1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 4 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 62 #define NVMET_FC_MAX_XFR_SGENTS (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE) 63 64 enum nvmet_fcp_datadir { 65 NVMET_FCP_NODATA, 66 NVMET_FCP_WRITE, 67 NVMET_FCP_READ, 68 NVMET_FCP_ABORTED, 69 }; 70 71 struct nvmet_fc_fcp_iod { 72 struct nvmefc_tgt_fcp_req *fcpreq; 73 74 struct nvme_fc_cmd_iu cmdiubuf; 75 struct nvme_fc_ersp_iu rspiubuf; 76 dma_addr_t rspdma; 77 struct scatterlist *data_sg; 78 int data_sg_cnt; 79 u32 total_length; 80 u32 offset; 81 enum nvmet_fcp_datadir io_dir; 82 bool active; 83 bool abort; 84 bool aborted; 85 bool writedataactive; 86 spinlock_t flock; 87 88 struct nvmet_req req; 89 struct work_struct work; 90 struct work_struct done_work; 91 92 struct nvmet_fc_tgtport *tgtport; 93 struct nvmet_fc_tgt_queue *queue; 94 95 struct list_head fcp_list; /* tgtport->fcp_list */ 96 }; 97 98 struct nvmet_fc_tgtport { 99 100 struct nvmet_fc_target_port fc_target_port; 101 102 struct list_head tgt_list; /* nvmet_fc_target_list */ 103 struct device *dev; /* dev for dma mapping */ 104 struct nvmet_fc_target_template *ops; 105 106 struct nvmet_fc_ls_iod *iod; 107 spinlock_t lock; 108 struct list_head ls_list; 109 struct list_head ls_busylist; 110 struct list_head assoc_list; 111 struct ida assoc_cnt; 112 struct nvmet_port *port; 113 struct kref ref; 114 u32 max_sg_cnt; 115 }; 116 117 struct nvmet_fc_defer_fcp_req { 118 struct list_head req_list; 119 struct nvmefc_tgt_fcp_req *fcp_req; 120 }; 121 122 struct nvmet_fc_tgt_queue { 123 bool ninetypercent; 124 u16 qid; 125 u16 sqsize; 126 u16 ersp_ratio; 127 __le16 sqhd; 128 int cpu; 129 atomic_t connected; 130 atomic_t sqtail; 131 atomic_t zrspcnt; 132 atomic_t rsn; 133 spinlock_t qlock; 134 struct nvmet_port *port; 135 struct nvmet_cq nvme_cq; 136 struct nvmet_sq nvme_sq; 137 struct nvmet_fc_tgt_assoc *assoc; 138 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 139 struct list_head fod_list; 140 struct list_head pending_cmd_list; 141 struct list_head avail_defer_list; 142 struct workqueue_struct *work_q; 143 struct kref ref; 144 } __aligned(sizeof(unsigned long long)); 145 146 struct nvmet_fc_tgt_assoc { 147 u64 association_id; 148 u32 a_id; 149 struct nvmet_fc_tgtport *tgtport; 150 struct list_head a_list; 151 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1]; 152 struct kref ref; 153 }; 154 155 156 static inline int 157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 158 { 159 return (iodptr - iodptr->tgtport->iod); 160 } 161 162 static inline int 163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 164 { 165 return (fodptr - fodptr->queue->fod); 166 } 167 168 169 /* 170 * Association and Connection IDs: 171 * 172 * Association ID will have random number in upper 6 bytes and zero 173 * in lower 2 bytes 174 * 175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 176 * 177 * note: Association ID = Connection ID for queue 0 178 */ 179 #define BYTES_FOR_QID sizeof(u16) 180 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 181 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 182 183 static inline u64 184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 185 { 186 return (assoc->association_id | qid); 187 } 188 189 static inline u64 190 nvmet_fc_getassociationid(u64 connectionid) 191 { 192 return connectionid & ~NVMET_FC_QUEUEID_MASK; 193 } 194 195 static inline u16 196 nvmet_fc_getqueueid(u64 connectionid) 197 { 198 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 199 } 200 201 static inline struct nvmet_fc_tgtport * 202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 203 { 204 return container_of(targetport, struct nvmet_fc_tgtport, 205 fc_target_port); 206 } 207 208 static inline struct nvmet_fc_fcp_iod * 209 nvmet_req_to_fod(struct nvmet_req *nvme_req) 210 { 211 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 212 } 213 214 215 /* *************************** Globals **************************** */ 216 217 218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 219 220 static LIST_HEAD(nvmet_fc_target_list); 221 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 222 223 224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); 226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work); 227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 234 struct nvmet_fc_fcp_iod *fod); 235 236 237 /* *********************** FC-NVME DMA Handling **************************** */ 238 239 /* 240 * The fcloop device passes in a NULL device pointer. Real LLD's will 241 * pass in a valid device pointer. If NULL is passed to the dma mapping 242 * routines, depending on the platform, it may or may not succeed, and 243 * may crash. 244 * 245 * As such: 246 * Wrapper all the dma routines and check the dev pointer. 247 * 248 * If simple mappings (return just a dma address, we'll noop them, 249 * returning a dma address of 0. 250 * 251 * On more complex mappings (dma_map_sg), a pseudo routine fills 252 * in the scatter list, setting all dma addresses to 0. 253 */ 254 255 static inline dma_addr_t 256 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 257 enum dma_data_direction dir) 258 { 259 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 260 } 261 262 static inline int 263 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 264 { 265 return dev ? dma_mapping_error(dev, dma_addr) : 0; 266 } 267 268 static inline void 269 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 270 enum dma_data_direction dir) 271 { 272 if (dev) 273 dma_unmap_single(dev, addr, size, dir); 274 } 275 276 static inline void 277 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 278 enum dma_data_direction dir) 279 { 280 if (dev) 281 dma_sync_single_for_cpu(dev, addr, size, dir); 282 } 283 284 static inline void 285 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 286 enum dma_data_direction dir) 287 { 288 if (dev) 289 dma_sync_single_for_device(dev, addr, size, dir); 290 } 291 292 /* pseudo dma_map_sg call */ 293 static int 294 fc_map_sg(struct scatterlist *sg, int nents) 295 { 296 struct scatterlist *s; 297 int i; 298 299 WARN_ON(nents == 0 || sg[0].length == 0); 300 301 for_each_sg(sg, s, nents, i) { 302 s->dma_address = 0L; 303 #ifdef CONFIG_NEED_SG_DMA_LENGTH 304 s->dma_length = s->length; 305 #endif 306 } 307 return nents; 308 } 309 310 static inline int 311 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 312 enum dma_data_direction dir) 313 { 314 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 315 } 316 317 static inline void 318 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 319 enum dma_data_direction dir) 320 { 321 if (dev) 322 dma_unmap_sg(dev, sg, nents, dir); 323 } 324 325 326 /* *********************** FC-NVME Port Management ************************ */ 327 328 329 static int 330 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 331 { 332 struct nvmet_fc_ls_iod *iod; 333 int i; 334 335 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 336 GFP_KERNEL); 337 if (!iod) 338 return -ENOMEM; 339 340 tgtport->iod = iod; 341 342 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 343 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 344 iod->tgtport = tgtport; 345 list_add_tail(&iod->ls_list, &tgtport->ls_list); 346 347 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 348 GFP_KERNEL); 349 if (!iod->rqstbuf) 350 goto out_fail; 351 352 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 353 354 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 355 NVME_FC_MAX_LS_BUFFER_SIZE, 356 DMA_TO_DEVICE); 357 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 358 goto out_fail; 359 } 360 361 return 0; 362 363 out_fail: 364 kfree(iod->rqstbuf); 365 list_del(&iod->ls_list); 366 for (iod--, i--; i >= 0; iod--, i--) { 367 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 368 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 369 kfree(iod->rqstbuf); 370 list_del(&iod->ls_list); 371 } 372 373 kfree(iod); 374 375 return -EFAULT; 376 } 377 378 static void 379 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 380 { 381 struct nvmet_fc_ls_iod *iod = tgtport->iod; 382 int i; 383 384 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 385 fc_dma_unmap_single(tgtport->dev, 386 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 387 DMA_TO_DEVICE); 388 kfree(iod->rqstbuf); 389 list_del(&iod->ls_list); 390 } 391 kfree(tgtport->iod); 392 } 393 394 static struct nvmet_fc_ls_iod * 395 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 396 { 397 struct nvmet_fc_ls_iod *iod; 398 unsigned long flags; 399 400 spin_lock_irqsave(&tgtport->lock, flags); 401 iod = list_first_entry_or_null(&tgtport->ls_list, 402 struct nvmet_fc_ls_iod, ls_list); 403 if (iod) 404 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 405 spin_unlock_irqrestore(&tgtport->lock, flags); 406 return iod; 407 } 408 409 410 static void 411 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 412 struct nvmet_fc_ls_iod *iod) 413 { 414 unsigned long flags; 415 416 spin_lock_irqsave(&tgtport->lock, flags); 417 list_move(&iod->ls_list, &tgtport->ls_list); 418 spin_unlock_irqrestore(&tgtport->lock, flags); 419 } 420 421 static void 422 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 423 struct nvmet_fc_tgt_queue *queue) 424 { 425 struct nvmet_fc_fcp_iod *fod = queue->fod; 426 int i; 427 428 for (i = 0; i < queue->sqsize; fod++, i++) { 429 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); 430 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work); 431 fod->tgtport = tgtport; 432 fod->queue = queue; 433 fod->active = false; 434 fod->abort = false; 435 fod->aborted = false; 436 fod->fcpreq = NULL; 437 list_add_tail(&fod->fcp_list, &queue->fod_list); 438 spin_lock_init(&fod->flock); 439 440 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 441 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 442 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 443 list_del(&fod->fcp_list); 444 for (fod--, i--; i >= 0; fod--, i--) { 445 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 446 sizeof(fod->rspiubuf), 447 DMA_TO_DEVICE); 448 fod->rspdma = 0L; 449 list_del(&fod->fcp_list); 450 } 451 452 return; 453 } 454 } 455 } 456 457 static void 458 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 459 struct nvmet_fc_tgt_queue *queue) 460 { 461 struct nvmet_fc_fcp_iod *fod = queue->fod; 462 int i; 463 464 for (i = 0; i < queue->sqsize; fod++, i++) { 465 if (fod->rspdma) 466 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 467 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 468 } 469 } 470 471 static struct nvmet_fc_fcp_iod * 472 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 473 { 474 struct nvmet_fc_fcp_iod *fod; 475 476 lockdep_assert_held(&queue->qlock); 477 478 fod = list_first_entry_or_null(&queue->fod_list, 479 struct nvmet_fc_fcp_iod, fcp_list); 480 if (fod) { 481 list_del(&fod->fcp_list); 482 fod->active = true; 483 /* 484 * no queue reference is taken, as it was taken by the 485 * queue lookup just prior to the allocation. The iod 486 * will "inherit" that reference. 487 */ 488 } 489 return fod; 490 } 491 492 493 static void 494 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 495 struct nvmet_fc_tgt_queue *queue, 496 struct nvmefc_tgt_fcp_req *fcpreq) 497 { 498 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 499 500 /* 501 * put all admin cmds on hw queue id 0. All io commands go to 502 * the respective hw queue based on a modulo basis 503 */ 504 fcpreq->hwqid = queue->qid ? 505 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 506 507 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR) 508 queue_work_on(queue->cpu, queue->work_q, &fod->work); 509 else 510 nvmet_fc_handle_fcp_rqst(tgtport, fod); 511 } 512 513 static void 514 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 515 struct nvmet_fc_fcp_iod *fod) 516 { 517 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 518 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 519 struct nvmet_fc_defer_fcp_req *deferfcp; 520 unsigned long flags; 521 522 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 523 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 524 525 fcpreq->nvmet_fc_private = NULL; 526 527 fod->active = false; 528 fod->abort = false; 529 fod->aborted = false; 530 fod->writedataactive = false; 531 fod->fcpreq = NULL; 532 533 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 534 535 spin_lock_irqsave(&queue->qlock, flags); 536 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 537 struct nvmet_fc_defer_fcp_req, req_list); 538 if (!deferfcp) { 539 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 540 spin_unlock_irqrestore(&queue->qlock, flags); 541 542 /* Release reference taken at queue lookup and fod allocation */ 543 nvmet_fc_tgt_q_put(queue); 544 return; 545 } 546 547 /* Re-use the fod for the next pending cmd that was deferred */ 548 list_del(&deferfcp->req_list); 549 550 fcpreq = deferfcp->fcp_req; 551 552 /* deferfcp can be reused for another IO at a later date */ 553 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 554 555 spin_unlock_irqrestore(&queue->qlock, flags); 556 557 /* Save NVME CMD IO in fod */ 558 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 559 560 /* Setup new fcpreq to be processed */ 561 fcpreq->rspaddr = NULL; 562 fcpreq->rsplen = 0; 563 fcpreq->nvmet_fc_private = fod; 564 fod->fcpreq = fcpreq; 565 fod->active = true; 566 567 /* inform LLDD IO is now being processed */ 568 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 569 570 /* Submit deferred IO for processing */ 571 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 572 573 /* 574 * Leave the queue lookup get reference taken when 575 * fod was originally allocated. 576 */ 577 } 578 579 static int 580 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) 581 { 582 int cpu, idx, cnt; 583 584 if (tgtport->ops->max_hw_queues == 1) 585 return WORK_CPU_UNBOUND; 586 587 /* Simple cpu selection based on qid modulo active cpu count */ 588 idx = !qid ? 0 : (qid - 1) % num_active_cpus(); 589 590 /* find the n'th active cpu */ 591 for (cpu = 0, cnt = 0; ; ) { 592 if (cpu_active(cpu)) { 593 if (cnt == idx) 594 break; 595 cnt++; 596 } 597 cpu = (cpu + 1) % num_possible_cpus(); 598 } 599 600 return cpu; 601 } 602 603 static struct nvmet_fc_tgt_queue * 604 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 605 u16 qid, u16 sqsize) 606 { 607 struct nvmet_fc_tgt_queue *queue; 608 unsigned long flags; 609 int ret; 610 611 if (qid > NVMET_NR_QUEUES) 612 return NULL; 613 614 queue = kzalloc((sizeof(*queue) + 615 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 616 GFP_KERNEL); 617 if (!queue) 618 return NULL; 619 620 if (!nvmet_fc_tgt_a_get(assoc)) 621 goto out_free_queue; 622 623 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 624 assoc->tgtport->fc_target_port.port_num, 625 assoc->a_id, qid); 626 if (!queue->work_q) 627 goto out_a_put; 628 629 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 630 queue->qid = qid; 631 queue->sqsize = sqsize; 632 queue->assoc = assoc; 633 queue->port = assoc->tgtport->port; 634 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); 635 INIT_LIST_HEAD(&queue->fod_list); 636 INIT_LIST_HEAD(&queue->avail_defer_list); 637 INIT_LIST_HEAD(&queue->pending_cmd_list); 638 atomic_set(&queue->connected, 0); 639 atomic_set(&queue->sqtail, 0); 640 atomic_set(&queue->rsn, 1); 641 atomic_set(&queue->zrspcnt, 0); 642 spin_lock_init(&queue->qlock); 643 kref_init(&queue->ref); 644 645 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 646 647 ret = nvmet_sq_init(&queue->nvme_sq); 648 if (ret) 649 goto out_fail_iodlist; 650 651 WARN_ON(assoc->queues[qid]); 652 spin_lock_irqsave(&assoc->tgtport->lock, flags); 653 assoc->queues[qid] = queue; 654 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 655 656 return queue; 657 658 out_fail_iodlist: 659 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 660 destroy_workqueue(queue->work_q); 661 out_a_put: 662 nvmet_fc_tgt_a_put(assoc); 663 out_free_queue: 664 kfree(queue); 665 return NULL; 666 } 667 668 669 static void 670 nvmet_fc_tgt_queue_free(struct kref *ref) 671 { 672 struct nvmet_fc_tgt_queue *queue = 673 container_of(ref, struct nvmet_fc_tgt_queue, ref); 674 unsigned long flags; 675 676 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 677 queue->assoc->queues[queue->qid] = NULL; 678 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 679 680 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 681 682 nvmet_fc_tgt_a_put(queue->assoc); 683 684 destroy_workqueue(queue->work_q); 685 686 kfree(queue); 687 } 688 689 static void 690 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 691 { 692 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 693 } 694 695 static int 696 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 697 { 698 return kref_get_unless_zero(&queue->ref); 699 } 700 701 702 static void 703 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 704 { 705 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 706 struct nvmet_fc_fcp_iod *fod = queue->fod; 707 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 708 unsigned long flags; 709 int i, writedataactive; 710 bool disconnect; 711 712 disconnect = atomic_xchg(&queue->connected, 0); 713 714 spin_lock_irqsave(&queue->qlock, flags); 715 /* about outstanding io's */ 716 for (i = 0; i < queue->sqsize; fod++, i++) { 717 if (fod->active) { 718 spin_lock(&fod->flock); 719 fod->abort = true; 720 writedataactive = fod->writedataactive; 721 spin_unlock(&fod->flock); 722 /* 723 * only call lldd abort routine if waiting for 724 * writedata. other outstanding ops should finish 725 * on their own. 726 */ 727 if (writedataactive) { 728 spin_lock(&fod->flock); 729 fod->aborted = true; 730 spin_unlock(&fod->flock); 731 tgtport->ops->fcp_abort( 732 &tgtport->fc_target_port, fod->fcpreq); 733 } 734 } 735 } 736 737 /* Cleanup defer'ed IOs in queue */ 738 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 739 req_list) { 740 list_del(&deferfcp->req_list); 741 kfree(deferfcp); 742 } 743 744 for (;;) { 745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 746 struct nvmet_fc_defer_fcp_req, req_list); 747 if (!deferfcp) 748 break; 749 750 list_del(&deferfcp->req_list); 751 spin_unlock_irqrestore(&queue->qlock, flags); 752 753 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 754 deferfcp->fcp_req); 755 756 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 757 deferfcp->fcp_req); 758 759 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 760 deferfcp->fcp_req); 761 762 kfree(deferfcp); 763 764 spin_lock_irqsave(&queue->qlock, flags); 765 } 766 spin_unlock_irqrestore(&queue->qlock, flags); 767 768 flush_workqueue(queue->work_q); 769 770 if (disconnect) 771 nvmet_sq_destroy(&queue->nvme_sq); 772 773 nvmet_fc_tgt_q_put(queue); 774 } 775 776 static struct nvmet_fc_tgt_queue * 777 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 778 u64 connection_id) 779 { 780 struct nvmet_fc_tgt_assoc *assoc; 781 struct nvmet_fc_tgt_queue *queue; 782 u64 association_id = nvmet_fc_getassociationid(connection_id); 783 u16 qid = nvmet_fc_getqueueid(connection_id); 784 unsigned long flags; 785 786 if (qid > NVMET_NR_QUEUES) 787 return NULL; 788 789 spin_lock_irqsave(&tgtport->lock, flags); 790 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 791 if (association_id == assoc->association_id) { 792 queue = assoc->queues[qid]; 793 if (queue && 794 (!atomic_read(&queue->connected) || 795 !nvmet_fc_tgt_q_get(queue))) 796 queue = NULL; 797 spin_unlock_irqrestore(&tgtport->lock, flags); 798 return queue; 799 } 800 } 801 spin_unlock_irqrestore(&tgtport->lock, flags); 802 return NULL; 803 } 804 805 static struct nvmet_fc_tgt_assoc * 806 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 807 { 808 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 809 unsigned long flags; 810 u64 ran; 811 int idx; 812 bool needrandom = true; 813 814 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 815 if (!assoc) 816 return NULL; 817 818 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 819 if (idx < 0) 820 goto out_free_assoc; 821 822 if (!nvmet_fc_tgtport_get(tgtport)) 823 goto out_ida_put; 824 825 assoc->tgtport = tgtport; 826 assoc->a_id = idx; 827 INIT_LIST_HEAD(&assoc->a_list); 828 kref_init(&assoc->ref); 829 830 while (needrandom) { 831 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 832 ran = ran << BYTES_FOR_QID_SHIFT; 833 834 spin_lock_irqsave(&tgtport->lock, flags); 835 needrandom = false; 836 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 837 if (ran == tmpassoc->association_id) { 838 needrandom = true; 839 break; 840 } 841 if (!needrandom) { 842 assoc->association_id = ran; 843 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 844 } 845 spin_unlock_irqrestore(&tgtport->lock, flags); 846 } 847 848 return assoc; 849 850 out_ida_put: 851 ida_simple_remove(&tgtport->assoc_cnt, idx); 852 out_free_assoc: 853 kfree(assoc); 854 return NULL; 855 } 856 857 static void 858 nvmet_fc_target_assoc_free(struct kref *ref) 859 { 860 struct nvmet_fc_tgt_assoc *assoc = 861 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 862 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 863 unsigned long flags; 864 865 spin_lock_irqsave(&tgtport->lock, flags); 866 list_del(&assoc->a_list); 867 spin_unlock_irqrestore(&tgtport->lock, flags); 868 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 869 kfree(assoc); 870 nvmet_fc_tgtport_put(tgtport); 871 } 872 873 static void 874 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 875 { 876 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 877 } 878 879 static int 880 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 881 { 882 return kref_get_unless_zero(&assoc->ref); 883 } 884 885 static void 886 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 887 { 888 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 889 struct nvmet_fc_tgt_queue *queue; 890 unsigned long flags; 891 int i; 892 893 spin_lock_irqsave(&tgtport->lock, flags); 894 for (i = NVMET_NR_QUEUES; i >= 0; i--) { 895 queue = assoc->queues[i]; 896 if (queue) { 897 if (!nvmet_fc_tgt_q_get(queue)) 898 continue; 899 spin_unlock_irqrestore(&tgtport->lock, flags); 900 nvmet_fc_delete_target_queue(queue); 901 nvmet_fc_tgt_q_put(queue); 902 spin_lock_irqsave(&tgtport->lock, flags); 903 } 904 } 905 spin_unlock_irqrestore(&tgtport->lock, flags); 906 907 nvmet_fc_tgt_a_put(assoc); 908 } 909 910 static struct nvmet_fc_tgt_assoc * 911 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 912 u64 association_id) 913 { 914 struct nvmet_fc_tgt_assoc *assoc; 915 struct nvmet_fc_tgt_assoc *ret = NULL; 916 unsigned long flags; 917 918 spin_lock_irqsave(&tgtport->lock, flags); 919 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 920 if (association_id == assoc->association_id) { 921 ret = assoc; 922 nvmet_fc_tgt_a_get(assoc); 923 break; 924 } 925 } 926 spin_unlock_irqrestore(&tgtport->lock, flags); 927 928 return ret; 929 } 930 931 932 /** 933 * nvme_fc_register_targetport - transport entry point called by an 934 * LLDD to register the existence of a local 935 * NVME subystem FC port. 936 * @pinfo: pointer to information about the port to be registered 937 * @template: LLDD entrypoints and operational parameters for the port 938 * @dev: physical hardware device node port corresponds to. Will be 939 * used for DMA mappings 940 * @portptr: pointer to a local port pointer. Upon success, the routine 941 * will allocate a nvme_fc_local_port structure and place its 942 * address in the local port pointer. Upon failure, local port 943 * pointer will be set to NULL. 944 * 945 * Returns: 946 * a completion status. Must be 0 upon success; a negative errno 947 * (ex: -ENXIO) upon failure. 948 */ 949 int 950 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 951 struct nvmet_fc_target_template *template, 952 struct device *dev, 953 struct nvmet_fc_target_port **portptr) 954 { 955 struct nvmet_fc_tgtport *newrec; 956 unsigned long flags; 957 int ret, idx; 958 959 if (!template->xmt_ls_rsp || !template->fcp_op || 960 !template->fcp_abort || 961 !template->fcp_req_release || !template->targetport_delete || 962 !template->max_hw_queues || !template->max_sgl_segments || 963 !template->max_dif_sgl_segments || !template->dma_boundary) { 964 ret = -EINVAL; 965 goto out_regtgt_failed; 966 } 967 968 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 969 GFP_KERNEL); 970 if (!newrec) { 971 ret = -ENOMEM; 972 goto out_regtgt_failed; 973 } 974 975 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 976 if (idx < 0) { 977 ret = -ENOSPC; 978 goto out_fail_kfree; 979 } 980 981 if (!get_device(dev) && dev) { 982 ret = -ENODEV; 983 goto out_ida_put; 984 } 985 986 newrec->fc_target_port.node_name = pinfo->node_name; 987 newrec->fc_target_port.port_name = pinfo->port_name; 988 newrec->fc_target_port.private = &newrec[1]; 989 newrec->fc_target_port.port_id = pinfo->port_id; 990 newrec->fc_target_port.port_num = idx; 991 INIT_LIST_HEAD(&newrec->tgt_list); 992 newrec->dev = dev; 993 newrec->ops = template; 994 spin_lock_init(&newrec->lock); 995 INIT_LIST_HEAD(&newrec->ls_list); 996 INIT_LIST_HEAD(&newrec->ls_busylist); 997 INIT_LIST_HEAD(&newrec->assoc_list); 998 kref_init(&newrec->ref); 999 ida_init(&newrec->assoc_cnt); 1000 newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS, 1001 template->max_sgl_segments); 1002 1003 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1004 if (ret) { 1005 ret = -ENOMEM; 1006 goto out_free_newrec; 1007 } 1008 1009 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1010 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1011 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1012 1013 *portptr = &newrec->fc_target_port; 1014 return 0; 1015 1016 out_free_newrec: 1017 put_device(dev); 1018 out_ida_put: 1019 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1020 out_fail_kfree: 1021 kfree(newrec); 1022 out_regtgt_failed: 1023 *portptr = NULL; 1024 return ret; 1025 } 1026 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1027 1028 1029 static void 1030 nvmet_fc_free_tgtport(struct kref *ref) 1031 { 1032 struct nvmet_fc_tgtport *tgtport = 1033 container_of(ref, struct nvmet_fc_tgtport, ref); 1034 struct device *dev = tgtport->dev; 1035 unsigned long flags; 1036 1037 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1038 list_del(&tgtport->tgt_list); 1039 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1040 1041 nvmet_fc_free_ls_iodlist(tgtport); 1042 1043 /* let the LLDD know we've finished tearing it down */ 1044 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1045 1046 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1047 tgtport->fc_target_port.port_num); 1048 1049 ida_destroy(&tgtport->assoc_cnt); 1050 1051 kfree(tgtport); 1052 1053 put_device(dev); 1054 } 1055 1056 static void 1057 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1058 { 1059 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1060 } 1061 1062 static int 1063 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1064 { 1065 return kref_get_unless_zero(&tgtport->ref); 1066 } 1067 1068 static void 1069 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1070 { 1071 struct nvmet_fc_tgt_assoc *assoc, *next; 1072 unsigned long flags; 1073 1074 spin_lock_irqsave(&tgtport->lock, flags); 1075 list_for_each_entry_safe(assoc, next, 1076 &tgtport->assoc_list, a_list) { 1077 if (!nvmet_fc_tgt_a_get(assoc)) 1078 continue; 1079 spin_unlock_irqrestore(&tgtport->lock, flags); 1080 nvmet_fc_delete_target_assoc(assoc); 1081 nvmet_fc_tgt_a_put(assoc); 1082 spin_lock_irqsave(&tgtport->lock, flags); 1083 } 1084 spin_unlock_irqrestore(&tgtport->lock, flags); 1085 } 1086 1087 /* 1088 * nvmet layer has called to terminate an association 1089 */ 1090 static void 1091 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1092 { 1093 struct nvmet_fc_tgtport *tgtport, *next; 1094 struct nvmet_fc_tgt_assoc *assoc; 1095 struct nvmet_fc_tgt_queue *queue; 1096 unsigned long flags; 1097 bool found_ctrl = false; 1098 1099 /* this is a bit ugly, but don't want to make locks layered */ 1100 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1101 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1102 tgt_list) { 1103 if (!nvmet_fc_tgtport_get(tgtport)) 1104 continue; 1105 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1106 1107 spin_lock_irqsave(&tgtport->lock, flags); 1108 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1109 queue = assoc->queues[0]; 1110 if (queue && queue->nvme_sq.ctrl == ctrl) { 1111 if (nvmet_fc_tgt_a_get(assoc)) 1112 found_ctrl = true; 1113 break; 1114 } 1115 } 1116 spin_unlock_irqrestore(&tgtport->lock, flags); 1117 1118 nvmet_fc_tgtport_put(tgtport); 1119 1120 if (found_ctrl) { 1121 nvmet_fc_delete_target_assoc(assoc); 1122 nvmet_fc_tgt_a_put(assoc); 1123 return; 1124 } 1125 1126 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1127 } 1128 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1129 } 1130 1131 /** 1132 * nvme_fc_unregister_targetport - transport entry point called by an 1133 * LLDD to deregister/remove a previously 1134 * registered a local NVME subsystem FC port. 1135 * @tgtport: pointer to the (registered) target port that is to be 1136 * deregistered. 1137 * 1138 * Returns: 1139 * a completion status. Must be 0 upon success; a negative errno 1140 * (ex: -ENXIO) upon failure. 1141 */ 1142 int 1143 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1144 { 1145 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1146 1147 /* terminate any outstanding associations */ 1148 __nvmet_fc_free_assocs(tgtport); 1149 1150 nvmet_fc_tgtport_put(tgtport); 1151 1152 return 0; 1153 } 1154 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1155 1156 1157 /* *********************** FC-NVME LS Handling **************************** */ 1158 1159 1160 static void 1161 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1162 { 1163 struct fcnvme_ls_acc_hdr *acc = buf; 1164 1165 acc->w0.ls_cmd = ls_cmd; 1166 acc->desc_list_len = desc_len; 1167 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1168 acc->rqst.desc_len = 1169 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1170 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1171 } 1172 1173 static int 1174 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1175 u8 reason, u8 explanation, u8 vendor) 1176 { 1177 struct fcnvme_ls_rjt *rjt = buf; 1178 1179 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1180 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1181 ls_cmd); 1182 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1183 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1184 rjt->rjt.reason_code = reason; 1185 rjt->rjt.reason_explanation = explanation; 1186 rjt->rjt.vendor = vendor; 1187 1188 return sizeof(struct fcnvme_ls_rjt); 1189 } 1190 1191 /* Validation Error indexes into the string table below */ 1192 enum { 1193 VERR_NO_ERROR = 0, 1194 VERR_CR_ASSOC_LEN = 1, 1195 VERR_CR_ASSOC_RQST_LEN = 2, 1196 VERR_CR_ASSOC_CMD = 3, 1197 VERR_CR_ASSOC_CMD_LEN = 4, 1198 VERR_ERSP_RATIO = 5, 1199 VERR_ASSOC_ALLOC_FAIL = 6, 1200 VERR_QUEUE_ALLOC_FAIL = 7, 1201 VERR_CR_CONN_LEN = 8, 1202 VERR_CR_CONN_RQST_LEN = 9, 1203 VERR_ASSOC_ID = 10, 1204 VERR_ASSOC_ID_LEN = 11, 1205 VERR_NO_ASSOC = 12, 1206 VERR_CONN_ID = 13, 1207 VERR_CONN_ID_LEN = 14, 1208 VERR_NO_CONN = 15, 1209 VERR_CR_CONN_CMD = 16, 1210 VERR_CR_CONN_CMD_LEN = 17, 1211 VERR_DISCONN_LEN = 18, 1212 VERR_DISCONN_RQST_LEN = 19, 1213 VERR_DISCONN_CMD = 20, 1214 VERR_DISCONN_CMD_LEN = 21, 1215 VERR_DISCONN_SCOPE = 22, 1216 VERR_RS_LEN = 23, 1217 VERR_RS_RQST_LEN = 24, 1218 VERR_RS_CMD = 25, 1219 VERR_RS_CMD_LEN = 26, 1220 VERR_RS_RCTL = 27, 1221 VERR_RS_RO = 28, 1222 }; 1223 1224 static char *validation_errors[] = { 1225 "OK", 1226 "Bad CR_ASSOC Length", 1227 "Bad CR_ASSOC Rqst Length", 1228 "Not CR_ASSOC Cmd", 1229 "Bad CR_ASSOC Cmd Length", 1230 "Bad Ersp Ratio", 1231 "Association Allocation Failed", 1232 "Queue Allocation Failed", 1233 "Bad CR_CONN Length", 1234 "Bad CR_CONN Rqst Length", 1235 "Not Association ID", 1236 "Bad Association ID Length", 1237 "No Association", 1238 "Not Connection ID", 1239 "Bad Connection ID Length", 1240 "No Connection", 1241 "Not CR_CONN Cmd", 1242 "Bad CR_CONN Cmd Length", 1243 "Bad DISCONN Length", 1244 "Bad DISCONN Rqst Length", 1245 "Not DISCONN Cmd", 1246 "Bad DISCONN Cmd Length", 1247 "Bad Disconnect Scope", 1248 "Bad RS Length", 1249 "Bad RS Rqst Length", 1250 "Not RS Cmd", 1251 "Bad RS Cmd Length", 1252 "Bad RS R_CTL", 1253 "Bad RS Relative Offset", 1254 }; 1255 1256 static void 1257 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1258 struct nvmet_fc_ls_iod *iod) 1259 { 1260 struct fcnvme_ls_cr_assoc_rqst *rqst = 1261 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1262 struct fcnvme_ls_cr_assoc_acc *acc = 1263 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1264 struct nvmet_fc_tgt_queue *queue; 1265 int ret = 0; 1266 1267 memset(acc, 0, sizeof(*acc)); 1268 1269 /* 1270 * FC-NVME spec changes. There are initiators sending different 1271 * lengths as padding sizes for Create Association Cmd descriptor 1272 * was incorrect. 1273 * Accept anything of "minimum" length. Assume format per 1.15 1274 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1275 * trailing pad length is. 1276 */ 1277 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1278 ret = VERR_CR_ASSOC_LEN; 1279 else if (be32_to_cpu(rqst->desc_list_len) < 1280 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1281 ret = VERR_CR_ASSOC_RQST_LEN; 1282 else if (rqst->assoc_cmd.desc_tag != 1283 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1284 ret = VERR_CR_ASSOC_CMD; 1285 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1286 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1287 ret = VERR_CR_ASSOC_CMD_LEN; 1288 else if (!rqst->assoc_cmd.ersp_ratio || 1289 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1290 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1291 ret = VERR_ERSP_RATIO; 1292 1293 else { 1294 /* new association w/ admin queue */ 1295 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1296 if (!iod->assoc) 1297 ret = VERR_ASSOC_ALLOC_FAIL; 1298 else { 1299 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1300 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1301 if (!queue) 1302 ret = VERR_QUEUE_ALLOC_FAIL; 1303 } 1304 } 1305 1306 if (ret) { 1307 dev_err(tgtport->dev, 1308 "Create Association LS failed: %s\n", 1309 validation_errors[ret]); 1310 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1311 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1312 FCNVME_RJT_RC_LOGIC, 1313 FCNVME_RJT_EXP_NONE, 0); 1314 return; 1315 } 1316 1317 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1318 atomic_set(&queue->connected, 1); 1319 queue->sqhd = 0; /* best place to init value */ 1320 1321 /* format a response */ 1322 1323 iod->lsreq->rsplen = sizeof(*acc); 1324 1325 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1326 fcnvme_lsdesc_len( 1327 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1328 FCNVME_LS_CREATE_ASSOCIATION); 1329 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1330 acc->associd.desc_len = 1331 fcnvme_lsdesc_len( 1332 sizeof(struct fcnvme_lsdesc_assoc_id)); 1333 acc->associd.association_id = 1334 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1335 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1336 acc->connectid.desc_len = 1337 fcnvme_lsdesc_len( 1338 sizeof(struct fcnvme_lsdesc_conn_id)); 1339 acc->connectid.connection_id = acc->associd.association_id; 1340 } 1341 1342 static void 1343 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1344 struct nvmet_fc_ls_iod *iod) 1345 { 1346 struct fcnvme_ls_cr_conn_rqst *rqst = 1347 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1348 struct fcnvme_ls_cr_conn_acc *acc = 1349 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1350 struct nvmet_fc_tgt_queue *queue; 1351 int ret = 0; 1352 1353 memset(acc, 0, sizeof(*acc)); 1354 1355 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1356 ret = VERR_CR_CONN_LEN; 1357 else if (rqst->desc_list_len != 1358 fcnvme_lsdesc_len( 1359 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1360 ret = VERR_CR_CONN_RQST_LEN; 1361 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1362 ret = VERR_ASSOC_ID; 1363 else if (rqst->associd.desc_len != 1364 fcnvme_lsdesc_len( 1365 sizeof(struct fcnvme_lsdesc_assoc_id))) 1366 ret = VERR_ASSOC_ID_LEN; 1367 else if (rqst->connect_cmd.desc_tag != 1368 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1369 ret = VERR_CR_CONN_CMD; 1370 else if (rqst->connect_cmd.desc_len != 1371 fcnvme_lsdesc_len( 1372 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1373 ret = VERR_CR_CONN_CMD_LEN; 1374 else if (!rqst->connect_cmd.ersp_ratio || 1375 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1376 be16_to_cpu(rqst->connect_cmd.sqsize))) 1377 ret = VERR_ERSP_RATIO; 1378 1379 else { 1380 /* new io queue */ 1381 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1382 be64_to_cpu(rqst->associd.association_id)); 1383 if (!iod->assoc) 1384 ret = VERR_NO_ASSOC; 1385 else { 1386 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1387 be16_to_cpu(rqst->connect_cmd.qid), 1388 be16_to_cpu(rqst->connect_cmd.sqsize)); 1389 if (!queue) 1390 ret = VERR_QUEUE_ALLOC_FAIL; 1391 1392 /* release get taken in nvmet_fc_find_target_assoc */ 1393 nvmet_fc_tgt_a_put(iod->assoc); 1394 } 1395 } 1396 1397 if (ret) { 1398 dev_err(tgtport->dev, 1399 "Create Connection LS failed: %s\n", 1400 validation_errors[ret]); 1401 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1402 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1403 (ret == VERR_NO_ASSOC) ? 1404 FCNVME_RJT_RC_INV_ASSOC : 1405 FCNVME_RJT_RC_LOGIC, 1406 FCNVME_RJT_EXP_NONE, 0); 1407 return; 1408 } 1409 1410 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1411 atomic_set(&queue->connected, 1); 1412 queue->sqhd = 0; /* best place to init value */ 1413 1414 /* format a response */ 1415 1416 iod->lsreq->rsplen = sizeof(*acc); 1417 1418 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1419 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1420 FCNVME_LS_CREATE_CONNECTION); 1421 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1422 acc->connectid.desc_len = 1423 fcnvme_lsdesc_len( 1424 sizeof(struct fcnvme_lsdesc_conn_id)); 1425 acc->connectid.connection_id = 1426 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1427 be16_to_cpu(rqst->connect_cmd.qid))); 1428 } 1429 1430 static void 1431 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1432 struct nvmet_fc_ls_iod *iod) 1433 { 1434 struct fcnvme_ls_disconnect_rqst *rqst = 1435 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1436 struct fcnvme_ls_disconnect_acc *acc = 1437 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1438 struct nvmet_fc_tgt_queue *queue = NULL; 1439 struct nvmet_fc_tgt_assoc *assoc; 1440 int ret = 0; 1441 bool del_assoc = false; 1442 1443 memset(acc, 0, sizeof(*acc)); 1444 1445 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1446 ret = VERR_DISCONN_LEN; 1447 else if (rqst->desc_list_len != 1448 fcnvme_lsdesc_len( 1449 sizeof(struct fcnvme_ls_disconnect_rqst))) 1450 ret = VERR_DISCONN_RQST_LEN; 1451 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1452 ret = VERR_ASSOC_ID; 1453 else if (rqst->associd.desc_len != 1454 fcnvme_lsdesc_len( 1455 sizeof(struct fcnvme_lsdesc_assoc_id))) 1456 ret = VERR_ASSOC_ID_LEN; 1457 else if (rqst->discon_cmd.desc_tag != 1458 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1459 ret = VERR_DISCONN_CMD; 1460 else if (rqst->discon_cmd.desc_len != 1461 fcnvme_lsdesc_len( 1462 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1463 ret = VERR_DISCONN_CMD_LEN; 1464 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1465 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1466 ret = VERR_DISCONN_SCOPE; 1467 else { 1468 /* match an active association */ 1469 assoc = nvmet_fc_find_target_assoc(tgtport, 1470 be64_to_cpu(rqst->associd.association_id)); 1471 iod->assoc = assoc; 1472 if (assoc) { 1473 if (rqst->discon_cmd.scope == 1474 FCNVME_DISCONN_CONNECTION) { 1475 queue = nvmet_fc_find_target_queue(tgtport, 1476 be64_to_cpu( 1477 rqst->discon_cmd.id)); 1478 if (!queue) { 1479 nvmet_fc_tgt_a_put(assoc); 1480 ret = VERR_NO_CONN; 1481 } 1482 } 1483 } else 1484 ret = VERR_NO_ASSOC; 1485 } 1486 1487 if (ret) { 1488 dev_err(tgtport->dev, 1489 "Disconnect LS failed: %s\n", 1490 validation_errors[ret]); 1491 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1492 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1493 (ret == VERR_NO_ASSOC) ? 1494 FCNVME_RJT_RC_INV_ASSOC : 1495 (ret == VERR_NO_CONN) ? 1496 FCNVME_RJT_RC_INV_CONN : 1497 FCNVME_RJT_RC_LOGIC, 1498 FCNVME_RJT_EXP_NONE, 0); 1499 return; 1500 } 1501 1502 /* format a response */ 1503 1504 iod->lsreq->rsplen = sizeof(*acc); 1505 1506 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1507 fcnvme_lsdesc_len( 1508 sizeof(struct fcnvme_ls_disconnect_acc)), 1509 FCNVME_LS_DISCONNECT); 1510 1511 1512 /* are we to delete a Connection ID (queue) */ 1513 if (queue) { 1514 int qid = queue->qid; 1515 1516 nvmet_fc_delete_target_queue(queue); 1517 1518 /* release the get taken by find_target_queue */ 1519 nvmet_fc_tgt_q_put(queue); 1520 1521 /* tear association down if io queue terminated */ 1522 if (!qid) 1523 del_assoc = true; 1524 } 1525 1526 /* release get taken in nvmet_fc_find_target_assoc */ 1527 nvmet_fc_tgt_a_put(iod->assoc); 1528 1529 if (del_assoc) 1530 nvmet_fc_delete_target_assoc(iod->assoc); 1531 } 1532 1533 1534 /* *********************** NVME Ctrl Routines **************************** */ 1535 1536 1537 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1538 1539 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1540 1541 static void 1542 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1543 { 1544 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1545 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1546 1547 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1548 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1549 nvmet_fc_free_ls_iod(tgtport, iod); 1550 nvmet_fc_tgtport_put(tgtport); 1551 } 1552 1553 static void 1554 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1555 struct nvmet_fc_ls_iod *iod) 1556 { 1557 int ret; 1558 1559 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1560 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1561 1562 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1563 if (ret) 1564 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1565 } 1566 1567 /* 1568 * Actual processing routine for received FC-NVME LS Requests from the LLD 1569 */ 1570 static void 1571 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1572 struct nvmet_fc_ls_iod *iod) 1573 { 1574 struct fcnvme_ls_rqst_w0 *w0 = 1575 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1576 1577 iod->lsreq->nvmet_fc_private = iod; 1578 iod->lsreq->rspbuf = iod->rspbuf; 1579 iod->lsreq->rspdma = iod->rspdma; 1580 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1581 /* Be preventative. handlers will later set to valid length */ 1582 iod->lsreq->rsplen = 0; 1583 1584 iod->assoc = NULL; 1585 1586 /* 1587 * handlers: 1588 * parse request input, execute the request, and format the 1589 * LS response 1590 */ 1591 switch (w0->ls_cmd) { 1592 case FCNVME_LS_CREATE_ASSOCIATION: 1593 /* Creates Association and initial Admin Queue/Connection */ 1594 nvmet_fc_ls_create_association(tgtport, iod); 1595 break; 1596 case FCNVME_LS_CREATE_CONNECTION: 1597 /* Creates an IO Queue/Connection */ 1598 nvmet_fc_ls_create_connection(tgtport, iod); 1599 break; 1600 case FCNVME_LS_DISCONNECT: 1601 /* Terminate a Queue/Connection or the Association */ 1602 nvmet_fc_ls_disconnect(tgtport, iod); 1603 break; 1604 default: 1605 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1606 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1607 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1608 } 1609 1610 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1611 } 1612 1613 /* 1614 * Actual processing routine for received FC-NVME LS Requests from the LLD 1615 */ 1616 static void 1617 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1618 { 1619 struct nvmet_fc_ls_iod *iod = 1620 container_of(work, struct nvmet_fc_ls_iod, work); 1621 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1622 1623 nvmet_fc_handle_ls_rqst(tgtport, iod); 1624 } 1625 1626 1627 /** 1628 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1629 * upon the reception of a NVME LS request. 1630 * 1631 * The nvmet-fc layer will copy payload to an internal structure for 1632 * processing. As such, upon completion of the routine, the LLDD may 1633 * immediately free/reuse the LS request buffer passed in the call. 1634 * 1635 * If this routine returns error, the LLDD should abort the exchange. 1636 * 1637 * @tgtport: pointer to the (registered) target port the LS was 1638 * received on. 1639 * @lsreq: pointer to a lsreq request structure to be used to reference 1640 * the exchange corresponding to the LS. 1641 * @lsreqbuf: pointer to the buffer containing the LS Request 1642 * @lsreqbuf_len: length, in bytes, of the received LS request 1643 */ 1644 int 1645 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1646 struct nvmefc_tgt_ls_req *lsreq, 1647 void *lsreqbuf, u32 lsreqbuf_len) 1648 { 1649 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1650 struct nvmet_fc_ls_iod *iod; 1651 1652 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1653 return -E2BIG; 1654 1655 if (!nvmet_fc_tgtport_get(tgtport)) 1656 return -ESHUTDOWN; 1657 1658 iod = nvmet_fc_alloc_ls_iod(tgtport); 1659 if (!iod) { 1660 nvmet_fc_tgtport_put(tgtport); 1661 return -ENOENT; 1662 } 1663 1664 iod->lsreq = lsreq; 1665 iod->fcpreq = NULL; 1666 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1667 iod->rqstdatalen = lsreqbuf_len; 1668 1669 schedule_work(&iod->work); 1670 1671 return 0; 1672 } 1673 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1674 1675 1676 /* 1677 * ********************** 1678 * Start of FCP handling 1679 * ********************** 1680 */ 1681 1682 static int 1683 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1684 { 1685 struct scatterlist *sg; 1686 struct page *page; 1687 unsigned int nent; 1688 u32 page_len, length; 1689 int i = 0; 1690 1691 length = fod->total_length; 1692 nent = DIV_ROUND_UP(length, PAGE_SIZE); 1693 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 1694 if (!sg) 1695 goto out; 1696 1697 sg_init_table(sg, nent); 1698 1699 while (length) { 1700 page_len = min_t(u32, length, PAGE_SIZE); 1701 1702 page = alloc_page(GFP_KERNEL); 1703 if (!page) 1704 goto out_free_pages; 1705 1706 sg_set_page(&sg[i], page, page_len, 0); 1707 length -= page_len; 1708 i++; 1709 } 1710 1711 fod->data_sg = sg; 1712 fod->data_sg_cnt = nent; 1713 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1714 ((fod->io_dir == NVMET_FCP_WRITE) ? 1715 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1716 /* note: write from initiator perspective */ 1717 1718 return 0; 1719 1720 out_free_pages: 1721 while (i > 0) { 1722 i--; 1723 __free_page(sg_page(&sg[i])); 1724 } 1725 kfree(sg); 1726 fod->data_sg = NULL; 1727 fod->data_sg_cnt = 0; 1728 out: 1729 return NVME_SC_INTERNAL; 1730 } 1731 1732 static void 1733 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1734 { 1735 struct scatterlist *sg; 1736 int count; 1737 1738 if (!fod->data_sg || !fod->data_sg_cnt) 1739 return; 1740 1741 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1742 ((fod->io_dir == NVMET_FCP_WRITE) ? 1743 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1744 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count) 1745 __free_page(sg_page(sg)); 1746 kfree(fod->data_sg); 1747 fod->data_sg = NULL; 1748 fod->data_sg_cnt = 0; 1749 } 1750 1751 1752 static bool 1753 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1754 { 1755 u32 sqtail, used; 1756 1757 /* egad, this is ugly. And sqtail is just a best guess */ 1758 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1759 1760 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1761 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1762 } 1763 1764 /* 1765 * Prep RSP payload. 1766 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1767 */ 1768 static void 1769 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1770 struct nvmet_fc_fcp_iod *fod) 1771 { 1772 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1773 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1774 struct nvme_completion *cqe = &ersp->cqe; 1775 u32 *cqewd = (u32 *)cqe; 1776 bool send_ersp = false; 1777 u32 rsn, rspcnt, xfr_length; 1778 1779 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1780 xfr_length = fod->total_length; 1781 else 1782 xfr_length = fod->offset; 1783 1784 /* 1785 * check to see if we can send a 0's rsp. 1786 * Note: to send a 0's response, the NVME-FC host transport will 1787 * recreate the CQE. The host transport knows: sq id, SQHD (last 1788 * seen in an ersp), and command_id. Thus it will create a 1789 * zero-filled CQE with those known fields filled in. Transport 1790 * must send an ersp for any condition where the cqe won't match 1791 * this. 1792 * 1793 * Here are the FC-NVME mandated cases where we must send an ersp: 1794 * every N responses, where N=ersp_ratio 1795 * force fabric commands to send ersp's (not in FC-NVME but good 1796 * practice) 1797 * normal cmds: any time status is non-zero, or status is zero 1798 * but words 0 or 1 are non-zero. 1799 * the SQ is 90% or more full 1800 * the cmd is a fused command 1801 * transferred data length not equal to cmd iu length 1802 */ 1803 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1804 if (!(rspcnt % fod->queue->ersp_ratio) || 1805 sqe->opcode == nvme_fabrics_command || 1806 xfr_length != fod->total_length || 1807 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1808 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1809 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1810 send_ersp = true; 1811 1812 /* re-set the fields */ 1813 fod->fcpreq->rspaddr = ersp; 1814 fod->fcpreq->rspdma = fod->rspdma; 1815 1816 if (!send_ersp) { 1817 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1818 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1819 } else { 1820 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1821 rsn = atomic_inc_return(&fod->queue->rsn); 1822 ersp->rsn = cpu_to_be32(rsn); 1823 ersp->xfrd_len = cpu_to_be32(xfr_length); 1824 fod->fcpreq->rsplen = sizeof(*ersp); 1825 } 1826 1827 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1828 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1829 } 1830 1831 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1832 1833 static void 1834 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1835 struct nvmet_fc_fcp_iod *fod) 1836 { 1837 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1838 1839 /* data no longer needed */ 1840 nvmet_fc_free_tgt_pgs(fod); 1841 1842 /* 1843 * if an ABTS was received or we issued the fcp_abort early 1844 * don't call abort routine again. 1845 */ 1846 /* no need to take lock - lock was taken earlier to get here */ 1847 if (!fod->aborted) 1848 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1849 1850 nvmet_fc_free_fcp_iod(fod->queue, fod); 1851 } 1852 1853 static void 1854 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1855 struct nvmet_fc_fcp_iod *fod) 1856 { 1857 int ret; 1858 1859 fod->fcpreq->op = NVMET_FCOP_RSP; 1860 fod->fcpreq->timeout = 0; 1861 1862 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1863 1864 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1865 if (ret) 1866 nvmet_fc_abort_op(tgtport, fod); 1867 } 1868 1869 static void 1870 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1871 struct nvmet_fc_fcp_iod *fod, u8 op) 1872 { 1873 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1874 unsigned long flags; 1875 u32 tlen; 1876 int ret; 1877 1878 fcpreq->op = op; 1879 fcpreq->offset = fod->offset; 1880 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1881 1882 tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE, 1883 (fod->total_length - fod->offset)); 1884 fcpreq->transfer_length = tlen; 1885 fcpreq->transferred_length = 0; 1886 fcpreq->fcp_error = 0; 1887 fcpreq->rsplen = 0; 1888 1889 fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE]; 1890 fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE); 1891 1892 /* 1893 * If the last READDATA request: check if LLDD supports 1894 * combined xfr with response. 1895 */ 1896 if ((op == NVMET_FCOP_READDATA) && 1897 ((fod->offset + fcpreq->transfer_length) == fod->total_length) && 1898 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1899 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1900 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1901 } 1902 1903 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1904 if (ret) { 1905 /* 1906 * should be ok to set w/o lock as its in the thread of 1907 * execution (not an async timer routine) and doesn't 1908 * contend with any clearing action 1909 */ 1910 fod->abort = true; 1911 1912 if (op == NVMET_FCOP_WRITEDATA) { 1913 spin_lock_irqsave(&fod->flock, flags); 1914 fod->writedataactive = false; 1915 spin_unlock_irqrestore(&fod->flock, flags); 1916 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1917 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1918 fcpreq->fcp_error = ret; 1919 fcpreq->transferred_length = 0; 1920 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1921 } 1922 } 1923 } 1924 1925 static inline bool 1926 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 1927 { 1928 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1929 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1930 1931 /* if in the middle of an io and we need to tear down */ 1932 if (abort) { 1933 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 1934 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1935 return true; 1936 } 1937 1938 nvmet_fc_abort_op(tgtport, fod); 1939 return true; 1940 } 1941 1942 return false; 1943 } 1944 1945 /* 1946 * actual done handler for FCP operations when completed by the lldd 1947 */ 1948 static void 1949 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 1950 { 1951 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1952 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1953 unsigned long flags; 1954 bool abort; 1955 1956 spin_lock_irqsave(&fod->flock, flags); 1957 abort = fod->abort; 1958 fod->writedataactive = false; 1959 spin_unlock_irqrestore(&fod->flock, flags); 1960 1961 switch (fcpreq->op) { 1962 1963 case NVMET_FCOP_WRITEDATA: 1964 if (__nvmet_fc_fod_op_abort(fod, abort)) 1965 return; 1966 if (fcpreq->fcp_error || 1967 fcpreq->transferred_length != fcpreq->transfer_length) { 1968 spin_lock(&fod->flock); 1969 fod->abort = true; 1970 spin_unlock(&fod->flock); 1971 1972 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1973 return; 1974 } 1975 1976 fod->offset += fcpreq->transferred_length; 1977 if (fod->offset != fod->total_length) { 1978 spin_lock_irqsave(&fod->flock, flags); 1979 fod->writedataactive = true; 1980 spin_unlock_irqrestore(&fod->flock, flags); 1981 1982 /* transfer the next chunk */ 1983 nvmet_fc_transfer_fcp_data(tgtport, fod, 1984 NVMET_FCOP_WRITEDATA); 1985 return; 1986 } 1987 1988 /* data transfer complete, resume with nvmet layer */ 1989 1990 fod->req.execute(&fod->req); 1991 1992 break; 1993 1994 case NVMET_FCOP_READDATA: 1995 case NVMET_FCOP_READDATA_RSP: 1996 if (__nvmet_fc_fod_op_abort(fod, abort)) 1997 return; 1998 if (fcpreq->fcp_error || 1999 fcpreq->transferred_length != fcpreq->transfer_length) { 2000 nvmet_fc_abort_op(tgtport, fod); 2001 return; 2002 } 2003 2004 /* success */ 2005 2006 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2007 /* data no longer needed */ 2008 nvmet_fc_free_tgt_pgs(fod); 2009 nvmet_fc_free_fcp_iod(fod->queue, fod); 2010 return; 2011 } 2012 2013 fod->offset += fcpreq->transferred_length; 2014 if (fod->offset != fod->total_length) { 2015 /* transfer the next chunk */ 2016 nvmet_fc_transfer_fcp_data(tgtport, fod, 2017 NVMET_FCOP_READDATA); 2018 return; 2019 } 2020 2021 /* data transfer complete, send response */ 2022 2023 /* data no longer needed */ 2024 nvmet_fc_free_tgt_pgs(fod); 2025 2026 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2027 2028 break; 2029 2030 case NVMET_FCOP_RSP: 2031 if (__nvmet_fc_fod_op_abort(fod, abort)) 2032 return; 2033 nvmet_fc_free_fcp_iod(fod->queue, fod); 2034 break; 2035 2036 default: 2037 break; 2038 } 2039 } 2040 2041 static void 2042 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work) 2043 { 2044 struct nvmet_fc_fcp_iod *fod = 2045 container_of(work, struct nvmet_fc_fcp_iod, done_work); 2046 2047 nvmet_fc_fod_op_done(fod); 2048 } 2049 2050 static void 2051 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2052 { 2053 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2054 struct nvmet_fc_tgt_queue *queue = fod->queue; 2055 2056 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR) 2057 /* context switch so completion is not in ISR context */ 2058 queue_work_on(queue->cpu, queue->work_q, &fod->done_work); 2059 else 2060 nvmet_fc_fod_op_done(fod); 2061 } 2062 2063 /* 2064 * actual completion handler after execution by the nvmet layer 2065 */ 2066 static void 2067 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2068 struct nvmet_fc_fcp_iod *fod, int status) 2069 { 2070 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2071 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2072 unsigned long flags; 2073 bool abort; 2074 2075 spin_lock_irqsave(&fod->flock, flags); 2076 abort = fod->abort; 2077 spin_unlock_irqrestore(&fod->flock, flags); 2078 2079 /* if we have a CQE, snoop the last sq_head value */ 2080 if (!status) 2081 fod->queue->sqhd = cqe->sq_head; 2082 2083 if (abort) { 2084 nvmet_fc_abort_op(tgtport, fod); 2085 return; 2086 } 2087 2088 /* if an error handling the cmd post initial parsing */ 2089 if (status) { 2090 /* fudge up a failed CQE status for our transport error */ 2091 memset(cqe, 0, sizeof(*cqe)); 2092 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2093 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2094 cqe->command_id = sqe->command_id; 2095 cqe->status = cpu_to_le16(status); 2096 } else { 2097 2098 /* 2099 * try to push the data even if the SQE status is non-zero. 2100 * There may be a status where data still was intended to 2101 * be moved 2102 */ 2103 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2104 /* push the data over before sending rsp */ 2105 nvmet_fc_transfer_fcp_data(tgtport, fod, 2106 NVMET_FCOP_READDATA); 2107 return; 2108 } 2109 2110 /* writes & no data - fall thru */ 2111 } 2112 2113 /* data no longer needed */ 2114 nvmet_fc_free_tgt_pgs(fod); 2115 2116 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2117 } 2118 2119 2120 static void 2121 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2122 { 2123 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2124 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2125 2126 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2127 } 2128 2129 2130 /* 2131 * Actual processing routine for received FC-NVME LS Requests from the LLD 2132 */ 2133 static void 2134 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2135 struct nvmet_fc_fcp_iod *fod) 2136 { 2137 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2138 int ret; 2139 2140 /* 2141 * Fused commands are currently not supported in the linux 2142 * implementation. 2143 * 2144 * As such, the implementation of the FC transport does not 2145 * look at the fused commands and order delivery to the upper 2146 * layer until we have both based on csn. 2147 */ 2148 2149 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2150 2151 fod->total_length = be32_to_cpu(cmdiu->data_len); 2152 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2153 fod->io_dir = NVMET_FCP_WRITE; 2154 if (!nvme_is_write(&cmdiu->sqe)) 2155 goto transport_error; 2156 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2157 fod->io_dir = NVMET_FCP_READ; 2158 if (nvme_is_write(&cmdiu->sqe)) 2159 goto transport_error; 2160 } else { 2161 fod->io_dir = NVMET_FCP_NODATA; 2162 if (fod->total_length) 2163 goto transport_error; 2164 } 2165 2166 fod->req.cmd = &fod->cmdiubuf.sqe; 2167 fod->req.rsp = &fod->rspiubuf.cqe; 2168 fod->req.port = fod->queue->port; 2169 2170 /* ensure nvmet handlers will set cmd handler callback */ 2171 fod->req.execute = NULL; 2172 2173 /* clear any response payload */ 2174 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2175 2176 fod->data_sg = NULL; 2177 fod->data_sg_cnt = 0; 2178 2179 ret = nvmet_req_init(&fod->req, 2180 &fod->queue->nvme_cq, 2181 &fod->queue->nvme_sq, 2182 &nvmet_fc_tgt_fcp_ops); 2183 if (!ret) { 2184 /* bad SQE content or invalid ctrl state */ 2185 /* nvmet layer has already called op done to send rsp. */ 2186 return; 2187 } 2188 2189 /* keep a running counter of tail position */ 2190 atomic_inc(&fod->queue->sqtail); 2191 2192 if (fod->total_length) { 2193 ret = nvmet_fc_alloc_tgt_pgs(fod); 2194 if (ret) { 2195 nvmet_req_complete(&fod->req, ret); 2196 return; 2197 } 2198 } 2199 fod->req.sg = fod->data_sg; 2200 fod->req.sg_cnt = fod->data_sg_cnt; 2201 fod->offset = 0; 2202 2203 if (fod->io_dir == NVMET_FCP_WRITE) { 2204 /* pull the data over before invoking nvmet layer */ 2205 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2206 return; 2207 } 2208 2209 /* 2210 * Reads or no data: 2211 * 2212 * can invoke the nvmet_layer now. If read data, cmd completion will 2213 * push the data 2214 */ 2215 2216 fod->req.execute(&fod->req); 2217 2218 return; 2219 2220 transport_error: 2221 nvmet_fc_abort_op(tgtport, fod); 2222 } 2223 2224 /* 2225 * Actual processing routine for received FC-NVME LS Requests from the LLD 2226 */ 2227 static void 2228 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) 2229 { 2230 struct nvmet_fc_fcp_iod *fod = 2231 container_of(work, struct nvmet_fc_fcp_iod, work); 2232 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2233 2234 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2235 } 2236 2237 /** 2238 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2239 * upon the reception of a NVME FCP CMD IU. 2240 * 2241 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2242 * layer for processing. 2243 * 2244 * The nvmet_fc layer allocates a local job structure (struct 2245 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2246 * CMD IU buffer to the job structure. As such, on a successful 2247 * completion (returns 0), the LLDD may immediately free/reuse 2248 * the CMD IU buffer passed in the call. 2249 * 2250 * However, in some circumstances, due to the packetized nature of FC 2251 * and the api of the FC LLDD which may issue a hw command to send the 2252 * response, but the LLDD may not get the hw completion for that command 2253 * and upcall the nvmet_fc layer before a new command may be 2254 * asynchronously received - its possible for a command to be received 2255 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2256 * the appearance of more commands received than fits in the sq. 2257 * To alleviate this scenario, a temporary queue is maintained in the 2258 * transport for pending LLDD requests waiting for a queue job structure. 2259 * In these "overrun" cases, a temporary queue element is allocated 2260 * the LLDD request and CMD iu buffer information remembered, and the 2261 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2262 * structure is freed, it is immediately reallocated for anything on the 2263 * pending request list. The LLDDs defer_rcv() callback is called, 2264 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2265 * is then started normally with the transport. 2266 * 2267 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2268 * the completion as successful but must not reuse the CMD IU buffer 2269 * until the LLDD's defer_rcv() callback has been called for the 2270 * corresponding struct nvmefc_tgt_fcp_req pointer. 2271 * 2272 * If there is any other condition in which an error occurs, the 2273 * transport will return a non-zero status indicating the error. 2274 * In all cases other than -EOVERFLOW, the transport has not accepted the 2275 * request and the LLDD should abort the exchange. 2276 * 2277 * @target_port: pointer to the (registered) target port the FCP CMD IU 2278 * was received on. 2279 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2280 * the exchange corresponding to the FCP Exchange. 2281 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2282 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2283 */ 2284 int 2285 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2286 struct nvmefc_tgt_fcp_req *fcpreq, 2287 void *cmdiubuf, u32 cmdiubuf_len) 2288 { 2289 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2290 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2291 struct nvmet_fc_tgt_queue *queue; 2292 struct nvmet_fc_fcp_iod *fod; 2293 struct nvmet_fc_defer_fcp_req *deferfcp; 2294 unsigned long flags; 2295 2296 /* validate iu, so the connection id can be used to find the queue */ 2297 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2298 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2299 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2300 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2301 return -EIO; 2302 2303 queue = nvmet_fc_find_target_queue(tgtport, 2304 be64_to_cpu(cmdiu->connection_id)); 2305 if (!queue) 2306 return -ENOTCONN; 2307 2308 /* 2309 * note: reference taken by find_target_queue 2310 * After successful fod allocation, the fod will inherit the 2311 * ownership of that reference and will remove the reference 2312 * when the fod is freed. 2313 */ 2314 2315 spin_lock_irqsave(&queue->qlock, flags); 2316 2317 fod = nvmet_fc_alloc_fcp_iod(queue); 2318 if (fod) { 2319 spin_unlock_irqrestore(&queue->qlock, flags); 2320 2321 fcpreq->nvmet_fc_private = fod; 2322 fod->fcpreq = fcpreq; 2323 2324 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2325 2326 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2327 2328 return 0; 2329 } 2330 2331 if (!tgtport->ops->defer_rcv) { 2332 spin_unlock_irqrestore(&queue->qlock, flags); 2333 /* release the queue lookup reference */ 2334 nvmet_fc_tgt_q_put(queue); 2335 return -ENOENT; 2336 } 2337 2338 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2339 struct nvmet_fc_defer_fcp_req, req_list); 2340 if (deferfcp) { 2341 /* Just re-use one that was previously allocated */ 2342 list_del(&deferfcp->req_list); 2343 } else { 2344 spin_unlock_irqrestore(&queue->qlock, flags); 2345 2346 /* Now we need to dynamically allocate one */ 2347 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2348 if (!deferfcp) { 2349 /* release the queue lookup reference */ 2350 nvmet_fc_tgt_q_put(queue); 2351 return -ENOMEM; 2352 } 2353 spin_lock_irqsave(&queue->qlock, flags); 2354 } 2355 2356 /* For now, use rspaddr / rsplen to save payload information */ 2357 fcpreq->rspaddr = cmdiubuf; 2358 fcpreq->rsplen = cmdiubuf_len; 2359 deferfcp->fcp_req = fcpreq; 2360 2361 /* defer processing till a fod becomes available */ 2362 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2363 2364 /* NOTE: the queue lookup reference is still valid */ 2365 2366 spin_unlock_irqrestore(&queue->qlock, flags); 2367 2368 return -EOVERFLOW; 2369 } 2370 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2371 2372 /** 2373 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2374 * upon the reception of an ABTS for a FCP command 2375 * 2376 * Notify the transport that an ABTS has been received for a FCP command 2377 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2378 * LLDD believes the command is still being worked on 2379 * (template_ops->fcp_req_release() has not been called). 2380 * 2381 * The transport will wait for any outstanding work (an op to the LLDD, 2382 * which the lldd should complete with error due to the ABTS; or the 2383 * completion from the nvmet layer of the nvme command), then will 2384 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2385 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2386 * to the ABTS either after return from this function (assuming any 2387 * outstanding op work has been terminated) or upon the callback being 2388 * called. 2389 * 2390 * @target_port: pointer to the (registered) target port the FCP CMD IU 2391 * was received on. 2392 * @fcpreq: pointer to the fcpreq request structure that corresponds 2393 * to the exchange that received the ABTS. 2394 */ 2395 void 2396 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2397 struct nvmefc_tgt_fcp_req *fcpreq) 2398 { 2399 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2400 struct nvmet_fc_tgt_queue *queue; 2401 unsigned long flags; 2402 2403 if (!fod || fod->fcpreq != fcpreq) 2404 /* job appears to have already completed, ignore abort */ 2405 return; 2406 2407 queue = fod->queue; 2408 2409 spin_lock_irqsave(&queue->qlock, flags); 2410 if (fod->active) { 2411 /* 2412 * mark as abort. The abort handler, invoked upon completion 2413 * of any work, will detect the aborted status and do the 2414 * callback. 2415 */ 2416 spin_lock(&fod->flock); 2417 fod->abort = true; 2418 fod->aborted = true; 2419 spin_unlock(&fod->flock); 2420 } 2421 spin_unlock_irqrestore(&queue->qlock, flags); 2422 } 2423 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2424 2425 2426 struct nvmet_fc_traddr { 2427 u64 nn; 2428 u64 pn; 2429 }; 2430 2431 static int 2432 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2433 { 2434 u64 token64; 2435 2436 if (match_u64(sstr, &token64)) 2437 return -EINVAL; 2438 *val = token64; 2439 2440 return 0; 2441 } 2442 2443 /* 2444 * This routine validates and extracts the WWN's from the TRADDR string. 2445 * As kernel parsers need the 0x to determine number base, universally 2446 * build string to parse with 0x prefix before parsing name strings. 2447 */ 2448 static int 2449 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2450 { 2451 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2452 substring_t wwn = { name, &name[sizeof(name)-1] }; 2453 int nnoffset, pnoffset; 2454 2455 /* validate it string one of the 2 allowed formats */ 2456 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2457 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2458 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2459 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2460 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2461 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2462 NVME_FC_TRADDR_OXNNLEN; 2463 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2464 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2465 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2466 "pn-", NVME_FC_TRADDR_NNLEN))) { 2467 nnoffset = NVME_FC_TRADDR_NNLEN; 2468 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2469 } else 2470 goto out_einval; 2471 2472 name[0] = '0'; 2473 name[1] = 'x'; 2474 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2475 2476 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2477 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2478 goto out_einval; 2479 2480 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2481 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2482 goto out_einval; 2483 2484 return 0; 2485 2486 out_einval: 2487 pr_warn("%s: bad traddr string\n", __func__); 2488 return -EINVAL; 2489 } 2490 2491 static int 2492 nvmet_fc_add_port(struct nvmet_port *port) 2493 { 2494 struct nvmet_fc_tgtport *tgtport; 2495 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2496 unsigned long flags; 2497 int ret; 2498 2499 /* validate the address info */ 2500 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2501 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2502 return -EINVAL; 2503 2504 /* map the traddr address info to a target port */ 2505 2506 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2507 sizeof(port->disc_addr.traddr)); 2508 if (ret) 2509 return ret; 2510 2511 ret = -ENXIO; 2512 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2513 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2514 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2515 (tgtport->fc_target_port.port_name == traddr.pn)) { 2516 /* a FC port can only be 1 nvmet port id */ 2517 if (!tgtport->port) { 2518 tgtport->port = port; 2519 port->priv = tgtport; 2520 nvmet_fc_tgtport_get(tgtport); 2521 ret = 0; 2522 } else 2523 ret = -EALREADY; 2524 break; 2525 } 2526 } 2527 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2528 return ret; 2529 } 2530 2531 static void 2532 nvmet_fc_remove_port(struct nvmet_port *port) 2533 { 2534 struct nvmet_fc_tgtport *tgtport = port->priv; 2535 unsigned long flags; 2536 bool matched = false; 2537 2538 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2539 if (tgtport->port == port) { 2540 matched = true; 2541 tgtport->port = NULL; 2542 } 2543 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2544 2545 if (matched) 2546 nvmet_fc_tgtport_put(tgtport); 2547 } 2548 2549 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2550 .owner = THIS_MODULE, 2551 .type = NVMF_TRTYPE_FC, 2552 .msdbd = 1, 2553 .add_port = nvmet_fc_add_port, 2554 .remove_port = nvmet_fc_remove_port, 2555 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2556 .delete_ctrl = nvmet_fc_delete_ctrl, 2557 }; 2558 2559 static int __init nvmet_fc_init_module(void) 2560 { 2561 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2562 } 2563 2564 static void __exit nvmet_fc_exit_module(void) 2565 { 2566 /* sanity check - all lports should be removed */ 2567 if (!list_empty(&nvmet_fc_target_list)) 2568 pr_warn("%s: targetport list not empty\n", __func__); 2569 2570 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2571 2572 ida_destroy(&nvmet_fc_tgtport_cnt); 2573 } 2574 2575 module_init(nvmet_fc_init_module); 2576 module_exit(nvmet_fc_exit_module); 2577 2578 MODULE_LICENSE("GPL v2"); 2579