xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 680ef72a)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25 
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 #define NVMET_LS_CTX_COUNT		4
35 
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
38 
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41 
42 struct nvmet_fc_ls_iod {
43 	struct nvmefc_tgt_ls_req	*lsreq;
44 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
45 
46 	struct list_head		ls_list;	/* tgtport->ls_list */
47 
48 	struct nvmet_fc_tgtport		*tgtport;
49 	struct nvmet_fc_tgt_assoc	*assoc;
50 
51 	u8				*rqstbuf;
52 	u8				*rspbuf;
53 	u16				rqstdatalen;
54 	dma_addr_t			rspdma;
55 
56 	struct scatterlist		sg[2];
57 
58 	struct work_struct		work;
59 } __aligned(sizeof(unsigned long long));
60 
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 #define NVMET_FC_MAX_XFR_SGENTS		(NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
63 
64 enum nvmet_fcp_datadir {
65 	NVMET_FCP_NODATA,
66 	NVMET_FCP_WRITE,
67 	NVMET_FCP_READ,
68 	NVMET_FCP_ABORTED,
69 };
70 
71 struct nvmet_fc_fcp_iod {
72 	struct nvmefc_tgt_fcp_req	*fcpreq;
73 
74 	struct nvme_fc_cmd_iu		cmdiubuf;
75 	struct nvme_fc_ersp_iu		rspiubuf;
76 	dma_addr_t			rspdma;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		work;
89 	struct work_struct		done_work;
90 
91 	struct nvmet_fc_tgtport		*tgtport;
92 	struct nvmet_fc_tgt_queue	*queue;
93 
94 	struct list_head		fcp_list;	/* tgtport->fcp_list */
95 };
96 
97 struct nvmet_fc_tgtport {
98 
99 	struct nvmet_fc_target_port	fc_target_port;
100 
101 	struct list_head		tgt_list; /* nvmet_fc_target_list */
102 	struct device			*dev;	/* dev for dma mapping */
103 	struct nvmet_fc_target_template	*ops;
104 
105 	struct nvmet_fc_ls_iod		*iod;
106 	spinlock_t			lock;
107 	struct list_head		ls_list;
108 	struct list_head		ls_busylist;
109 	struct list_head		assoc_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_port		*port;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_defer_fcp_req {
117 	struct list_head		req_list;
118 	struct nvmefc_tgt_fcp_req	*fcp_req;
119 };
120 
121 struct nvmet_fc_tgt_queue {
122 	bool				ninetypercent;
123 	u16				qid;
124 	u16				sqsize;
125 	u16				ersp_ratio;
126 	__le16				sqhd;
127 	int				cpu;
128 	atomic_t			connected;
129 	atomic_t			sqtail;
130 	atomic_t			zrspcnt;
131 	atomic_t			rsn;
132 	spinlock_t			qlock;
133 	struct nvmet_port		*port;
134 	struct nvmet_cq			nvme_cq;
135 	struct nvmet_sq			nvme_sq;
136 	struct nvmet_fc_tgt_assoc	*assoc;
137 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */
138 	struct list_head		fod_list;
139 	struct list_head		pending_cmd_list;
140 	struct list_head		avail_defer_list;
141 	struct workqueue_struct		*work_q;
142 	struct kref			ref;
143 } __aligned(sizeof(unsigned long long));
144 
145 struct nvmet_fc_tgt_assoc {
146 	u64				association_id;
147 	u32				a_id;
148 	struct nvmet_fc_tgtport		*tgtport;
149 	struct list_head		a_list;
150 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
151 	struct kref			ref;
152 	struct work_struct		del_work;
153 };
154 
155 
156 static inline int
157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
158 {
159 	return (iodptr - iodptr->tgtport->iod);
160 }
161 
162 static inline int
163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
164 {
165 	return (fodptr - fodptr->queue->fod);
166 }
167 
168 
169 /*
170  * Association and Connection IDs:
171  *
172  * Association ID will have random number in upper 6 bytes and zero
173  *   in lower 2 bytes
174  *
175  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
176  *
177  * note: Association ID = Connection ID for queue 0
178  */
179 #define BYTES_FOR_QID			sizeof(u16)
180 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
181 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
182 
183 static inline u64
184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
185 {
186 	return (assoc->association_id | qid);
187 }
188 
189 static inline u64
190 nvmet_fc_getassociationid(u64 connectionid)
191 {
192 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
193 }
194 
195 static inline u16
196 nvmet_fc_getqueueid(u64 connectionid)
197 {
198 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
199 }
200 
201 static inline struct nvmet_fc_tgtport *
202 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
203 {
204 	return container_of(targetport, struct nvmet_fc_tgtport,
205 				 fc_target_port);
206 }
207 
208 static inline struct nvmet_fc_fcp_iod *
209 nvmet_req_to_fod(struct nvmet_req *nvme_req)
210 {
211 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
212 }
213 
214 
215 /* *************************** Globals **************************** */
216 
217 
218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
219 
220 static LIST_HEAD(nvmet_fc_target_list);
221 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
222 
223 
224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
234 					struct nvmet_fc_fcp_iod *fod);
235 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
236 
237 
238 /* *********************** FC-NVME DMA Handling **************************** */
239 
240 /*
241  * The fcloop device passes in a NULL device pointer. Real LLD's will
242  * pass in a valid device pointer. If NULL is passed to the dma mapping
243  * routines, depending on the platform, it may or may not succeed, and
244  * may crash.
245  *
246  * As such:
247  * Wrapper all the dma routines and check the dev pointer.
248  *
249  * If simple mappings (return just a dma address, we'll noop them,
250  * returning a dma address of 0.
251  *
252  * On more complex mappings (dma_map_sg), a pseudo routine fills
253  * in the scatter list, setting all dma addresses to 0.
254  */
255 
256 static inline dma_addr_t
257 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
258 		enum dma_data_direction dir)
259 {
260 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
261 }
262 
263 static inline int
264 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
265 {
266 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
267 }
268 
269 static inline void
270 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
271 	enum dma_data_direction dir)
272 {
273 	if (dev)
274 		dma_unmap_single(dev, addr, size, dir);
275 }
276 
277 static inline void
278 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
279 		enum dma_data_direction dir)
280 {
281 	if (dev)
282 		dma_sync_single_for_cpu(dev, addr, size, dir);
283 }
284 
285 static inline void
286 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
287 		enum dma_data_direction dir)
288 {
289 	if (dev)
290 		dma_sync_single_for_device(dev, addr, size, dir);
291 }
292 
293 /* pseudo dma_map_sg call */
294 static int
295 fc_map_sg(struct scatterlist *sg, int nents)
296 {
297 	struct scatterlist *s;
298 	int i;
299 
300 	WARN_ON(nents == 0 || sg[0].length == 0);
301 
302 	for_each_sg(sg, s, nents, i) {
303 		s->dma_address = 0L;
304 #ifdef CONFIG_NEED_SG_DMA_LENGTH
305 		s->dma_length = s->length;
306 #endif
307 	}
308 	return nents;
309 }
310 
311 static inline int
312 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
313 		enum dma_data_direction dir)
314 {
315 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
316 }
317 
318 static inline void
319 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
320 		enum dma_data_direction dir)
321 {
322 	if (dev)
323 		dma_unmap_sg(dev, sg, nents, dir);
324 }
325 
326 
327 /* *********************** FC-NVME Port Management ************************ */
328 
329 
330 static int
331 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
332 {
333 	struct nvmet_fc_ls_iod *iod;
334 	int i;
335 
336 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
337 			GFP_KERNEL);
338 	if (!iod)
339 		return -ENOMEM;
340 
341 	tgtport->iod = iod;
342 
343 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
344 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
345 		iod->tgtport = tgtport;
346 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
347 
348 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
349 			GFP_KERNEL);
350 		if (!iod->rqstbuf)
351 			goto out_fail;
352 
353 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
354 
355 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
356 						NVME_FC_MAX_LS_BUFFER_SIZE,
357 						DMA_TO_DEVICE);
358 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
359 			goto out_fail;
360 	}
361 
362 	return 0;
363 
364 out_fail:
365 	kfree(iod->rqstbuf);
366 	list_del(&iod->ls_list);
367 	for (iod--, i--; i >= 0; iod--, i--) {
368 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
369 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
370 		kfree(iod->rqstbuf);
371 		list_del(&iod->ls_list);
372 	}
373 
374 	kfree(iod);
375 
376 	return -EFAULT;
377 }
378 
379 static void
380 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
381 {
382 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
383 	int i;
384 
385 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
386 		fc_dma_unmap_single(tgtport->dev,
387 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
388 				DMA_TO_DEVICE);
389 		kfree(iod->rqstbuf);
390 		list_del(&iod->ls_list);
391 	}
392 	kfree(tgtport->iod);
393 }
394 
395 static struct nvmet_fc_ls_iod *
396 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
397 {
398 	struct nvmet_fc_ls_iod *iod;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&tgtport->lock, flags);
402 	iod = list_first_entry_or_null(&tgtport->ls_list,
403 					struct nvmet_fc_ls_iod, ls_list);
404 	if (iod)
405 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
406 	spin_unlock_irqrestore(&tgtport->lock, flags);
407 	return iod;
408 }
409 
410 
411 static void
412 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
413 			struct nvmet_fc_ls_iod *iod)
414 {
415 	unsigned long flags;
416 
417 	spin_lock_irqsave(&tgtport->lock, flags);
418 	list_move(&iod->ls_list, &tgtport->ls_list);
419 	spin_unlock_irqrestore(&tgtport->lock, flags);
420 }
421 
422 static void
423 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
424 				struct nvmet_fc_tgt_queue *queue)
425 {
426 	struct nvmet_fc_fcp_iod *fod = queue->fod;
427 	int i;
428 
429 	for (i = 0; i < queue->sqsize; fod++, i++) {
430 		INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
431 		INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
432 		fod->tgtport = tgtport;
433 		fod->queue = queue;
434 		fod->active = false;
435 		fod->abort = false;
436 		fod->aborted = false;
437 		fod->fcpreq = NULL;
438 		list_add_tail(&fod->fcp_list, &queue->fod_list);
439 		spin_lock_init(&fod->flock);
440 
441 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
442 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
443 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
444 			list_del(&fod->fcp_list);
445 			for (fod--, i--; i >= 0; fod--, i--) {
446 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
447 						sizeof(fod->rspiubuf),
448 						DMA_TO_DEVICE);
449 				fod->rspdma = 0L;
450 				list_del(&fod->fcp_list);
451 			}
452 
453 			return;
454 		}
455 	}
456 }
457 
458 static void
459 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
460 				struct nvmet_fc_tgt_queue *queue)
461 {
462 	struct nvmet_fc_fcp_iod *fod = queue->fod;
463 	int i;
464 
465 	for (i = 0; i < queue->sqsize; fod++, i++) {
466 		if (fod->rspdma)
467 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
468 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
469 	}
470 }
471 
472 static struct nvmet_fc_fcp_iod *
473 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
474 {
475 	struct nvmet_fc_fcp_iod *fod;
476 
477 	lockdep_assert_held(&queue->qlock);
478 
479 	fod = list_first_entry_or_null(&queue->fod_list,
480 					struct nvmet_fc_fcp_iod, fcp_list);
481 	if (fod) {
482 		list_del(&fod->fcp_list);
483 		fod->active = true;
484 		/*
485 		 * no queue reference is taken, as it was taken by the
486 		 * queue lookup just prior to the allocation. The iod
487 		 * will "inherit" that reference.
488 		 */
489 	}
490 	return fod;
491 }
492 
493 
494 static void
495 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
496 		       struct nvmet_fc_tgt_queue *queue,
497 		       struct nvmefc_tgt_fcp_req *fcpreq)
498 {
499 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
500 
501 	/*
502 	 * put all admin cmds on hw queue id 0. All io commands go to
503 	 * the respective hw queue based on a modulo basis
504 	 */
505 	fcpreq->hwqid = queue->qid ?
506 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
507 
508 	if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
509 		queue_work_on(queue->cpu, queue->work_q, &fod->work);
510 	else
511 		nvmet_fc_handle_fcp_rqst(tgtport, fod);
512 }
513 
514 static void
515 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
516 			struct nvmet_fc_fcp_iod *fod)
517 {
518 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
519 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
520 	struct nvmet_fc_defer_fcp_req *deferfcp;
521 	unsigned long flags;
522 
523 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
524 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
525 
526 	fcpreq->nvmet_fc_private = NULL;
527 
528 	fod->active = false;
529 	fod->abort = false;
530 	fod->aborted = false;
531 	fod->writedataactive = false;
532 	fod->fcpreq = NULL;
533 
534 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
535 
536 	spin_lock_irqsave(&queue->qlock, flags);
537 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
538 				struct nvmet_fc_defer_fcp_req, req_list);
539 	if (!deferfcp) {
540 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
541 		spin_unlock_irqrestore(&queue->qlock, flags);
542 
543 		/* Release reference taken at queue lookup and fod allocation */
544 		nvmet_fc_tgt_q_put(queue);
545 		return;
546 	}
547 
548 	/* Re-use the fod for the next pending cmd that was deferred */
549 	list_del(&deferfcp->req_list);
550 
551 	fcpreq = deferfcp->fcp_req;
552 
553 	/* deferfcp can be reused for another IO at a later date */
554 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
555 
556 	spin_unlock_irqrestore(&queue->qlock, flags);
557 
558 	/* Save NVME CMD IO in fod */
559 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
560 
561 	/* Setup new fcpreq to be processed */
562 	fcpreq->rspaddr = NULL;
563 	fcpreq->rsplen  = 0;
564 	fcpreq->nvmet_fc_private = fod;
565 	fod->fcpreq = fcpreq;
566 	fod->active = true;
567 
568 	/* inform LLDD IO is now being processed */
569 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
570 
571 	/* Submit deferred IO for processing */
572 	nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
573 
574 	/*
575 	 * Leave the queue lookup get reference taken when
576 	 * fod was originally allocated.
577 	 */
578 }
579 
580 static int
581 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
582 {
583 	int cpu, idx, cnt;
584 
585 	if (tgtport->ops->max_hw_queues == 1)
586 		return WORK_CPU_UNBOUND;
587 
588 	/* Simple cpu selection based on qid modulo active cpu count */
589 	idx = !qid ? 0 : (qid - 1) % num_active_cpus();
590 
591 	/* find the n'th active cpu */
592 	for (cpu = 0, cnt = 0; ; ) {
593 		if (cpu_active(cpu)) {
594 			if (cnt == idx)
595 				break;
596 			cnt++;
597 		}
598 		cpu = (cpu + 1) % num_possible_cpus();
599 	}
600 
601 	return cpu;
602 }
603 
604 static struct nvmet_fc_tgt_queue *
605 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
606 			u16 qid, u16 sqsize)
607 {
608 	struct nvmet_fc_tgt_queue *queue;
609 	unsigned long flags;
610 	int ret;
611 
612 	if (qid > NVMET_NR_QUEUES)
613 		return NULL;
614 
615 	queue = kzalloc((sizeof(*queue) +
616 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
617 				GFP_KERNEL);
618 	if (!queue)
619 		return NULL;
620 
621 	if (!nvmet_fc_tgt_a_get(assoc))
622 		goto out_free_queue;
623 
624 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
625 				assoc->tgtport->fc_target_port.port_num,
626 				assoc->a_id, qid);
627 	if (!queue->work_q)
628 		goto out_a_put;
629 
630 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
631 	queue->qid = qid;
632 	queue->sqsize = sqsize;
633 	queue->assoc = assoc;
634 	queue->port = assoc->tgtport->port;
635 	queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
636 	INIT_LIST_HEAD(&queue->fod_list);
637 	INIT_LIST_HEAD(&queue->avail_defer_list);
638 	INIT_LIST_HEAD(&queue->pending_cmd_list);
639 	atomic_set(&queue->connected, 0);
640 	atomic_set(&queue->sqtail, 0);
641 	atomic_set(&queue->rsn, 1);
642 	atomic_set(&queue->zrspcnt, 0);
643 	spin_lock_init(&queue->qlock);
644 	kref_init(&queue->ref);
645 
646 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
647 
648 	ret = nvmet_sq_init(&queue->nvme_sq);
649 	if (ret)
650 		goto out_fail_iodlist;
651 
652 	WARN_ON(assoc->queues[qid]);
653 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
654 	assoc->queues[qid] = queue;
655 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
656 
657 	return queue;
658 
659 out_fail_iodlist:
660 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
661 	destroy_workqueue(queue->work_q);
662 out_a_put:
663 	nvmet_fc_tgt_a_put(assoc);
664 out_free_queue:
665 	kfree(queue);
666 	return NULL;
667 }
668 
669 
670 static void
671 nvmet_fc_tgt_queue_free(struct kref *ref)
672 {
673 	struct nvmet_fc_tgt_queue *queue =
674 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
678 	queue->assoc->queues[queue->qid] = NULL;
679 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
680 
681 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
682 
683 	nvmet_fc_tgt_a_put(queue->assoc);
684 
685 	destroy_workqueue(queue->work_q);
686 
687 	kfree(queue);
688 }
689 
690 static void
691 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
692 {
693 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
694 }
695 
696 static int
697 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
698 {
699 	return kref_get_unless_zero(&queue->ref);
700 }
701 
702 
703 static void
704 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
705 {
706 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
707 	struct nvmet_fc_fcp_iod *fod = queue->fod;
708 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
709 	unsigned long flags;
710 	int i, writedataactive;
711 	bool disconnect;
712 
713 	disconnect = atomic_xchg(&queue->connected, 0);
714 
715 	spin_lock_irqsave(&queue->qlock, flags);
716 	/* about outstanding io's */
717 	for (i = 0; i < queue->sqsize; fod++, i++) {
718 		if (fod->active) {
719 			spin_lock(&fod->flock);
720 			fod->abort = true;
721 			writedataactive = fod->writedataactive;
722 			spin_unlock(&fod->flock);
723 			/*
724 			 * only call lldd abort routine if waiting for
725 			 * writedata. other outstanding ops should finish
726 			 * on their own.
727 			 */
728 			if (writedataactive) {
729 				spin_lock(&fod->flock);
730 				fod->aborted = true;
731 				spin_unlock(&fod->flock);
732 				tgtport->ops->fcp_abort(
733 					&tgtport->fc_target_port, fod->fcpreq);
734 			}
735 		}
736 	}
737 
738 	/* Cleanup defer'ed IOs in queue */
739 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
740 				req_list) {
741 		list_del(&deferfcp->req_list);
742 		kfree(deferfcp);
743 	}
744 
745 	for (;;) {
746 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
747 				struct nvmet_fc_defer_fcp_req, req_list);
748 		if (!deferfcp)
749 			break;
750 
751 		list_del(&deferfcp->req_list);
752 		spin_unlock_irqrestore(&queue->qlock, flags);
753 
754 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
755 				deferfcp->fcp_req);
756 
757 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
758 				deferfcp->fcp_req);
759 
760 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
761 				deferfcp->fcp_req);
762 
763 		kfree(deferfcp);
764 
765 		spin_lock_irqsave(&queue->qlock, flags);
766 	}
767 	spin_unlock_irqrestore(&queue->qlock, flags);
768 
769 	flush_workqueue(queue->work_q);
770 
771 	if (disconnect)
772 		nvmet_sq_destroy(&queue->nvme_sq);
773 
774 	nvmet_fc_tgt_q_put(queue);
775 }
776 
777 static struct nvmet_fc_tgt_queue *
778 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
779 				u64 connection_id)
780 {
781 	struct nvmet_fc_tgt_assoc *assoc;
782 	struct nvmet_fc_tgt_queue *queue;
783 	u64 association_id = nvmet_fc_getassociationid(connection_id);
784 	u16 qid = nvmet_fc_getqueueid(connection_id);
785 	unsigned long flags;
786 
787 	if (qid > NVMET_NR_QUEUES)
788 		return NULL;
789 
790 	spin_lock_irqsave(&tgtport->lock, flags);
791 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
792 		if (association_id == assoc->association_id) {
793 			queue = assoc->queues[qid];
794 			if (queue &&
795 			    (!atomic_read(&queue->connected) ||
796 			     !nvmet_fc_tgt_q_get(queue)))
797 				queue = NULL;
798 			spin_unlock_irqrestore(&tgtport->lock, flags);
799 			return queue;
800 		}
801 	}
802 	spin_unlock_irqrestore(&tgtport->lock, flags);
803 	return NULL;
804 }
805 
806 static void
807 nvmet_fc_delete_assoc(struct work_struct *work)
808 {
809 	struct nvmet_fc_tgt_assoc *assoc =
810 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
811 
812 	nvmet_fc_delete_target_assoc(assoc);
813 	nvmet_fc_tgt_a_put(assoc);
814 }
815 
816 static struct nvmet_fc_tgt_assoc *
817 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
818 {
819 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
820 	unsigned long flags;
821 	u64 ran;
822 	int idx;
823 	bool needrandom = true;
824 
825 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
826 	if (!assoc)
827 		return NULL;
828 
829 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
830 	if (idx < 0)
831 		goto out_free_assoc;
832 
833 	if (!nvmet_fc_tgtport_get(tgtport))
834 		goto out_ida_put;
835 
836 	assoc->tgtport = tgtport;
837 	assoc->a_id = idx;
838 	INIT_LIST_HEAD(&assoc->a_list);
839 	kref_init(&assoc->ref);
840 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
841 
842 	while (needrandom) {
843 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
844 		ran = ran << BYTES_FOR_QID_SHIFT;
845 
846 		spin_lock_irqsave(&tgtport->lock, flags);
847 		needrandom = false;
848 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
849 			if (ran == tmpassoc->association_id) {
850 				needrandom = true;
851 				break;
852 			}
853 		if (!needrandom) {
854 			assoc->association_id = ran;
855 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
856 		}
857 		spin_unlock_irqrestore(&tgtport->lock, flags);
858 	}
859 
860 	return assoc;
861 
862 out_ida_put:
863 	ida_simple_remove(&tgtport->assoc_cnt, idx);
864 out_free_assoc:
865 	kfree(assoc);
866 	return NULL;
867 }
868 
869 static void
870 nvmet_fc_target_assoc_free(struct kref *ref)
871 {
872 	struct nvmet_fc_tgt_assoc *assoc =
873 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
874 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
875 	unsigned long flags;
876 
877 	spin_lock_irqsave(&tgtport->lock, flags);
878 	list_del(&assoc->a_list);
879 	spin_unlock_irqrestore(&tgtport->lock, flags);
880 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
881 	kfree(assoc);
882 	nvmet_fc_tgtport_put(tgtport);
883 }
884 
885 static void
886 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
887 {
888 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
889 }
890 
891 static int
892 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
893 {
894 	return kref_get_unless_zero(&assoc->ref);
895 }
896 
897 static void
898 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
899 {
900 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
901 	struct nvmet_fc_tgt_queue *queue;
902 	unsigned long flags;
903 	int i;
904 
905 	spin_lock_irqsave(&tgtport->lock, flags);
906 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
907 		queue = assoc->queues[i];
908 		if (queue) {
909 			if (!nvmet_fc_tgt_q_get(queue))
910 				continue;
911 			spin_unlock_irqrestore(&tgtport->lock, flags);
912 			nvmet_fc_delete_target_queue(queue);
913 			nvmet_fc_tgt_q_put(queue);
914 			spin_lock_irqsave(&tgtport->lock, flags);
915 		}
916 	}
917 	spin_unlock_irqrestore(&tgtport->lock, flags);
918 
919 	nvmet_fc_tgt_a_put(assoc);
920 }
921 
922 static struct nvmet_fc_tgt_assoc *
923 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
924 				u64 association_id)
925 {
926 	struct nvmet_fc_tgt_assoc *assoc;
927 	struct nvmet_fc_tgt_assoc *ret = NULL;
928 	unsigned long flags;
929 
930 	spin_lock_irqsave(&tgtport->lock, flags);
931 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
932 		if (association_id == assoc->association_id) {
933 			ret = assoc;
934 			nvmet_fc_tgt_a_get(assoc);
935 			break;
936 		}
937 	}
938 	spin_unlock_irqrestore(&tgtport->lock, flags);
939 
940 	return ret;
941 }
942 
943 
944 /**
945  * nvme_fc_register_targetport - transport entry point called by an
946  *                              LLDD to register the existence of a local
947  *                              NVME subystem FC port.
948  * @pinfo:     pointer to information about the port to be registered
949  * @template:  LLDD entrypoints and operational parameters for the port
950  * @dev:       physical hardware device node port corresponds to. Will be
951  *             used for DMA mappings
952  * @portptr:   pointer to a local port pointer. Upon success, the routine
953  *             will allocate a nvme_fc_local_port structure and place its
954  *             address in the local port pointer. Upon failure, local port
955  *             pointer will be set to NULL.
956  *
957  * Returns:
958  * a completion status. Must be 0 upon success; a negative errno
959  * (ex: -ENXIO) upon failure.
960  */
961 int
962 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
963 			struct nvmet_fc_target_template *template,
964 			struct device *dev,
965 			struct nvmet_fc_target_port **portptr)
966 {
967 	struct nvmet_fc_tgtport *newrec;
968 	unsigned long flags;
969 	int ret, idx;
970 
971 	if (!template->xmt_ls_rsp || !template->fcp_op ||
972 	    !template->fcp_abort ||
973 	    !template->fcp_req_release || !template->targetport_delete ||
974 	    !template->max_hw_queues || !template->max_sgl_segments ||
975 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
976 		ret = -EINVAL;
977 		goto out_regtgt_failed;
978 	}
979 
980 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
981 			 GFP_KERNEL);
982 	if (!newrec) {
983 		ret = -ENOMEM;
984 		goto out_regtgt_failed;
985 	}
986 
987 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
988 	if (idx < 0) {
989 		ret = -ENOSPC;
990 		goto out_fail_kfree;
991 	}
992 
993 	if (!get_device(dev) && dev) {
994 		ret = -ENODEV;
995 		goto out_ida_put;
996 	}
997 
998 	newrec->fc_target_port.node_name = pinfo->node_name;
999 	newrec->fc_target_port.port_name = pinfo->port_name;
1000 	newrec->fc_target_port.private = &newrec[1];
1001 	newrec->fc_target_port.port_id = pinfo->port_id;
1002 	newrec->fc_target_port.port_num = idx;
1003 	INIT_LIST_HEAD(&newrec->tgt_list);
1004 	newrec->dev = dev;
1005 	newrec->ops = template;
1006 	spin_lock_init(&newrec->lock);
1007 	INIT_LIST_HEAD(&newrec->ls_list);
1008 	INIT_LIST_HEAD(&newrec->ls_busylist);
1009 	INIT_LIST_HEAD(&newrec->assoc_list);
1010 	kref_init(&newrec->ref);
1011 	ida_init(&newrec->assoc_cnt);
1012 	newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS,
1013 					template->max_sgl_segments);
1014 
1015 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1016 	if (ret) {
1017 		ret = -ENOMEM;
1018 		goto out_free_newrec;
1019 	}
1020 
1021 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1022 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1023 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1024 
1025 	*portptr = &newrec->fc_target_port;
1026 	return 0;
1027 
1028 out_free_newrec:
1029 	put_device(dev);
1030 out_ida_put:
1031 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1032 out_fail_kfree:
1033 	kfree(newrec);
1034 out_regtgt_failed:
1035 	*portptr = NULL;
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1039 
1040 
1041 static void
1042 nvmet_fc_free_tgtport(struct kref *ref)
1043 {
1044 	struct nvmet_fc_tgtport *tgtport =
1045 		container_of(ref, struct nvmet_fc_tgtport, ref);
1046 	struct device *dev = tgtport->dev;
1047 	unsigned long flags;
1048 
1049 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1050 	list_del(&tgtport->tgt_list);
1051 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1052 
1053 	nvmet_fc_free_ls_iodlist(tgtport);
1054 
1055 	/* let the LLDD know we've finished tearing it down */
1056 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1057 
1058 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1059 			tgtport->fc_target_port.port_num);
1060 
1061 	ida_destroy(&tgtport->assoc_cnt);
1062 
1063 	kfree(tgtport);
1064 
1065 	put_device(dev);
1066 }
1067 
1068 static void
1069 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1070 {
1071 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1072 }
1073 
1074 static int
1075 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1076 {
1077 	return kref_get_unless_zero(&tgtport->ref);
1078 }
1079 
1080 static void
1081 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1082 {
1083 	struct nvmet_fc_tgt_assoc *assoc, *next;
1084 	unsigned long flags;
1085 
1086 	spin_lock_irqsave(&tgtport->lock, flags);
1087 	list_for_each_entry_safe(assoc, next,
1088 				&tgtport->assoc_list, a_list) {
1089 		if (!nvmet_fc_tgt_a_get(assoc))
1090 			continue;
1091 		spin_unlock_irqrestore(&tgtport->lock, flags);
1092 		nvmet_fc_delete_target_assoc(assoc);
1093 		nvmet_fc_tgt_a_put(assoc);
1094 		spin_lock_irqsave(&tgtport->lock, flags);
1095 	}
1096 	spin_unlock_irqrestore(&tgtport->lock, flags);
1097 }
1098 
1099 /*
1100  * nvmet layer has called to terminate an association
1101  */
1102 static void
1103 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1104 {
1105 	struct nvmet_fc_tgtport *tgtport, *next;
1106 	struct nvmet_fc_tgt_assoc *assoc;
1107 	struct nvmet_fc_tgt_queue *queue;
1108 	unsigned long flags;
1109 	bool found_ctrl = false;
1110 
1111 	/* this is a bit ugly, but don't want to make locks layered */
1112 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1113 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1114 			tgt_list) {
1115 		if (!nvmet_fc_tgtport_get(tgtport))
1116 			continue;
1117 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1118 
1119 		spin_lock_irqsave(&tgtport->lock, flags);
1120 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1121 			queue = assoc->queues[0];
1122 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1123 				if (nvmet_fc_tgt_a_get(assoc))
1124 					found_ctrl = true;
1125 				break;
1126 			}
1127 		}
1128 		spin_unlock_irqrestore(&tgtport->lock, flags);
1129 
1130 		nvmet_fc_tgtport_put(tgtport);
1131 
1132 		if (found_ctrl) {
1133 			schedule_work(&assoc->del_work);
1134 			return;
1135 		}
1136 
1137 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1138 	}
1139 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1140 }
1141 
1142 /**
1143  * nvme_fc_unregister_targetport - transport entry point called by an
1144  *                              LLDD to deregister/remove a previously
1145  *                              registered a local NVME subsystem FC port.
1146  * @tgtport: pointer to the (registered) target port that is to be
1147  *           deregistered.
1148  *
1149  * Returns:
1150  * a completion status. Must be 0 upon success; a negative errno
1151  * (ex: -ENXIO) upon failure.
1152  */
1153 int
1154 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1155 {
1156 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1157 
1158 	/* terminate any outstanding associations */
1159 	__nvmet_fc_free_assocs(tgtport);
1160 
1161 	nvmet_fc_tgtport_put(tgtport);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1166 
1167 
1168 /* *********************** FC-NVME LS Handling **************************** */
1169 
1170 
1171 static void
1172 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1173 {
1174 	struct fcnvme_ls_acc_hdr *acc = buf;
1175 
1176 	acc->w0.ls_cmd = ls_cmd;
1177 	acc->desc_list_len = desc_len;
1178 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1179 	acc->rqst.desc_len =
1180 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1181 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1182 }
1183 
1184 static int
1185 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1186 			u8 reason, u8 explanation, u8 vendor)
1187 {
1188 	struct fcnvme_ls_rjt *rjt = buf;
1189 
1190 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1191 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1192 			ls_cmd);
1193 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1194 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1195 	rjt->rjt.reason_code = reason;
1196 	rjt->rjt.reason_explanation = explanation;
1197 	rjt->rjt.vendor = vendor;
1198 
1199 	return sizeof(struct fcnvme_ls_rjt);
1200 }
1201 
1202 /* Validation Error indexes into the string table below */
1203 enum {
1204 	VERR_NO_ERROR		= 0,
1205 	VERR_CR_ASSOC_LEN	= 1,
1206 	VERR_CR_ASSOC_RQST_LEN	= 2,
1207 	VERR_CR_ASSOC_CMD	= 3,
1208 	VERR_CR_ASSOC_CMD_LEN	= 4,
1209 	VERR_ERSP_RATIO		= 5,
1210 	VERR_ASSOC_ALLOC_FAIL	= 6,
1211 	VERR_QUEUE_ALLOC_FAIL	= 7,
1212 	VERR_CR_CONN_LEN	= 8,
1213 	VERR_CR_CONN_RQST_LEN	= 9,
1214 	VERR_ASSOC_ID		= 10,
1215 	VERR_ASSOC_ID_LEN	= 11,
1216 	VERR_NO_ASSOC		= 12,
1217 	VERR_CONN_ID		= 13,
1218 	VERR_CONN_ID_LEN	= 14,
1219 	VERR_NO_CONN		= 15,
1220 	VERR_CR_CONN_CMD	= 16,
1221 	VERR_CR_CONN_CMD_LEN	= 17,
1222 	VERR_DISCONN_LEN	= 18,
1223 	VERR_DISCONN_RQST_LEN	= 19,
1224 	VERR_DISCONN_CMD	= 20,
1225 	VERR_DISCONN_CMD_LEN	= 21,
1226 	VERR_DISCONN_SCOPE	= 22,
1227 	VERR_RS_LEN		= 23,
1228 	VERR_RS_RQST_LEN	= 24,
1229 	VERR_RS_CMD		= 25,
1230 	VERR_RS_CMD_LEN		= 26,
1231 	VERR_RS_RCTL		= 27,
1232 	VERR_RS_RO		= 28,
1233 };
1234 
1235 static char *validation_errors[] = {
1236 	"OK",
1237 	"Bad CR_ASSOC Length",
1238 	"Bad CR_ASSOC Rqst Length",
1239 	"Not CR_ASSOC Cmd",
1240 	"Bad CR_ASSOC Cmd Length",
1241 	"Bad Ersp Ratio",
1242 	"Association Allocation Failed",
1243 	"Queue Allocation Failed",
1244 	"Bad CR_CONN Length",
1245 	"Bad CR_CONN Rqst Length",
1246 	"Not Association ID",
1247 	"Bad Association ID Length",
1248 	"No Association",
1249 	"Not Connection ID",
1250 	"Bad Connection ID Length",
1251 	"No Connection",
1252 	"Not CR_CONN Cmd",
1253 	"Bad CR_CONN Cmd Length",
1254 	"Bad DISCONN Length",
1255 	"Bad DISCONN Rqst Length",
1256 	"Not DISCONN Cmd",
1257 	"Bad DISCONN Cmd Length",
1258 	"Bad Disconnect Scope",
1259 	"Bad RS Length",
1260 	"Bad RS Rqst Length",
1261 	"Not RS Cmd",
1262 	"Bad RS Cmd Length",
1263 	"Bad RS R_CTL",
1264 	"Bad RS Relative Offset",
1265 };
1266 
1267 static void
1268 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1269 			struct nvmet_fc_ls_iod *iod)
1270 {
1271 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1272 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1273 	struct fcnvme_ls_cr_assoc_acc *acc =
1274 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1275 	struct nvmet_fc_tgt_queue *queue;
1276 	int ret = 0;
1277 
1278 	memset(acc, 0, sizeof(*acc));
1279 
1280 	/*
1281 	 * FC-NVME spec changes. There are initiators sending different
1282 	 * lengths as padding sizes for Create Association Cmd descriptor
1283 	 * was incorrect.
1284 	 * Accept anything of "minimum" length. Assume format per 1.15
1285 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1286 	 * trailing pad length is.
1287 	 */
1288 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1289 		ret = VERR_CR_ASSOC_LEN;
1290 	else if (be32_to_cpu(rqst->desc_list_len) <
1291 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1292 		ret = VERR_CR_ASSOC_RQST_LEN;
1293 	else if (rqst->assoc_cmd.desc_tag !=
1294 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1295 		ret = VERR_CR_ASSOC_CMD;
1296 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1297 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1298 		ret = VERR_CR_ASSOC_CMD_LEN;
1299 	else if (!rqst->assoc_cmd.ersp_ratio ||
1300 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1301 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1302 		ret = VERR_ERSP_RATIO;
1303 
1304 	else {
1305 		/* new association w/ admin queue */
1306 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1307 		if (!iod->assoc)
1308 			ret = VERR_ASSOC_ALLOC_FAIL;
1309 		else {
1310 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1311 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1312 			if (!queue)
1313 				ret = VERR_QUEUE_ALLOC_FAIL;
1314 		}
1315 	}
1316 
1317 	if (ret) {
1318 		dev_err(tgtport->dev,
1319 			"Create Association LS failed: %s\n",
1320 			validation_errors[ret]);
1321 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1322 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1323 				FCNVME_RJT_RC_LOGIC,
1324 				FCNVME_RJT_EXP_NONE, 0);
1325 		return;
1326 	}
1327 
1328 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1329 	atomic_set(&queue->connected, 1);
1330 	queue->sqhd = 0;	/* best place to init value */
1331 
1332 	/* format a response */
1333 
1334 	iod->lsreq->rsplen = sizeof(*acc);
1335 
1336 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1337 			fcnvme_lsdesc_len(
1338 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1339 			FCNVME_LS_CREATE_ASSOCIATION);
1340 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1341 	acc->associd.desc_len =
1342 			fcnvme_lsdesc_len(
1343 				sizeof(struct fcnvme_lsdesc_assoc_id));
1344 	acc->associd.association_id =
1345 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1346 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1347 	acc->connectid.desc_len =
1348 			fcnvme_lsdesc_len(
1349 				sizeof(struct fcnvme_lsdesc_conn_id));
1350 	acc->connectid.connection_id = acc->associd.association_id;
1351 }
1352 
1353 static void
1354 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1355 			struct nvmet_fc_ls_iod *iod)
1356 {
1357 	struct fcnvme_ls_cr_conn_rqst *rqst =
1358 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1359 	struct fcnvme_ls_cr_conn_acc *acc =
1360 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1361 	struct nvmet_fc_tgt_queue *queue;
1362 	int ret = 0;
1363 
1364 	memset(acc, 0, sizeof(*acc));
1365 
1366 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1367 		ret = VERR_CR_CONN_LEN;
1368 	else if (rqst->desc_list_len !=
1369 			fcnvme_lsdesc_len(
1370 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1371 		ret = VERR_CR_CONN_RQST_LEN;
1372 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1373 		ret = VERR_ASSOC_ID;
1374 	else if (rqst->associd.desc_len !=
1375 			fcnvme_lsdesc_len(
1376 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1377 		ret = VERR_ASSOC_ID_LEN;
1378 	else if (rqst->connect_cmd.desc_tag !=
1379 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1380 		ret = VERR_CR_CONN_CMD;
1381 	else if (rqst->connect_cmd.desc_len !=
1382 			fcnvme_lsdesc_len(
1383 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1384 		ret = VERR_CR_CONN_CMD_LEN;
1385 	else if (!rqst->connect_cmd.ersp_ratio ||
1386 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1387 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1388 		ret = VERR_ERSP_RATIO;
1389 
1390 	else {
1391 		/* new io queue */
1392 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1393 				be64_to_cpu(rqst->associd.association_id));
1394 		if (!iod->assoc)
1395 			ret = VERR_NO_ASSOC;
1396 		else {
1397 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1398 					be16_to_cpu(rqst->connect_cmd.qid),
1399 					be16_to_cpu(rqst->connect_cmd.sqsize));
1400 			if (!queue)
1401 				ret = VERR_QUEUE_ALLOC_FAIL;
1402 
1403 			/* release get taken in nvmet_fc_find_target_assoc */
1404 			nvmet_fc_tgt_a_put(iod->assoc);
1405 		}
1406 	}
1407 
1408 	if (ret) {
1409 		dev_err(tgtport->dev,
1410 			"Create Connection LS failed: %s\n",
1411 			validation_errors[ret]);
1412 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1413 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1414 				(ret == VERR_NO_ASSOC) ?
1415 					FCNVME_RJT_RC_INV_ASSOC :
1416 					FCNVME_RJT_RC_LOGIC,
1417 				FCNVME_RJT_EXP_NONE, 0);
1418 		return;
1419 	}
1420 
1421 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1422 	atomic_set(&queue->connected, 1);
1423 	queue->sqhd = 0;	/* best place to init value */
1424 
1425 	/* format a response */
1426 
1427 	iod->lsreq->rsplen = sizeof(*acc);
1428 
1429 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1430 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1431 			FCNVME_LS_CREATE_CONNECTION);
1432 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1433 	acc->connectid.desc_len =
1434 			fcnvme_lsdesc_len(
1435 				sizeof(struct fcnvme_lsdesc_conn_id));
1436 	acc->connectid.connection_id =
1437 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1438 				be16_to_cpu(rqst->connect_cmd.qid)));
1439 }
1440 
1441 static void
1442 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1443 			struct nvmet_fc_ls_iod *iod)
1444 {
1445 	struct fcnvme_ls_disconnect_rqst *rqst =
1446 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1447 	struct fcnvme_ls_disconnect_acc *acc =
1448 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1449 	struct nvmet_fc_tgt_queue *queue = NULL;
1450 	struct nvmet_fc_tgt_assoc *assoc;
1451 	int ret = 0;
1452 	bool del_assoc = false;
1453 
1454 	memset(acc, 0, sizeof(*acc));
1455 
1456 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1457 		ret = VERR_DISCONN_LEN;
1458 	else if (rqst->desc_list_len !=
1459 			fcnvme_lsdesc_len(
1460 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1461 		ret = VERR_DISCONN_RQST_LEN;
1462 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1463 		ret = VERR_ASSOC_ID;
1464 	else if (rqst->associd.desc_len !=
1465 			fcnvme_lsdesc_len(
1466 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1467 		ret = VERR_ASSOC_ID_LEN;
1468 	else if (rqst->discon_cmd.desc_tag !=
1469 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1470 		ret = VERR_DISCONN_CMD;
1471 	else if (rqst->discon_cmd.desc_len !=
1472 			fcnvme_lsdesc_len(
1473 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1474 		ret = VERR_DISCONN_CMD_LEN;
1475 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1476 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1477 		ret = VERR_DISCONN_SCOPE;
1478 	else {
1479 		/* match an active association */
1480 		assoc = nvmet_fc_find_target_assoc(tgtport,
1481 				be64_to_cpu(rqst->associd.association_id));
1482 		iod->assoc = assoc;
1483 		if (assoc) {
1484 			if (rqst->discon_cmd.scope ==
1485 					FCNVME_DISCONN_CONNECTION) {
1486 				queue = nvmet_fc_find_target_queue(tgtport,
1487 						be64_to_cpu(
1488 							rqst->discon_cmd.id));
1489 				if (!queue) {
1490 					nvmet_fc_tgt_a_put(assoc);
1491 					ret = VERR_NO_CONN;
1492 				}
1493 			}
1494 		} else
1495 			ret = VERR_NO_ASSOC;
1496 	}
1497 
1498 	if (ret) {
1499 		dev_err(tgtport->dev,
1500 			"Disconnect LS failed: %s\n",
1501 			validation_errors[ret]);
1502 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1503 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1504 				(ret == VERR_NO_ASSOC) ?
1505 					FCNVME_RJT_RC_INV_ASSOC :
1506 					(ret == VERR_NO_CONN) ?
1507 						FCNVME_RJT_RC_INV_CONN :
1508 						FCNVME_RJT_RC_LOGIC,
1509 				FCNVME_RJT_EXP_NONE, 0);
1510 		return;
1511 	}
1512 
1513 	/* format a response */
1514 
1515 	iod->lsreq->rsplen = sizeof(*acc);
1516 
1517 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1518 			fcnvme_lsdesc_len(
1519 				sizeof(struct fcnvme_ls_disconnect_acc)),
1520 			FCNVME_LS_DISCONNECT);
1521 
1522 
1523 	/* are we to delete a Connection ID (queue) */
1524 	if (queue) {
1525 		int qid = queue->qid;
1526 
1527 		nvmet_fc_delete_target_queue(queue);
1528 
1529 		/* release the get taken by find_target_queue */
1530 		nvmet_fc_tgt_q_put(queue);
1531 
1532 		/* tear association down if io queue terminated */
1533 		if (!qid)
1534 			del_assoc = true;
1535 	}
1536 
1537 	/* release get taken in nvmet_fc_find_target_assoc */
1538 	nvmet_fc_tgt_a_put(iod->assoc);
1539 
1540 	if (del_assoc)
1541 		nvmet_fc_delete_target_assoc(iod->assoc);
1542 }
1543 
1544 
1545 /* *********************** NVME Ctrl Routines **************************** */
1546 
1547 
1548 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1549 
1550 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1551 
1552 static void
1553 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1554 {
1555 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1556 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1557 
1558 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1559 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1560 	nvmet_fc_free_ls_iod(tgtport, iod);
1561 	nvmet_fc_tgtport_put(tgtport);
1562 }
1563 
1564 static void
1565 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1566 				struct nvmet_fc_ls_iod *iod)
1567 {
1568 	int ret;
1569 
1570 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1571 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1572 
1573 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1574 	if (ret)
1575 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1576 }
1577 
1578 /*
1579  * Actual processing routine for received FC-NVME LS Requests from the LLD
1580  */
1581 static void
1582 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1583 			struct nvmet_fc_ls_iod *iod)
1584 {
1585 	struct fcnvme_ls_rqst_w0 *w0 =
1586 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1587 
1588 	iod->lsreq->nvmet_fc_private = iod;
1589 	iod->lsreq->rspbuf = iod->rspbuf;
1590 	iod->lsreq->rspdma = iod->rspdma;
1591 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1592 	/* Be preventative. handlers will later set to valid length */
1593 	iod->lsreq->rsplen = 0;
1594 
1595 	iod->assoc = NULL;
1596 
1597 	/*
1598 	 * handlers:
1599 	 *   parse request input, execute the request, and format the
1600 	 *   LS response
1601 	 */
1602 	switch (w0->ls_cmd) {
1603 	case FCNVME_LS_CREATE_ASSOCIATION:
1604 		/* Creates Association and initial Admin Queue/Connection */
1605 		nvmet_fc_ls_create_association(tgtport, iod);
1606 		break;
1607 	case FCNVME_LS_CREATE_CONNECTION:
1608 		/* Creates an IO Queue/Connection */
1609 		nvmet_fc_ls_create_connection(tgtport, iod);
1610 		break;
1611 	case FCNVME_LS_DISCONNECT:
1612 		/* Terminate a Queue/Connection or the Association */
1613 		nvmet_fc_ls_disconnect(tgtport, iod);
1614 		break;
1615 	default:
1616 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1617 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1618 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1619 	}
1620 
1621 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1622 }
1623 
1624 /*
1625  * Actual processing routine for received FC-NVME LS Requests from the LLD
1626  */
1627 static void
1628 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1629 {
1630 	struct nvmet_fc_ls_iod *iod =
1631 		container_of(work, struct nvmet_fc_ls_iod, work);
1632 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1633 
1634 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1635 }
1636 
1637 
1638 /**
1639  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1640  *                       upon the reception of a NVME LS request.
1641  *
1642  * The nvmet-fc layer will copy payload to an internal structure for
1643  * processing.  As such, upon completion of the routine, the LLDD may
1644  * immediately free/reuse the LS request buffer passed in the call.
1645  *
1646  * If this routine returns error, the LLDD should abort the exchange.
1647  *
1648  * @tgtport:    pointer to the (registered) target port the LS was
1649  *              received on.
1650  * @lsreq:      pointer to a lsreq request structure to be used to reference
1651  *              the exchange corresponding to the LS.
1652  * @lsreqbuf:   pointer to the buffer containing the LS Request
1653  * @lsreqbuf_len: length, in bytes, of the received LS request
1654  */
1655 int
1656 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1657 			struct nvmefc_tgt_ls_req *lsreq,
1658 			void *lsreqbuf, u32 lsreqbuf_len)
1659 {
1660 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1661 	struct nvmet_fc_ls_iod *iod;
1662 
1663 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1664 		return -E2BIG;
1665 
1666 	if (!nvmet_fc_tgtport_get(tgtport))
1667 		return -ESHUTDOWN;
1668 
1669 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1670 	if (!iod) {
1671 		nvmet_fc_tgtport_put(tgtport);
1672 		return -ENOENT;
1673 	}
1674 
1675 	iod->lsreq = lsreq;
1676 	iod->fcpreq = NULL;
1677 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1678 	iod->rqstdatalen = lsreqbuf_len;
1679 
1680 	schedule_work(&iod->work);
1681 
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1685 
1686 
1687 /*
1688  * **********************
1689  * Start of FCP handling
1690  * **********************
1691  */
1692 
1693 static int
1694 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1695 {
1696 	struct scatterlist *sg;
1697 	struct page *page;
1698 	unsigned int nent;
1699 	u32 page_len, length;
1700 	int i = 0;
1701 
1702 	length = fod->req.transfer_len;
1703 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
1704 	sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1705 	if (!sg)
1706 		goto out;
1707 
1708 	sg_init_table(sg, nent);
1709 
1710 	while (length) {
1711 		page_len = min_t(u32, length, PAGE_SIZE);
1712 
1713 		page = alloc_page(GFP_KERNEL);
1714 		if (!page)
1715 			goto out_free_pages;
1716 
1717 		sg_set_page(&sg[i], page, page_len, 0);
1718 		length -= page_len;
1719 		i++;
1720 	}
1721 
1722 	fod->data_sg = sg;
1723 	fod->data_sg_cnt = nent;
1724 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1725 				((fod->io_dir == NVMET_FCP_WRITE) ?
1726 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1727 				/* note: write from initiator perspective */
1728 
1729 	return 0;
1730 
1731 out_free_pages:
1732 	while (i > 0) {
1733 		i--;
1734 		__free_page(sg_page(&sg[i]));
1735 	}
1736 	kfree(sg);
1737 	fod->data_sg = NULL;
1738 	fod->data_sg_cnt = 0;
1739 out:
1740 	return NVME_SC_INTERNAL;
1741 }
1742 
1743 static void
1744 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1745 {
1746 	struct scatterlist *sg;
1747 	int count;
1748 
1749 	if (!fod->data_sg || !fod->data_sg_cnt)
1750 		return;
1751 
1752 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1753 				((fod->io_dir == NVMET_FCP_WRITE) ?
1754 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1755 	for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1756 		__free_page(sg_page(sg));
1757 	kfree(fod->data_sg);
1758 	fod->data_sg = NULL;
1759 	fod->data_sg_cnt = 0;
1760 }
1761 
1762 
1763 static bool
1764 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1765 {
1766 	u32 sqtail, used;
1767 
1768 	/* egad, this is ugly. And sqtail is just a best guess */
1769 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1770 
1771 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1772 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1773 }
1774 
1775 /*
1776  * Prep RSP payload.
1777  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1778  */
1779 static void
1780 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1781 				struct nvmet_fc_fcp_iod *fod)
1782 {
1783 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1784 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1785 	struct nvme_completion *cqe = &ersp->cqe;
1786 	u32 *cqewd = (u32 *)cqe;
1787 	bool send_ersp = false;
1788 	u32 rsn, rspcnt, xfr_length;
1789 
1790 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1791 		xfr_length = fod->req.transfer_len;
1792 	else
1793 		xfr_length = fod->offset;
1794 
1795 	/*
1796 	 * check to see if we can send a 0's rsp.
1797 	 *   Note: to send a 0's response, the NVME-FC host transport will
1798 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1799 	 *   seen in an ersp), and command_id. Thus it will create a
1800 	 *   zero-filled CQE with those known fields filled in. Transport
1801 	 *   must send an ersp for any condition where the cqe won't match
1802 	 *   this.
1803 	 *
1804 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1805 	 *  every N responses, where N=ersp_ratio
1806 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1807 	 *    practice)
1808 	 *  normal cmds: any time status is non-zero, or status is zero
1809 	 *     but words 0 or 1 are non-zero.
1810 	 *  the SQ is 90% or more full
1811 	 *  the cmd is a fused command
1812 	 *  transferred data length not equal to cmd iu length
1813 	 */
1814 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1815 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1816 	    sqe->opcode == nvme_fabrics_command ||
1817 	    xfr_length != fod->req.transfer_len ||
1818 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1819 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1820 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1821 		send_ersp = true;
1822 
1823 	/* re-set the fields */
1824 	fod->fcpreq->rspaddr = ersp;
1825 	fod->fcpreq->rspdma = fod->rspdma;
1826 
1827 	if (!send_ersp) {
1828 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1829 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1830 	} else {
1831 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1832 		rsn = atomic_inc_return(&fod->queue->rsn);
1833 		ersp->rsn = cpu_to_be32(rsn);
1834 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1835 		fod->fcpreq->rsplen = sizeof(*ersp);
1836 	}
1837 
1838 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1839 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1840 }
1841 
1842 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1843 
1844 static void
1845 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1846 				struct nvmet_fc_fcp_iod *fod)
1847 {
1848 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1849 
1850 	/* data no longer needed */
1851 	nvmet_fc_free_tgt_pgs(fod);
1852 
1853 	/*
1854 	 * if an ABTS was received or we issued the fcp_abort early
1855 	 * don't call abort routine again.
1856 	 */
1857 	/* no need to take lock - lock was taken earlier to get here */
1858 	if (!fod->aborted)
1859 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1860 
1861 	nvmet_fc_free_fcp_iod(fod->queue, fod);
1862 }
1863 
1864 static void
1865 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1866 				struct nvmet_fc_fcp_iod *fod)
1867 {
1868 	int ret;
1869 
1870 	fod->fcpreq->op = NVMET_FCOP_RSP;
1871 	fod->fcpreq->timeout = 0;
1872 
1873 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1874 
1875 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1876 	if (ret)
1877 		nvmet_fc_abort_op(tgtport, fod);
1878 }
1879 
1880 static void
1881 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1882 				struct nvmet_fc_fcp_iod *fod, u8 op)
1883 {
1884 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1885 	unsigned long flags;
1886 	u32 tlen;
1887 	int ret;
1888 
1889 	fcpreq->op = op;
1890 	fcpreq->offset = fod->offset;
1891 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1892 
1893 	tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE,
1894 			(fod->req.transfer_len - fod->offset));
1895 	fcpreq->transfer_length = tlen;
1896 	fcpreq->transferred_length = 0;
1897 	fcpreq->fcp_error = 0;
1898 	fcpreq->rsplen = 0;
1899 
1900 	fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE];
1901 	fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE);
1902 
1903 	/*
1904 	 * If the last READDATA request: check if LLDD supports
1905 	 * combined xfr with response.
1906 	 */
1907 	if ((op == NVMET_FCOP_READDATA) &&
1908 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1909 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1910 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1911 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1912 	}
1913 
1914 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1915 	if (ret) {
1916 		/*
1917 		 * should be ok to set w/o lock as its in the thread of
1918 		 * execution (not an async timer routine) and doesn't
1919 		 * contend with any clearing action
1920 		 */
1921 		fod->abort = true;
1922 
1923 		if (op == NVMET_FCOP_WRITEDATA) {
1924 			spin_lock_irqsave(&fod->flock, flags);
1925 			fod->writedataactive = false;
1926 			spin_unlock_irqrestore(&fod->flock, flags);
1927 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1928 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1929 			fcpreq->fcp_error = ret;
1930 			fcpreq->transferred_length = 0;
1931 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1932 		}
1933 	}
1934 }
1935 
1936 static inline bool
1937 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1938 {
1939 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1940 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1941 
1942 	/* if in the middle of an io and we need to tear down */
1943 	if (abort) {
1944 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1945 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1946 			return true;
1947 		}
1948 
1949 		nvmet_fc_abort_op(tgtport, fod);
1950 		return true;
1951 	}
1952 
1953 	return false;
1954 }
1955 
1956 /*
1957  * actual done handler for FCP operations when completed by the lldd
1958  */
1959 static void
1960 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1961 {
1962 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1963 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1964 	unsigned long flags;
1965 	bool abort;
1966 
1967 	spin_lock_irqsave(&fod->flock, flags);
1968 	abort = fod->abort;
1969 	fod->writedataactive = false;
1970 	spin_unlock_irqrestore(&fod->flock, flags);
1971 
1972 	switch (fcpreq->op) {
1973 
1974 	case NVMET_FCOP_WRITEDATA:
1975 		if (__nvmet_fc_fod_op_abort(fod, abort))
1976 			return;
1977 		if (fcpreq->fcp_error ||
1978 		    fcpreq->transferred_length != fcpreq->transfer_length) {
1979 			spin_lock(&fod->flock);
1980 			fod->abort = true;
1981 			spin_unlock(&fod->flock);
1982 
1983 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1984 			return;
1985 		}
1986 
1987 		fod->offset += fcpreq->transferred_length;
1988 		if (fod->offset != fod->req.transfer_len) {
1989 			spin_lock_irqsave(&fod->flock, flags);
1990 			fod->writedataactive = true;
1991 			spin_unlock_irqrestore(&fod->flock, flags);
1992 
1993 			/* transfer the next chunk */
1994 			nvmet_fc_transfer_fcp_data(tgtport, fod,
1995 						NVMET_FCOP_WRITEDATA);
1996 			return;
1997 		}
1998 
1999 		/* data transfer complete, resume with nvmet layer */
2000 		nvmet_req_execute(&fod->req);
2001 		break;
2002 
2003 	case NVMET_FCOP_READDATA:
2004 	case NVMET_FCOP_READDATA_RSP:
2005 		if (__nvmet_fc_fod_op_abort(fod, abort))
2006 			return;
2007 		if (fcpreq->fcp_error ||
2008 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2009 			nvmet_fc_abort_op(tgtport, fod);
2010 			return;
2011 		}
2012 
2013 		/* success */
2014 
2015 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2016 			/* data no longer needed */
2017 			nvmet_fc_free_tgt_pgs(fod);
2018 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2019 			return;
2020 		}
2021 
2022 		fod->offset += fcpreq->transferred_length;
2023 		if (fod->offset != fod->req.transfer_len) {
2024 			/* transfer the next chunk */
2025 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2026 						NVMET_FCOP_READDATA);
2027 			return;
2028 		}
2029 
2030 		/* data transfer complete, send response */
2031 
2032 		/* data no longer needed */
2033 		nvmet_fc_free_tgt_pgs(fod);
2034 
2035 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2036 
2037 		break;
2038 
2039 	case NVMET_FCOP_RSP:
2040 		if (__nvmet_fc_fod_op_abort(fod, abort))
2041 			return;
2042 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2043 		break;
2044 
2045 	default:
2046 		break;
2047 	}
2048 }
2049 
2050 static void
2051 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2052 {
2053 	struct nvmet_fc_fcp_iod *fod =
2054 		container_of(work, struct nvmet_fc_fcp_iod, done_work);
2055 
2056 	nvmet_fc_fod_op_done(fod);
2057 }
2058 
2059 static void
2060 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2061 {
2062 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2063 	struct nvmet_fc_tgt_queue *queue = fod->queue;
2064 
2065 	if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2066 		/* context switch so completion is not in ISR context */
2067 		queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2068 	else
2069 		nvmet_fc_fod_op_done(fod);
2070 }
2071 
2072 /*
2073  * actual completion handler after execution by the nvmet layer
2074  */
2075 static void
2076 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2077 			struct nvmet_fc_fcp_iod *fod, int status)
2078 {
2079 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2080 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2081 	unsigned long flags;
2082 	bool abort;
2083 
2084 	spin_lock_irqsave(&fod->flock, flags);
2085 	abort = fod->abort;
2086 	spin_unlock_irqrestore(&fod->flock, flags);
2087 
2088 	/* if we have a CQE, snoop the last sq_head value */
2089 	if (!status)
2090 		fod->queue->sqhd = cqe->sq_head;
2091 
2092 	if (abort) {
2093 		nvmet_fc_abort_op(tgtport, fod);
2094 		return;
2095 	}
2096 
2097 	/* if an error handling the cmd post initial parsing */
2098 	if (status) {
2099 		/* fudge up a failed CQE status for our transport error */
2100 		memset(cqe, 0, sizeof(*cqe));
2101 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2102 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2103 		cqe->command_id = sqe->command_id;
2104 		cqe->status = cpu_to_le16(status);
2105 	} else {
2106 
2107 		/*
2108 		 * try to push the data even if the SQE status is non-zero.
2109 		 * There may be a status where data still was intended to
2110 		 * be moved
2111 		 */
2112 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2113 			/* push the data over before sending rsp */
2114 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2115 						NVMET_FCOP_READDATA);
2116 			return;
2117 		}
2118 
2119 		/* writes & no data - fall thru */
2120 	}
2121 
2122 	/* data no longer needed */
2123 	nvmet_fc_free_tgt_pgs(fod);
2124 
2125 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2126 }
2127 
2128 
2129 static void
2130 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2131 {
2132 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2133 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2134 
2135 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2136 }
2137 
2138 
2139 /*
2140  * Actual processing routine for received FC-NVME LS Requests from the LLD
2141  */
2142 static void
2143 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2144 			struct nvmet_fc_fcp_iod *fod)
2145 {
2146 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2147 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2148 	int ret;
2149 
2150 	/*
2151 	 * Fused commands are currently not supported in the linux
2152 	 * implementation.
2153 	 *
2154 	 * As such, the implementation of the FC transport does not
2155 	 * look at the fused commands and order delivery to the upper
2156 	 * layer until we have both based on csn.
2157 	 */
2158 
2159 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2160 
2161 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2162 		fod->io_dir = NVMET_FCP_WRITE;
2163 		if (!nvme_is_write(&cmdiu->sqe))
2164 			goto transport_error;
2165 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2166 		fod->io_dir = NVMET_FCP_READ;
2167 		if (nvme_is_write(&cmdiu->sqe))
2168 			goto transport_error;
2169 	} else {
2170 		fod->io_dir = NVMET_FCP_NODATA;
2171 		if (xfrlen)
2172 			goto transport_error;
2173 	}
2174 
2175 	fod->req.cmd = &fod->cmdiubuf.sqe;
2176 	fod->req.rsp = &fod->rspiubuf.cqe;
2177 	fod->req.port = fod->queue->port;
2178 
2179 	/* clear any response payload */
2180 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2181 
2182 	fod->data_sg = NULL;
2183 	fod->data_sg_cnt = 0;
2184 
2185 	ret = nvmet_req_init(&fod->req,
2186 				&fod->queue->nvme_cq,
2187 				&fod->queue->nvme_sq,
2188 				&nvmet_fc_tgt_fcp_ops);
2189 	if (!ret) {
2190 		/* bad SQE content or invalid ctrl state */
2191 		/* nvmet layer has already called op done to send rsp. */
2192 		return;
2193 	}
2194 
2195 	fod->req.transfer_len = xfrlen;
2196 
2197 	/* keep a running counter of tail position */
2198 	atomic_inc(&fod->queue->sqtail);
2199 
2200 	if (fod->req.transfer_len) {
2201 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2202 		if (ret) {
2203 			nvmet_req_complete(&fod->req, ret);
2204 			return;
2205 		}
2206 	}
2207 	fod->req.sg = fod->data_sg;
2208 	fod->req.sg_cnt = fod->data_sg_cnt;
2209 	fod->offset = 0;
2210 
2211 	if (fod->io_dir == NVMET_FCP_WRITE) {
2212 		/* pull the data over before invoking nvmet layer */
2213 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2214 		return;
2215 	}
2216 
2217 	/*
2218 	 * Reads or no data:
2219 	 *
2220 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2221 	 * push the data
2222 	 */
2223 	nvmet_req_execute(&fod->req);
2224 	return;
2225 
2226 transport_error:
2227 	nvmet_fc_abort_op(tgtport, fod);
2228 }
2229 
2230 /*
2231  * Actual processing routine for received FC-NVME LS Requests from the LLD
2232  */
2233 static void
2234 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2235 {
2236 	struct nvmet_fc_fcp_iod *fod =
2237 		container_of(work, struct nvmet_fc_fcp_iod, work);
2238 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2239 
2240 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
2241 }
2242 
2243 /**
2244  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2245  *                       upon the reception of a NVME FCP CMD IU.
2246  *
2247  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2248  * layer for processing.
2249  *
2250  * The nvmet_fc layer allocates a local job structure (struct
2251  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2252  * CMD IU buffer to the job structure. As such, on a successful
2253  * completion (returns 0), the LLDD may immediately free/reuse
2254  * the CMD IU buffer passed in the call.
2255  *
2256  * However, in some circumstances, due to the packetized nature of FC
2257  * and the api of the FC LLDD which may issue a hw command to send the
2258  * response, but the LLDD may not get the hw completion for that command
2259  * and upcall the nvmet_fc layer before a new command may be
2260  * asynchronously received - its possible for a command to be received
2261  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2262  * the appearance of more commands received than fits in the sq.
2263  * To alleviate this scenario, a temporary queue is maintained in the
2264  * transport for pending LLDD requests waiting for a queue job structure.
2265  * In these "overrun" cases, a temporary queue element is allocated
2266  * the LLDD request and CMD iu buffer information remembered, and the
2267  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2268  * structure is freed, it is immediately reallocated for anything on the
2269  * pending request list. The LLDDs defer_rcv() callback is called,
2270  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2271  * is then started normally with the transport.
2272  *
2273  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2274  * the completion as successful but must not reuse the CMD IU buffer
2275  * until the LLDD's defer_rcv() callback has been called for the
2276  * corresponding struct nvmefc_tgt_fcp_req pointer.
2277  *
2278  * If there is any other condition in which an error occurs, the
2279  * transport will return a non-zero status indicating the error.
2280  * In all cases other than -EOVERFLOW, the transport has not accepted the
2281  * request and the LLDD should abort the exchange.
2282  *
2283  * @target_port: pointer to the (registered) target port the FCP CMD IU
2284  *              was received on.
2285  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2286  *              the exchange corresponding to the FCP Exchange.
2287  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2288  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2289  */
2290 int
2291 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2292 			struct nvmefc_tgt_fcp_req *fcpreq,
2293 			void *cmdiubuf, u32 cmdiubuf_len)
2294 {
2295 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2296 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2297 	struct nvmet_fc_tgt_queue *queue;
2298 	struct nvmet_fc_fcp_iod *fod;
2299 	struct nvmet_fc_defer_fcp_req *deferfcp;
2300 	unsigned long flags;
2301 
2302 	/* validate iu, so the connection id can be used to find the queue */
2303 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2304 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2305 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2306 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2307 		return -EIO;
2308 
2309 	queue = nvmet_fc_find_target_queue(tgtport,
2310 				be64_to_cpu(cmdiu->connection_id));
2311 	if (!queue)
2312 		return -ENOTCONN;
2313 
2314 	/*
2315 	 * note: reference taken by find_target_queue
2316 	 * After successful fod allocation, the fod will inherit the
2317 	 * ownership of that reference and will remove the reference
2318 	 * when the fod is freed.
2319 	 */
2320 
2321 	spin_lock_irqsave(&queue->qlock, flags);
2322 
2323 	fod = nvmet_fc_alloc_fcp_iod(queue);
2324 	if (fod) {
2325 		spin_unlock_irqrestore(&queue->qlock, flags);
2326 
2327 		fcpreq->nvmet_fc_private = fod;
2328 		fod->fcpreq = fcpreq;
2329 
2330 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2331 
2332 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2333 
2334 		return 0;
2335 	}
2336 
2337 	if (!tgtport->ops->defer_rcv) {
2338 		spin_unlock_irqrestore(&queue->qlock, flags);
2339 		/* release the queue lookup reference */
2340 		nvmet_fc_tgt_q_put(queue);
2341 		return -ENOENT;
2342 	}
2343 
2344 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2345 			struct nvmet_fc_defer_fcp_req, req_list);
2346 	if (deferfcp) {
2347 		/* Just re-use one that was previously allocated */
2348 		list_del(&deferfcp->req_list);
2349 	} else {
2350 		spin_unlock_irqrestore(&queue->qlock, flags);
2351 
2352 		/* Now we need to dynamically allocate one */
2353 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2354 		if (!deferfcp) {
2355 			/* release the queue lookup reference */
2356 			nvmet_fc_tgt_q_put(queue);
2357 			return -ENOMEM;
2358 		}
2359 		spin_lock_irqsave(&queue->qlock, flags);
2360 	}
2361 
2362 	/* For now, use rspaddr / rsplen to save payload information */
2363 	fcpreq->rspaddr = cmdiubuf;
2364 	fcpreq->rsplen  = cmdiubuf_len;
2365 	deferfcp->fcp_req = fcpreq;
2366 
2367 	/* defer processing till a fod becomes available */
2368 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2369 
2370 	/* NOTE: the queue lookup reference is still valid */
2371 
2372 	spin_unlock_irqrestore(&queue->qlock, flags);
2373 
2374 	return -EOVERFLOW;
2375 }
2376 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2377 
2378 /**
2379  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2380  *                       upon the reception of an ABTS for a FCP command
2381  *
2382  * Notify the transport that an ABTS has been received for a FCP command
2383  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2384  * LLDD believes the command is still being worked on
2385  * (template_ops->fcp_req_release() has not been called).
2386  *
2387  * The transport will wait for any outstanding work (an op to the LLDD,
2388  * which the lldd should complete with error due to the ABTS; or the
2389  * completion from the nvmet layer of the nvme command), then will
2390  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2391  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2392  * to the ABTS either after return from this function (assuming any
2393  * outstanding op work has been terminated) or upon the callback being
2394  * called.
2395  *
2396  * @target_port: pointer to the (registered) target port the FCP CMD IU
2397  *              was received on.
2398  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2399  *              to the exchange that received the ABTS.
2400  */
2401 void
2402 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2403 			struct nvmefc_tgt_fcp_req *fcpreq)
2404 {
2405 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2406 	struct nvmet_fc_tgt_queue *queue;
2407 	unsigned long flags;
2408 
2409 	if (!fod || fod->fcpreq != fcpreq)
2410 		/* job appears to have already completed, ignore abort */
2411 		return;
2412 
2413 	queue = fod->queue;
2414 
2415 	spin_lock_irqsave(&queue->qlock, flags);
2416 	if (fod->active) {
2417 		/*
2418 		 * mark as abort. The abort handler, invoked upon completion
2419 		 * of any work, will detect the aborted status and do the
2420 		 * callback.
2421 		 */
2422 		spin_lock(&fod->flock);
2423 		fod->abort = true;
2424 		fod->aborted = true;
2425 		spin_unlock(&fod->flock);
2426 	}
2427 	spin_unlock_irqrestore(&queue->qlock, flags);
2428 }
2429 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2430 
2431 
2432 struct nvmet_fc_traddr {
2433 	u64	nn;
2434 	u64	pn;
2435 };
2436 
2437 static int
2438 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2439 {
2440 	u64 token64;
2441 
2442 	if (match_u64(sstr, &token64))
2443 		return -EINVAL;
2444 	*val = token64;
2445 
2446 	return 0;
2447 }
2448 
2449 /*
2450  * This routine validates and extracts the WWN's from the TRADDR string.
2451  * As kernel parsers need the 0x to determine number base, universally
2452  * build string to parse with 0x prefix before parsing name strings.
2453  */
2454 static int
2455 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2456 {
2457 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2458 	substring_t wwn = { name, &name[sizeof(name)-1] };
2459 	int nnoffset, pnoffset;
2460 
2461 	/* validate it string one of the 2 allowed formats */
2462 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2463 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2464 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2465 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2466 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2467 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2468 						NVME_FC_TRADDR_OXNNLEN;
2469 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2470 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2471 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2472 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2473 		nnoffset = NVME_FC_TRADDR_NNLEN;
2474 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2475 	} else
2476 		goto out_einval;
2477 
2478 	name[0] = '0';
2479 	name[1] = 'x';
2480 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2481 
2482 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2483 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2484 		goto out_einval;
2485 
2486 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2487 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2488 		goto out_einval;
2489 
2490 	return 0;
2491 
2492 out_einval:
2493 	pr_warn("%s: bad traddr string\n", __func__);
2494 	return -EINVAL;
2495 }
2496 
2497 static int
2498 nvmet_fc_add_port(struct nvmet_port *port)
2499 {
2500 	struct nvmet_fc_tgtport *tgtport;
2501 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2502 	unsigned long flags;
2503 	int ret;
2504 
2505 	/* validate the address info */
2506 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2507 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2508 		return -EINVAL;
2509 
2510 	/* map the traddr address info to a target port */
2511 
2512 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2513 			sizeof(port->disc_addr.traddr));
2514 	if (ret)
2515 		return ret;
2516 
2517 	ret = -ENXIO;
2518 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2519 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2520 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2521 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2522 			/* a FC port can only be 1 nvmet port id */
2523 			if (!tgtport->port) {
2524 				tgtport->port = port;
2525 				port->priv = tgtport;
2526 				nvmet_fc_tgtport_get(tgtport);
2527 				ret = 0;
2528 			} else
2529 				ret = -EALREADY;
2530 			break;
2531 		}
2532 	}
2533 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2534 	return ret;
2535 }
2536 
2537 static void
2538 nvmet_fc_remove_port(struct nvmet_port *port)
2539 {
2540 	struct nvmet_fc_tgtport *tgtport = port->priv;
2541 	unsigned long flags;
2542 	bool matched = false;
2543 
2544 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2545 	if (tgtport->port == port) {
2546 		matched = true;
2547 		tgtport->port = NULL;
2548 	}
2549 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2550 
2551 	if (matched)
2552 		nvmet_fc_tgtport_put(tgtport);
2553 }
2554 
2555 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2556 	.owner			= THIS_MODULE,
2557 	.type			= NVMF_TRTYPE_FC,
2558 	.msdbd			= 1,
2559 	.add_port		= nvmet_fc_add_port,
2560 	.remove_port		= nvmet_fc_remove_port,
2561 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2562 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2563 };
2564 
2565 static int __init nvmet_fc_init_module(void)
2566 {
2567 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2568 }
2569 
2570 static void __exit nvmet_fc_exit_module(void)
2571 {
2572 	/* sanity check - all lports should be removed */
2573 	if (!list_empty(&nvmet_fc_target_list))
2574 		pr_warn("%s: targetport list not empty\n", __func__);
2575 
2576 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2577 
2578 	ida_destroy(&nvmet_fc_tgtport_cnt);
2579 }
2580 
2581 module_init(nvmet_fc_init_module);
2582 module_exit(nvmet_fc_exit_module);
2583 
2584 MODULE_LICENSE("GPL v2");
2585