xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct list_head		fod_list;
144 	struct list_head		pending_cmd_list;
145 	struct list_head		avail_defer_list;
146 	struct workqueue_struct		*work_q;
147 	struct kref			ref;
148 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
150 
151 struct nvmet_fc_hostport {
152 	struct nvmet_fc_tgtport		*tgtport;
153 	void				*hosthandle;
154 	struct list_head		host_list;
155 	struct kref			ref;
156 	u8				invalid;
157 };
158 
159 struct nvmet_fc_tgt_assoc {
160 	u64				association_id;
161 	u32				a_id;
162 	atomic_t			terminating;
163 	struct nvmet_fc_tgtport		*tgtport;
164 	struct nvmet_fc_hostport	*hostport;
165 	struct nvmet_fc_ls_iod		*rcv_disconn;
166 	struct list_head		a_list;
167 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
168 	struct kref			ref;
169 	struct work_struct		del_work;
170 	atomic_t			del_work_active;
171 };
172 
173 
174 static inline int
175 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
176 {
177 	return (iodptr - iodptr->tgtport->iod);
178 }
179 
180 static inline int
181 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
182 {
183 	return (fodptr - fodptr->queue->fod);
184 }
185 
186 
187 /*
188  * Association and Connection IDs:
189  *
190  * Association ID will have random number in upper 6 bytes and zero
191  *   in lower 2 bytes
192  *
193  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
194  *
195  * note: Association ID = Connection ID for queue 0
196  */
197 #define BYTES_FOR_QID			sizeof(u16)
198 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
199 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
200 
201 static inline u64
202 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
203 {
204 	return (assoc->association_id | qid);
205 }
206 
207 static inline u64
208 nvmet_fc_getassociationid(u64 connectionid)
209 {
210 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
211 }
212 
213 static inline u16
214 nvmet_fc_getqueueid(u64 connectionid)
215 {
216 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
217 }
218 
219 static inline struct nvmet_fc_tgtport *
220 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
221 {
222 	return container_of(targetport, struct nvmet_fc_tgtport,
223 				 fc_target_port);
224 }
225 
226 static inline struct nvmet_fc_fcp_iod *
227 nvmet_req_to_fod(struct nvmet_req *nvme_req)
228 {
229 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
230 }
231 
232 
233 /* *************************** Globals **************************** */
234 
235 
236 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
237 
238 static LIST_HEAD(nvmet_fc_target_list);
239 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
240 static LIST_HEAD(nvmet_fc_portentry_list);
241 
242 
243 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
244 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
245 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
246 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
247 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
248 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
249 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
250 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
251 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
252 					struct nvmet_fc_fcp_iod *fod);
253 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
254 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
255 				struct nvmet_fc_ls_iod *iod);
256 
257 
258 /* *********************** FC-NVME DMA Handling **************************** */
259 
260 /*
261  * The fcloop device passes in a NULL device pointer. Real LLD's will
262  * pass in a valid device pointer. If NULL is passed to the dma mapping
263  * routines, depending on the platform, it may or may not succeed, and
264  * may crash.
265  *
266  * As such:
267  * Wrapper all the dma routines and check the dev pointer.
268  *
269  * If simple mappings (return just a dma address, we'll noop them,
270  * returning a dma address of 0.
271  *
272  * On more complex mappings (dma_map_sg), a pseudo routine fills
273  * in the scatter list, setting all dma addresses to 0.
274  */
275 
276 static inline dma_addr_t
277 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
278 		enum dma_data_direction dir)
279 {
280 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
281 }
282 
283 static inline int
284 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
285 {
286 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
287 }
288 
289 static inline void
290 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
291 	enum dma_data_direction dir)
292 {
293 	if (dev)
294 		dma_unmap_single(dev, addr, size, dir);
295 }
296 
297 static inline void
298 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
299 		enum dma_data_direction dir)
300 {
301 	if (dev)
302 		dma_sync_single_for_cpu(dev, addr, size, dir);
303 }
304 
305 static inline void
306 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
307 		enum dma_data_direction dir)
308 {
309 	if (dev)
310 		dma_sync_single_for_device(dev, addr, size, dir);
311 }
312 
313 /* pseudo dma_map_sg call */
314 static int
315 fc_map_sg(struct scatterlist *sg, int nents)
316 {
317 	struct scatterlist *s;
318 	int i;
319 
320 	WARN_ON(nents == 0 || sg[0].length == 0);
321 
322 	for_each_sg(sg, s, nents, i) {
323 		s->dma_address = 0L;
324 #ifdef CONFIG_NEED_SG_DMA_LENGTH
325 		s->dma_length = s->length;
326 #endif
327 	}
328 	return nents;
329 }
330 
331 static inline int
332 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
333 		enum dma_data_direction dir)
334 {
335 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
336 }
337 
338 static inline void
339 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
340 		enum dma_data_direction dir)
341 {
342 	if (dev)
343 		dma_unmap_sg(dev, sg, nents, dir);
344 }
345 
346 
347 /* ********************** FC-NVME LS XMT Handling ************************* */
348 
349 
350 static void
351 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
352 {
353 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
354 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
355 	unsigned long flags;
356 
357 	spin_lock_irqsave(&tgtport->lock, flags);
358 
359 	if (!lsop->req_queued) {
360 		spin_unlock_irqrestore(&tgtport->lock, flags);
361 		return;
362 	}
363 
364 	list_del(&lsop->lsreq_list);
365 
366 	lsop->req_queued = false;
367 
368 	spin_unlock_irqrestore(&tgtport->lock, flags);
369 
370 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
371 				  (lsreq->rqstlen + lsreq->rsplen),
372 				  DMA_BIDIRECTIONAL);
373 
374 	nvmet_fc_tgtport_put(tgtport);
375 }
376 
377 static int
378 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
379 		struct nvmet_fc_ls_req_op *lsop,
380 		void (*done)(struct nvmefc_ls_req *req, int status))
381 {
382 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
383 	unsigned long flags;
384 	int ret = 0;
385 
386 	if (!tgtport->ops->ls_req)
387 		return -EOPNOTSUPP;
388 
389 	if (!nvmet_fc_tgtport_get(tgtport))
390 		return -ESHUTDOWN;
391 
392 	lsreq->done = done;
393 	lsop->req_queued = false;
394 	INIT_LIST_HEAD(&lsop->lsreq_list);
395 
396 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
397 				  lsreq->rqstlen + lsreq->rsplen,
398 				  DMA_BIDIRECTIONAL);
399 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
400 		ret = -EFAULT;
401 		goto out_puttgtport;
402 	}
403 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
404 
405 	spin_lock_irqsave(&tgtport->lock, flags);
406 
407 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
408 
409 	lsop->req_queued = true;
410 
411 	spin_unlock_irqrestore(&tgtport->lock, flags);
412 
413 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
414 				   lsreq);
415 	if (ret)
416 		goto out_unlink;
417 
418 	return 0;
419 
420 out_unlink:
421 	lsop->ls_error = ret;
422 	spin_lock_irqsave(&tgtport->lock, flags);
423 	lsop->req_queued = false;
424 	list_del(&lsop->lsreq_list);
425 	spin_unlock_irqrestore(&tgtport->lock, flags);
426 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
427 				  (lsreq->rqstlen + lsreq->rsplen),
428 				  DMA_BIDIRECTIONAL);
429 out_puttgtport:
430 	nvmet_fc_tgtport_put(tgtport);
431 
432 	return ret;
433 }
434 
435 static int
436 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
437 		struct nvmet_fc_ls_req_op *lsop,
438 		void (*done)(struct nvmefc_ls_req *req, int status))
439 {
440 	/* don't wait for completion */
441 
442 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
443 }
444 
445 static void
446 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
447 {
448 	struct nvmet_fc_ls_req_op *lsop =
449 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
450 
451 	__nvmet_fc_finish_ls_req(lsop);
452 
453 	/* fc-nvme target doesn't care about success or failure of cmd */
454 
455 	kfree(lsop);
456 }
457 
458 /*
459  * This routine sends a FC-NVME LS to disconnect (aka terminate)
460  * the FC-NVME Association.  Terminating the association also
461  * terminates the FC-NVME connections (per queue, both admin and io
462  * queues) that are part of the association. E.g. things are torn
463  * down, and the related FC-NVME Association ID and Connection IDs
464  * become invalid.
465  *
466  * The behavior of the fc-nvme target is such that it's
467  * understanding of the association and connections will implicitly
468  * be torn down. The action is implicit as it may be due to a loss of
469  * connectivity with the fc-nvme host, so the target may never get a
470  * response even if it tried.  As such, the action of this routine
471  * is to asynchronously send the LS, ignore any results of the LS, and
472  * continue on with terminating the association. If the fc-nvme host
473  * is present and receives the LS, it too can tear down.
474  */
475 static void
476 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
477 {
478 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
479 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
480 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
481 	struct nvmet_fc_ls_req_op *lsop;
482 	struct nvmefc_ls_req *lsreq;
483 	int ret;
484 
485 	/*
486 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
487 	 * message is normal. Otherwise, send unless the hostport has
488 	 * already been invalidated by the lldd.
489 	 */
490 	if (!tgtport->ops->ls_req || !assoc->hostport ||
491 	    assoc->hostport->invalid)
492 		return;
493 
494 	lsop = kzalloc((sizeof(*lsop) +
495 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
496 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
497 	if (!lsop) {
498 		dev_info(tgtport->dev,
499 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
500 			tgtport->fc_target_port.port_num, assoc->a_id);
501 		return;
502 	}
503 
504 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
505 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
506 	lsreq = &lsop->ls_req;
507 	if (tgtport->ops->lsrqst_priv_sz)
508 		lsreq->private = (void *)&discon_acc[1];
509 	else
510 		lsreq->private = NULL;
511 
512 	lsop->tgtport = tgtport;
513 	lsop->hosthandle = assoc->hostport->hosthandle;
514 
515 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
516 				assoc->association_id);
517 
518 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
519 				nvmet_fc_disconnect_assoc_done);
520 	if (ret) {
521 		dev_info(tgtport->dev,
522 			"{%d:%d} XMT Disconnect Association failed: %d\n",
523 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
524 		kfree(lsop);
525 	}
526 }
527 
528 
529 /* *********************** FC-NVME Port Management ************************ */
530 
531 
532 static int
533 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
534 {
535 	struct nvmet_fc_ls_iod *iod;
536 	int i;
537 
538 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
539 			GFP_KERNEL);
540 	if (!iod)
541 		return -ENOMEM;
542 
543 	tgtport->iod = iod;
544 
545 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
546 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
547 		iod->tgtport = tgtport;
548 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
549 
550 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
551 				       sizeof(union nvmefc_ls_responses),
552 				       GFP_KERNEL);
553 		if (!iod->rqstbuf)
554 			goto out_fail;
555 
556 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
557 
558 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
559 						sizeof(*iod->rspbuf),
560 						DMA_TO_DEVICE);
561 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
562 			goto out_fail;
563 	}
564 
565 	return 0;
566 
567 out_fail:
568 	kfree(iod->rqstbuf);
569 	list_del(&iod->ls_rcv_list);
570 	for (iod--, i--; i >= 0; iod--, i--) {
571 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
572 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
573 		kfree(iod->rqstbuf);
574 		list_del(&iod->ls_rcv_list);
575 	}
576 
577 	kfree(iod);
578 
579 	return -EFAULT;
580 }
581 
582 static void
583 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
584 {
585 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
586 	int i;
587 
588 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
589 		fc_dma_unmap_single(tgtport->dev,
590 				iod->rspdma, sizeof(*iod->rspbuf),
591 				DMA_TO_DEVICE);
592 		kfree(iod->rqstbuf);
593 		list_del(&iod->ls_rcv_list);
594 	}
595 	kfree(tgtport->iod);
596 }
597 
598 static struct nvmet_fc_ls_iod *
599 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
600 {
601 	struct nvmet_fc_ls_iod *iod;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&tgtport->lock, flags);
605 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
606 					struct nvmet_fc_ls_iod, ls_rcv_list);
607 	if (iod)
608 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
609 	spin_unlock_irqrestore(&tgtport->lock, flags);
610 	return iod;
611 }
612 
613 
614 static void
615 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
616 			struct nvmet_fc_ls_iod *iod)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&tgtport->lock, flags);
621 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
622 	spin_unlock_irqrestore(&tgtport->lock, flags);
623 }
624 
625 static void
626 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
627 				struct nvmet_fc_tgt_queue *queue)
628 {
629 	struct nvmet_fc_fcp_iod *fod = queue->fod;
630 	int i;
631 
632 	for (i = 0; i < queue->sqsize; fod++, i++) {
633 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
634 		fod->tgtport = tgtport;
635 		fod->queue = queue;
636 		fod->active = false;
637 		fod->abort = false;
638 		fod->aborted = false;
639 		fod->fcpreq = NULL;
640 		list_add_tail(&fod->fcp_list, &queue->fod_list);
641 		spin_lock_init(&fod->flock);
642 
643 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
644 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
645 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
646 			list_del(&fod->fcp_list);
647 			for (fod--, i--; i >= 0; fod--, i--) {
648 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
649 						sizeof(fod->rspiubuf),
650 						DMA_TO_DEVICE);
651 				fod->rspdma = 0L;
652 				list_del(&fod->fcp_list);
653 			}
654 
655 			return;
656 		}
657 	}
658 }
659 
660 static void
661 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
662 				struct nvmet_fc_tgt_queue *queue)
663 {
664 	struct nvmet_fc_fcp_iod *fod = queue->fod;
665 	int i;
666 
667 	for (i = 0; i < queue->sqsize; fod++, i++) {
668 		if (fod->rspdma)
669 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
670 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
671 	}
672 }
673 
674 static struct nvmet_fc_fcp_iod *
675 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
676 {
677 	struct nvmet_fc_fcp_iod *fod;
678 
679 	lockdep_assert_held(&queue->qlock);
680 
681 	fod = list_first_entry_or_null(&queue->fod_list,
682 					struct nvmet_fc_fcp_iod, fcp_list);
683 	if (fod) {
684 		list_del(&fod->fcp_list);
685 		fod->active = true;
686 		/*
687 		 * no queue reference is taken, as it was taken by the
688 		 * queue lookup just prior to the allocation. The iod
689 		 * will "inherit" that reference.
690 		 */
691 	}
692 	return fod;
693 }
694 
695 
696 static void
697 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
698 		       struct nvmet_fc_tgt_queue *queue,
699 		       struct nvmefc_tgt_fcp_req *fcpreq)
700 {
701 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
702 
703 	/*
704 	 * put all admin cmds on hw queue id 0. All io commands go to
705 	 * the respective hw queue based on a modulo basis
706 	 */
707 	fcpreq->hwqid = queue->qid ?
708 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
709 
710 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
711 }
712 
713 static void
714 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
715 {
716 	struct nvmet_fc_fcp_iod *fod =
717 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
718 
719 	/* Submit deferred IO for processing */
720 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
721 
722 }
723 
724 static void
725 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
726 			struct nvmet_fc_fcp_iod *fod)
727 {
728 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
729 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
730 	struct nvmet_fc_defer_fcp_req *deferfcp;
731 	unsigned long flags;
732 
733 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
734 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
735 
736 	fcpreq->nvmet_fc_private = NULL;
737 
738 	fod->active = false;
739 	fod->abort = false;
740 	fod->aborted = false;
741 	fod->writedataactive = false;
742 	fod->fcpreq = NULL;
743 
744 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
745 
746 	/* release the queue lookup reference on the completed IO */
747 	nvmet_fc_tgt_q_put(queue);
748 
749 	spin_lock_irqsave(&queue->qlock, flags);
750 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
751 				struct nvmet_fc_defer_fcp_req, req_list);
752 	if (!deferfcp) {
753 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
754 		spin_unlock_irqrestore(&queue->qlock, flags);
755 		return;
756 	}
757 
758 	/* Re-use the fod for the next pending cmd that was deferred */
759 	list_del(&deferfcp->req_list);
760 
761 	fcpreq = deferfcp->fcp_req;
762 
763 	/* deferfcp can be reused for another IO at a later date */
764 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
765 
766 	spin_unlock_irqrestore(&queue->qlock, flags);
767 
768 	/* Save NVME CMD IO in fod */
769 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
770 
771 	/* Setup new fcpreq to be processed */
772 	fcpreq->rspaddr = NULL;
773 	fcpreq->rsplen  = 0;
774 	fcpreq->nvmet_fc_private = fod;
775 	fod->fcpreq = fcpreq;
776 	fod->active = true;
777 
778 	/* inform LLDD IO is now being processed */
779 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
780 
781 	/*
782 	 * Leave the queue lookup get reference taken when
783 	 * fod was originally allocated.
784 	 */
785 
786 	queue_work(queue->work_q, &fod->defer_work);
787 }
788 
789 static struct nvmet_fc_tgt_queue *
790 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
791 			u16 qid, u16 sqsize)
792 {
793 	struct nvmet_fc_tgt_queue *queue;
794 	unsigned long flags;
795 	int ret;
796 
797 	if (qid > NVMET_NR_QUEUES)
798 		return NULL;
799 
800 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801 	if (!queue)
802 		return NULL;
803 
804 	if (!nvmet_fc_tgt_a_get(assoc))
805 		goto out_free_queue;
806 
807 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808 				assoc->tgtport->fc_target_port.port_num,
809 				assoc->a_id, qid);
810 	if (!queue->work_q)
811 		goto out_a_put;
812 
813 	queue->qid = qid;
814 	queue->sqsize = sqsize;
815 	queue->assoc = assoc;
816 	INIT_LIST_HEAD(&queue->fod_list);
817 	INIT_LIST_HEAD(&queue->avail_defer_list);
818 	INIT_LIST_HEAD(&queue->pending_cmd_list);
819 	atomic_set(&queue->connected, 0);
820 	atomic_set(&queue->sqtail, 0);
821 	atomic_set(&queue->rsn, 1);
822 	atomic_set(&queue->zrspcnt, 0);
823 	spin_lock_init(&queue->qlock);
824 	kref_init(&queue->ref);
825 
826 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827 
828 	ret = nvmet_sq_init(&queue->nvme_sq);
829 	if (ret)
830 		goto out_fail_iodlist;
831 
832 	WARN_ON(assoc->queues[qid]);
833 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
834 	assoc->queues[qid] = queue;
835 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
836 
837 	return queue;
838 
839 out_fail_iodlist:
840 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
841 	destroy_workqueue(queue->work_q);
842 out_a_put:
843 	nvmet_fc_tgt_a_put(assoc);
844 out_free_queue:
845 	kfree(queue);
846 	return NULL;
847 }
848 
849 
850 static void
851 nvmet_fc_tgt_queue_free(struct kref *ref)
852 {
853 	struct nvmet_fc_tgt_queue *queue =
854 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
855 	unsigned long flags;
856 
857 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
858 	queue->assoc->queues[queue->qid] = NULL;
859 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
860 
861 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
862 
863 	nvmet_fc_tgt_a_put(queue->assoc);
864 
865 	destroy_workqueue(queue->work_q);
866 
867 	kfree(queue);
868 }
869 
870 static void
871 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
872 {
873 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
874 }
875 
876 static int
877 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
878 {
879 	return kref_get_unless_zero(&queue->ref);
880 }
881 
882 
883 static void
884 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
885 {
886 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
887 	struct nvmet_fc_fcp_iod *fod = queue->fod;
888 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
889 	unsigned long flags;
890 	int i;
891 	bool disconnect;
892 
893 	disconnect = atomic_xchg(&queue->connected, 0);
894 
895 	/* if not connected, nothing to do */
896 	if (!disconnect)
897 		return;
898 
899 	spin_lock_irqsave(&queue->qlock, flags);
900 	/* abort outstanding io's */
901 	for (i = 0; i < queue->sqsize; fod++, i++) {
902 		if (fod->active) {
903 			spin_lock(&fod->flock);
904 			fod->abort = true;
905 			/*
906 			 * only call lldd abort routine if waiting for
907 			 * writedata. other outstanding ops should finish
908 			 * on their own.
909 			 */
910 			if (fod->writedataactive) {
911 				fod->aborted = true;
912 				spin_unlock(&fod->flock);
913 				tgtport->ops->fcp_abort(
914 					&tgtport->fc_target_port, fod->fcpreq);
915 			} else
916 				spin_unlock(&fod->flock);
917 		}
918 	}
919 
920 	/* Cleanup defer'ed IOs in queue */
921 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
922 				req_list) {
923 		list_del(&deferfcp->req_list);
924 		kfree(deferfcp);
925 	}
926 
927 	for (;;) {
928 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
929 				struct nvmet_fc_defer_fcp_req, req_list);
930 		if (!deferfcp)
931 			break;
932 
933 		list_del(&deferfcp->req_list);
934 		spin_unlock_irqrestore(&queue->qlock, flags);
935 
936 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
937 				deferfcp->fcp_req);
938 
939 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
940 				deferfcp->fcp_req);
941 
942 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
943 				deferfcp->fcp_req);
944 
945 		/* release the queue lookup reference */
946 		nvmet_fc_tgt_q_put(queue);
947 
948 		kfree(deferfcp);
949 
950 		spin_lock_irqsave(&queue->qlock, flags);
951 	}
952 	spin_unlock_irqrestore(&queue->qlock, flags);
953 
954 	flush_workqueue(queue->work_q);
955 
956 	nvmet_sq_destroy(&queue->nvme_sq);
957 
958 	nvmet_fc_tgt_q_put(queue);
959 }
960 
961 static struct nvmet_fc_tgt_queue *
962 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
963 				u64 connection_id)
964 {
965 	struct nvmet_fc_tgt_assoc *assoc;
966 	struct nvmet_fc_tgt_queue *queue;
967 	u64 association_id = nvmet_fc_getassociationid(connection_id);
968 	u16 qid = nvmet_fc_getqueueid(connection_id);
969 	unsigned long flags;
970 
971 	if (qid > NVMET_NR_QUEUES)
972 		return NULL;
973 
974 	spin_lock_irqsave(&tgtport->lock, flags);
975 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
976 		if (association_id == assoc->association_id) {
977 			queue = assoc->queues[qid];
978 			if (queue &&
979 			    (!atomic_read(&queue->connected) ||
980 			     !nvmet_fc_tgt_q_get(queue)))
981 				queue = NULL;
982 			spin_unlock_irqrestore(&tgtport->lock, flags);
983 			return queue;
984 		}
985 	}
986 	spin_unlock_irqrestore(&tgtport->lock, flags);
987 	return NULL;
988 }
989 
990 static void
991 nvmet_fc_hostport_free(struct kref *ref)
992 {
993 	struct nvmet_fc_hostport *hostport =
994 		container_of(ref, struct nvmet_fc_hostport, ref);
995 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
996 	unsigned long flags;
997 
998 	spin_lock_irqsave(&tgtport->lock, flags);
999 	list_del(&hostport->host_list);
1000 	spin_unlock_irqrestore(&tgtport->lock, flags);
1001 	if (tgtport->ops->host_release && hostport->invalid)
1002 		tgtport->ops->host_release(hostport->hosthandle);
1003 	kfree(hostport);
1004 	nvmet_fc_tgtport_put(tgtport);
1005 }
1006 
1007 static void
1008 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1009 {
1010 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1011 }
1012 
1013 static int
1014 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1015 {
1016 	return kref_get_unless_zero(&hostport->ref);
1017 }
1018 
1019 static void
1020 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1021 {
1022 	/* if LLDD not implemented, leave as NULL */
1023 	if (!hostport->hosthandle)
1024 		return;
1025 
1026 	nvmet_fc_hostport_put(hostport);
1027 }
1028 
1029 static struct nvmet_fc_hostport *
1030 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1031 {
1032 	struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1033 	unsigned long flags;
1034 
1035 	/* if LLDD not implemented, leave as NULL */
1036 	if (!hosthandle)
1037 		return NULL;
1038 
1039 	/* take reference for what will be the newly allocated hostport */
1040 	if (!nvmet_fc_tgtport_get(tgtport))
1041 		return ERR_PTR(-EINVAL);
1042 
1043 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1044 	if (!newhost) {
1045 		spin_lock_irqsave(&tgtport->lock, flags);
1046 		list_for_each_entry(host, &tgtport->host_list, host_list) {
1047 			if (host->hosthandle == hosthandle && !host->invalid) {
1048 				if (nvmet_fc_hostport_get(host)) {
1049 					match = host;
1050 					break;
1051 				}
1052 			}
1053 		}
1054 		spin_unlock_irqrestore(&tgtport->lock, flags);
1055 		/* no allocation - release reference */
1056 		nvmet_fc_tgtport_put(tgtport);
1057 		return (match) ? match : ERR_PTR(-ENOMEM);
1058 	}
1059 
1060 	newhost->tgtport = tgtport;
1061 	newhost->hosthandle = hosthandle;
1062 	INIT_LIST_HEAD(&newhost->host_list);
1063 	kref_init(&newhost->ref);
1064 
1065 	spin_lock_irqsave(&tgtport->lock, flags);
1066 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1067 		if (host->hosthandle == hosthandle && !host->invalid) {
1068 			if (nvmet_fc_hostport_get(host)) {
1069 				match = host;
1070 				break;
1071 			}
1072 		}
1073 	}
1074 	if (match) {
1075 		kfree(newhost);
1076 		newhost = NULL;
1077 		/* releasing allocation - release reference */
1078 		nvmet_fc_tgtport_put(tgtport);
1079 	} else
1080 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1081 	spin_unlock_irqrestore(&tgtport->lock, flags);
1082 
1083 	return (match) ? match : newhost;
1084 }
1085 
1086 static void
1087 nvmet_fc_delete_assoc(struct work_struct *work)
1088 {
1089 	struct nvmet_fc_tgt_assoc *assoc =
1090 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1091 
1092 	nvmet_fc_delete_target_assoc(assoc);
1093 	atomic_set(&assoc->del_work_active, 0);
1094 	nvmet_fc_tgt_a_put(assoc);
1095 }
1096 
1097 static struct nvmet_fc_tgt_assoc *
1098 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1099 {
1100 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1101 	unsigned long flags;
1102 	u64 ran;
1103 	int idx;
1104 	bool needrandom = true;
1105 
1106 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1107 	if (!assoc)
1108 		return NULL;
1109 
1110 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1111 	if (idx < 0)
1112 		goto out_free_assoc;
1113 
1114 	if (!nvmet_fc_tgtport_get(tgtport))
1115 		goto out_ida;
1116 
1117 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1118 	if (IS_ERR(assoc->hostport))
1119 		goto out_put;
1120 
1121 	assoc->tgtport = tgtport;
1122 	assoc->a_id = idx;
1123 	INIT_LIST_HEAD(&assoc->a_list);
1124 	kref_init(&assoc->ref);
1125 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1126 	atomic_set(&assoc->del_work_active, 0);
1127 	atomic_set(&assoc->terminating, 0);
1128 
1129 	while (needrandom) {
1130 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1131 		ran = ran << BYTES_FOR_QID_SHIFT;
1132 
1133 		spin_lock_irqsave(&tgtport->lock, flags);
1134 		needrandom = false;
1135 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1136 			if (ran == tmpassoc->association_id) {
1137 				needrandom = true;
1138 				break;
1139 			}
1140 		}
1141 		if (!needrandom) {
1142 			assoc->association_id = ran;
1143 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1144 		}
1145 		spin_unlock_irqrestore(&tgtport->lock, flags);
1146 	}
1147 
1148 	return assoc;
1149 
1150 out_put:
1151 	nvmet_fc_tgtport_put(tgtport);
1152 out_ida:
1153 	ida_simple_remove(&tgtport->assoc_cnt, idx);
1154 out_free_assoc:
1155 	kfree(assoc);
1156 	return NULL;
1157 }
1158 
1159 static void
1160 nvmet_fc_target_assoc_free(struct kref *ref)
1161 {
1162 	struct nvmet_fc_tgt_assoc *assoc =
1163 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1164 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1165 	struct nvmet_fc_ls_iod	*oldls;
1166 	unsigned long flags;
1167 
1168 	/* Send Disconnect now that all i/o has completed */
1169 	nvmet_fc_xmt_disconnect_assoc(assoc);
1170 
1171 	nvmet_fc_free_hostport(assoc->hostport);
1172 	spin_lock_irqsave(&tgtport->lock, flags);
1173 	list_del(&assoc->a_list);
1174 	oldls = assoc->rcv_disconn;
1175 	spin_unlock_irqrestore(&tgtport->lock, flags);
1176 	/* if pending Rcv Disconnect Association LS, send rsp now */
1177 	if (oldls)
1178 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1179 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1180 	dev_info(tgtport->dev,
1181 		"{%d:%d} Association freed\n",
1182 		tgtport->fc_target_port.port_num, assoc->a_id);
1183 	kfree(assoc);
1184 	nvmet_fc_tgtport_put(tgtport);
1185 }
1186 
1187 static void
1188 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1189 {
1190 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1191 }
1192 
1193 static int
1194 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1195 {
1196 	return kref_get_unless_zero(&assoc->ref);
1197 }
1198 
1199 static void
1200 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1201 {
1202 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1203 	struct nvmet_fc_tgt_queue *queue;
1204 	unsigned long flags;
1205 	int i, terminating;
1206 
1207 	terminating = atomic_xchg(&assoc->terminating, 1);
1208 
1209 	/* if already terminating, do nothing */
1210 	if (terminating)
1211 		return;
1212 
1213 	spin_lock_irqsave(&tgtport->lock, flags);
1214 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1215 		queue = assoc->queues[i];
1216 		if (queue) {
1217 			if (!nvmet_fc_tgt_q_get(queue))
1218 				continue;
1219 			spin_unlock_irqrestore(&tgtport->lock, flags);
1220 			nvmet_fc_delete_target_queue(queue);
1221 			nvmet_fc_tgt_q_put(queue);
1222 			spin_lock_irqsave(&tgtport->lock, flags);
1223 		}
1224 	}
1225 	spin_unlock_irqrestore(&tgtport->lock, flags);
1226 
1227 	dev_info(tgtport->dev,
1228 		"{%d:%d} Association deleted\n",
1229 		tgtport->fc_target_port.port_num, assoc->a_id);
1230 
1231 	nvmet_fc_tgt_a_put(assoc);
1232 }
1233 
1234 static struct nvmet_fc_tgt_assoc *
1235 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1236 				u64 association_id)
1237 {
1238 	struct nvmet_fc_tgt_assoc *assoc;
1239 	struct nvmet_fc_tgt_assoc *ret = NULL;
1240 	unsigned long flags;
1241 
1242 	spin_lock_irqsave(&tgtport->lock, flags);
1243 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1244 		if (association_id == assoc->association_id) {
1245 			ret = assoc;
1246 			nvmet_fc_tgt_a_get(assoc);
1247 			break;
1248 		}
1249 	}
1250 	spin_unlock_irqrestore(&tgtport->lock, flags);
1251 
1252 	return ret;
1253 }
1254 
1255 static void
1256 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1257 			struct nvmet_fc_port_entry *pe,
1258 			struct nvmet_port *port)
1259 {
1260 	lockdep_assert_held(&nvmet_fc_tgtlock);
1261 
1262 	pe->tgtport = tgtport;
1263 	tgtport->pe = pe;
1264 
1265 	pe->port = port;
1266 	port->priv = pe;
1267 
1268 	pe->node_name = tgtport->fc_target_port.node_name;
1269 	pe->port_name = tgtport->fc_target_port.port_name;
1270 	INIT_LIST_HEAD(&pe->pe_list);
1271 
1272 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1273 }
1274 
1275 static void
1276 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1277 {
1278 	unsigned long flags;
1279 
1280 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1281 	if (pe->tgtport)
1282 		pe->tgtport->pe = NULL;
1283 	list_del(&pe->pe_list);
1284 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1285 }
1286 
1287 /*
1288  * called when a targetport deregisters. Breaks the relationship
1289  * with the nvmet port, but leaves the port_entry in place so that
1290  * re-registration can resume operation.
1291  */
1292 static void
1293 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1294 {
1295 	struct nvmet_fc_port_entry *pe;
1296 	unsigned long flags;
1297 
1298 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1299 	pe = tgtport->pe;
1300 	if (pe)
1301 		pe->tgtport = NULL;
1302 	tgtport->pe = NULL;
1303 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1304 }
1305 
1306 /*
1307  * called when a new targetport is registered. Looks in the
1308  * existing nvmet port_entries to see if the nvmet layer is
1309  * configured for the targetport's wwn's. (the targetport existed,
1310  * nvmet configured, the lldd unregistered the tgtport, and is now
1311  * reregistering the same targetport).  If so, set the nvmet port
1312  * port entry on the targetport.
1313  */
1314 static void
1315 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1316 {
1317 	struct nvmet_fc_port_entry *pe;
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1321 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1322 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1323 		    tgtport->fc_target_port.port_name == pe->port_name) {
1324 			WARN_ON(pe->tgtport);
1325 			tgtport->pe = pe;
1326 			pe->tgtport = tgtport;
1327 			break;
1328 		}
1329 	}
1330 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1331 }
1332 
1333 /**
1334  * nvme_fc_register_targetport - transport entry point called by an
1335  *                              LLDD to register the existence of a local
1336  *                              NVME subystem FC port.
1337  * @pinfo:     pointer to information about the port to be registered
1338  * @template:  LLDD entrypoints and operational parameters for the port
1339  * @dev:       physical hardware device node port corresponds to. Will be
1340  *             used for DMA mappings
1341  * @portptr:   pointer to a local port pointer. Upon success, the routine
1342  *             will allocate a nvme_fc_local_port structure and place its
1343  *             address in the local port pointer. Upon failure, local port
1344  *             pointer will be set to NULL.
1345  *
1346  * Returns:
1347  * a completion status. Must be 0 upon success; a negative errno
1348  * (ex: -ENXIO) upon failure.
1349  */
1350 int
1351 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1352 			struct nvmet_fc_target_template *template,
1353 			struct device *dev,
1354 			struct nvmet_fc_target_port **portptr)
1355 {
1356 	struct nvmet_fc_tgtport *newrec;
1357 	unsigned long flags;
1358 	int ret, idx;
1359 
1360 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1361 	    !template->fcp_abort ||
1362 	    !template->fcp_req_release || !template->targetport_delete ||
1363 	    !template->max_hw_queues || !template->max_sgl_segments ||
1364 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1365 		ret = -EINVAL;
1366 		goto out_regtgt_failed;
1367 	}
1368 
1369 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1370 			 GFP_KERNEL);
1371 	if (!newrec) {
1372 		ret = -ENOMEM;
1373 		goto out_regtgt_failed;
1374 	}
1375 
1376 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1377 	if (idx < 0) {
1378 		ret = -ENOSPC;
1379 		goto out_fail_kfree;
1380 	}
1381 
1382 	if (!get_device(dev) && dev) {
1383 		ret = -ENODEV;
1384 		goto out_ida_put;
1385 	}
1386 
1387 	newrec->fc_target_port.node_name = pinfo->node_name;
1388 	newrec->fc_target_port.port_name = pinfo->port_name;
1389 	if (template->target_priv_sz)
1390 		newrec->fc_target_port.private = &newrec[1];
1391 	else
1392 		newrec->fc_target_port.private = NULL;
1393 	newrec->fc_target_port.port_id = pinfo->port_id;
1394 	newrec->fc_target_port.port_num = idx;
1395 	INIT_LIST_HEAD(&newrec->tgt_list);
1396 	newrec->dev = dev;
1397 	newrec->ops = template;
1398 	spin_lock_init(&newrec->lock);
1399 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1400 	INIT_LIST_HEAD(&newrec->ls_req_list);
1401 	INIT_LIST_HEAD(&newrec->ls_busylist);
1402 	INIT_LIST_HEAD(&newrec->assoc_list);
1403 	INIT_LIST_HEAD(&newrec->host_list);
1404 	kref_init(&newrec->ref);
1405 	ida_init(&newrec->assoc_cnt);
1406 	newrec->max_sg_cnt = template->max_sgl_segments;
1407 
1408 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1409 	if (ret) {
1410 		ret = -ENOMEM;
1411 		goto out_free_newrec;
1412 	}
1413 
1414 	nvmet_fc_portentry_rebind_tgt(newrec);
1415 
1416 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1417 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1418 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1419 
1420 	*portptr = &newrec->fc_target_port;
1421 	return 0;
1422 
1423 out_free_newrec:
1424 	put_device(dev);
1425 out_ida_put:
1426 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1427 out_fail_kfree:
1428 	kfree(newrec);
1429 out_regtgt_failed:
1430 	*portptr = NULL;
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1434 
1435 
1436 static void
1437 nvmet_fc_free_tgtport(struct kref *ref)
1438 {
1439 	struct nvmet_fc_tgtport *tgtport =
1440 		container_of(ref, struct nvmet_fc_tgtport, ref);
1441 	struct device *dev = tgtport->dev;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1445 	list_del(&tgtport->tgt_list);
1446 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1447 
1448 	nvmet_fc_free_ls_iodlist(tgtport);
1449 
1450 	/* let the LLDD know we've finished tearing it down */
1451 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1452 
1453 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1454 			tgtport->fc_target_port.port_num);
1455 
1456 	ida_destroy(&tgtport->assoc_cnt);
1457 
1458 	kfree(tgtport);
1459 
1460 	put_device(dev);
1461 }
1462 
1463 static void
1464 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1465 {
1466 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1467 }
1468 
1469 static int
1470 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1471 {
1472 	return kref_get_unless_zero(&tgtport->ref);
1473 }
1474 
1475 static void
1476 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1477 {
1478 	struct nvmet_fc_tgt_assoc *assoc, *next;
1479 	unsigned long flags;
1480 	int ret;
1481 
1482 	spin_lock_irqsave(&tgtport->lock, flags);
1483 	list_for_each_entry_safe(assoc, next,
1484 				&tgtport->assoc_list, a_list) {
1485 		if (!nvmet_fc_tgt_a_get(assoc))
1486 			continue;
1487 		ret = atomic_cmpxchg(&assoc->del_work_active, 0, 1);
1488 		if (ret == 0) {
1489 			if (!schedule_work(&assoc->del_work))
1490 				nvmet_fc_tgt_a_put(assoc);
1491 		} else {
1492 			/* already deleting - release local reference */
1493 			nvmet_fc_tgt_a_put(assoc);
1494 		}
1495 	}
1496 	spin_unlock_irqrestore(&tgtport->lock, flags);
1497 }
1498 
1499 /**
1500  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1501  *                       to remove references to a hosthandle for LS's.
1502  *
1503  * The nvmet-fc layer ensures that any references to the hosthandle
1504  * on the targetport are forgotten (set to NULL).  The LLDD will
1505  * typically call this when a login with a remote host port has been
1506  * lost, thus LS's for the remote host port are no longer possible.
1507  *
1508  * If an LS request is outstanding to the targetport/hosthandle (or
1509  * issued concurrently with the call to invalidate the host), the
1510  * LLDD is responsible for terminating/aborting the LS and completing
1511  * the LS request. It is recommended that these terminations/aborts
1512  * occur after calling to invalidate the host handle to avoid additional
1513  * retries by the nvmet-fc transport. The nvmet-fc transport may
1514  * continue to reference host handle while it cleans up outstanding
1515  * NVME associations. The nvmet-fc transport will call the
1516  * ops->host_release() callback to notify the LLDD that all references
1517  * are complete and the related host handle can be recovered.
1518  * Note: if there are no references, the callback may be called before
1519  * the invalidate host call returns.
1520  *
1521  * @target_port: pointer to the (registered) target port that a prior
1522  *              LS was received on and which supplied the transport the
1523  *              hosthandle.
1524  * @hosthandle: the handle (pointer) that represents the host port
1525  *              that no longer has connectivity and that LS's should
1526  *              no longer be directed to.
1527  */
1528 void
1529 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1530 			void *hosthandle)
1531 {
1532 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1533 	struct nvmet_fc_tgt_assoc *assoc, *next;
1534 	unsigned long flags;
1535 	bool noassoc = true;
1536 	int ret;
1537 
1538 	spin_lock_irqsave(&tgtport->lock, flags);
1539 	list_for_each_entry_safe(assoc, next,
1540 				&tgtport->assoc_list, a_list) {
1541 		if (!assoc->hostport ||
1542 		    assoc->hostport->hosthandle != hosthandle)
1543 			continue;
1544 		if (!nvmet_fc_tgt_a_get(assoc))
1545 			continue;
1546 		assoc->hostport->invalid = 1;
1547 		noassoc = false;
1548 		ret = atomic_cmpxchg(&assoc->del_work_active, 0, 1);
1549 		if (ret == 0) {
1550 			if (!schedule_work(&assoc->del_work))
1551 				nvmet_fc_tgt_a_put(assoc);
1552 		} else {
1553 			/* already deleting - release local reference */
1554 			nvmet_fc_tgt_a_put(assoc);
1555 		}
1556 	}
1557 	spin_unlock_irqrestore(&tgtport->lock, flags);
1558 
1559 	/* if there's nothing to wait for - call the callback */
1560 	if (noassoc && tgtport->ops->host_release)
1561 		tgtport->ops->host_release(hosthandle);
1562 }
1563 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1564 
1565 /*
1566  * nvmet layer has called to terminate an association
1567  */
1568 static void
1569 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1570 {
1571 	struct nvmet_fc_tgtport *tgtport, *next;
1572 	struct nvmet_fc_tgt_assoc *assoc;
1573 	struct nvmet_fc_tgt_queue *queue;
1574 	unsigned long flags;
1575 	bool found_ctrl = false;
1576 	int ret;
1577 
1578 	/* this is a bit ugly, but don't want to make locks layered */
1579 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1580 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1581 			tgt_list) {
1582 		if (!nvmet_fc_tgtport_get(tgtport))
1583 			continue;
1584 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1585 
1586 		spin_lock_irqsave(&tgtport->lock, flags);
1587 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1588 			queue = assoc->queues[0];
1589 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1590 				if (nvmet_fc_tgt_a_get(assoc))
1591 					found_ctrl = true;
1592 				break;
1593 			}
1594 		}
1595 		spin_unlock_irqrestore(&tgtport->lock, flags);
1596 
1597 		nvmet_fc_tgtport_put(tgtport);
1598 
1599 		if (found_ctrl) {
1600 			ret = atomic_cmpxchg(&assoc->del_work_active, 0, 1);
1601 			if (ret == 0) {
1602 				if (!schedule_work(&assoc->del_work))
1603 					nvmet_fc_tgt_a_put(assoc);
1604 			} else {
1605 				/* already deleting - release local reference */
1606 				nvmet_fc_tgt_a_put(assoc);
1607 			}
1608 			return;
1609 		}
1610 
1611 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1612 	}
1613 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1614 }
1615 
1616 /**
1617  * nvme_fc_unregister_targetport - transport entry point called by an
1618  *                              LLDD to deregister/remove a previously
1619  *                              registered a local NVME subsystem FC port.
1620  * @target_port: pointer to the (registered) target port that is to be
1621  *               deregistered.
1622  *
1623  * Returns:
1624  * a completion status. Must be 0 upon success; a negative errno
1625  * (ex: -ENXIO) upon failure.
1626  */
1627 int
1628 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1629 {
1630 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1631 
1632 	nvmet_fc_portentry_unbind_tgt(tgtport);
1633 
1634 	/* terminate any outstanding associations */
1635 	__nvmet_fc_free_assocs(tgtport);
1636 
1637 	/*
1638 	 * should terminate LS's as well. However, LS's will be generated
1639 	 * at the tail end of association termination, so they likely don't
1640 	 * exist yet. And even if they did, it's worthwhile to just let
1641 	 * them finish and targetport ref counting will clean things up.
1642 	 */
1643 
1644 	nvmet_fc_tgtport_put(tgtport);
1645 
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1649 
1650 
1651 /* ********************** FC-NVME LS RCV Handling ************************* */
1652 
1653 
1654 static void
1655 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1656 			struct nvmet_fc_ls_iod *iod)
1657 {
1658 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1659 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1660 	struct nvmet_fc_tgt_queue *queue;
1661 	int ret = 0;
1662 
1663 	memset(acc, 0, sizeof(*acc));
1664 
1665 	/*
1666 	 * FC-NVME spec changes. There are initiators sending different
1667 	 * lengths as padding sizes for Create Association Cmd descriptor
1668 	 * was incorrect.
1669 	 * Accept anything of "minimum" length. Assume format per 1.15
1670 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1671 	 * trailing pad length is.
1672 	 */
1673 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1674 		ret = VERR_CR_ASSOC_LEN;
1675 	else if (be32_to_cpu(rqst->desc_list_len) <
1676 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1677 		ret = VERR_CR_ASSOC_RQST_LEN;
1678 	else if (rqst->assoc_cmd.desc_tag !=
1679 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1680 		ret = VERR_CR_ASSOC_CMD;
1681 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1682 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1683 		ret = VERR_CR_ASSOC_CMD_LEN;
1684 	else if (!rqst->assoc_cmd.ersp_ratio ||
1685 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1686 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1687 		ret = VERR_ERSP_RATIO;
1688 
1689 	else {
1690 		/* new association w/ admin queue */
1691 		iod->assoc = nvmet_fc_alloc_target_assoc(
1692 						tgtport, iod->hosthandle);
1693 		if (!iod->assoc)
1694 			ret = VERR_ASSOC_ALLOC_FAIL;
1695 		else {
1696 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1697 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1698 			if (!queue)
1699 				ret = VERR_QUEUE_ALLOC_FAIL;
1700 		}
1701 	}
1702 
1703 	if (ret) {
1704 		dev_err(tgtport->dev,
1705 			"Create Association LS failed: %s\n",
1706 			validation_errors[ret]);
1707 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1708 				sizeof(*acc), rqst->w0.ls_cmd,
1709 				FCNVME_RJT_RC_LOGIC,
1710 				FCNVME_RJT_EXP_NONE, 0);
1711 		return;
1712 	}
1713 
1714 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1715 	atomic_set(&queue->connected, 1);
1716 	queue->sqhd = 0;	/* best place to init value */
1717 
1718 	dev_info(tgtport->dev,
1719 		"{%d:%d} Association created\n",
1720 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1721 
1722 	/* format a response */
1723 
1724 	iod->lsrsp->rsplen = sizeof(*acc);
1725 
1726 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1727 			fcnvme_lsdesc_len(
1728 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1729 			FCNVME_LS_CREATE_ASSOCIATION);
1730 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1731 	acc->associd.desc_len =
1732 			fcnvme_lsdesc_len(
1733 				sizeof(struct fcnvme_lsdesc_assoc_id));
1734 	acc->associd.association_id =
1735 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1736 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1737 	acc->connectid.desc_len =
1738 			fcnvme_lsdesc_len(
1739 				sizeof(struct fcnvme_lsdesc_conn_id));
1740 	acc->connectid.connection_id = acc->associd.association_id;
1741 }
1742 
1743 static void
1744 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1745 			struct nvmet_fc_ls_iod *iod)
1746 {
1747 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1748 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1749 	struct nvmet_fc_tgt_queue *queue;
1750 	int ret = 0;
1751 
1752 	memset(acc, 0, sizeof(*acc));
1753 
1754 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1755 		ret = VERR_CR_CONN_LEN;
1756 	else if (rqst->desc_list_len !=
1757 			fcnvme_lsdesc_len(
1758 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1759 		ret = VERR_CR_CONN_RQST_LEN;
1760 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1761 		ret = VERR_ASSOC_ID;
1762 	else if (rqst->associd.desc_len !=
1763 			fcnvme_lsdesc_len(
1764 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1765 		ret = VERR_ASSOC_ID_LEN;
1766 	else if (rqst->connect_cmd.desc_tag !=
1767 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1768 		ret = VERR_CR_CONN_CMD;
1769 	else if (rqst->connect_cmd.desc_len !=
1770 			fcnvme_lsdesc_len(
1771 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1772 		ret = VERR_CR_CONN_CMD_LEN;
1773 	else if (!rqst->connect_cmd.ersp_ratio ||
1774 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1775 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1776 		ret = VERR_ERSP_RATIO;
1777 
1778 	else {
1779 		/* new io queue */
1780 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1781 				be64_to_cpu(rqst->associd.association_id));
1782 		if (!iod->assoc)
1783 			ret = VERR_NO_ASSOC;
1784 		else {
1785 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1786 					be16_to_cpu(rqst->connect_cmd.qid),
1787 					be16_to_cpu(rqst->connect_cmd.sqsize));
1788 			if (!queue)
1789 				ret = VERR_QUEUE_ALLOC_FAIL;
1790 
1791 			/* release get taken in nvmet_fc_find_target_assoc */
1792 			nvmet_fc_tgt_a_put(iod->assoc);
1793 		}
1794 	}
1795 
1796 	if (ret) {
1797 		dev_err(tgtport->dev,
1798 			"Create Connection LS failed: %s\n",
1799 			validation_errors[ret]);
1800 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1801 				sizeof(*acc), rqst->w0.ls_cmd,
1802 				(ret == VERR_NO_ASSOC) ?
1803 					FCNVME_RJT_RC_INV_ASSOC :
1804 					FCNVME_RJT_RC_LOGIC,
1805 				FCNVME_RJT_EXP_NONE, 0);
1806 		return;
1807 	}
1808 
1809 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1810 	atomic_set(&queue->connected, 1);
1811 	queue->sqhd = 0;	/* best place to init value */
1812 
1813 	/* format a response */
1814 
1815 	iod->lsrsp->rsplen = sizeof(*acc);
1816 
1817 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1818 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1819 			FCNVME_LS_CREATE_CONNECTION);
1820 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1821 	acc->connectid.desc_len =
1822 			fcnvme_lsdesc_len(
1823 				sizeof(struct fcnvme_lsdesc_conn_id));
1824 	acc->connectid.connection_id =
1825 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1826 				be16_to_cpu(rqst->connect_cmd.qid)));
1827 }
1828 
1829 /*
1830  * Returns true if the LS response is to be transmit
1831  * Returns false if the LS response is to be delayed
1832  */
1833 static int
1834 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1835 			struct nvmet_fc_ls_iod *iod)
1836 {
1837 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1838 						&iod->rqstbuf->rq_dis_assoc;
1839 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1840 						&iod->rspbuf->rsp_dis_assoc;
1841 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1842 	struct nvmet_fc_ls_iod *oldls = NULL;
1843 	unsigned long flags;
1844 	int ret = 0;
1845 
1846 	memset(acc, 0, sizeof(*acc));
1847 
1848 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1849 	if (!ret) {
1850 		/* match an active association - takes an assoc ref if !NULL */
1851 		assoc = nvmet_fc_find_target_assoc(tgtport,
1852 				be64_to_cpu(rqst->associd.association_id));
1853 		iod->assoc = assoc;
1854 		if (!assoc)
1855 			ret = VERR_NO_ASSOC;
1856 	}
1857 
1858 	if (ret || !assoc) {
1859 		dev_err(tgtport->dev,
1860 			"Disconnect LS failed: %s\n",
1861 			validation_errors[ret]);
1862 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1863 				sizeof(*acc), rqst->w0.ls_cmd,
1864 				(ret == VERR_NO_ASSOC) ?
1865 					FCNVME_RJT_RC_INV_ASSOC :
1866 					FCNVME_RJT_RC_LOGIC,
1867 				FCNVME_RJT_EXP_NONE, 0);
1868 		return true;
1869 	}
1870 
1871 	/* format a response */
1872 
1873 	iod->lsrsp->rsplen = sizeof(*acc);
1874 
1875 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1876 			fcnvme_lsdesc_len(
1877 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1878 			FCNVME_LS_DISCONNECT_ASSOC);
1879 
1880 	/* release get taken in nvmet_fc_find_target_assoc */
1881 	nvmet_fc_tgt_a_put(assoc);
1882 
1883 	/*
1884 	 * The rules for LS response says the response cannot
1885 	 * go back until ABTS's have been sent for all outstanding
1886 	 * I/O and a Disconnect Association LS has been sent.
1887 	 * So... save off the Disconnect LS to send the response
1888 	 * later. If there was a prior LS already saved, replace
1889 	 * it with the newer one and send a can't perform reject
1890 	 * on the older one.
1891 	 */
1892 	spin_lock_irqsave(&tgtport->lock, flags);
1893 	oldls = assoc->rcv_disconn;
1894 	assoc->rcv_disconn = iod;
1895 	spin_unlock_irqrestore(&tgtport->lock, flags);
1896 
1897 	nvmet_fc_delete_target_assoc(assoc);
1898 
1899 	if (oldls) {
1900 		dev_info(tgtport->dev,
1901 			"{%d:%d} Multiple Disconnect Association LS's "
1902 			"received\n",
1903 			tgtport->fc_target_port.port_num, assoc->a_id);
1904 		/* overwrite good response with bogus failure */
1905 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1906 						sizeof(*iod->rspbuf),
1907 						/* ok to use rqst, LS is same */
1908 						rqst->w0.ls_cmd,
1909 						FCNVME_RJT_RC_UNAB,
1910 						FCNVME_RJT_EXP_NONE, 0);
1911 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1912 	}
1913 
1914 	return false;
1915 }
1916 
1917 
1918 /* *********************** NVME Ctrl Routines **************************** */
1919 
1920 
1921 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1922 
1923 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1924 
1925 static void
1926 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1927 {
1928 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1929 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1930 
1931 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1932 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1933 	nvmet_fc_free_ls_iod(tgtport, iod);
1934 	nvmet_fc_tgtport_put(tgtport);
1935 }
1936 
1937 static void
1938 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1939 				struct nvmet_fc_ls_iod *iod)
1940 {
1941 	int ret;
1942 
1943 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1944 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1945 
1946 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1947 	if (ret)
1948 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1949 }
1950 
1951 /*
1952  * Actual processing routine for received FC-NVME LS Requests from the LLD
1953  */
1954 static void
1955 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1956 			struct nvmet_fc_ls_iod *iod)
1957 {
1958 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1959 	bool sendrsp = true;
1960 
1961 	iod->lsrsp->nvme_fc_private = iod;
1962 	iod->lsrsp->rspbuf = iod->rspbuf;
1963 	iod->lsrsp->rspdma = iod->rspdma;
1964 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1965 	/* Be preventative. handlers will later set to valid length */
1966 	iod->lsrsp->rsplen = 0;
1967 
1968 	iod->assoc = NULL;
1969 
1970 	/*
1971 	 * handlers:
1972 	 *   parse request input, execute the request, and format the
1973 	 *   LS response
1974 	 */
1975 	switch (w0->ls_cmd) {
1976 	case FCNVME_LS_CREATE_ASSOCIATION:
1977 		/* Creates Association and initial Admin Queue/Connection */
1978 		nvmet_fc_ls_create_association(tgtport, iod);
1979 		break;
1980 	case FCNVME_LS_CREATE_CONNECTION:
1981 		/* Creates an IO Queue/Connection */
1982 		nvmet_fc_ls_create_connection(tgtport, iod);
1983 		break;
1984 	case FCNVME_LS_DISCONNECT_ASSOC:
1985 		/* Terminate a Queue/Connection or the Association */
1986 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1987 		break;
1988 	default:
1989 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1990 				sizeof(*iod->rspbuf), w0->ls_cmd,
1991 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1992 	}
1993 
1994 	if (sendrsp)
1995 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1996 }
1997 
1998 /*
1999  * Actual processing routine for received FC-NVME LS Requests from the LLD
2000  */
2001 static void
2002 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2003 {
2004 	struct nvmet_fc_ls_iod *iod =
2005 		container_of(work, struct nvmet_fc_ls_iod, work);
2006 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2007 
2008 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2009 }
2010 
2011 
2012 /**
2013  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2014  *                       upon the reception of a NVME LS request.
2015  *
2016  * The nvmet-fc layer will copy payload to an internal structure for
2017  * processing.  As such, upon completion of the routine, the LLDD may
2018  * immediately free/reuse the LS request buffer passed in the call.
2019  *
2020  * If this routine returns error, the LLDD should abort the exchange.
2021  *
2022  * @target_port: pointer to the (registered) target port the LS was
2023  *              received on.
2024  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2025  *              the exchange corresponding to the LS.
2026  * @lsreqbuf:   pointer to the buffer containing the LS Request
2027  * @lsreqbuf_len: length, in bytes, of the received LS request
2028  */
2029 int
2030 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2031 			void *hosthandle,
2032 			struct nvmefc_ls_rsp *lsrsp,
2033 			void *lsreqbuf, u32 lsreqbuf_len)
2034 {
2035 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2036 	struct nvmet_fc_ls_iod *iod;
2037 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2038 
2039 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2040 		dev_info(tgtport->dev,
2041 			"RCV %s LS failed: payload too large (%d)\n",
2042 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2043 				nvmefc_ls_names[w0->ls_cmd] : "",
2044 			lsreqbuf_len);
2045 		return -E2BIG;
2046 	}
2047 
2048 	if (!nvmet_fc_tgtport_get(tgtport)) {
2049 		dev_info(tgtport->dev,
2050 			"RCV %s LS failed: target deleting\n",
2051 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2052 				nvmefc_ls_names[w0->ls_cmd] : "");
2053 		return -ESHUTDOWN;
2054 	}
2055 
2056 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2057 	if (!iod) {
2058 		dev_info(tgtport->dev,
2059 			"RCV %s LS failed: context allocation failed\n",
2060 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2061 				nvmefc_ls_names[w0->ls_cmd] : "");
2062 		nvmet_fc_tgtport_put(tgtport);
2063 		return -ENOENT;
2064 	}
2065 
2066 	iod->lsrsp = lsrsp;
2067 	iod->fcpreq = NULL;
2068 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2069 	iod->rqstdatalen = lsreqbuf_len;
2070 	iod->hosthandle = hosthandle;
2071 
2072 	schedule_work(&iod->work);
2073 
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2077 
2078 
2079 /*
2080  * **********************
2081  * Start of FCP handling
2082  * **********************
2083  */
2084 
2085 static int
2086 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2087 {
2088 	struct scatterlist *sg;
2089 	unsigned int nent;
2090 
2091 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2092 	if (!sg)
2093 		goto out;
2094 
2095 	fod->data_sg = sg;
2096 	fod->data_sg_cnt = nent;
2097 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2098 				((fod->io_dir == NVMET_FCP_WRITE) ?
2099 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2100 				/* note: write from initiator perspective */
2101 	fod->next_sg = fod->data_sg;
2102 
2103 	return 0;
2104 
2105 out:
2106 	return NVME_SC_INTERNAL;
2107 }
2108 
2109 static void
2110 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2111 {
2112 	if (!fod->data_sg || !fod->data_sg_cnt)
2113 		return;
2114 
2115 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2116 				((fod->io_dir == NVMET_FCP_WRITE) ?
2117 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2118 	sgl_free(fod->data_sg);
2119 	fod->data_sg = NULL;
2120 	fod->data_sg_cnt = 0;
2121 }
2122 
2123 
2124 static bool
2125 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2126 {
2127 	u32 sqtail, used;
2128 
2129 	/* egad, this is ugly. And sqtail is just a best guess */
2130 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2131 
2132 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2133 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2134 }
2135 
2136 /*
2137  * Prep RSP payload.
2138  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2139  */
2140 static void
2141 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2142 				struct nvmet_fc_fcp_iod *fod)
2143 {
2144 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2145 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2146 	struct nvme_completion *cqe = &ersp->cqe;
2147 	u32 *cqewd = (u32 *)cqe;
2148 	bool send_ersp = false;
2149 	u32 rsn, rspcnt, xfr_length;
2150 
2151 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2152 		xfr_length = fod->req.transfer_len;
2153 	else
2154 		xfr_length = fod->offset;
2155 
2156 	/*
2157 	 * check to see if we can send a 0's rsp.
2158 	 *   Note: to send a 0's response, the NVME-FC host transport will
2159 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2160 	 *   seen in an ersp), and command_id. Thus it will create a
2161 	 *   zero-filled CQE with those known fields filled in. Transport
2162 	 *   must send an ersp for any condition where the cqe won't match
2163 	 *   this.
2164 	 *
2165 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2166 	 *  every N responses, where N=ersp_ratio
2167 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2168 	 *    practice)
2169 	 *  normal cmds: any time status is non-zero, or status is zero
2170 	 *     but words 0 or 1 are non-zero.
2171 	 *  the SQ is 90% or more full
2172 	 *  the cmd is a fused command
2173 	 *  transferred data length not equal to cmd iu length
2174 	 */
2175 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2176 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2177 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2178 	    xfr_length != fod->req.transfer_len ||
2179 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2180 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2181 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2182 		send_ersp = true;
2183 
2184 	/* re-set the fields */
2185 	fod->fcpreq->rspaddr = ersp;
2186 	fod->fcpreq->rspdma = fod->rspdma;
2187 
2188 	if (!send_ersp) {
2189 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2190 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2191 	} else {
2192 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2193 		rsn = atomic_inc_return(&fod->queue->rsn);
2194 		ersp->rsn = cpu_to_be32(rsn);
2195 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2196 		fod->fcpreq->rsplen = sizeof(*ersp);
2197 	}
2198 
2199 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2200 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2201 }
2202 
2203 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2204 
2205 static void
2206 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2207 				struct nvmet_fc_fcp_iod *fod)
2208 {
2209 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2210 
2211 	/* data no longer needed */
2212 	nvmet_fc_free_tgt_pgs(fod);
2213 
2214 	/*
2215 	 * if an ABTS was received or we issued the fcp_abort early
2216 	 * don't call abort routine again.
2217 	 */
2218 	/* no need to take lock - lock was taken earlier to get here */
2219 	if (!fod->aborted)
2220 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2221 
2222 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2223 }
2224 
2225 static void
2226 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2227 				struct nvmet_fc_fcp_iod *fod)
2228 {
2229 	int ret;
2230 
2231 	fod->fcpreq->op = NVMET_FCOP_RSP;
2232 	fod->fcpreq->timeout = 0;
2233 
2234 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2235 
2236 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2237 	if (ret)
2238 		nvmet_fc_abort_op(tgtport, fod);
2239 }
2240 
2241 static void
2242 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2243 				struct nvmet_fc_fcp_iod *fod, u8 op)
2244 {
2245 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2246 	struct scatterlist *sg = fod->next_sg;
2247 	unsigned long flags;
2248 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2249 	u32 tlen = 0;
2250 	int ret;
2251 
2252 	fcpreq->op = op;
2253 	fcpreq->offset = fod->offset;
2254 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2255 
2256 	/*
2257 	 * for next sequence:
2258 	 *  break at a sg element boundary
2259 	 *  attempt to keep sequence length capped at
2260 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2261 	 *    be longer if a single sg element is larger
2262 	 *    than that amount. This is done to avoid creating
2263 	 *    a new sg list to use for the tgtport api.
2264 	 */
2265 	fcpreq->sg = sg;
2266 	fcpreq->sg_cnt = 0;
2267 	while (tlen < remaininglen &&
2268 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2269 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2270 		fcpreq->sg_cnt++;
2271 		tlen += sg_dma_len(sg);
2272 		sg = sg_next(sg);
2273 	}
2274 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2275 		fcpreq->sg_cnt++;
2276 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2277 		sg = sg_next(sg);
2278 	}
2279 	if (tlen < remaininglen)
2280 		fod->next_sg = sg;
2281 	else
2282 		fod->next_sg = NULL;
2283 
2284 	fcpreq->transfer_length = tlen;
2285 	fcpreq->transferred_length = 0;
2286 	fcpreq->fcp_error = 0;
2287 	fcpreq->rsplen = 0;
2288 
2289 	/*
2290 	 * If the last READDATA request: check if LLDD supports
2291 	 * combined xfr with response.
2292 	 */
2293 	if ((op == NVMET_FCOP_READDATA) &&
2294 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2295 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2296 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2297 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2298 	}
2299 
2300 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2301 	if (ret) {
2302 		/*
2303 		 * should be ok to set w/o lock as its in the thread of
2304 		 * execution (not an async timer routine) and doesn't
2305 		 * contend with any clearing action
2306 		 */
2307 		fod->abort = true;
2308 
2309 		if (op == NVMET_FCOP_WRITEDATA) {
2310 			spin_lock_irqsave(&fod->flock, flags);
2311 			fod->writedataactive = false;
2312 			spin_unlock_irqrestore(&fod->flock, flags);
2313 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2314 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2315 			fcpreq->fcp_error = ret;
2316 			fcpreq->transferred_length = 0;
2317 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2318 		}
2319 	}
2320 }
2321 
2322 static inline bool
2323 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2324 {
2325 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2326 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2327 
2328 	/* if in the middle of an io and we need to tear down */
2329 	if (abort) {
2330 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2331 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2332 			return true;
2333 		}
2334 
2335 		nvmet_fc_abort_op(tgtport, fod);
2336 		return true;
2337 	}
2338 
2339 	return false;
2340 }
2341 
2342 /*
2343  * actual done handler for FCP operations when completed by the lldd
2344  */
2345 static void
2346 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2347 {
2348 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2349 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2350 	unsigned long flags;
2351 	bool abort;
2352 
2353 	spin_lock_irqsave(&fod->flock, flags);
2354 	abort = fod->abort;
2355 	fod->writedataactive = false;
2356 	spin_unlock_irqrestore(&fod->flock, flags);
2357 
2358 	switch (fcpreq->op) {
2359 
2360 	case NVMET_FCOP_WRITEDATA:
2361 		if (__nvmet_fc_fod_op_abort(fod, abort))
2362 			return;
2363 		if (fcpreq->fcp_error ||
2364 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2365 			spin_lock(&fod->flock);
2366 			fod->abort = true;
2367 			spin_unlock(&fod->flock);
2368 
2369 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2370 			return;
2371 		}
2372 
2373 		fod->offset += fcpreq->transferred_length;
2374 		if (fod->offset != fod->req.transfer_len) {
2375 			spin_lock_irqsave(&fod->flock, flags);
2376 			fod->writedataactive = true;
2377 			spin_unlock_irqrestore(&fod->flock, flags);
2378 
2379 			/* transfer the next chunk */
2380 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2381 						NVMET_FCOP_WRITEDATA);
2382 			return;
2383 		}
2384 
2385 		/* data transfer complete, resume with nvmet layer */
2386 		fod->req.execute(&fod->req);
2387 		break;
2388 
2389 	case NVMET_FCOP_READDATA:
2390 	case NVMET_FCOP_READDATA_RSP:
2391 		if (__nvmet_fc_fod_op_abort(fod, abort))
2392 			return;
2393 		if (fcpreq->fcp_error ||
2394 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2395 			nvmet_fc_abort_op(tgtport, fod);
2396 			return;
2397 		}
2398 
2399 		/* success */
2400 
2401 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2402 			/* data no longer needed */
2403 			nvmet_fc_free_tgt_pgs(fod);
2404 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2405 			return;
2406 		}
2407 
2408 		fod->offset += fcpreq->transferred_length;
2409 		if (fod->offset != fod->req.transfer_len) {
2410 			/* transfer the next chunk */
2411 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2412 						NVMET_FCOP_READDATA);
2413 			return;
2414 		}
2415 
2416 		/* data transfer complete, send response */
2417 
2418 		/* data no longer needed */
2419 		nvmet_fc_free_tgt_pgs(fod);
2420 
2421 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2422 
2423 		break;
2424 
2425 	case NVMET_FCOP_RSP:
2426 		if (__nvmet_fc_fod_op_abort(fod, abort))
2427 			return;
2428 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2429 		break;
2430 
2431 	default:
2432 		break;
2433 	}
2434 }
2435 
2436 static void
2437 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2438 {
2439 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2440 
2441 	nvmet_fc_fod_op_done(fod);
2442 }
2443 
2444 /*
2445  * actual completion handler after execution by the nvmet layer
2446  */
2447 static void
2448 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2449 			struct nvmet_fc_fcp_iod *fod, int status)
2450 {
2451 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2452 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2453 	unsigned long flags;
2454 	bool abort;
2455 
2456 	spin_lock_irqsave(&fod->flock, flags);
2457 	abort = fod->abort;
2458 	spin_unlock_irqrestore(&fod->flock, flags);
2459 
2460 	/* if we have a CQE, snoop the last sq_head value */
2461 	if (!status)
2462 		fod->queue->sqhd = cqe->sq_head;
2463 
2464 	if (abort) {
2465 		nvmet_fc_abort_op(tgtport, fod);
2466 		return;
2467 	}
2468 
2469 	/* if an error handling the cmd post initial parsing */
2470 	if (status) {
2471 		/* fudge up a failed CQE status for our transport error */
2472 		memset(cqe, 0, sizeof(*cqe));
2473 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2474 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2475 		cqe->command_id = sqe->command_id;
2476 		cqe->status = cpu_to_le16(status);
2477 	} else {
2478 
2479 		/*
2480 		 * try to push the data even if the SQE status is non-zero.
2481 		 * There may be a status where data still was intended to
2482 		 * be moved
2483 		 */
2484 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2485 			/* push the data over before sending rsp */
2486 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2487 						NVMET_FCOP_READDATA);
2488 			return;
2489 		}
2490 
2491 		/* writes & no data - fall thru */
2492 	}
2493 
2494 	/* data no longer needed */
2495 	nvmet_fc_free_tgt_pgs(fod);
2496 
2497 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2498 }
2499 
2500 
2501 static void
2502 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2503 {
2504 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2505 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2506 
2507 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2508 }
2509 
2510 
2511 /*
2512  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2513  */
2514 static void
2515 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2516 			struct nvmet_fc_fcp_iod *fod)
2517 {
2518 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2519 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2520 	int ret;
2521 
2522 	/*
2523 	 * if there is no nvmet mapping to the targetport there
2524 	 * shouldn't be requests. just terminate them.
2525 	 */
2526 	if (!tgtport->pe)
2527 		goto transport_error;
2528 
2529 	/*
2530 	 * Fused commands are currently not supported in the linux
2531 	 * implementation.
2532 	 *
2533 	 * As such, the implementation of the FC transport does not
2534 	 * look at the fused commands and order delivery to the upper
2535 	 * layer until we have both based on csn.
2536 	 */
2537 
2538 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2539 
2540 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2541 		fod->io_dir = NVMET_FCP_WRITE;
2542 		if (!nvme_is_write(&cmdiu->sqe))
2543 			goto transport_error;
2544 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2545 		fod->io_dir = NVMET_FCP_READ;
2546 		if (nvme_is_write(&cmdiu->sqe))
2547 			goto transport_error;
2548 	} else {
2549 		fod->io_dir = NVMET_FCP_NODATA;
2550 		if (xfrlen)
2551 			goto transport_error;
2552 	}
2553 
2554 	fod->req.cmd = &fod->cmdiubuf.sqe;
2555 	fod->req.cqe = &fod->rspiubuf.cqe;
2556 	fod->req.port = tgtport->pe->port;
2557 
2558 	/* clear any response payload */
2559 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2560 
2561 	fod->data_sg = NULL;
2562 	fod->data_sg_cnt = 0;
2563 
2564 	ret = nvmet_req_init(&fod->req,
2565 				&fod->queue->nvme_cq,
2566 				&fod->queue->nvme_sq,
2567 				&nvmet_fc_tgt_fcp_ops);
2568 	if (!ret) {
2569 		/* bad SQE content or invalid ctrl state */
2570 		/* nvmet layer has already called op done to send rsp. */
2571 		return;
2572 	}
2573 
2574 	fod->req.transfer_len = xfrlen;
2575 
2576 	/* keep a running counter of tail position */
2577 	atomic_inc(&fod->queue->sqtail);
2578 
2579 	if (fod->req.transfer_len) {
2580 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2581 		if (ret) {
2582 			nvmet_req_complete(&fod->req, ret);
2583 			return;
2584 		}
2585 	}
2586 	fod->req.sg = fod->data_sg;
2587 	fod->req.sg_cnt = fod->data_sg_cnt;
2588 	fod->offset = 0;
2589 
2590 	if (fod->io_dir == NVMET_FCP_WRITE) {
2591 		/* pull the data over before invoking nvmet layer */
2592 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2593 		return;
2594 	}
2595 
2596 	/*
2597 	 * Reads or no data:
2598 	 *
2599 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2600 	 * push the data
2601 	 */
2602 	fod->req.execute(&fod->req);
2603 	return;
2604 
2605 transport_error:
2606 	nvmet_fc_abort_op(tgtport, fod);
2607 }
2608 
2609 /**
2610  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2611  *                       upon the reception of a NVME FCP CMD IU.
2612  *
2613  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2614  * layer for processing.
2615  *
2616  * The nvmet_fc layer allocates a local job structure (struct
2617  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2618  * CMD IU buffer to the job structure. As such, on a successful
2619  * completion (returns 0), the LLDD may immediately free/reuse
2620  * the CMD IU buffer passed in the call.
2621  *
2622  * However, in some circumstances, due to the packetized nature of FC
2623  * and the api of the FC LLDD which may issue a hw command to send the
2624  * response, but the LLDD may not get the hw completion for that command
2625  * and upcall the nvmet_fc layer before a new command may be
2626  * asynchronously received - its possible for a command to be received
2627  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2628  * the appearance of more commands received than fits in the sq.
2629  * To alleviate this scenario, a temporary queue is maintained in the
2630  * transport for pending LLDD requests waiting for a queue job structure.
2631  * In these "overrun" cases, a temporary queue element is allocated
2632  * the LLDD request and CMD iu buffer information remembered, and the
2633  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2634  * structure is freed, it is immediately reallocated for anything on the
2635  * pending request list. The LLDDs defer_rcv() callback is called,
2636  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2637  * is then started normally with the transport.
2638  *
2639  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2640  * the completion as successful but must not reuse the CMD IU buffer
2641  * until the LLDD's defer_rcv() callback has been called for the
2642  * corresponding struct nvmefc_tgt_fcp_req pointer.
2643  *
2644  * If there is any other condition in which an error occurs, the
2645  * transport will return a non-zero status indicating the error.
2646  * In all cases other than -EOVERFLOW, the transport has not accepted the
2647  * request and the LLDD should abort the exchange.
2648  *
2649  * @target_port: pointer to the (registered) target port the FCP CMD IU
2650  *              was received on.
2651  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2652  *              the exchange corresponding to the FCP Exchange.
2653  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2654  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2655  */
2656 int
2657 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2658 			struct nvmefc_tgt_fcp_req *fcpreq,
2659 			void *cmdiubuf, u32 cmdiubuf_len)
2660 {
2661 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2662 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2663 	struct nvmet_fc_tgt_queue *queue;
2664 	struct nvmet_fc_fcp_iod *fod;
2665 	struct nvmet_fc_defer_fcp_req *deferfcp;
2666 	unsigned long flags;
2667 
2668 	/* validate iu, so the connection id can be used to find the queue */
2669 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2670 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2671 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2672 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2673 		return -EIO;
2674 
2675 	queue = nvmet_fc_find_target_queue(tgtport,
2676 				be64_to_cpu(cmdiu->connection_id));
2677 	if (!queue)
2678 		return -ENOTCONN;
2679 
2680 	/*
2681 	 * note: reference taken by find_target_queue
2682 	 * After successful fod allocation, the fod will inherit the
2683 	 * ownership of that reference and will remove the reference
2684 	 * when the fod is freed.
2685 	 */
2686 
2687 	spin_lock_irqsave(&queue->qlock, flags);
2688 
2689 	fod = nvmet_fc_alloc_fcp_iod(queue);
2690 	if (fod) {
2691 		spin_unlock_irqrestore(&queue->qlock, flags);
2692 
2693 		fcpreq->nvmet_fc_private = fod;
2694 		fod->fcpreq = fcpreq;
2695 
2696 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2697 
2698 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2699 
2700 		return 0;
2701 	}
2702 
2703 	if (!tgtport->ops->defer_rcv) {
2704 		spin_unlock_irqrestore(&queue->qlock, flags);
2705 		/* release the queue lookup reference */
2706 		nvmet_fc_tgt_q_put(queue);
2707 		return -ENOENT;
2708 	}
2709 
2710 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2711 			struct nvmet_fc_defer_fcp_req, req_list);
2712 	if (deferfcp) {
2713 		/* Just re-use one that was previously allocated */
2714 		list_del(&deferfcp->req_list);
2715 	} else {
2716 		spin_unlock_irqrestore(&queue->qlock, flags);
2717 
2718 		/* Now we need to dynamically allocate one */
2719 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2720 		if (!deferfcp) {
2721 			/* release the queue lookup reference */
2722 			nvmet_fc_tgt_q_put(queue);
2723 			return -ENOMEM;
2724 		}
2725 		spin_lock_irqsave(&queue->qlock, flags);
2726 	}
2727 
2728 	/* For now, use rspaddr / rsplen to save payload information */
2729 	fcpreq->rspaddr = cmdiubuf;
2730 	fcpreq->rsplen  = cmdiubuf_len;
2731 	deferfcp->fcp_req = fcpreq;
2732 
2733 	/* defer processing till a fod becomes available */
2734 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2735 
2736 	/* NOTE: the queue lookup reference is still valid */
2737 
2738 	spin_unlock_irqrestore(&queue->qlock, flags);
2739 
2740 	return -EOVERFLOW;
2741 }
2742 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2743 
2744 /**
2745  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2746  *                       upon the reception of an ABTS for a FCP command
2747  *
2748  * Notify the transport that an ABTS has been received for a FCP command
2749  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2750  * LLDD believes the command is still being worked on
2751  * (template_ops->fcp_req_release() has not been called).
2752  *
2753  * The transport will wait for any outstanding work (an op to the LLDD,
2754  * which the lldd should complete with error due to the ABTS; or the
2755  * completion from the nvmet layer of the nvme command), then will
2756  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2757  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2758  * to the ABTS either after return from this function (assuming any
2759  * outstanding op work has been terminated) or upon the callback being
2760  * called.
2761  *
2762  * @target_port: pointer to the (registered) target port the FCP CMD IU
2763  *              was received on.
2764  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2765  *              to the exchange that received the ABTS.
2766  */
2767 void
2768 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2769 			struct nvmefc_tgt_fcp_req *fcpreq)
2770 {
2771 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2772 	struct nvmet_fc_tgt_queue *queue;
2773 	unsigned long flags;
2774 
2775 	if (!fod || fod->fcpreq != fcpreq)
2776 		/* job appears to have already completed, ignore abort */
2777 		return;
2778 
2779 	queue = fod->queue;
2780 
2781 	spin_lock_irqsave(&queue->qlock, flags);
2782 	if (fod->active) {
2783 		/*
2784 		 * mark as abort. The abort handler, invoked upon completion
2785 		 * of any work, will detect the aborted status and do the
2786 		 * callback.
2787 		 */
2788 		spin_lock(&fod->flock);
2789 		fod->abort = true;
2790 		fod->aborted = true;
2791 		spin_unlock(&fod->flock);
2792 	}
2793 	spin_unlock_irqrestore(&queue->qlock, flags);
2794 }
2795 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2796 
2797 
2798 struct nvmet_fc_traddr {
2799 	u64	nn;
2800 	u64	pn;
2801 };
2802 
2803 static int
2804 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2805 {
2806 	u64 token64;
2807 
2808 	if (match_u64(sstr, &token64))
2809 		return -EINVAL;
2810 	*val = token64;
2811 
2812 	return 0;
2813 }
2814 
2815 /*
2816  * This routine validates and extracts the WWN's from the TRADDR string.
2817  * As kernel parsers need the 0x to determine number base, universally
2818  * build string to parse with 0x prefix before parsing name strings.
2819  */
2820 static int
2821 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2822 {
2823 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2824 	substring_t wwn = { name, &name[sizeof(name)-1] };
2825 	int nnoffset, pnoffset;
2826 
2827 	/* validate if string is one of the 2 allowed formats */
2828 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2829 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2830 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2831 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2832 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2833 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2834 						NVME_FC_TRADDR_OXNNLEN;
2835 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2836 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2837 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2838 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2839 		nnoffset = NVME_FC_TRADDR_NNLEN;
2840 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2841 	} else
2842 		goto out_einval;
2843 
2844 	name[0] = '0';
2845 	name[1] = 'x';
2846 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2847 
2848 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2849 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2850 		goto out_einval;
2851 
2852 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2853 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2854 		goto out_einval;
2855 
2856 	return 0;
2857 
2858 out_einval:
2859 	pr_warn("%s: bad traddr string\n", __func__);
2860 	return -EINVAL;
2861 }
2862 
2863 static int
2864 nvmet_fc_add_port(struct nvmet_port *port)
2865 {
2866 	struct nvmet_fc_tgtport *tgtport;
2867 	struct nvmet_fc_port_entry *pe;
2868 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2869 	unsigned long flags;
2870 	int ret;
2871 
2872 	/* validate the address info */
2873 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2874 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2875 		return -EINVAL;
2876 
2877 	/* map the traddr address info to a target port */
2878 
2879 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2880 			sizeof(port->disc_addr.traddr));
2881 	if (ret)
2882 		return ret;
2883 
2884 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2885 	if (!pe)
2886 		return -ENOMEM;
2887 
2888 	ret = -ENXIO;
2889 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2890 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2891 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2892 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2893 			/* a FC port can only be 1 nvmet port id */
2894 			if (!tgtport->pe) {
2895 				nvmet_fc_portentry_bind(tgtport, pe, port);
2896 				ret = 0;
2897 			} else
2898 				ret = -EALREADY;
2899 			break;
2900 		}
2901 	}
2902 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2903 
2904 	if (ret)
2905 		kfree(pe);
2906 
2907 	return ret;
2908 }
2909 
2910 static void
2911 nvmet_fc_remove_port(struct nvmet_port *port)
2912 {
2913 	struct nvmet_fc_port_entry *pe = port->priv;
2914 
2915 	nvmet_fc_portentry_unbind(pe);
2916 
2917 	kfree(pe);
2918 }
2919 
2920 static void
2921 nvmet_fc_discovery_chg(struct nvmet_port *port)
2922 {
2923 	struct nvmet_fc_port_entry *pe = port->priv;
2924 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2925 
2926 	if (tgtport && tgtport->ops->discovery_event)
2927 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2928 }
2929 
2930 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2931 	.owner			= THIS_MODULE,
2932 	.type			= NVMF_TRTYPE_FC,
2933 	.msdbd			= 1,
2934 	.add_port		= nvmet_fc_add_port,
2935 	.remove_port		= nvmet_fc_remove_port,
2936 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2937 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2938 	.discovery_chg		= nvmet_fc_discovery_chg,
2939 };
2940 
2941 static int __init nvmet_fc_init_module(void)
2942 {
2943 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2944 }
2945 
2946 static void __exit nvmet_fc_exit_module(void)
2947 {
2948 	/* sanity check - all lports should be removed */
2949 	if (!list_empty(&nvmet_fc_target_list))
2950 		pr_warn("%s: targetport list not empty\n", __func__);
2951 
2952 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2953 
2954 	ida_destroy(&nvmet_fc_tgtport_cnt);
2955 }
2956 
2957 module_init(nvmet_fc_init_module);
2958 module_exit(nvmet_fc_exit_module);
2959 
2960 MODULE_LICENSE("GPL v2");
2961