nvmet_fc_abort_op(tgtport, fod); 1864 } 1865 1866 static void 1867 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1868 struct nvmet_fc_fcp_iod *fod, u8 op) 1869 { 1870 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1871 unsigned long flags; 1872 u32 tlen; 1873 int ret; 1874 1875 fcpreq->op = op; 1876 fcpreq->offset = fod->offset; 1877 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1878 1879 tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE, 1880 (fod->total_length - fod->offset)); 1881 fcpreq->transfer_length = tlen; 1882 fcpreq->transferred_length = 0; 1883 fcpreq->fcp_error = 0; 1884 fcpreq->rsplen = 0; 1885 1886 fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE]; 1887 fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE); 1888 1889 /* 1890 * If the last READDATA request: check if LLDD supports 1891 * combined xfr with response. 1892 */ 1893 if ((op == NVMET_FCOP_READDATA) && 1894 ((fod->offset + fcpreq->transfer_length) == fod->total_length) && 1895 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1896 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1897 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1898 } 1899 1900 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1901 if (ret) { 1902 /* 1903 * should be ok to set w/o lock as its in the thread of 1904 * execution (not an async timer routine) and doesn't 1905 * contend with any clearing action 1906 */ 1907 fod->abort = true; 1908 1909 if (op == NVMET_FCOP_WRITEDATA) { 1910 spin_lock_irqsave(&fod->flock, flags); 1911 fod->writedataactive = false; 1912 spin_unlock_irqrestore(&fod->flock, flags); 1913 nvmet_req_complete(&fod->req, 1914 NVME_SC_FC_TRANSPORT_ERROR); 1915 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1916 fcpreq->fcp_error = ret; 1917 fcpreq->transferred_length = 0; 1918 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1919 } 1920 } 1921 } 1922 1923 static inline bool 1924 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 1925 { 1926 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1927 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1928 1929 /* if in the middle of an io and we need to tear down */ 1930 if (abort) { 1931 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 1932 nvmet_req_complete(&fod->req, 1933 NVME_SC_FC_TRANSPORT_ERROR); 1934 return true; 1935 } 1936 1937 nvmet_fc_abort_op(tgtport, fod); 1938 return true; 1939 } 1940 1941 return false; 1942 } 1943 1944 /* 1945 * actual done handler for FCP operations when completed by the lldd 1946 */ 1947 static void 1948 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 1949 { 1950 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1951 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1952 unsigned long flags; 1953 bool abort; 1954 1955 spin_lock_irqsave(&fod->flock, flags); 1956 abort = fod->abort; 1957 fod->writedataactive = false; 1958 spin_unlock_irqrestore(&fod->flock, flags); 1959 1960 switch (fcpreq->op) { 1961 1962 case NVMET_FCOP_WRITEDATA: 1963 if (__nvmet_fc_fod_op_abort(fod, abort)) 1964 return; 1965 if (fcpreq->fcp_error || 1966 fcpreq->transferred_length != fcpreq->transfer_length) { 1967 spin_lock(&fod->flock); 1968 fod->abort = true; 1969 spin_unlock(&fod->flock); 1970 1971 nvmet_req_complete(&fod->req, 1972 NVME_SC_FC_TRANSPORT_ERROR); 1973 return; 1974 } 1975 1976 fod->offset += fcpreq->transferred_length; 1977 if (fod->offset != fod->total_length) { 1978 spin_lock_irqsave(&fod->flock, flags); 1979 fod->writedataactive = true; 1980 spin_unlock_irqrestore(&fod->flock, flags); 1981 1982 /* transfer the next chunk */ 1983 nvmet_fc_transfer_fcp_data(tgtport, fod, 1984 NVMET_FCOP_WRITEDATA); 1985 return; 1986 } 1987 1988 /* data transfer complete, resume with nvmet layer */ 1989 1990 fod->req.execute(&fod->req); 1991 1992 break; 1993 1994 case NVMET_FCOP_READDATA: 1995 case NVMET_FCOP_READDATA_RSP: 1996 if (__nvmet_fc_fod_op_abort(fod, abort)) 1997 return; 1998 if (fcpreq->fcp_error || 1999 fcpreq->transferred_length != fcpreq->transfer_length) { 2000 nvmet_fc_abort_op(tgtport, fod); 2001 return; 2002 } 2003 2004 /* success */ 2005 2006 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2007 /* data no longer needed */ 2008 nvmet_fc_free_tgt_pgs(fod); 2009 nvmet_fc_free_fcp_iod(fod->queue, fod); 2010 return; 2011 } 2012 2013 fod->offset += fcpreq->transferred_length; 2014 if (fod->offset != fod->total_length) { 2015 /* transfer the next chunk */ 2016 nvmet_fc_transfer_fcp_data(tgtport, fod, 2017 NVMET_FCOP_READDATA); 2018 return; 2019 } 2020 2021 /* data transfer complete, send response */ 2022 2023 /* data no longer needed */ 2024 nvmet_fc_free_tgt_pgs(fod); 2025 2026 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2027 2028 break; 2029 2030 case NVMET_FCOP_RSP: 2031 if (__nvmet_fc_fod_op_abort(fod, abort)) 2032 return; 2033 nvmet_fc_free_fcp_iod(fod->queue, fod); 2034 break; 2035 2036 default: 2037 break; 2038 } 2039 } 2040 2041 static void 2042 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work) 2043 { 2044 struct nvmet_fc_fcp_iod *fod = 2045 container_of(work, struct nvmet_fc_fcp_iod, done_work); 2046 2047 nvmet_fc_fod_op_done(fod); 2048 } 2049 2050 static void 2051 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2052 { 2053 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2054 struct nvmet_fc_tgt_queue *queue = fod->queue; 2055 2056 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR) 2057 /* context switch so completion is not in ISR context */ 2058 queue_work_on(queue->cpu, queue->work_q, &fod->done_work); 2059 else 2060 nvmet_fc_fod_op_done(fod); 2061 } 2062 2063 /* 2064 * actual completion handler after execution by the nvmet layer 2065 */ 2066 static void 2067 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2068 struct nvmet_fc_fcp_iod *fod, int status) 2069 { 2070 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2071 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2072 unsigned long flags; 2073 bool abort; 2074 2075 spin_lock_irqsave(&fod->flock, flags); 2076 abort = fod->abort; 2077 spin_unlock_irqrestore(&fod->flock, flags); 2078 2079 /* if we have a CQE, snoop the last sq_head value */ 2080 if (!status) 2081 fod->queue->sqhd = cqe->sq_head; 2082 2083 if (abort) { 2084 nvmet_fc_abort_op(tgtport, fod); 2085 return; 2086 } 2087 2088 /* if an error handling the cmd post initial parsing */ 2089 if (status) { 2090 /* fudge up a failed CQE status for our transport error */ 2091 memset(cqe, 0, sizeof(*cqe)); 2092 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2093 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2094 cqe->command_id = sqe->command_id; 2095 cqe->status = cpu_to_le16(status); 2096 } else { 2097 2098 /* 2099 * try to push the data even if the SQE status is non-zero. 2100 * There may be a status where data still was intended to 2101 * be moved 2102 */ 2103 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2104 /* push the data over before sending rsp */ 2105 nvmet_fc_transfer_fcp_data(tgtport, fod, 2106 NVMET_FCOP_READDATA); 2107 return; 2108 } 2109 2110 /* writes & no data - fall thru */ 2111 } 2112 2113 /* data no longer needed */ 2114 nvmet_fc_free_tgt_pgs(fod); 2115 2116 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2117 } 2118 2119 2120 static void 2121 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2122 { 2123 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2124 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2125 2126 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2127 } 2128 2129 2130 /* 2131 * Actual processing routine for received FC-NVME LS Requests from the LLD 2132 */ 2133 static void 2134 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2135 struct nvmet_fc_fcp_iod *fod) 2136 { 2137 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2138 int ret; 2139 2140 /* 2141 * Fused commands are currently not supported in the linux 2142 * implementation. 2143 * 2144 * As such, the implementation of the FC transport does not 2145 * look at the fused commands and order delivery to the upper 2146 * layer until we have both based on csn. 2147 */ 2148 2149 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2150 2151 fod->total_length = be32_to_cpu(cmdiu->data_len); 2152 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2153 fod->io_dir = NVMET_FCP_WRITE; 2154 if (!nvme_is_write(&cmdiu->sqe)) 2155 goto transport_error; 2156 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2157 fod->io_dir = NVMET_FCP_READ; 2158 if (nvme_is_write(&cmdiu->sqe)) 2159 goto transport_error; 2160 } else { 2161 fod->io_dir = NVMET_FCP_NODATA; 2162 if (fod->total_length) 2163 goto transport_error; 2164 } 2165 2166 fod->req.cmd = &fod->cmdiubuf.sqe; 2167 fod->req.rsp = &fod->rspiubuf.cqe; 2168 fod->req.port = fod->queue->port; 2169 2170 /* ensure nvmet handlers will set cmd handler callback */ 2171 fod->req.execute = NULL; 2172 2173 /* clear any response payload */ 2174 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2175 2176 fod->data_sg = NULL; 2177 fod->data_sg_cnt = 0; 2178 2179 ret = nvmet_req_init(&fod->req, 2180 &fod->queue->nvme_cq, 2181 &fod->queue->nvme_sq, 2182 &nvmet_fc_tgt_fcp_ops); 2183 if (!ret) { 2184 /* bad SQE content or invalid ctrl state */ 2185 /* nvmet layer has already called op done to send rsp. */ 2186 return; 2187 } 2188 2189 /* keep a running counter of tail position */ 2190 atomic_inc(&fod->queue->sqtail); 2191 2192 if (fod->total_length) { 2193 ret = nvmet_fc_alloc_tgt_pgs(fod); 2194 if (ret) { 2195 nvmet_req_complete(&fod->req, ret); 2196 return; 2197 } 2198 } 2199 fod->req.sg = fod->data_sg; 2200 fod->req.sg_cnt = fod->data_sg_cnt; 2201 fod->offset = 0; 2202 2203 if (fod->io_dir == NVMET_FCP_WRITE) { 2204 /* pull the data over before invoking nvmet layer */ 2205 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2206 return; 2207 } 2208 2209 /* 2210 * Reads or no data: 2211 * 2212 * can invoke the nvmet_layer now. If read data, cmd completion will 2213 * push the data 2214 */ 2215 2216 fod->req.execute(&fod->req); 2217 2218 return; 2219 2220 transport_error: 2221 nvmet_fc_abort_op(tgtport, fod); 2222 } 2223 2224 /* 2225 * Actual processing routine for received FC-NVME LS Requests from the LLD 2226 */ 2227 static void 2228 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) 2229 { 2230 struct nvmet_fc_fcp_iod *fod = 2231 container_of(work, struct nvmet_fc_fcp_iod, work); 2232 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2233 2234 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2235 } 2236 2237 /** 2238 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2239 * upon the reception of a NVME FCP CMD IU. 2240 * 2241 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2242 * layer for processing. 2243 * 2244 * The nvmet_fc layer allocates a local job structure (struct 2245 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2246 * CMD IU buffer to the job structure. As such, on a successful 2247 * completion (returns 0), the LLDD may immediately free/reuse 2248 * the CMD IU buffer passed in the call. 2249 * 2250 * However, in some circumstances, due to the packetized nature of FC 2251 * and the api of the FC LLDD which may issue a hw command to send the 2252 * response, but the LLDD may not get the hw completion for that command 2253 * and upcall the nvmet_fc layer before a new command may be 2254 * asynchronously received - its possible for a command to be received 2255 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2256 * the appearance of more commands received than fits in the sq. 2257 * To alleviate this scenario, a temporary queue is maintained in the 2258 * transport for pending LLDD requests waiting for a queue job structure. 2259 * In these "overrun" cases, a temporary queue element is allocated 2260 * the LLDD request and CMD iu buffer information remembered, and the 2261 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2262 * structure is freed, it is immediately reallocated for anything on the 2263 * pending request list. The LLDDs defer_rcv() callback is called, 2264 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2265 * is then started normally with the transport. 2266 * 2267 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2268 * the completion as successful but must not reuse the CMD IU buffer 2269 * until the LLDD's defer_rcv() callback has been called for the 2270 * corresponding struct nvmefc_tgt_fcp_req pointer. 2271 * 2272 * If there is any other condition in which an error occurs, the 2273 * transport will return a non-zero status indicating the error. 2274 * In all cases other than -EOVERFLOW, the transport has not accepted the 2275 * request and the LLDD should abort the exchange. 2276 * 2277 * @target_port: pointer to the (registered) target port the FCP CMD IU 2278 * was received on. 2279 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2280 * the exchange corresponding to the FCP Exchange. 2281 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2282 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2283 */ 2284 int 2285 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2286 struct nvmefc_tgt_fcp_req *fcpreq, 2287 void *cmdiubuf, u32 cmdiubuf_len) 2288 { 2289 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2290 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2291 struct nvmet_fc_tgt_queue *queue; 2292 struct nvmet_fc_fcp_iod *fod; 2293 struct nvmet_fc_defer_fcp_req *deferfcp; 2294 unsigned long flags; 2295 2296 /* validate iu, so the connection id can be used to find the queue */ 2297 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2298 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2299 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2300 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2301 return -EIO; 2302 2303 queue = nvmet_fc_find_target_queue(tgtport, 2304 be64_to_cpu(cmdiu->connection_id)); 2305 if (!queue) 2306 return -ENOTCONN; 2307 2308 /* 2309 * note: reference taken by find_target_queue 2310 * After successful fod allocation, the fod will inherit the 2311 * ownership of that reference and will remove the reference 2312 * when the fod is freed. 2313 */ 2314 2315 spin_lock_irqsave(&queue->qlock, flags); 2316 2317 fod = nvmet_fc_alloc_fcp_iod(queue); 2318 if (fod) { 2319 spin_unlock_irqrestore(&queue->qlock, flags); 2320 2321 fcpreq->nvmet_fc_private = fod; 2322 fod->fcpreq = fcpreq; 2323 2324 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2325 2326 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2327 2328 return 0; 2329 } 2330 2331 if (!tgtport->ops->defer_rcv) { 2332 spin_unlock_irqrestore(&queue->qlock, flags); 2333 /* release the queue lookup reference */ 2334 nvmet_fc_tgt_q_put(queue); 2335 return -ENOENT; 2336 } 2337 2338 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2339 struct nvmet_fc_defer_fcp_req, req_list); 2340 if (deferfcp) { 2341 /* Just re-use one that was previously allocated */ 2342 list_del(&deferfcp->req_list); 2343 } else { 2344 spin_unlock_irqrestore(&queue->qlock, flags); 2345 2346 /* Now we need to dynamically allocate one */ 2347 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2348 if (!deferfcp) { 2349 /* release the queue lookup reference */ 2350 nvmet_fc_tgt_q_put(queue); 2351 return -ENOMEM; 2352 } 2353 spin_lock_irqsave(&queue->qlock, flags); 2354 } 2355 2356 /* For now, use rspaddr / rsplen to save payload information */ 2357 fcpreq->rspaddr = cmdiubuf; 2358 fcpreq->rsplen = cmdiubuf_len; 2359 deferfcp->fcp_req = fcpreq; 2360 2361 /* defer processing till a fod becomes available */ 2362 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2363 2364 /* NOTE: the queue lookup reference is still valid */ 2365 2366 spin_unlock_irqrestore(&queue->qlock, flags); 2367 2368 return -EOVERFLOW; 2369 } 2370 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2371 2372 /** 2373 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2374 * upon the reception of an ABTS for a FCP command 2375 * 2376 * Notify the transport that an ABTS has been received for a FCP command 2377 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2378 * LLDD believes the command is still being worked on 2379 * (template_ops->fcp_req_release() has not been called). 2380 * 2381 * The transport will wait for any outstanding work (an op to the LLDD, 2382 * which the lldd should complete with error due to the ABTS; or the 2383 * completion from the nvmet layer of the nvme command), then will 2384 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2385 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2386 * to the ABTS either after return from this function (assuming any 2387 * outstanding op work has been terminated) or upon the callback being 2388 * called. 2389 * 2390 * @target_port: pointer to the (registered) target port the FCP CMD IU 2391 * was received on. 2392 * @fcpreq: pointer to the fcpreq request structure that corresponds 2393 * to the exchange that received the ABTS. 2394 */ 2395 void 2396 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2397 struct nvmefc_tgt_fcp_req *fcpreq) 2398 { 2399 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2400 struct nvmet_fc_tgt_queue *queue; 2401 unsigned long flags; 2402 2403 if (!fod || fod->fcpreq != fcpreq) 2404 /* job appears to have already completed, ignore abort */ 2405 return; 2406 2407 queue = fod->queue; 2408 2409 spin_lock_irqsave(&queue->qlock, flags); 2410 if (fod->active) { 2411 /* 2412 * mark as abort. The abort handler, invoked upon completion 2413 * of any work, will detect the aborted status and do the 2414 * callback. 2415 */ 2416 spin_lock(&fod->flock); 2417 fod->abort = true; 2418 fod->aborted = true; 2419 spin_unlock(&fod->flock); 2420 } 2421 spin_unlock_irqrestore(&queue->qlock, flags); 2422 } 2423 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2424 2425 2426 struct nvmet_fc_traddr { 2427 u64 nn; 2428 u64 pn; 2429 }; 2430 2431 static int 2432 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2433 { 2434 u64 token64; 2435 2436 if (match_u64(sstr, &token64)) 2437 return -EINVAL; 2438 *val = token64; 2439 2440 return 0; 2441 } 2442 2443 /* 2444 * This routine validates and extracts the WWN's from the TRADDR string. 2445 * As kernel parsers need the 0x to determine number base, universally 2446 * build string to parse with 0x prefix before parsing name strings. 2447 */ 2448 static int 2449 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2450 { 2451 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2452 substring_t wwn = { name, &name[sizeof(name)-1] }; 2453 int nnoffset, pnoffset; 2454 2455 /* validate it string one of the 2 allowed formats */ 2456 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2457 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2458 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2459 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2460 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2461 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2462 NVME_FC_TRADDR_OXNNLEN; 2463 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2464 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2465 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2466 "pn-", NVME_FC_TRADDR_NNLEN))) { 2467 nnoffset = NVME_FC_TRADDR_NNLEN; 2468 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2469 } else 2470 goto out_einval; 2471 2472 name[0] = '0'; 2473 name[1] = 'x'; 2474 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2475 2476 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2477 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2478 goto out_einval; 2479 2480 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2481 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2482 goto out_einval; 2483 2484 return 0; 2485 2486 out_einval: 2487 pr_warn("%s: bad traddr string\n", __func__); 2488 return -EINVAL; 2489 } 2490 2491 static int 2492 nvmet_fc_add_port(struct nvmet_port *port) 2493 { 2494 struct nvmet_fc_tgtport *tgtport; 2495 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2496 unsigned long flags; 2497 int ret; 2498 2499 /* validate the address info */ 2500 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2501 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2502 return -EINVAL; 2503 2504 /* map the traddr address info to a target port */ 2505 2506 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2507 sizeof(port->disc_addr.traddr)); 2508 if (ret) 2509 return ret; 2510 2511 ret = -ENXIO; 2512 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2513 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2514 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2515 (tgtport->fc_target_port.port_name == traddr.pn)) { 2516 /* a FC port can only be 1 nvmet port id */ 2517 if (!tgtport->port) { 2518 tgtport->port = port; 2519 port->priv = tgtport; 2520 nvmet_fc_tgtport_get(tgtport); 2521 ret = 0; 2522 } else 2523 ret = -EALREADY; 2524 break; 2525 } 2526 } 2527 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2528 return ret; 2529 } 2530 2531 static void 2532 nvmet_fc_remove_port(struct nvmet_port *port) 2533 { 2534 struct nvmet_fc_tgtport *tgtport = port->priv; 2535 unsigned long flags; 2536 2537 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2538 if (tgtport->port == port) { 2539 nvmet_fc_tgtport_put(tgtport); 2540 tgtport->port = NULL; 2541 } 2542 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2543 } 2544 2545 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2546 .owner = THIS_MODULE, 2547 .type = NVMF_TRTYPE_FC, 2548 .msdbd = 1, 2549 .add_port = nvmet_fc_add_port, 2550 .remove_port = nvmet_fc_remove_port, 2551 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2552 .delete_ctrl = nvmet_fc_delete_ctrl, 2553 }; 2554 2555 static int __init nvmet_fc_init_module(void) 2556 { 2557 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2558 } 2559 2560 static void __exit nvmet_fc_exit_module(void) 2561 { 2562 /* sanity check - all lports should be removed */ 2563 if (!list_empty(&nvmet_fc_target_list)) 2564 pr_warn("%s: targetport list not empty\n", __func__); 2565 2566 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2567 2568 ida_destroy(&nvmet_fc_tgtport_cnt); 2569 } 2570 2571 module_init(nvmet_fc_init_module); 2572 module_exit(nvmet_fc_exit_module); 2573 2574 MODULE_LICENSE("GPL v2"); 2575