xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 #define NVMET_LS_CTX_COUNT		256
23 
24 /* for this implementation, assume small single frame rqst/rsp */
25 #define NVME_FC_MAX_LS_BUFFER_SIZE		2048
26 
27 struct nvmet_fc_tgtport;
28 struct nvmet_fc_tgt_assoc;
29 
30 struct nvmet_fc_ls_iod {
31 	struct nvmefc_tgt_ls_req	*lsreq;
32 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
33 
34 	struct list_head		ls_list;	/* tgtport->ls_list */
35 
36 	struct nvmet_fc_tgtport		*tgtport;
37 	struct nvmet_fc_tgt_assoc	*assoc;
38 
39 	u8				*rqstbuf;
40 	u8				*rspbuf;
41 	u16				rqstdatalen;
42 	dma_addr_t			rspdma;
43 
44 	struct scatterlist		sg[2];
45 
46 	struct work_struct		work;
47 } __aligned(sizeof(unsigned long long));
48 
49 /* desired maximum for a single sequence - if sg list allows it */
50 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
51 
52 enum nvmet_fcp_datadir {
53 	NVMET_FCP_NODATA,
54 	NVMET_FCP_WRITE,
55 	NVMET_FCP_READ,
56 	NVMET_FCP_ABORTED,
57 };
58 
59 struct nvmet_fc_fcp_iod {
60 	struct nvmefc_tgt_fcp_req	*fcpreq;
61 
62 	struct nvme_fc_cmd_iu		cmdiubuf;
63 	struct nvme_fc_ersp_iu		rspiubuf;
64 	dma_addr_t			rspdma;
65 	struct scatterlist		*next_sg;
66 	struct scatterlist		*data_sg;
67 	int				data_sg_cnt;
68 	u32				offset;
69 	enum nvmet_fcp_datadir		io_dir;
70 	bool				active;
71 	bool				abort;
72 	bool				aborted;
73 	bool				writedataactive;
74 	spinlock_t			flock;
75 
76 	struct nvmet_req		req;
77 	struct work_struct		defer_work;
78 
79 	struct nvmet_fc_tgtport		*tgtport;
80 	struct nvmet_fc_tgt_queue	*queue;
81 
82 	struct list_head		fcp_list;	/* tgtport->fcp_list */
83 };
84 
85 struct nvmet_fc_tgtport {
86 
87 	struct nvmet_fc_target_port	fc_target_port;
88 
89 	struct list_head		tgt_list; /* nvmet_fc_target_list */
90 	struct device			*dev;	/* dev for dma mapping */
91 	struct nvmet_fc_target_template	*ops;
92 
93 	struct nvmet_fc_ls_iod		*iod;
94 	spinlock_t			lock;
95 	struct list_head		ls_list;
96 	struct list_head		ls_busylist;
97 	struct list_head		assoc_list;
98 	struct ida			assoc_cnt;
99 	struct nvmet_fc_port_entry	*pe;
100 	struct kref			ref;
101 	u32				max_sg_cnt;
102 };
103 
104 struct nvmet_fc_port_entry {
105 	struct nvmet_fc_tgtport		*tgtport;
106 	struct nvmet_port		*port;
107 	u64				node_name;
108 	u64				port_name;
109 	struct list_head		pe_list;
110 };
111 
112 struct nvmet_fc_defer_fcp_req {
113 	struct list_head		req_list;
114 	struct nvmefc_tgt_fcp_req	*fcp_req;
115 };
116 
117 struct nvmet_fc_tgt_queue {
118 	bool				ninetypercent;
119 	u16				qid;
120 	u16				sqsize;
121 	u16				ersp_ratio;
122 	__le16				sqhd;
123 	atomic_t			connected;
124 	atomic_t			sqtail;
125 	atomic_t			zrspcnt;
126 	atomic_t			rsn;
127 	spinlock_t			qlock;
128 	struct nvmet_cq			nvme_cq;
129 	struct nvmet_sq			nvme_sq;
130 	struct nvmet_fc_tgt_assoc	*assoc;
131 	struct list_head		fod_list;
132 	struct list_head		pending_cmd_list;
133 	struct list_head		avail_defer_list;
134 	struct workqueue_struct		*work_q;
135 	struct kref			ref;
136 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
137 } __aligned(sizeof(unsigned long long));
138 
139 struct nvmet_fc_tgt_assoc {
140 	u64				association_id;
141 	u32				a_id;
142 	struct nvmet_fc_tgtport		*tgtport;
143 	struct list_head		a_list;
144 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
145 	struct kref			ref;
146 	struct work_struct		del_work;
147 };
148 
149 
150 static inline int
151 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
152 {
153 	return (iodptr - iodptr->tgtport->iod);
154 }
155 
156 static inline int
157 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
158 {
159 	return (fodptr - fodptr->queue->fod);
160 }
161 
162 
163 /*
164  * Association and Connection IDs:
165  *
166  * Association ID will have random number in upper 6 bytes and zero
167  *   in lower 2 bytes
168  *
169  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
170  *
171  * note: Association ID = Connection ID for queue 0
172  */
173 #define BYTES_FOR_QID			sizeof(u16)
174 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
175 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
176 
177 static inline u64
178 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
179 {
180 	return (assoc->association_id | qid);
181 }
182 
183 static inline u64
184 nvmet_fc_getassociationid(u64 connectionid)
185 {
186 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
187 }
188 
189 static inline u16
190 nvmet_fc_getqueueid(u64 connectionid)
191 {
192 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
193 }
194 
195 static inline struct nvmet_fc_tgtport *
196 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
197 {
198 	return container_of(targetport, struct nvmet_fc_tgtport,
199 				 fc_target_port);
200 }
201 
202 static inline struct nvmet_fc_fcp_iod *
203 nvmet_req_to_fod(struct nvmet_req *nvme_req)
204 {
205 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
206 }
207 
208 
209 /* *************************** Globals **************************** */
210 
211 
212 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
213 
214 static LIST_HEAD(nvmet_fc_target_list);
215 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
216 static LIST_HEAD(nvmet_fc_portentry_list);
217 
218 
219 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
220 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
221 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
222 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
223 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
224 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
225 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
226 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
227 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
228 					struct nvmet_fc_fcp_iod *fod);
229 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
230 
231 
232 /* *********************** FC-NVME DMA Handling **************************** */
233 
234 /*
235  * The fcloop device passes in a NULL device pointer. Real LLD's will
236  * pass in a valid device pointer. If NULL is passed to the dma mapping
237  * routines, depending on the platform, it may or may not succeed, and
238  * may crash.
239  *
240  * As such:
241  * Wrapper all the dma routines and check the dev pointer.
242  *
243  * If simple mappings (return just a dma address, we'll noop them,
244  * returning a dma address of 0.
245  *
246  * On more complex mappings (dma_map_sg), a pseudo routine fills
247  * in the scatter list, setting all dma addresses to 0.
248  */
249 
250 static inline dma_addr_t
251 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
252 		enum dma_data_direction dir)
253 {
254 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
255 }
256 
257 static inline int
258 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
259 {
260 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
261 }
262 
263 static inline void
264 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
265 	enum dma_data_direction dir)
266 {
267 	if (dev)
268 		dma_unmap_single(dev, addr, size, dir);
269 }
270 
271 static inline void
272 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	if (dev)
276 		dma_sync_single_for_cpu(dev, addr, size, dir);
277 }
278 
279 static inline void
280 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
281 		enum dma_data_direction dir)
282 {
283 	if (dev)
284 		dma_sync_single_for_device(dev, addr, size, dir);
285 }
286 
287 /* pseudo dma_map_sg call */
288 static int
289 fc_map_sg(struct scatterlist *sg, int nents)
290 {
291 	struct scatterlist *s;
292 	int i;
293 
294 	WARN_ON(nents == 0 || sg[0].length == 0);
295 
296 	for_each_sg(sg, s, nents, i) {
297 		s->dma_address = 0L;
298 #ifdef CONFIG_NEED_SG_DMA_LENGTH
299 		s->dma_length = s->length;
300 #endif
301 	}
302 	return nents;
303 }
304 
305 static inline int
306 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
307 		enum dma_data_direction dir)
308 {
309 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
310 }
311 
312 static inline void
313 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
314 		enum dma_data_direction dir)
315 {
316 	if (dev)
317 		dma_unmap_sg(dev, sg, nents, dir);
318 }
319 
320 
321 /* *********************** FC-NVME Port Management ************************ */
322 
323 
324 static int
325 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
326 {
327 	struct nvmet_fc_ls_iod *iod;
328 	int i;
329 
330 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
331 			GFP_KERNEL);
332 	if (!iod)
333 		return -ENOMEM;
334 
335 	tgtport->iod = iod;
336 
337 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
338 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
339 		iod->tgtport = tgtport;
340 		list_add_tail(&iod->ls_list, &tgtport->ls_list);
341 
342 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
343 			GFP_KERNEL);
344 		if (!iod->rqstbuf)
345 			goto out_fail;
346 
347 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
348 
349 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
350 						NVME_FC_MAX_LS_BUFFER_SIZE,
351 						DMA_TO_DEVICE);
352 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
353 			goto out_fail;
354 	}
355 
356 	return 0;
357 
358 out_fail:
359 	kfree(iod->rqstbuf);
360 	list_del(&iod->ls_list);
361 	for (iod--, i--; i >= 0; iod--, i--) {
362 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
363 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
364 		kfree(iod->rqstbuf);
365 		list_del(&iod->ls_list);
366 	}
367 
368 	kfree(iod);
369 
370 	return -EFAULT;
371 }
372 
373 static void
374 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
375 {
376 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
377 	int i;
378 
379 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
380 		fc_dma_unmap_single(tgtport->dev,
381 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
382 				DMA_TO_DEVICE);
383 		kfree(iod->rqstbuf);
384 		list_del(&iod->ls_list);
385 	}
386 	kfree(tgtport->iod);
387 }
388 
389 static struct nvmet_fc_ls_iod *
390 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
391 {
392 	struct nvmet_fc_ls_iod *iod;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&tgtport->lock, flags);
396 	iod = list_first_entry_or_null(&tgtport->ls_list,
397 					struct nvmet_fc_ls_iod, ls_list);
398 	if (iod)
399 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
400 	spin_unlock_irqrestore(&tgtport->lock, flags);
401 	return iod;
402 }
403 
404 
405 static void
406 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
407 			struct nvmet_fc_ls_iod *iod)
408 {
409 	unsigned long flags;
410 
411 	spin_lock_irqsave(&tgtport->lock, flags);
412 	list_move(&iod->ls_list, &tgtport->ls_list);
413 	spin_unlock_irqrestore(&tgtport->lock, flags);
414 }
415 
416 static void
417 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
418 				struct nvmet_fc_tgt_queue *queue)
419 {
420 	struct nvmet_fc_fcp_iod *fod = queue->fod;
421 	int i;
422 
423 	for (i = 0; i < queue->sqsize; fod++, i++) {
424 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
425 		fod->tgtport = tgtport;
426 		fod->queue = queue;
427 		fod->active = false;
428 		fod->abort = false;
429 		fod->aborted = false;
430 		fod->fcpreq = NULL;
431 		list_add_tail(&fod->fcp_list, &queue->fod_list);
432 		spin_lock_init(&fod->flock);
433 
434 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
435 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
436 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
437 			list_del(&fod->fcp_list);
438 			for (fod--, i--; i >= 0; fod--, i--) {
439 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
440 						sizeof(fod->rspiubuf),
441 						DMA_TO_DEVICE);
442 				fod->rspdma = 0L;
443 				list_del(&fod->fcp_list);
444 			}
445 
446 			return;
447 		}
448 	}
449 }
450 
451 static void
452 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
453 				struct nvmet_fc_tgt_queue *queue)
454 {
455 	struct nvmet_fc_fcp_iod *fod = queue->fod;
456 	int i;
457 
458 	for (i = 0; i < queue->sqsize; fod++, i++) {
459 		if (fod->rspdma)
460 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
461 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
462 	}
463 }
464 
465 static struct nvmet_fc_fcp_iod *
466 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
467 {
468 	struct nvmet_fc_fcp_iod *fod;
469 
470 	lockdep_assert_held(&queue->qlock);
471 
472 	fod = list_first_entry_or_null(&queue->fod_list,
473 					struct nvmet_fc_fcp_iod, fcp_list);
474 	if (fod) {
475 		list_del(&fod->fcp_list);
476 		fod->active = true;
477 		/*
478 		 * no queue reference is taken, as it was taken by the
479 		 * queue lookup just prior to the allocation. The iod
480 		 * will "inherit" that reference.
481 		 */
482 	}
483 	return fod;
484 }
485 
486 
487 static void
488 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
489 		       struct nvmet_fc_tgt_queue *queue,
490 		       struct nvmefc_tgt_fcp_req *fcpreq)
491 {
492 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
493 
494 	/*
495 	 * put all admin cmds on hw queue id 0. All io commands go to
496 	 * the respective hw queue based on a modulo basis
497 	 */
498 	fcpreq->hwqid = queue->qid ?
499 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
500 
501 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
502 }
503 
504 static void
505 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
506 {
507 	struct nvmet_fc_fcp_iod *fod =
508 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
509 
510 	/* Submit deferred IO for processing */
511 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
512 
513 }
514 
515 static void
516 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
517 			struct nvmet_fc_fcp_iod *fod)
518 {
519 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
520 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
521 	struct nvmet_fc_defer_fcp_req *deferfcp;
522 	unsigned long flags;
523 
524 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
525 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
526 
527 	fcpreq->nvmet_fc_private = NULL;
528 
529 	fod->active = false;
530 	fod->abort = false;
531 	fod->aborted = false;
532 	fod->writedataactive = false;
533 	fod->fcpreq = NULL;
534 
535 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
536 
537 	/* release the queue lookup reference on the completed IO */
538 	nvmet_fc_tgt_q_put(queue);
539 
540 	spin_lock_irqsave(&queue->qlock, flags);
541 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
542 				struct nvmet_fc_defer_fcp_req, req_list);
543 	if (!deferfcp) {
544 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
545 		spin_unlock_irqrestore(&queue->qlock, flags);
546 		return;
547 	}
548 
549 	/* Re-use the fod for the next pending cmd that was deferred */
550 	list_del(&deferfcp->req_list);
551 
552 	fcpreq = deferfcp->fcp_req;
553 
554 	/* deferfcp can be reused for another IO at a later date */
555 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
556 
557 	spin_unlock_irqrestore(&queue->qlock, flags);
558 
559 	/* Save NVME CMD IO in fod */
560 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
561 
562 	/* Setup new fcpreq to be processed */
563 	fcpreq->rspaddr = NULL;
564 	fcpreq->rsplen  = 0;
565 	fcpreq->nvmet_fc_private = fod;
566 	fod->fcpreq = fcpreq;
567 	fod->active = true;
568 
569 	/* inform LLDD IO is now being processed */
570 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
571 
572 	/*
573 	 * Leave the queue lookup get reference taken when
574 	 * fod was originally allocated.
575 	 */
576 
577 	queue_work(queue->work_q, &fod->defer_work);
578 }
579 
580 static struct nvmet_fc_tgt_queue *
581 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
582 			u16 qid, u16 sqsize)
583 {
584 	struct nvmet_fc_tgt_queue *queue;
585 	unsigned long flags;
586 	int ret;
587 
588 	if (qid > NVMET_NR_QUEUES)
589 		return NULL;
590 
591 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
592 	if (!queue)
593 		return NULL;
594 
595 	if (!nvmet_fc_tgt_a_get(assoc))
596 		goto out_free_queue;
597 
598 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
599 				assoc->tgtport->fc_target_port.port_num,
600 				assoc->a_id, qid);
601 	if (!queue->work_q)
602 		goto out_a_put;
603 
604 	queue->qid = qid;
605 	queue->sqsize = sqsize;
606 	queue->assoc = assoc;
607 	INIT_LIST_HEAD(&queue->fod_list);
608 	INIT_LIST_HEAD(&queue->avail_defer_list);
609 	INIT_LIST_HEAD(&queue->pending_cmd_list);
610 	atomic_set(&queue->connected, 0);
611 	atomic_set(&queue->sqtail, 0);
612 	atomic_set(&queue->rsn, 1);
613 	atomic_set(&queue->zrspcnt, 0);
614 	spin_lock_init(&queue->qlock);
615 	kref_init(&queue->ref);
616 
617 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
618 
619 	ret = nvmet_sq_init(&queue->nvme_sq);
620 	if (ret)
621 		goto out_fail_iodlist;
622 
623 	WARN_ON(assoc->queues[qid]);
624 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
625 	assoc->queues[qid] = queue;
626 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
627 
628 	return queue;
629 
630 out_fail_iodlist:
631 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
632 	destroy_workqueue(queue->work_q);
633 out_a_put:
634 	nvmet_fc_tgt_a_put(assoc);
635 out_free_queue:
636 	kfree(queue);
637 	return NULL;
638 }
639 
640 
641 static void
642 nvmet_fc_tgt_queue_free(struct kref *ref)
643 {
644 	struct nvmet_fc_tgt_queue *queue =
645 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
649 	queue->assoc->queues[queue->qid] = NULL;
650 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
651 
652 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
653 
654 	nvmet_fc_tgt_a_put(queue->assoc);
655 
656 	destroy_workqueue(queue->work_q);
657 
658 	kfree(queue);
659 }
660 
661 static void
662 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
663 {
664 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
665 }
666 
667 static int
668 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
669 {
670 	return kref_get_unless_zero(&queue->ref);
671 }
672 
673 
674 static void
675 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
676 {
677 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
678 	struct nvmet_fc_fcp_iod *fod = queue->fod;
679 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
680 	unsigned long flags;
681 	int i, writedataactive;
682 	bool disconnect;
683 
684 	disconnect = atomic_xchg(&queue->connected, 0);
685 
686 	spin_lock_irqsave(&queue->qlock, flags);
687 	/* about outstanding io's */
688 	for (i = 0; i < queue->sqsize; fod++, i++) {
689 		if (fod->active) {
690 			spin_lock(&fod->flock);
691 			fod->abort = true;
692 			writedataactive = fod->writedataactive;
693 			spin_unlock(&fod->flock);
694 			/*
695 			 * only call lldd abort routine if waiting for
696 			 * writedata. other outstanding ops should finish
697 			 * on their own.
698 			 */
699 			if (writedataactive) {
700 				spin_lock(&fod->flock);
701 				fod->aborted = true;
702 				spin_unlock(&fod->flock);
703 				tgtport->ops->fcp_abort(
704 					&tgtport->fc_target_port, fod->fcpreq);
705 			}
706 		}
707 	}
708 
709 	/* Cleanup defer'ed IOs in queue */
710 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
711 				req_list) {
712 		list_del(&deferfcp->req_list);
713 		kfree(deferfcp);
714 	}
715 
716 	for (;;) {
717 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
718 				struct nvmet_fc_defer_fcp_req, req_list);
719 		if (!deferfcp)
720 			break;
721 
722 		list_del(&deferfcp->req_list);
723 		spin_unlock_irqrestore(&queue->qlock, flags);
724 
725 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
726 				deferfcp->fcp_req);
727 
728 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
729 				deferfcp->fcp_req);
730 
731 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
732 				deferfcp->fcp_req);
733 
734 		/* release the queue lookup reference */
735 		nvmet_fc_tgt_q_put(queue);
736 
737 		kfree(deferfcp);
738 
739 		spin_lock_irqsave(&queue->qlock, flags);
740 	}
741 	spin_unlock_irqrestore(&queue->qlock, flags);
742 
743 	flush_workqueue(queue->work_q);
744 
745 	if (disconnect)
746 		nvmet_sq_destroy(&queue->nvme_sq);
747 
748 	nvmet_fc_tgt_q_put(queue);
749 }
750 
751 static struct nvmet_fc_tgt_queue *
752 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
753 				u64 connection_id)
754 {
755 	struct nvmet_fc_tgt_assoc *assoc;
756 	struct nvmet_fc_tgt_queue *queue;
757 	u64 association_id = nvmet_fc_getassociationid(connection_id);
758 	u16 qid = nvmet_fc_getqueueid(connection_id);
759 	unsigned long flags;
760 
761 	if (qid > NVMET_NR_QUEUES)
762 		return NULL;
763 
764 	spin_lock_irqsave(&tgtport->lock, flags);
765 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
766 		if (association_id == assoc->association_id) {
767 			queue = assoc->queues[qid];
768 			if (queue &&
769 			    (!atomic_read(&queue->connected) ||
770 			     !nvmet_fc_tgt_q_get(queue)))
771 				queue = NULL;
772 			spin_unlock_irqrestore(&tgtport->lock, flags);
773 			return queue;
774 		}
775 	}
776 	spin_unlock_irqrestore(&tgtport->lock, flags);
777 	return NULL;
778 }
779 
780 static void
781 nvmet_fc_delete_assoc(struct work_struct *work)
782 {
783 	struct nvmet_fc_tgt_assoc *assoc =
784 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
785 
786 	nvmet_fc_delete_target_assoc(assoc);
787 	nvmet_fc_tgt_a_put(assoc);
788 }
789 
790 static struct nvmet_fc_tgt_assoc *
791 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
792 {
793 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
794 	unsigned long flags;
795 	u64 ran;
796 	int idx;
797 	bool needrandom = true;
798 
799 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
800 	if (!assoc)
801 		return NULL;
802 
803 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
804 	if (idx < 0)
805 		goto out_free_assoc;
806 
807 	if (!nvmet_fc_tgtport_get(tgtport))
808 		goto out_ida_put;
809 
810 	assoc->tgtport = tgtport;
811 	assoc->a_id = idx;
812 	INIT_LIST_HEAD(&assoc->a_list);
813 	kref_init(&assoc->ref);
814 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
815 
816 	while (needrandom) {
817 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
818 		ran = ran << BYTES_FOR_QID_SHIFT;
819 
820 		spin_lock_irqsave(&tgtport->lock, flags);
821 		needrandom = false;
822 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
823 			if (ran == tmpassoc->association_id) {
824 				needrandom = true;
825 				break;
826 			}
827 		if (!needrandom) {
828 			assoc->association_id = ran;
829 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
830 		}
831 		spin_unlock_irqrestore(&tgtport->lock, flags);
832 	}
833 
834 	return assoc;
835 
836 out_ida_put:
837 	ida_simple_remove(&tgtport->assoc_cnt, idx);
838 out_free_assoc:
839 	kfree(assoc);
840 	return NULL;
841 }
842 
843 static void
844 nvmet_fc_target_assoc_free(struct kref *ref)
845 {
846 	struct nvmet_fc_tgt_assoc *assoc =
847 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
848 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&tgtport->lock, flags);
852 	list_del(&assoc->a_list);
853 	spin_unlock_irqrestore(&tgtport->lock, flags);
854 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
855 	kfree(assoc);
856 	nvmet_fc_tgtport_put(tgtport);
857 }
858 
859 static void
860 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
861 {
862 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
863 }
864 
865 static int
866 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
867 {
868 	return kref_get_unless_zero(&assoc->ref);
869 }
870 
871 static void
872 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
873 {
874 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
875 	struct nvmet_fc_tgt_queue *queue;
876 	unsigned long flags;
877 	int i;
878 
879 	spin_lock_irqsave(&tgtport->lock, flags);
880 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
881 		queue = assoc->queues[i];
882 		if (queue) {
883 			if (!nvmet_fc_tgt_q_get(queue))
884 				continue;
885 			spin_unlock_irqrestore(&tgtport->lock, flags);
886 			nvmet_fc_delete_target_queue(queue);
887 			nvmet_fc_tgt_q_put(queue);
888 			spin_lock_irqsave(&tgtport->lock, flags);
889 		}
890 	}
891 	spin_unlock_irqrestore(&tgtport->lock, flags);
892 
893 	nvmet_fc_tgt_a_put(assoc);
894 }
895 
896 static struct nvmet_fc_tgt_assoc *
897 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
898 				u64 association_id)
899 {
900 	struct nvmet_fc_tgt_assoc *assoc;
901 	struct nvmet_fc_tgt_assoc *ret = NULL;
902 	unsigned long flags;
903 
904 	spin_lock_irqsave(&tgtport->lock, flags);
905 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
906 		if (association_id == assoc->association_id) {
907 			ret = assoc;
908 			nvmet_fc_tgt_a_get(assoc);
909 			break;
910 		}
911 	}
912 	spin_unlock_irqrestore(&tgtport->lock, flags);
913 
914 	return ret;
915 }
916 
917 static void
918 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
919 			struct nvmet_fc_port_entry *pe,
920 			struct nvmet_port *port)
921 {
922 	lockdep_assert_held(&nvmet_fc_tgtlock);
923 
924 	pe->tgtport = tgtport;
925 	tgtport->pe = pe;
926 
927 	pe->port = port;
928 	port->priv = pe;
929 
930 	pe->node_name = tgtport->fc_target_port.node_name;
931 	pe->port_name = tgtport->fc_target_port.port_name;
932 	INIT_LIST_HEAD(&pe->pe_list);
933 
934 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
935 }
936 
937 static void
938 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
939 {
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
943 	if (pe->tgtport)
944 		pe->tgtport->pe = NULL;
945 	list_del(&pe->pe_list);
946 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
947 }
948 
949 /*
950  * called when a targetport deregisters. Breaks the relationship
951  * with the nvmet port, but leaves the port_entry in place so that
952  * re-registration can resume operation.
953  */
954 static void
955 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
956 {
957 	struct nvmet_fc_port_entry *pe;
958 	unsigned long flags;
959 
960 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
961 	pe = tgtport->pe;
962 	if (pe)
963 		pe->tgtport = NULL;
964 	tgtport->pe = NULL;
965 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
966 }
967 
968 /*
969  * called when a new targetport is registered. Looks in the
970  * existing nvmet port_entries to see if the nvmet layer is
971  * configured for the targetport's wwn's. (the targetport existed,
972  * nvmet configured, the lldd unregistered the tgtport, and is now
973  * reregistering the same targetport).  If so, set the nvmet port
974  * port entry on the targetport.
975  */
976 static void
977 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
978 {
979 	struct nvmet_fc_port_entry *pe;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
983 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
984 		if (tgtport->fc_target_port.node_name == pe->node_name &&
985 		    tgtport->fc_target_port.port_name == pe->port_name) {
986 			WARN_ON(pe->tgtport);
987 			tgtport->pe = pe;
988 			pe->tgtport = tgtport;
989 			break;
990 		}
991 	}
992 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
993 }
994 
995 /**
996  * nvme_fc_register_targetport - transport entry point called by an
997  *                              LLDD to register the existence of a local
998  *                              NVME subystem FC port.
999  * @pinfo:     pointer to information about the port to be registered
1000  * @template:  LLDD entrypoints and operational parameters for the port
1001  * @dev:       physical hardware device node port corresponds to. Will be
1002  *             used for DMA mappings
1003  * @portptr:   pointer to a local port pointer. Upon success, the routine
1004  *             will allocate a nvme_fc_local_port structure and place its
1005  *             address in the local port pointer. Upon failure, local port
1006  *             pointer will be set to NULL.
1007  *
1008  * Returns:
1009  * a completion status. Must be 0 upon success; a negative errno
1010  * (ex: -ENXIO) upon failure.
1011  */
1012 int
1013 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1014 			struct nvmet_fc_target_template *template,
1015 			struct device *dev,
1016 			struct nvmet_fc_target_port **portptr)
1017 {
1018 	struct nvmet_fc_tgtport *newrec;
1019 	unsigned long flags;
1020 	int ret, idx;
1021 
1022 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1023 	    !template->fcp_abort ||
1024 	    !template->fcp_req_release || !template->targetport_delete ||
1025 	    !template->max_hw_queues || !template->max_sgl_segments ||
1026 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1027 		ret = -EINVAL;
1028 		goto out_regtgt_failed;
1029 	}
1030 
1031 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1032 			 GFP_KERNEL);
1033 	if (!newrec) {
1034 		ret = -ENOMEM;
1035 		goto out_regtgt_failed;
1036 	}
1037 
1038 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1039 	if (idx < 0) {
1040 		ret = -ENOSPC;
1041 		goto out_fail_kfree;
1042 	}
1043 
1044 	if (!get_device(dev) && dev) {
1045 		ret = -ENODEV;
1046 		goto out_ida_put;
1047 	}
1048 
1049 	newrec->fc_target_port.node_name = pinfo->node_name;
1050 	newrec->fc_target_port.port_name = pinfo->port_name;
1051 	newrec->fc_target_port.private = &newrec[1];
1052 	newrec->fc_target_port.port_id = pinfo->port_id;
1053 	newrec->fc_target_port.port_num = idx;
1054 	INIT_LIST_HEAD(&newrec->tgt_list);
1055 	newrec->dev = dev;
1056 	newrec->ops = template;
1057 	spin_lock_init(&newrec->lock);
1058 	INIT_LIST_HEAD(&newrec->ls_list);
1059 	INIT_LIST_HEAD(&newrec->ls_busylist);
1060 	INIT_LIST_HEAD(&newrec->assoc_list);
1061 	kref_init(&newrec->ref);
1062 	ida_init(&newrec->assoc_cnt);
1063 	newrec->max_sg_cnt = template->max_sgl_segments;
1064 
1065 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1066 	if (ret) {
1067 		ret = -ENOMEM;
1068 		goto out_free_newrec;
1069 	}
1070 
1071 	nvmet_fc_portentry_rebind_tgt(newrec);
1072 
1073 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1074 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1075 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1076 
1077 	*portptr = &newrec->fc_target_port;
1078 	return 0;
1079 
1080 out_free_newrec:
1081 	put_device(dev);
1082 out_ida_put:
1083 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1084 out_fail_kfree:
1085 	kfree(newrec);
1086 out_regtgt_failed:
1087 	*portptr = NULL;
1088 	return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1091 
1092 
1093 static void
1094 nvmet_fc_free_tgtport(struct kref *ref)
1095 {
1096 	struct nvmet_fc_tgtport *tgtport =
1097 		container_of(ref, struct nvmet_fc_tgtport, ref);
1098 	struct device *dev = tgtport->dev;
1099 	unsigned long flags;
1100 
1101 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1102 	list_del(&tgtport->tgt_list);
1103 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1104 
1105 	nvmet_fc_free_ls_iodlist(tgtport);
1106 
1107 	/* let the LLDD know we've finished tearing it down */
1108 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1109 
1110 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1111 			tgtport->fc_target_port.port_num);
1112 
1113 	ida_destroy(&tgtport->assoc_cnt);
1114 
1115 	kfree(tgtport);
1116 
1117 	put_device(dev);
1118 }
1119 
1120 static void
1121 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1122 {
1123 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1124 }
1125 
1126 static int
1127 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1128 {
1129 	return kref_get_unless_zero(&tgtport->ref);
1130 }
1131 
1132 static void
1133 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1134 {
1135 	struct nvmet_fc_tgt_assoc *assoc, *next;
1136 	unsigned long flags;
1137 
1138 	spin_lock_irqsave(&tgtport->lock, flags);
1139 	list_for_each_entry_safe(assoc, next,
1140 				&tgtport->assoc_list, a_list) {
1141 		if (!nvmet_fc_tgt_a_get(assoc))
1142 			continue;
1143 		if (!schedule_work(&assoc->del_work))
1144 			nvmet_fc_tgt_a_put(assoc);
1145 	}
1146 	spin_unlock_irqrestore(&tgtport->lock, flags);
1147 }
1148 
1149 /*
1150  * nvmet layer has called to terminate an association
1151  */
1152 static void
1153 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1154 {
1155 	struct nvmet_fc_tgtport *tgtport, *next;
1156 	struct nvmet_fc_tgt_assoc *assoc;
1157 	struct nvmet_fc_tgt_queue *queue;
1158 	unsigned long flags;
1159 	bool found_ctrl = false;
1160 
1161 	/* this is a bit ugly, but don't want to make locks layered */
1162 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1163 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1164 			tgt_list) {
1165 		if (!nvmet_fc_tgtport_get(tgtport))
1166 			continue;
1167 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1168 
1169 		spin_lock_irqsave(&tgtport->lock, flags);
1170 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1171 			queue = assoc->queues[0];
1172 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1173 				if (nvmet_fc_tgt_a_get(assoc))
1174 					found_ctrl = true;
1175 				break;
1176 			}
1177 		}
1178 		spin_unlock_irqrestore(&tgtport->lock, flags);
1179 
1180 		nvmet_fc_tgtport_put(tgtport);
1181 
1182 		if (found_ctrl) {
1183 			if (!schedule_work(&assoc->del_work))
1184 				nvmet_fc_tgt_a_put(assoc);
1185 			return;
1186 		}
1187 
1188 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1189 	}
1190 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1191 }
1192 
1193 /**
1194  * nvme_fc_unregister_targetport - transport entry point called by an
1195  *                              LLDD to deregister/remove a previously
1196  *                              registered a local NVME subsystem FC port.
1197  * @target_port: pointer to the (registered) target port that is to be
1198  *               deregistered.
1199  *
1200  * Returns:
1201  * a completion status. Must be 0 upon success; a negative errno
1202  * (ex: -ENXIO) upon failure.
1203  */
1204 int
1205 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1206 {
1207 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1208 
1209 	nvmet_fc_portentry_unbind_tgt(tgtport);
1210 
1211 	/* terminate any outstanding associations */
1212 	__nvmet_fc_free_assocs(tgtport);
1213 
1214 	nvmet_fc_tgtport_put(tgtport);
1215 
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1219 
1220 
1221 /* *********************** FC-NVME LS Handling **************************** */
1222 
1223 
1224 static void
1225 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1226 {
1227 	struct fcnvme_ls_acc_hdr *acc = buf;
1228 
1229 	acc->w0.ls_cmd = ls_cmd;
1230 	acc->desc_list_len = desc_len;
1231 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1232 	acc->rqst.desc_len =
1233 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1234 	acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1235 }
1236 
1237 static int
1238 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1239 			u8 reason, u8 explanation, u8 vendor)
1240 {
1241 	struct fcnvme_ls_rjt *rjt = buf;
1242 
1243 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1244 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1245 			ls_cmd);
1246 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1247 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1248 	rjt->rjt.reason_code = reason;
1249 	rjt->rjt.reason_explanation = explanation;
1250 	rjt->rjt.vendor = vendor;
1251 
1252 	return sizeof(struct fcnvme_ls_rjt);
1253 }
1254 
1255 /* Validation Error indexes into the string table below */
1256 enum {
1257 	VERR_NO_ERROR		= 0,
1258 	VERR_CR_ASSOC_LEN	= 1,
1259 	VERR_CR_ASSOC_RQST_LEN	= 2,
1260 	VERR_CR_ASSOC_CMD	= 3,
1261 	VERR_CR_ASSOC_CMD_LEN	= 4,
1262 	VERR_ERSP_RATIO		= 5,
1263 	VERR_ASSOC_ALLOC_FAIL	= 6,
1264 	VERR_QUEUE_ALLOC_FAIL	= 7,
1265 	VERR_CR_CONN_LEN	= 8,
1266 	VERR_CR_CONN_RQST_LEN	= 9,
1267 	VERR_ASSOC_ID		= 10,
1268 	VERR_ASSOC_ID_LEN	= 11,
1269 	VERR_NO_ASSOC		= 12,
1270 	VERR_CONN_ID		= 13,
1271 	VERR_CONN_ID_LEN	= 14,
1272 	VERR_NO_CONN		= 15,
1273 	VERR_CR_CONN_CMD	= 16,
1274 	VERR_CR_CONN_CMD_LEN	= 17,
1275 	VERR_DISCONN_LEN	= 18,
1276 	VERR_DISCONN_RQST_LEN	= 19,
1277 	VERR_DISCONN_CMD	= 20,
1278 	VERR_DISCONN_CMD_LEN	= 21,
1279 	VERR_DISCONN_SCOPE	= 22,
1280 	VERR_RS_LEN		= 23,
1281 	VERR_RS_RQST_LEN	= 24,
1282 	VERR_RS_CMD		= 25,
1283 	VERR_RS_CMD_LEN		= 26,
1284 	VERR_RS_RCTL		= 27,
1285 	VERR_RS_RO		= 28,
1286 };
1287 
1288 static char *validation_errors[] = {
1289 	"OK",
1290 	"Bad CR_ASSOC Length",
1291 	"Bad CR_ASSOC Rqst Length",
1292 	"Not CR_ASSOC Cmd",
1293 	"Bad CR_ASSOC Cmd Length",
1294 	"Bad Ersp Ratio",
1295 	"Association Allocation Failed",
1296 	"Queue Allocation Failed",
1297 	"Bad CR_CONN Length",
1298 	"Bad CR_CONN Rqst Length",
1299 	"Not Association ID",
1300 	"Bad Association ID Length",
1301 	"No Association",
1302 	"Not Connection ID",
1303 	"Bad Connection ID Length",
1304 	"No Connection",
1305 	"Not CR_CONN Cmd",
1306 	"Bad CR_CONN Cmd Length",
1307 	"Bad DISCONN Length",
1308 	"Bad DISCONN Rqst Length",
1309 	"Not DISCONN Cmd",
1310 	"Bad DISCONN Cmd Length",
1311 	"Bad Disconnect Scope",
1312 	"Bad RS Length",
1313 	"Bad RS Rqst Length",
1314 	"Not RS Cmd",
1315 	"Bad RS Cmd Length",
1316 	"Bad RS R_CTL",
1317 	"Bad RS Relative Offset",
1318 };
1319 
1320 static void
1321 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1322 			struct nvmet_fc_ls_iod *iod)
1323 {
1324 	struct fcnvme_ls_cr_assoc_rqst *rqst =
1325 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1326 	struct fcnvme_ls_cr_assoc_acc *acc =
1327 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1328 	struct nvmet_fc_tgt_queue *queue;
1329 	int ret = 0;
1330 
1331 	memset(acc, 0, sizeof(*acc));
1332 
1333 	/*
1334 	 * FC-NVME spec changes. There are initiators sending different
1335 	 * lengths as padding sizes for Create Association Cmd descriptor
1336 	 * was incorrect.
1337 	 * Accept anything of "minimum" length. Assume format per 1.15
1338 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1339 	 * trailing pad length is.
1340 	 */
1341 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1342 		ret = VERR_CR_ASSOC_LEN;
1343 	else if (be32_to_cpu(rqst->desc_list_len) <
1344 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1345 		ret = VERR_CR_ASSOC_RQST_LEN;
1346 	else if (rqst->assoc_cmd.desc_tag !=
1347 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1348 		ret = VERR_CR_ASSOC_CMD;
1349 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1350 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1351 		ret = VERR_CR_ASSOC_CMD_LEN;
1352 	else if (!rqst->assoc_cmd.ersp_ratio ||
1353 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1354 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1355 		ret = VERR_ERSP_RATIO;
1356 
1357 	else {
1358 		/* new association w/ admin queue */
1359 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1360 		if (!iod->assoc)
1361 			ret = VERR_ASSOC_ALLOC_FAIL;
1362 		else {
1363 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1364 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1365 			if (!queue)
1366 				ret = VERR_QUEUE_ALLOC_FAIL;
1367 		}
1368 	}
1369 
1370 	if (ret) {
1371 		dev_err(tgtport->dev,
1372 			"Create Association LS failed: %s\n",
1373 			validation_errors[ret]);
1374 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1375 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1376 				FCNVME_RJT_RC_LOGIC,
1377 				FCNVME_RJT_EXP_NONE, 0);
1378 		return;
1379 	}
1380 
1381 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1382 	atomic_set(&queue->connected, 1);
1383 	queue->sqhd = 0;	/* best place to init value */
1384 
1385 	/* format a response */
1386 
1387 	iod->lsreq->rsplen = sizeof(*acc);
1388 
1389 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1390 			fcnvme_lsdesc_len(
1391 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1392 			FCNVME_LS_CREATE_ASSOCIATION);
1393 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1394 	acc->associd.desc_len =
1395 			fcnvme_lsdesc_len(
1396 				sizeof(struct fcnvme_lsdesc_assoc_id));
1397 	acc->associd.association_id =
1398 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1399 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1400 	acc->connectid.desc_len =
1401 			fcnvme_lsdesc_len(
1402 				sizeof(struct fcnvme_lsdesc_conn_id));
1403 	acc->connectid.connection_id = acc->associd.association_id;
1404 }
1405 
1406 static void
1407 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1408 			struct nvmet_fc_ls_iod *iod)
1409 {
1410 	struct fcnvme_ls_cr_conn_rqst *rqst =
1411 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1412 	struct fcnvme_ls_cr_conn_acc *acc =
1413 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1414 	struct nvmet_fc_tgt_queue *queue;
1415 	int ret = 0;
1416 
1417 	memset(acc, 0, sizeof(*acc));
1418 
1419 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1420 		ret = VERR_CR_CONN_LEN;
1421 	else if (rqst->desc_list_len !=
1422 			fcnvme_lsdesc_len(
1423 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1424 		ret = VERR_CR_CONN_RQST_LEN;
1425 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1426 		ret = VERR_ASSOC_ID;
1427 	else if (rqst->associd.desc_len !=
1428 			fcnvme_lsdesc_len(
1429 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1430 		ret = VERR_ASSOC_ID_LEN;
1431 	else if (rqst->connect_cmd.desc_tag !=
1432 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1433 		ret = VERR_CR_CONN_CMD;
1434 	else if (rqst->connect_cmd.desc_len !=
1435 			fcnvme_lsdesc_len(
1436 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1437 		ret = VERR_CR_CONN_CMD_LEN;
1438 	else if (!rqst->connect_cmd.ersp_ratio ||
1439 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1440 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1441 		ret = VERR_ERSP_RATIO;
1442 
1443 	else {
1444 		/* new io queue */
1445 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1446 				be64_to_cpu(rqst->associd.association_id));
1447 		if (!iod->assoc)
1448 			ret = VERR_NO_ASSOC;
1449 		else {
1450 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1451 					be16_to_cpu(rqst->connect_cmd.qid),
1452 					be16_to_cpu(rqst->connect_cmd.sqsize));
1453 			if (!queue)
1454 				ret = VERR_QUEUE_ALLOC_FAIL;
1455 
1456 			/* release get taken in nvmet_fc_find_target_assoc */
1457 			nvmet_fc_tgt_a_put(iod->assoc);
1458 		}
1459 	}
1460 
1461 	if (ret) {
1462 		dev_err(tgtport->dev,
1463 			"Create Connection LS failed: %s\n",
1464 			validation_errors[ret]);
1465 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1466 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1467 				(ret == VERR_NO_ASSOC) ?
1468 					FCNVME_RJT_RC_INV_ASSOC :
1469 					FCNVME_RJT_RC_LOGIC,
1470 				FCNVME_RJT_EXP_NONE, 0);
1471 		return;
1472 	}
1473 
1474 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1475 	atomic_set(&queue->connected, 1);
1476 	queue->sqhd = 0;	/* best place to init value */
1477 
1478 	/* format a response */
1479 
1480 	iod->lsreq->rsplen = sizeof(*acc);
1481 
1482 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1483 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1484 			FCNVME_LS_CREATE_CONNECTION);
1485 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1486 	acc->connectid.desc_len =
1487 			fcnvme_lsdesc_len(
1488 				sizeof(struct fcnvme_lsdesc_conn_id));
1489 	acc->connectid.connection_id =
1490 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1491 				be16_to_cpu(rqst->connect_cmd.qid)));
1492 }
1493 
1494 static void
1495 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1496 			struct nvmet_fc_ls_iod *iod)
1497 {
1498 	struct fcnvme_ls_disconnect_rqst *rqst =
1499 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1500 	struct fcnvme_ls_disconnect_acc *acc =
1501 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1502 	struct nvmet_fc_tgt_assoc *assoc;
1503 	int ret = 0;
1504 
1505 	memset(acc, 0, sizeof(*acc));
1506 
1507 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1508 		ret = VERR_DISCONN_LEN;
1509 	else if (rqst->desc_list_len !=
1510 			fcnvme_lsdesc_len(
1511 				sizeof(struct fcnvme_ls_disconnect_rqst)))
1512 		ret = VERR_DISCONN_RQST_LEN;
1513 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1514 		ret = VERR_ASSOC_ID;
1515 	else if (rqst->associd.desc_len !=
1516 			fcnvme_lsdesc_len(
1517 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1518 		ret = VERR_ASSOC_ID_LEN;
1519 	else if (rqst->discon_cmd.desc_tag !=
1520 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1521 		ret = VERR_DISCONN_CMD;
1522 	else if (rqst->discon_cmd.desc_len !=
1523 			fcnvme_lsdesc_len(
1524 				sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1525 		ret = VERR_DISCONN_CMD_LEN;
1526 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1527 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1528 		ret = VERR_DISCONN_SCOPE;
1529 	else {
1530 		/* match an active association */
1531 		assoc = nvmet_fc_find_target_assoc(tgtport,
1532 				be64_to_cpu(rqst->associd.association_id));
1533 		iod->assoc = assoc;
1534 		if (!assoc)
1535 			ret = VERR_NO_ASSOC;
1536 	}
1537 
1538 	if (ret) {
1539 		dev_err(tgtport->dev,
1540 			"Disconnect LS failed: %s\n",
1541 			validation_errors[ret]);
1542 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1543 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1544 				(ret == VERR_NO_ASSOC) ?
1545 					FCNVME_RJT_RC_INV_ASSOC :
1546 					(ret == VERR_NO_CONN) ?
1547 						FCNVME_RJT_RC_INV_CONN :
1548 						FCNVME_RJT_RC_LOGIC,
1549 				FCNVME_RJT_EXP_NONE, 0);
1550 		return;
1551 	}
1552 
1553 	/* format a response */
1554 
1555 	iod->lsreq->rsplen = sizeof(*acc);
1556 
1557 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1558 			fcnvme_lsdesc_len(
1559 				sizeof(struct fcnvme_ls_disconnect_acc)),
1560 			FCNVME_LS_DISCONNECT);
1561 
1562 	/* release get taken in nvmet_fc_find_target_assoc */
1563 	nvmet_fc_tgt_a_put(iod->assoc);
1564 
1565 	nvmet_fc_delete_target_assoc(iod->assoc);
1566 }
1567 
1568 
1569 /* *********************** NVME Ctrl Routines **************************** */
1570 
1571 
1572 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1573 
1574 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1575 
1576 static void
1577 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1578 {
1579 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1580 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1581 
1582 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1583 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1584 	nvmet_fc_free_ls_iod(tgtport, iod);
1585 	nvmet_fc_tgtport_put(tgtport);
1586 }
1587 
1588 static void
1589 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1590 				struct nvmet_fc_ls_iod *iod)
1591 {
1592 	int ret;
1593 
1594 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1595 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1596 
1597 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1598 	if (ret)
1599 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1600 }
1601 
1602 /*
1603  * Actual processing routine for received FC-NVME LS Requests from the LLD
1604  */
1605 static void
1606 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1607 			struct nvmet_fc_ls_iod *iod)
1608 {
1609 	struct fcnvme_ls_rqst_w0 *w0 =
1610 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1611 
1612 	iod->lsreq->nvmet_fc_private = iod;
1613 	iod->lsreq->rspbuf = iod->rspbuf;
1614 	iod->lsreq->rspdma = iod->rspdma;
1615 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1616 	/* Be preventative. handlers will later set to valid length */
1617 	iod->lsreq->rsplen = 0;
1618 
1619 	iod->assoc = NULL;
1620 
1621 	/*
1622 	 * handlers:
1623 	 *   parse request input, execute the request, and format the
1624 	 *   LS response
1625 	 */
1626 	switch (w0->ls_cmd) {
1627 	case FCNVME_LS_CREATE_ASSOCIATION:
1628 		/* Creates Association and initial Admin Queue/Connection */
1629 		nvmet_fc_ls_create_association(tgtport, iod);
1630 		break;
1631 	case FCNVME_LS_CREATE_CONNECTION:
1632 		/* Creates an IO Queue/Connection */
1633 		nvmet_fc_ls_create_connection(tgtport, iod);
1634 		break;
1635 	case FCNVME_LS_DISCONNECT:
1636 		/* Terminate a Queue/Connection or the Association */
1637 		nvmet_fc_ls_disconnect(tgtport, iod);
1638 		break;
1639 	default:
1640 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1641 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1642 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1643 	}
1644 
1645 	nvmet_fc_xmt_ls_rsp(tgtport, iod);
1646 }
1647 
1648 /*
1649  * Actual processing routine for received FC-NVME LS Requests from the LLD
1650  */
1651 static void
1652 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1653 {
1654 	struct nvmet_fc_ls_iod *iod =
1655 		container_of(work, struct nvmet_fc_ls_iod, work);
1656 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1657 
1658 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1659 }
1660 
1661 
1662 /**
1663  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1664  *                       upon the reception of a NVME LS request.
1665  *
1666  * The nvmet-fc layer will copy payload to an internal structure for
1667  * processing.  As such, upon completion of the routine, the LLDD may
1668  * immediately free/reuse the LS request buffer passed in the call.
1669  *
1670  * If this routine returns error, the LLDD should abort the exchange.
1671  *
1672  * @target_port: pointer to the (registered) target port the LS was
1673  *              received on.
1674  * @lsreq:      pointer to a lsreq request structure to be used to reference
1675  *              the exchange corresponding to the LS.
1676  * @lsreqbuf:   pointer to the buffer containing the LS Request
1677  * @lsreqbuf_len: length, in bytes, of the received LS request
1678  */
1679 int
1680 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1681 			struct nvmefc_tgt_ls_req *lsreq,
1682 			void *lsreqbuf, u32 lsreqbuf_len)
1683 {
1684 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1685 	struct nvmet_fc_ls_iod *iod;
1686 
1687 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1688 		return -E2BIG;
1689 
1690 	if (!nvmet_fc_tgtport_get(tgtport))
1691 		return -ESHUTDOWN;
1692 
1693 	iod = nvmet_fc_alloc_ls_iod(tgtport);
1694 	if (!iod) {
1695 		nvmet_fc_tgtport_put(tgtport);
1696 		return -ENOENT;
1697 	}
1698 
1699 	iod->lsreq = lsreq;
1700 	iod->fcpreq = NULL;
1701 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1702 	iod->rqstdatalen = lsreqbuf_len;
1703 
1704 	schedule_work(&iod->work);
1705 
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1709 
1710 
1711 /*
1712  * **********************
1713  * Start of FCP handling
1714  * **********************
1715  */
1716 
1717 static int
1718 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1719 {
1720 	struct scatterlist *sg;
1721 	unsigned int nent;
1722 
1723 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1724 	if (!sg)
1725 		goto out;
1726 
1727 	fod->data_sg = sg;
1728 	fod->data_sg_cnt = nent;
1729 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1730 				((fod->io_dir == NVMET_FCP_WRITE) ?
1731 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1732 				/* note: write from initiator perspective */
1733 	fod->next_sg = fod->data_sg;
1734 
1735 	return 0;
1736 
1737 out:
1738 	return NVME_SC_INTERNAL;
1739 }
1740 
1741 static void
1742 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1743 {
1744 	if (!fod->data_sg || !fod->data_sg_cnt)
1745 		return;
1746 
1747 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1748 				((fod->io_dir == NVMET_FCP_WRITE) ?
1749 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
1750 	sgl_free(fod->data_sg);
1751 	fod->data_sg = NULL;
1752 	fod->data_sg_cnt = 0;
1753 }
1754 
1755 
1756 static bool
1757 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1758 {
1759 	u32 sqtail, used;
1760 
1761 	/* egad, this is ugly. And sqtail is just a best guess */
1762 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
1763 
1764 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1765 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1766 }
1767 
1768 /*
1769  * Prep RSP payload.
1770  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1771  */
1772 static void
1773 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1774 				struct nvmet_fc_fcp_iod *fod)
1775 {
1776 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1777 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1778 	struct nvme_completion *cqe = &ersp->cqe;
1779 	u32 *cqewd = (u32 *)cqe;
1780 	bool send_ersp = false;
1781 	u32 rsn, rspcnt, xfr_length;
1782 
1783 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1784 		xfr_length = fod->req.transfer_len;
1785 	else
1786 		xfr_length = fod->offset;
1787 
1788 	/*
1789 	 * check to see if we can send a 0's rsp.
1790 	 *   Note: to send a 0's response, the NVME-FC host transport will
1791 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
1792 	 *   seen in an ersp), and command_id. Thus it will create a
1793 	 *   zero-filled CQE with those known fields filled in. Transport
1794 	 *   must send an ersp for any condition where the cqe won't match
1795 	 *   this.
1796 	 *
1797 	 * Here are the FC-NVME mandated cases where we must send an ersp:
1798 	 *  every N responses, where N=ersp_ratio
1799 	 *  force fabric commands to send ersp's (not in FC-NVME but good
1800 	 *    practice)
1801 	 *  normal cmds: any time status is non-zero, or status is zero
1802 	 *     but words 0 or 1 are non-zero.
1803 	 *  the SQ is 90% or more full
1804 	 *  the cmd is a fused command
1805 	 *  transferred data length not equal to cmd iu length
1806 	 */
1807 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1808 	if (!(rspcnt % fod->queue->ersp_ratio) ||
1809 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
1810 	    xfr_length != fod->req.transfer_len ||
1811 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1812 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1813 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1814 		send_ersp = true;
1815 
1816 	/* re-set the fields */
1817 	fod->fcpreq->rspaddr = ersp;
1818 	fod->fcpreq->rspdma = fod->rspdma;
1819 
1820 	if (!send_ersp) {
1821 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1822 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1823 	} else {
1824 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1825 		rsn = atomic_inc_return(&fod->queue->rsn);
1826 		ersp->rsn = cpu_to_be32(rsn);
1827 		ersp->xfrd_len = cpu_to_be32(xfr_length);
1828 		fod->fcpreq->rsplen = sizeof(*ersp);
1829 	}
1830 
1831 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1832 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1833 }
1834 
1835 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1836 
1837 static void
1838 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1839 				struct nvmet_fc_fcp_iod *fod)
1840 {
1841 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1842 
1843 	/* data no longer needed */
1844 	nvmet_fc_free_tgt_pgs(fod);
1845 
1846 	/*
1847 	 * if an ABTS was received or we issued the fcp_abort early
1848 	 * don't call abort routine again.
1849 	 */
1850 	/* no need to take lock - lock was taken earlier to get here */
1851 	if (!fod->aborted)
1852 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1853 
1854 	nvmet_fc_free_fcp_iod(fod->queue, fod);
1855 }
1856 
1857 static void
1858 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1859 				struct nvmet_fc_fcp_iod *fod)
1860 {
1861 	int ret;
1862 
1863 	fod->fcpreq->op = NVMET_FCOP_RSP;
1864 	fod->fcpreq->timeout = 0;
1865 
1866 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
1867 
1868 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1869 	if (ret)
1870 		nvmet_fc_abort_op(tgtport, fod);
1871 }
1872 
1873 static void
1874 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1875 				struct nvmet_fc_fcp_iod *fod, u8 op)
1876 {
1877 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1878 	struct scatterlist *sg = fod->next_sg;
1879 	unsigned long flags;
1880 	u32 remaininglen = fod->req.transfer_len - fod->offset;
1881 	u32 tlen = 0;
1882 	int ret;
1883 
1884 	fcpreq->op = op;
1885 	fcpreq->offset = fod->offset;
1886 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1887 
1888 	/*
1889 	 * for next sequence:
1890 	 *  break at a sg element boundary
1891 	 *  attempt to keep sequence length capped at
1892 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1893 	 *    be longer if a single sg element is larger
1894 	 *    than that amount. This is done to avoid creating
1895 	 *    a new sg list to use for the tgtport api.
1896 	 */
1897 	fcpreq->sg = sg;
1898 	fcpreq->sg_cnt = 0;
1899 	while (tlen < remaininglen &&
1900 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1901 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1902 		fcpreq->sg_cnt++;
1903 		tlen += sg_dma_len(sg);
1904 		sg = sg_next(sg);
1905 	}
1906 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1907 		fcpreq->sg_cnt++;
1908 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1909 		sg = sg_next(sg);
1910 	}
1911 	if (tlen < remaininglen)
1912 		fod->next_sg = sg;
1913 	else
1914 		fod->next_sg = NULL;
1915 
1916 	fcpreq->transfer_length = tlen;
1917 	fcpreq->transferred_length = 0;
1918 	fcpreq->fcp_error = 0;
1919 	fcpreq->rsplen = 0;
1920 
1921 	/*
1922 	 * If the last READDATA request: check if LLDD supports
1923 	 * combined xfr with response.
1924 	 */
1925 	if ((op == NVMET_FCOP_READDATA) &&
1926 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1927 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1928 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
1929 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
1930 	}
1931 
1932 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1933 	if (ret) {
1934 		/*
1935 		 * should be ok to set w/o lock as its in the thread of
1936 		 * execution (not an async timer routine) and doesn't
1937 		 * contend with any clearing action
1938 		 */
1939 		fod->abort = true;
1940 
1941 		if (op == NVMET_FCOP_WRITEDATA) {
1942 			spin_lock_irqsave(&fod->flock, flags);
1943 			fod->writedataactive = false;
1944 			spin_unlock_irqrestore(&fod->flock, flags);
1945 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1946 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1947 			fcpreq->fcp_error = ret;
1948 			fcpreq->transferred_length = 0;
1949 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1950 		}
1951 	}
1952 }
1953 
1954 static inline bool
1955 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1956 {
1957 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1958 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1959 
1960 	/* if in the middle of an io and we need to tear down */
1961 	if (abort) {
1962 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1963 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1964 			return true;
1965 		}
1966 
1967 		nvmet_fc_abort_op(tgtport, fod);
1968 		return true;
1969 	}
1970 
1971 	return false;
1972 }
1973 
1974 /*
1975  * actual done handler for FCP operations when completed by the lldd
1976  */
1977 static void
1978 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1979 {
1980 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1981 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1982 	unsigned long flags;
1983 	bool abort;
1984 
1985 	spin_lock_irqsave(&fod->flock, flags);
1986 	abort = fod->abort;
1987 	fod->writedataactive = false;
1988 	spin_unlock_irqrestore(&fod->flock, flags);
1989 
1990 	switch (fcpreq->op) {
1991 
1992 	case NVMET_FCOP_WRITEDATA:
1993 		if (__nvmet_fc_fod_op_abort(fod, abort))
1994 			return;
1995 		if (fcpreq->fcp_error ||
1996 		    fcpreq->transferred_length != fcpreq->transfer_length) {
1997 			spin_lock(&fod->flock);
1998 			fod->abort = true;
1999 			spin_unlock(&fod->flock);
2000 
2001 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2002 			return;
2003 		}
2004 
2005 		fod->offset += fcpreq->transferred_length;
2006 		if (fod->offset != fod->req.transfer_len) {
2007 			spin_lock_irqsave(&fod->flock, flags);
2008 			fod->writedataactive = true;
2009 			spin_unlock_irqrestore(&fod->flock, flags);
2010 
2011 			/* transfer the next chunk */
2012 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2013 						NVMET_FCOP_WRITEDATA);
2014 			return;
2015 		}
2016 
2017 		/* data transfer complete, resume with nvmet layer */
2018 		nvmet_req_execute(&fod->req);
2019 		break;
2020 
2021 	case NVMET_FCOP_READDATA:
2022 	case NVMET_FCOP_READDATA_RSP:
2023 		if (__nvmet_fc_fod_op_abort(fod, abort))
2024 			return;
2025 		if (fcpreq->fcp_error ||
2026 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2027 			nvmet_fc_abort_op(tgtport, fod);
2028 			return;
2029 		}
2030 
2031 		/* success */
2032 
2033 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2034 			/* data no longer needed */
2035 			nvmet_fc_free_tgt_pgs(fod);
2036 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2037 			return;
2038 		}
2039 
2040 		fod->offset += fcpreq->transferred_length;
2041 		if (fod->offset != fod->req.transfer_len) {
2042 			/* transfer the next chunk */
2043 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2044 						NVMET_FCOP_READDATA);
2045 			return;
2046 		}
2047 
2048 		/* data transfer complete, send response */
2049 
2050 		/* data no longer needed */
2051 		nvmet_fc_free_tgt_pgs(fod);
2052 
2053 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2054 
2055 		break;
2056 
2057 	case NVMET_FCOP_RSP:
2058 		if (__nvmet_fc_fod_op_abort(fod, abort))
2059 			return;
2060 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2061 		break;
2062 
2063 	default:
2064 		break;
2065 	}
2066 }
2067 
2068 static void
2069 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2070 {
2071 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2072 
2073 	nvmet_fc_fod_op_done(fod);
2074 }
2075 
2076 /*
2077  * actual completion handler after execution by the nvmet layer
2078  */
2079 static void
2080 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2081 			struct nvmet_fc_fcp_iod *fod, int status)
2082 {
2083 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2084 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2085 	unsigned long flags;
2086 	bool abort;
2087 
2088 	spin_lock_irqsave(&fod->flock, flags);
2089 	abort = fod->abort;
2090 	spin_unlock_irqrestore(&fod->flock, flags);
2091 
2092 	/* if we have a CQE, snoop the last sq_head value */
2093 	if (!status)
2094 		fod->queue->sqhd = cqe->sq_head;
2095 
2096 	if (abort) {
2097 		nvmet_fc_abort_op(tgtport, fod);
2098 		return;
2099 	}
2100 
2101 	/* if an error handling the cmd post initial parsing */
2102 	if (status) {
2103 		/* fudge up a failed CQE status for our transport error */
2104 		memset(cqe, 0, sizeof(*cqe));
2105 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2106 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2107 		cqe->command_id = sqe->command_id;
2108 		cqe->status = cpu_to_le16(status);
2109 	} else {
2110 
2111 		/*
2112 		 * try to push the data even if the SQE status is non-zero.
2113 		 * There may be a status where data still was intended to
2114 		 * be moved
2115 		 */
2116 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2117 			/* push the data over before sending rsp */
2118 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2119 						NVMET_FCOP_READDATA);
2120 			return;
2121 		}
2122 
2123 		/* writes & no data - fall thru */
2124 	}
2125 
2126 	/* data no longer needed */
2127 	nvmet_fc_free_tgt_pgs(fod);
2128 
2129 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2130 }
2131 
2132 
2133 static void
2134 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2135 {
2136 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2137 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2138 
2139 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2140 }
2141 
2142 
2143 /*
2144  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2145  */
2146 static void
2147 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2148 			struct nvmet_fc_fcp_iod *fod)
2149 {
2150 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2151 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2152 	int ret;
2153 
2154 	/*
2155 	 * if there is no nvmet mapping to the targetport there
2156 	 * shouldn't be requests. just terminate them.
2157 	 */
2158 	if (!tgtport->pe)
2159 		goto transport_error;
2160 
2161 	/*
2162 	 * Fused commands are currently not supported in the linux
2163 	 * implementation.
2164 	 *
2165 	 * As such, the implementation of the FC transport does not
2166 	 * look at the fused commands and order delivery to the upper
2167 	 * layer until we have both based on csn.
2168 	 */
2169 
2170 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2171 
2172 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2173 		fod->io_dir = NVMET_FCP_WRITE;
2174 		if (!nvme_is_write(&cmdiu->sqe))
2175 			goto transport_error;
2176 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2177 		fod->io_dir = NVMET_FCP_READ;
2178 		if (nvme_is_write(&cmdiu->sqe))
2179 			goto transport_error;
2180 	} else {
2181 		fod->io_dir = NVMET_FCP_NODATA;
2182 		if (xfrlen)
2183 			goto transport_error;
2184 	}
2185 
2186 	fod->req.cmd = &fod->cmdiubuf.sqe;
2187 	fod->req.cqe = &fod->rspiubuf.cqe;
2188 	fod->req.port = tgtport->pe->port;
2189 
2190 	/* clear any response payload */
2191 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2192 
2193 	fod->data_sg = NULL;
2194 	fod->data_sg_cnt = 0;
2195 
2196 	ret = nvmet_req_init(&fod->req,
2197 				&fod->queue->nvme_cq,
2198 				&fod->queue->nvme_sq,
2199 				&nvmet_fc_tgt_fcp_ops);
2200 	if (!ret) {
2201 		/* bad SQE content or invalid ctrl state */
2202 		/* nvmet layer has already called op done to send rsp. */
2203 		return;
2204 	}
2205 
2206 	fod->req.transfer_len = xfrlen;
2207 
2208 	/* keep a running counter of tail position */
2209 	atomic_inc(&fod->queue->sqtail);
2210 
2211 	if (fod->req.transfer_len) {
2212 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2213 		if (ret) {
2214 			nvmet_req_complete(&fod->req, ret);
2215 			return;
2216 		}
2217 	}
2218 	fod->req.sg = fod->data_sg;
2219 	fod->req.sg_cnt = fod->data_sg_cnt;
2220 	fod->offset = 0;
2221 
2222 	if (fod->io_dir == NVMET_FCP_WRITE) {
2223 		/* pull the data over before invoking nvmet layer */
2224 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2225 		return;
2226 	}
2227 
2228 	/*
2229 	 * Reads or no data:
2230 	 *
2231 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2232 	 * push the data
2233 	 */
2234 	nvmet_req_execute(&fod->req);
2235 	return;
2236 
2237 transport_error:
2238 	nvmet_fc_abort_op(tgtport, fod);
2239 }
2240 
2241 /**
2242  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2243  *                       upon the reception of a NVME FCP CMD IU.
2244  *
2245  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2246  * layer for processing.
2247  *
2248  * The nvmet_fc layer allocates a local job structure (struct
2249  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2250  * CMD IU buffer to the job structure. As such, on a successful
2251  * completion (returns 0), the LLDD may immediately free/reuse
2252  * the CMD IU buffer passed in the call.
2253  *
2254  * However, in some circumstances, due to the packetized nature of FC
2255  * and the api of the FC LLDD which may issue a hw command to send the
2256  * response, but the LLDD may not get the hw completion for that command
2257  * and upcall the nvmet_fc layer before a new command may be
2258  * asynchronously received - its possible for a command to be received
2259  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2260  * the appearance of more commands received than fits in the sq.
2261  * To alleviate this scenario, a temporary queue is maintained in the
2262  * transport for pending LLDD requests waiting for a queue job structure.
2263  * In these "overrun" cases, a temporary queue element is allocated
2264  * the LLDD request and CMD iu buffer information remembered, and the
2265  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2266  * structure is freed, it is immediately reallocated for anything on the
2267  * pending request list. The LLDDs defer_rcv() callback is called,
2268  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2269  * is then started normally with the transport.
2270  *
2271  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2272  * the completion as successful but must not reuse the CMD IU buffer
2273  * until the LLDD's defer_rcv() callback has been called for the
2274  * corresponding struct nvmefc_tgt_fcp_req pointer.
2275  *
2276  * If there is any other condition in which an error occurs, the
2277  * transport will return a non-zero status indicating the error.
2278  * In all cases other than -EOVERFLOW, the transport has not accepted the
2279  * request and the LLDD should abort the exchange.
2280  *
2281  * @target_port: pointer to the (registered) target port the FCP CMD IU
2282  *              was received on.
2283  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2284  *              the exchange corresponding to the FCP Exchange.
2285  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2286  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2287  */
2288 int
2289 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2290 			struct nvmefc_tgt_fcp_req *fcpreq,
2291 			void *cmdiubuf, u32 cmdiubuf_len)
2292 {
2293 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2294 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2295 	struct nvmet_fc_tgt_queue *queue;
2296 	struct nvmet_fc_fcp_iod *fod;
2297 	struct nvmet_fc_defer_fcp_req *deferfcp;
2298 	unsigned long flags;
2299 
2300 	/* validate iu, so the connection id can be used to find the queue */
2301 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2302 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2303 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2304 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2305 		return -EIO;
2306 
2307 	queue = nvmet_fc_find_target_queue(tgtport,
2308 				be64_to_cpu(cmdiu->connection_id));
2309 	if (!queue)
2310 		return -ENOTCONN;
2311 
2312 	/*
2313 	 * note: reference taken by find_target_queue
2314 	 * After successful fod allocation, the fod will inherit the
2315 	 * ownership of that reference and will remove the reference
2316 	 * when the fod is freed.
2317 	 */
2318 
2319 	spin_lock_irqsave(&queue->qlock, flags);
2320 
2321 	fod = nvmet_fc_alloc_fcp_iod(queue);
2322 	if (fod) {
2323 		spin_unlock_irqrestore(&queue->qlock, flags);
2324 
2325 		fcpreq->nvmet_fc_private = fod;
2326 		fod->fcpreq = fcpreq;
2327 
2328 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2329 
2330 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2331 
2332 		return 0;
2333 	}
2334 
2335 	if (!tgtport->ops->defer_rcv) {
2336 		spin_unlock_irqrestore(&queue->qlock, flags);
2337 		/* release the queue lookup reference */
2338 		nvmet_fc_tgt_q_put(queue);
2339 		return -ENOENT;
2340 	}
2341 
2342 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2343 			struct nvmet_fc_defer_fcp_req, req_list);
2344 	if (deferfcp) {
2345 		/* Just re-use one that was previously allocated */
2346 		list_del(&deferfcp->req_list);
2347 	} else {
2348 		spin_unlock_irqrestore(&queue->qlock, flags);
2349 
2350 		/* Now we need to dynamically allocate one */
2351 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2352 		if (!deferfcp) {
2353 			/* release the queue lookup reference */
2354 			nvmet_fc_tgt_q_put(queue);
2355 			return -ENOMEM;
2356 		}
2357 		spin_lock_irqsave(&queue->qlock, flags);
2358 	}
2359 
2360 	/* For now, use rspaddr / rsplen to save payload information */
2361 	fcpreq->rspaddr = cmdiubuf;
2362 	fcpreq->rsplen  = cmdiubuf_len;
2363 	deferfcp->fcp_req = fcpreq;
2364 
2365 	/* defer processing till a fod becomes available */
2366 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2367 
2368 	/* NOTE: the queue lookup reference is still valid */
2369 
2370 	spin_unlock_irqrestore(&queue->qlock, flags);
2371 
2372 	return -EOVERFLOW;
2373 }
2374 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2375 
2376 /**
2377  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2378  *                       upon the reception of an ABTS for a FCP command
2379  *
2380  * Notify the transport that an ABTS has been received for a FCP command
2381  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2382  * LLDD believes the command is still being worked on
2383  * (template_ops->fcp_req_release() has not been called).
2384  *
2385  * The transport will wait for any outstanding work (an op to the LLDD,
2386  * which the lldd should complete with error due to the ABTS; or the
2387  * completion from the nvmet layer of the nvme command), then will
2388  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2389  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2390  * to the ABTS either after return from this function (assuming any
2391  * outstanding op work has been terminated) or upon the callback being
2392  * called.
2393  *
2394  * @target_port: pointer to the (registered) target port the FCP CMD IU
2395  *              was received on.
2396  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2397  *              to the exchange that received the ABTS.
2398  */
2399 void
2400 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2401 			struct nvmefc_tgt_fcp_req *fcpreq)
2402 {
2403 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2404 	struct nvmet_fc_tgt_queue *queue;
2405 	unsigned long flags;
2406 
2407 	if (!fod || fod->fcpreq != fcpreq)
2408 		/* job appears to have already completed, ignore abort */
2409 		return;
2410 
2411 	queue = fod->queue;
2412 
2413 	spin_lock_irqsave(&queue->qlock, flags);
2414 	if (fod->active) {
2415 		/*
2416 		 * mark as abort. The abort handler, invoked upon completion
2417 		 * of any work, will detect the aborted status and do the
2418 		 * callback.
2419 		 */
2420 		spin_lock(&fod->flock);
2421 		fod->abort = true;
2422 		fod->aborted = true;
2423 		spin_unlock(&fod->flock);
2424 	}
2425 	spin_unlock_irqrestore(&queue->qlock, flags);
2426 }
2427 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2428 
2429 
2430 struct nvmet_fc_traddr {
2431 	u64	nn;
2432 	u64	pn;
2433 };
2434 
2435 static int
2436 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2437 {
2438 	u64 token64;
2439 
2440 	if (match_u64(sstr, &token64))
2441 		return -EINVAL;
2442 	*val = token64;
2443 
2444 	return 0;
2445 }
2446 
2447 /*
2448  * This routine validates and extracts the WWN's from the TRADDR string.
2449  * As kernel parsers need the 0x to determine number base, universally
2450  * build string to parse with 0x prefix before parsing name strings.
2451  */
2452 static int
2453 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2454 {
2455 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2456 	substring_t wwn = { name, &name[sizeof(name)-1] };
2457 	int nnoffset, pnoffset;
2458 
2459 	/* validate if string is one of the 2 allowed formats */
2460 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2461 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2462 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2463 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2464 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2465 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2466 						NVME_FC_TRADDR_OXNNLEN;
2467 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2468 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2469 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2470 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2471 		nnoffset = NVME_FC_TRADDR_NNLEN;
2472 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2473 	} else
2474 		goto out_einval;
2475 
2476 	name[0] = '0';
2477 	name[1] = 'x';
2478 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2479 
2480 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2481 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2482 		goto out_einval;
2483 
2484 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2485 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2486 		goto out_einval;
2487 
2488 	return 0;
2489 
2490 out_einval:
2491 	pr_warn("%s: bad traddr string\n", __func__);
2492 	return -EINVAL;
2493 }
2494 
2495 static int
2496 nvmet_fc_add_port(struct nvmet_port *port)
2497 {
2498 	struct nvmet_fc_tgtport *tgtport;
2499 	struct nvmet_fc_port_entry *pe;
2500 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2501 	unsigned long flags;
2502 	int ret;
2503 
2504 	/* validate the address info */
2505 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2506 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2507 		return -EINVAL;
2508 
2509 	/* map the traddr address info to a target port */
2510 
2511 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2512 			sizeof(port->disc_addr.traddr));
2513 	if (ret)
2514 		return ret;
2515 
2516 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2517 	if (!pe)
2518 		return -ENOMEM;
2519 
2520 	ret = -ENXIO;
2521 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2522 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2523 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2524 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2525 			/* a FC port can only be 1 nvmet port id */
2526 			if (!tgtport->pe) {
2527 				nvmet_fc_portentry_bind(tgtport, pe, port);
2528 				ret = 0;
2529 			} else
2530 				ret = -EALREADY;
2531 			break;
2532 		}
2533 	}
2534 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2535 
2536 	if (ret)
2537 		kfree(pe);
2538 
2539 	return ret;
2540 }
2541 
2542 static void
2543 nvmet_fc_remove_port(struct nvmet_port *port)
2544 {
2545 	struct nvmet_fc_port_entry *pe = port->priv;
2546 
2547 	nvmet_fc_portentry_unbind(pe);
2548 
2549 	kfree(pe);
2550 }
2551 
2552 static void
2553 nvmet_fc_discovery_chg(struct nvmet_port *port)
2554 {
2555 	struct nvmet_fc_port_entry *pe = port->priv;
2556 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2557 
2558 	if (tgtport && tgtport->ops->discovery_event)
2559 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2560 }
2561 
2562 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2563 	.owner			= THIS_MODULE,
2564 	.type			= NVMF_TRTYPE_FC,
2565 	.msdbd			= 1,
2566 	.add_port		= nvmet_fc_add_port,
2567 	.remove_port		= nvmet_fc_remove_port,
2568 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2569 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2570 	.discovery_chg		= nvmet_fc_discovery_chg,
2571 };
2572 
2573 static int __init nvmet_fc_init_module(void)
2574 {
2575 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2576 }
2577 
2578 static void __exit nvmet_fc_exit_module(void)
2579 {
2580 	/* sanity check - all lports should be removed */
2581 	if (!list_empty(&nvmet_fc_target_list))
2582 		pr_warn("%s: targetport list not empty\n", __func__);
2583 
2584 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2585 
2586 	ida_destroy(&nvmet_fc_tgtport_cnt);
2587 }
2588 
2589 module_init(nvmet_fc_init_module);
2590 module_exit(nvmet_fc_exit_module);
2591 
2592 MODULE_LICENSE("GPL v2");
2593