1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/slab.h> 8 #include <linux/blk-mq.h> 9 #include <linux/parser.h> 10 #include <linux/random.h> 11 #include <uapi/scsi/fc/fc_fs.h> 12 #include <uapi/scsi/fc/fc_els.h> 13 14 #include "nvmet.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 18 19 /* *************************** Data Structures/Defines ****************** */ 20 21 22 #define NVMET_LS_CTX_COUNT 256 23 24 /* for this implementation, assume small single frame rqst/rsp */ 25 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 26 27 struct nvmet_fc_tgtport; 28 struct nvmet_fc_tgt_assoc; 29 30 struct nvmet_fc_ls_iod { 31 struct nvmefc_tgt_ls_req *lsreq; 32 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 33 34 struct list_head ls_list; /* tgtport->ls_list */ 35 36 struct nvmet_fc_tgtport *tgtport; 37 struct nvmet_fc_tgt_assoc *assoc; 38 39 u8 *rqstbuf; 40 u8 *rspbuf; 41 u16 rqstdatalen; 42 dma_addr_t rspdma; 43 44 struct scatterlist sg[2]; 45 46 struct work_struct work; 47 } __aligned(sizeof(unsigned long long)); 48 49 /* desired maximum for a single sequence - if sg list allows it */ 50 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 51 52 enum nvmet_fcp_datadir { 53 NVMET_FCP_NODATA, 54 NVMET_FCP_WRITE, 55 NVMET_FCP_READ, 56 NVMET_FCP_ABORTED, 57 }; 58 59 struct nvmet_fc_fcp_iod { 60 struct nvmefc_tgt_fcp_req *fcpreq; 61 62 struct nvme_fc_cmd_iu cmdiubuf; 63 struct nvme_fc_ersp_iu rspiubuf; 64 dma_addr_t rspdma; 65 struct scatterlist *next_sg; 66 struct scatterlist *data_sg; 67 int data_sg_cnt; 68 u32 offset; 69 enum nvmet_fcp_datadir io_dir; 70 bool active; 71 bool abort; 72 bool aborted; 73 bool writedataactive; 74 spinlock_t flock; 75 76 struct nvmet_req req; 77 struct work_struct defer_work; 78 79 struct nvmet_fc_tgtport *tgtport; 80 struct nvmet_fc_tgt_queue *queue; 81 82 struct list_head fcp_list; /* tgtport->fcp_list */ 83 }; 84 85 struct nvmet_fc_tgtport { 86 87 struct nvmet_fc_target_port fc_target_port; 88 89 struct list_head tgt_list; /* nvmet_fc_target_list */ 90 struct device *dev; /* dev for dma mapping */ 91 struct nvmet_fc_target_template *ops; 92 93 struct nvmet_fc_ls_iod *iod; 94 spinlock_t lock; 95 struct list_head ls_list; 96 struct list_head ls_busylist; 97 struct list_head assoc_list; 98 struct ida assoc_cnt; 99 struct nvmet_fc_port_entry *pe; 100 struct kref ref; 101 u32 max_sg_cnt; 102 }; 103 104 struct nvmet_fc_port_entry { 105 struct nvmet_fc_tgtport *tgtport; 106 struct nvmet_port *port; 107 u64 node_name; 108 u64 port_name; 109 struct list_head pe_list; 110 }; 111 112 struct nvmet_fc_defer_fcp_req { 113 struct list_head req_list; 114 struct nvmefc_tgt_fcp_req *fcp_req; 115 }; 116 117 struct nvmet_fc_tgt_queue { 118 bool ninetypercent; 119 u16 qid; 120 u16 sqsize; 121 u16 ersp_ratio; 122 __le16 sqhd; 123 atomic_t connected; 124 atomic_t sqtail; 125 atomic_t zrspcnt; 126 atomic_t rsn; 127 spinlock_t qlock; 128 struct nvmet_cq nvme_cq; 129 struct nvmet_sq nvme_sq; 130 struct nvmet_fc_tgt_assoc *assoc; 131 struct list_head fod_list; 132 struct list_head pending_cmd_list; 133 struct list_head avail_defer_list; 134 struct workqueue_struct *work_q; 135 struct kref ref; 136 struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */ 137 } __aligned(sizeof(unsigned long long)); 138 139 struct nvmet_fc_tgt_assoc { 140 u64 association_id; 141 u32 a_id; 142 struct nvmet_fc_tgtport *tgtport; 143 struct list_head a_list; 144 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1]; 145 struct kref ref; 146 struct work_struct del_work; 147 }; 148 149 150 static inline int 151 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 152 { 153 return (iodptr - iodptr->tgtport->iod); 154 } 155 156 static inline int 157 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 158 { 159 return (fodptr - fodptr->queue->fod); 160 } 161 162 163 /* 164 * Association and Connection IDs: 165 * 166 * Association ID will have random number in upper 6 bytes and zero 167 * in lower 2 bytes 168 * 169 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 170 * 171 * note: Association ID = Connection ID for queue 0 172 */ 173 #define BYTES_FOR_QID sizeof(u16) 174 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 175 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 176 177 static inline u64 178 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 179 { 180 return (assoc->association_id | qid); 181 } 182 183 static inline u64 184 nvmet_fc_getassociationid(u64 connectionid) 185 { 186 return connectionid & ~NVMET_FC_QUEUEID_MASK; 187 } 188 189 static inline u16 190 nvmet_fc_getqueueid(u64 connectionid) 191 { 192 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 193 } 194 195 static inline struct nvmet_fc_tgtport * 196 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 197 { 198 return container_of(targetport, struct nvmet_fc_tgtport, 199 fc_target_port); 200 } 201 202 static inline struct nvmet_fc_fcp_iod * 203 nvmet_req_to_fod(struct nvmet_req *nvme_req) 204 { 205 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 206 } 207 208 209 /* *************************** Globals **************************** */ 210 211 212 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 213 214 static LIST_HEAD(nvmet_fc_target_list); 215 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 216 static LIST_HEAD(nvmet_fc_portentry_list); 217 218 219 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 220 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work); 221 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 222 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 223 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 224 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 225 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 226 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 227 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 228 struct nvmet_fc_fcp_iod *fod); 229 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc); 230 231 232 /* *********************** FC-NVME DMA Handling **************************** */ 233 234 /* 235 * The fcloop device passes in a NULL device pointer. Real LLD's will 236 * pass in a valid device pointer. If NULL is passed to the dma mapping 237 * routines, depending on the platform, it may or may not succeed, and 238 * may crash. 239 * 240 * As such: 241 * Wrapper all the dma routines and check the dev pointer. 242 * 243 * If simple mappings (return just a dma address, we'll noop them, 244 * returning a dma address of 0. 245 * 246 * On more complex mappings (dma_map_sg), a pseudo routine fills 247 * in the scatter list, setting all dma addresses to 0. 248 */ 249 250 static inline dma_addr_t 251 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 252 enum dma_data_direction dir) 253 { 254 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 255 } 256 257 static inline int 258 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 259 { 260 return dev ? dma_mapping_error(dev, dma_addr) : 0; 261 } 262 263 static inline void 264 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 265 enum dma_data_direction dir) 266 { 267 if (dev) 268 dma_unmap_single(dev, addr, size, dir); 269 } 270 271 static inline void 272 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 273 enum dma_data_direction dir) 274 { 275 if (dev) 276 dma_sync_single_for_cpu(dev, addr, size, dir); 277 } 278 279 static inline void 280 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 281 enum dma_data_direction dir) 282 { 283 if (dev) 284 dma_sync_single_for_device(dev, addr, size, dir); 285 } 286 287 /* pseudo dma_map_sg call */ 288 static int 289 fc_map_sg(struct scatterlist *sg, int nents) 290 { 291 struct scatterlist *s; 292 int i; 293 294 WARN_ON(nents == 0 || sg[0].length == 0); 295 296 for_each_sg(sg, s, nents, i) { 297 s->dma_address = 0L; 298 #ifdef CONFIG_NEED_SG_DMA_LENGTH 299 s->dma_length = s->length; 300 #endif 301 } 302 return nents; 303 } 304 305 static inline int 306 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 307 enum dma_data_direction dir) 308 { 309 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 310 } 311 312 static inline void 313 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 314 enum dma_data_direction dir) 315 { 316 if (dev) 317 dma_unmap_sg(dev, sg, nents, dir); 318 } 319 320 321 /* *********************** FC-NVME Port Management ************************ */ 322 323 324 static int 325 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 326 { 327 struct nvmet_fc_ls_iod *iod; 328 int i; 329 330 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 331 GFP_KERNEL); 332 if (!iod) 333 return -ENOMEM; 334 335 tgtport->iod = iod; 336 337 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 338 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 339 iod->tgtport = tgtport; 340 list_add_tail(&iod->ls_list, &tgtport->ls_list); 341 342 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 343 GFP_KERNEL); 344 if (!iod->rqstbuf) 345 goto out_fail; 346 347 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 348 349 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 350 NVME_FC_MAX_LS_BUFFER_SIZE, 351 DMA_TO_DEVICE); 352 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 353 goto out_fail; 354 } 355 356 return 0; 357 358 out_fail: 359 kfree(iod->rqstbuf); 360 list_del(&iod->ls_list); 361 for (iod--, i--; i >= 0; iod--, i--) { 362 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 363 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 364 kfree(iod->rqstbuf); 365 list_del(&iod->ls_list); 366 } 367 368 kfree(iod); 369 370 return -EFAULT; 371 } 372 373 static void 374 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 375 { 376 struct nvmet_fc_ls_iod *iod = tgtport->iod; 377 int i; 378 379 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 380 fc_dma_unmap_single(tgtport->dev, 381 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 382 DMA_TO_DEVICE); 383 kfree(iod->rqstbuf); 384 list_del(&iod->ls_list); 385 } 386 kfree(tgtport->iod); 387 } 388 389 static struct nvmet_fc_ls_iod * 390 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 391 { 392 struct nvmet_fc_ls_iod *iod; 393 unsigned long flags; 394 395 spin_lock_irqsave(&tgtport->lock, flags); 396 iod = list_first_entry_or_null(&tgtport->ls_list, 397 struct nvmet_fc_ls_iod, ls_list); 398 if (iod) 399 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 400 spin_unlock_irqrestore(&tgtport->lock, flags); 401 return iod; 402 } 403 404 405 static void 406 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 407 struct nvmet_fc_ls_iod *iod) 408 { 409 unsigned long flags; 410 411 spin_lock_irqsave(&tgtport->lock, flags); 412 list_move(&iod->ls_list, &tgtport->ls_list); 413 spin_unlock_irqrestore(&tgtport->lock, flags); 414 } 415 416 static void 417 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 418 struct nvmet_fc_tgt_queue *queue) 419 { 420 struct nvmet_fc_fcp_iod *fod = queue->fod; 421 int i; 422 423 for (i = 0; i < queue->sqsize; fod++, i++) { 424 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work); 425 fod->tgtport = tgtport; 426 fod->queue = queue; 427 fod->active = false; 428 fod->abort = false; 429 fod->aborted = false; 430 fod->fcpreq = NULL; 431 list_add_tail(&fod->fcp_list, &queue->fod_list); 432 spin_lock_init(&fod->flock); 433 434 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 435 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 436 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 437 list_del(&fod->fcp_list); 438 for (fod--, i--; i >= 0; fod--, i--) { 439 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 440 sizeof(fod->rspiubuf), 441 DMA_TO_DEVICE); 442 fod->rspdma = 0L; 443 list_del(&fod->fcp_list); 444 } 445 446 return; 447 } 448 } 449 } 450 451 static void 452 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 453 struct nvmet_fc_tgt_queue *queue) 454 { 455 struct nvmet_fc_fcp_iod *fod = queue->fod; 456 int i; 457 458 for (i = 0; i < queue->sqsize; fod++, i++) { 459 if (fod->rspdma) 460 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 461 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 462 } 463 } 464 465 static struct nvmet_fc_fcp_iod * 466 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 467 { 468 struct nvmet_fc_fcp_iod *fod; 469 470 lockdep_assert_held(&queue->qlock); 471 472 fod = list_first_entry_or_null(&queue->fod_list, 473 struct nvmet_fc_fcp_iod, fcp_list); 474 if (fod) { 475 list_del(&fod->fcp_list); 476 fod->active = true; 477 /* 478 * no queue reference is taken, as it was taken by the 479 * queue lookup just prior to the allocation. The iod 480 * will "inherit" that reference. 481 */ 482 } 483 return fod; 484 } 485 486 487 static void 488 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 489 struct nvmet_fc_tgt_queue *queue, 490 struct nvmefc_tgt_fcp_req *fcpreq) 491 { 492 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 493 494 /* 495 * put all admin cmds on hw queue id 0. All io commands go to 496 * the respective hw queue based on a modulo basis 497 */ 498 fcpreq->hwqid = queue->qid ? 499 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 500 501 nvmet_fc_handle_fcp_rqst(tgtport, fod); 502 } 503 504 static void 505 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work) 506 { 507 struct nvmet_fc_fcp_iod *fod = 508 container_of(work, struct nvmet_fc_fcp_iod, defer_work); 509 510 /* Submit deferred IO for processing */ 511 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq); 512 513 } 514 515 static void 516 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 517 struct nvmet_fc_fcp_iod *fod) 518 { 519 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 520 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 521 struct nvmet_fc_defer_fcp_req *deferfcp; 522 unsigned long flags; 523 524 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 525 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 526 527 fcpreq->nvmet_fc_private = NULL; 528 529 fod->active = false; 530 fod->abort = false; 531 fod->aborted = false; 532 fod->writedataactive = false; 533 fod->fcpreq = NULL; 534 535 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 536 537 /* release the queue lookup reference on the completed IO */ 538 nvmet_fc_tgt_q_put(queue); 539 540 spin_lock_irqsave(&queue->qlock, flags); 541 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 542 struct nvmet_fc_defer_fcp_req, req_list); 543 if (!deferfcp) { 544 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 545 spin_unlock_irqrestore(&queue->qlock, flags); 546 return; 547 } 548 549 /* Re-use the fod for the next pending cmd that was deferred */ 550 list_del(&deferfcp->req_list); 551 552 fcpreq = deferfcp->fcp_req; 553 554 /* deferfcp can be reused for another IO at a later date */ 555 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 556 557 spin_unlock_irqrestore(&queue->qlock, flags); 558 559 /* Save NVME CMD IO in fod */ 560 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 561 562 /* Setup new fcpreq to be processed */ 563 fcpreq->rspaddr = NULL; 564 fcpreq->rsplen = 0; 565 fcpreq->nvmet_fc_private = fod; 566 fod->fcpreq = fcpreq; 567 fod->active = true; 568 569 /* inform LLDD IO is now being processed */ 570 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 571 572 /* 573 * Leave the queue lookup get reference taken when 574 * fod was originally allocated. 575 */ 576 577 queue_work(queue->work_q, &fod->defer_work); 578 } 579 580 static struct nvmet_fc_tgt_queue * 581 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 582 u16 qid, u16 sqsize) 583 { 584 struct nvmet_fc_tgt_queue *queue; 585 unsigned long flags; 586 int ret; 587 588 if (qid > NVMET_NR_QUEUES) 589 return NULL; 590 591 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL); 592 if (!queue) 593 return NULL; 594 595 if (!nvmet_fc_tgt_a_get(assoc)) 596 goto out_free_queue; 597 598 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 599 assoc->tgtport->fc_target_port.port_num, 600 assoc->a_id, qid); 601 if (!queue->work_q) 602 goto out_a_put; 603 604 queue->qid = qid; 605 queue->sqsize = sqsize; 606 queue->assoc = assoc; 607 INIT_LIST_HEAD(&queue->fod_list); 608 INIT_LIST_HEAD(&queue->avail_defer_list); 609 INIT_LIST_HEAD(&queue->pending_cmd_list); 610 atomic_set(&queue->connected, 0); 611 atomic_set(&queue->sqtail, 0); 612 atomic_set(&queue->rsn, 1); 613 atomic_set(&queue->zrspcnt, 0); 614 spin_lock_init(&queue->qlock); 615 kref_init(&queue->ref); 616 617 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 618 619 ret = nvmet_sq_init(&queue->nvme_sq); 620 if (ret) 621 goto out_fail_iodlist; 622 623 WARN_ON(assoc->queues[qid]); 624 spin_lock_irqsave(&assoc->tgtport->lock, flags); 625 assoc->queues[qid] = queue; 626 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 627 628 return queue; 629 630 out_fail_iodlist: 631 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 632 destroy_workqueue(queue->work_q); 633 out_a_put: 634 nvmet_fc_tgt_a_put(assoc); 635 out_free_queue: 636 kfree(queue); 637 return NULL; 638 } 639 640 641 static void 642 nvmet_fc_tgt_queue_free(struct kref *ref) 643 { 644 struct nvmet_fc_tgt_queue *queue = 645 container_of(ref, struct nvmet_fc_tgt_queue, ref); 646 unsigned long flags; 647 648 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 649 queue->assoc->queues[queue->qid] = NULL; 650 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 651 652 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 653 654 nvmet_fc_tgt_a_put(queue->assoc); 655 656 destroy_workqueue(queue->work_q); 657 658 kfree(queue); 659 } 660 661 static void 662 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 663 { 664 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 665 } 666 667 static int 668 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 669 { 670 return kref_get_unless_zero(&queue->ref); 671 } 672 673 674 static void 675 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 676 { 677 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 678 struct nvmet_fc_fcp_iod *fod = queue->fod; 679 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 680 unsigned long flags; 681 int i, writedataactive; 682 bool disconnect; 683 684 disconnect = atomic_xchg(&queue->connected, 0); 685 686 spin_lock_irqsave(&queue->qlock, flags); 687 /* about outstanding io's */ 688 for (i = 0; i < queue->sqsize; fod++, i++) { 689 if (fod->active) { 690 spin_lock(&fod->flock); 691 fod->abort = true; 692 writedataactive = fod->writedataactive; 693 spin_unlock(&fod->flock); 694 /* 695 * only call lldd abort routine if waiting for 696 * writedata. other outstanding ops should finish 697 * on their own. 698 */ 699 if (writedataactive) { 700 spin_lock(&fod->flock); 701 fod->aborted = true; 702 spin_unlock(&fod->flock); 703 tgtport->ops->fcp_abort( 704 &tgtport->fc_target_port, fod->fcpreq); 705 } 706 } 707 } 708 709 /* Cleanup defer'ed IOs in queue */ 710 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 711 req_list) { 712 list_del(&deferfcp->req_list); 713 kfree(deferfcp); 714 } 715 716 for (;;) { 717 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 718 struct nvmet_fc_defer_fcp_req, req_list); 719 if (!deferfcp) 720 break; 721 722 list_del(&deferfcp->req_list); 723 spin_unlock_irqrestore(&queue->qlock, flags); 724 725 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 726 deferfcp->fcp_req); 727 728 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 729 deferfcp->fcp_req); 730 731 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 732 deferfcp->fcp_req); 733 734 /* release the queue lookup reference */ 735 nvmet_fc_tgt_q_put(queue); 736 737 kfree(deferfcp); 738 739 spin_lock_irqsave(&queue->qlock, flags); 740 } 741 spin_unlock_irqrestore(&queue->qlock, flags); 742 743 flush_workqueue(queue->work_q); 744 745 if (disconnect) 746 nvmet_sq_destroy(&queue->nvme_sq); 747 748 nvmet_fc_tgt_q_put(queue); 749 } 750 751 static struct nvmet_fc_tgt_queue * 752 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 753 u64 connection_id) 754 { 755 struct nvmet_fc_tgt_assoc *assoc; 756 struct nvmet_fc_tgt_queue *queue; 757 u64 association_id = nvmet_fc_getassociationid(connection_id); 758 u16 qid = nvmet_fc_getqueueid(connection_id); 759 unsigned long flags; 760 761 if (qid > NVMET_NR_QUEUES) 762 return NULL; 763 764 spin_lock_irqsave(&tgtport->lock, flags); 765 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 766 if (association_id == assoc->association_id) { 767 queue = assoc->queues[qid]; 768 if (queue && 769 (!atomic_read(&queue->connected) || 770 !nvmet_fc_tgt_q_get(queue))) 771 queue = NULL; 772 spin_unlock_irqrestore(&tgtport->lock, flags); 773 return queue; 774 } 775 } 776 spin_unlock_irqrestore(&tgtport->lock, flags); 777 return NULL; 778 } 779 780 static void 781 nvmet_fc_delete_assoc(struct work_struct *work) 782 { 783 struct nvmet_fc_tgt_assoc *assoc = 784 container_of(work, struct nvmet_fc_tgt_assoc, del_work); 785 786 nvmet_fc_delete_target_assoc(assoc); 787 nvmet_fc_tgt_a_put(assoc); 788 } 789 790 static struct nvmet_fc_tgt_assoc * 791 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 792 { 793 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 794 unsigned long flags; 795 u64 ran; 796 int idx; 797 bool needrandom = true; 798 799 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 800 if (!assoc) 801 return NULL; 802 803 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 804 if (idx < 0) 805 goto out_free_assoc; 806 807 if (!nvmet_fc_tgtport_get(tgtport)) 808 goto out_ida_put; 809 810 assoc->tgtport = tgtport; 811 assoc->a_id = idx; 812 INIT_LIST_HEAD(&assoc->a_list); 813 kref_init(&assoc->ref); 814 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc); 815 816 while (needrandom) { 817 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 818 ran = ran << BYTES_FOR_QID_SHIFT; 819 820 spin_lock_irqsave(&tgtport->lock, flags); 821 needrandom = false; 822 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 823 if (ran == tmpassoc->association_id) { 824 needrandom = true; 825 break; 826 } 827 if (!needrandom) { 828 assoc->association_id = ran; 829 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 830 } 831 spin_unlock_irqrestore(&tgtport->lock, flags); 832 } 833 834 return assoc; 835 836 out_ida_put: 837 ida_simple_remove(&tgtport->assoc_cnt, idx); 838 out_free_assoc: 839 kfree(assoc); 840 return NULL; 841 } 842 843 static void 844 nvmet_fc_target_assoc_free(struct kref *ref) 845 { 846 struct nvmet_fc_tgt_assoc *assoc = 847 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 848 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 849 unsigned long flags; 850 851 spin_lock_irqsave(&tgtport->lock, flags); 852 list_del(&assoc->a_list); 853 spin_unlock_irqrestore(&tgtport->lock, flags); 854 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 855 kfree(assoc); 856 nvmet_fc_tgtport_put(tgtport); 857 } 858 859 static void 860 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 861 { 862 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 863 } 864 865 static int 866 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 867 { 868 return kref_get_unless_zero(&assoc->ref); 869 } 870 871 static void 872 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 873 { 874 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 875 struct nvmet_fc_tgt_queue *queue; 876 unsigned long flags; 877 int i; 878 879 spin_lock_irqsave(&tgtport->lock, flags); 880 for (i = NVMET_NR_QUEUES; i >= 0; i--) { 881 queue = assoc->queues[i]; 882 if (queue) { 883 if (!nvmet_fc_tgt_q_get(queue)) 884 continue; 885 spin_unlock_irqrestore(&tgtport->lock, flags); 886 nvmet_fc_delete_target_queue(queue); 887 nvmet_fc_tgt_q_put(queue); 888 spin_lock_irqsave(&tgtport->lock, flags); 889 } 890 } 891 spin_unlock_irqrestore(&tgtport->lock, flags); 892 893 nvmet_fc_tgt_a_put(assoc); 894 } 895 896 static struct nvmet_fc_tgt_assoc * 897 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 898 u64 association_id) 899 { 900 struct nvmet_fc_tgt_assoc *assoc; 901 struct nvmet_fc_tgt_assoc *ret = NULL; 902 unsigned long flags; 903 904 spin_lock_irqsave(&tgtport->lock, flags); 905 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 906 if (association_id == assoc->association_id) { 907 ret = assoc; 908 nvmet_fc_tgt_a_get(assoc); 909 break; 910 } 911 } 912 spin_unlock_irqrestore(&tgtport->lock, flags); 913 914 return ret; 915 } 916 917 static void 918 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport, 919 struct nvmet_fc_port_entry *pe, 920 struct nvmet_port *port) 921 { 922 lockdep_assert_held(&nvmet_fc_tgtlock); 923 924 pe->tgtport = tgtport; 925 tgtport->pe = pe; 926 927 pe->port = port; 928 port->priv = pe; 929 930 pe->node_name = tgtport->fc_target_port.node_name; 931 pe->port_name = tgtport->fc_target_port.port_name; 932 INIT_LIST_HEAD(&pe->pe_list); 933 934 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list); 935 } 936 937 static void 938 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe) 939 { 940 unsigned long flags; 941 942 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 943 if (pe->tgtport) 944 pe->tgtport->pe = NULL; 945 list_del(&pe->pe_list); 946 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 947 } 948 949 /* 950 * called when a targetport deregisters. Breaks the relationship 951 * with the nvmet port, but leaves the port_entry in place so that 952 * re-registration can resume operation. 953 */ 954 static void 955 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport) 956 { 957 struct nvmet_fc_port_entry *pe; 958 unsigned long flags; 959 960 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 961 pe = tgtport->pe; 962 if (pe) 963 pe->tgtport = NULL; 964 tgtport->pe = NULL; 965 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 966 } 967 968 /* 969 * called when a new targetport is registered. Looks in the 970 * existing nvmet port_entries to see if the nvmet layer is 971 * configured for the targetport's wwn's. (the targetport existed, 972 * nvmet configured, the lldd unregistered the tgtport, and is now 973 * reregistering the same targetport). If so, set the nvmet port 974 * port entry on the targetport. 975 */ 976 static void 977 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport) 978 { 979 struct nvmet_fc_port_entry *pe; 980 unsigned long flags; 981 982 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 983 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) { 984 if (tgtport->fc_target_port.node_name == pe->node_name && 985 tgtport->fc_target_port.port_name == pe->port_name) { 986 WARN_ON(pe->tgtport); 987 tgtport->pe = pe; 988 pe->tgtport = tgtport; 989 break; 990 } 991 } 992 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 993 } 994 995 /** 996 * nvme_fc_register_targetport - transport entry point called by an 997 * LLDD to register the existence of a local 998 * NVME subystem FC port. 999 * @pinfo: pointer to information about the port to be registered 1000 * @template: LLDD entrypoints and operational parameters for the port 1001 * @dev: physical hardware device node port corresponds to. Will be 1002 * used for DMA mappings 1003 * @portptr: pointer to a local port pointer. Upon success, the routine 1004 * will allocate a nvme_fc_local_port structure and place its 1005 * address in the local port pointer. Upon failure, local port 1006 * pointer will be set to NULL. 1007 * 1008 * Returns: 1009 * a completion status. Must be 0 upon success; a negative errno 1010 * (ex: -ENXIO) upon failure. 1011 */ 1012 int 1013 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 1014 struct nvmet_fc_target_template *template, 1015 struct device *dev, 1016 struct nvmet_fc_target_port **portptr) 1017 { 1018 struct nvmet_fc_tgtport *newrec; 1019 unsigned long flags; 1020 int ret, idx; 1021 1022 if (!template->xmt_ls_rsp || !template->fcp_op || 1023 !template->fcp_abort || 1024 !template->fcp_req_release || !template->targetport_delete || 1025 !template->max_hw_queues || !template->max_sgl_segments || 1026 !template->max_dif_sgl_segments || !template->dma_boundary) { 1027 ret = -EINVAL; 1028 goto out_regtgt_failed; 1029 } 1030 1031 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 1032 GFP_KERNEL); 1033 if (!newrec) { 1034 ret = -ENOMEM; 1035 goto out_regtgt_failed; 1036 } 1037 1038 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 1039 if (idx < 0) { 1040 ret = -ENOSPC; 1041 goto out_fail_kfree; 1042 } 1043 1044 if (!get_device(dev) && dev) { 1045 ret = -ENODEV; 1046 goto out_ida_put; 1047 } 1048 1049 newrec->fc_target_port.node_name = pinfo->node_name; 1050 newrec->fc_target_port.port_name = pinfo->port_name; 1051 newrec->fc_target_port.private = &newrec[1]; 1052 newrec->fc_target_port.port_id = pinfo->port_id; 1053 newrec->fc_target_port.port_num = idx; 1054 INIT_LIST_HEAD(&newrec->tgt_list); 1055 newrec->dev = dev; 1056 newrec->ops = template; 1057 spin_lock_init(&newrec->lock); 1058 INIT_LIST_HEAD(&newrec->ls_list); 1059 INIT_LIST_HEAD(&newrec->ls_busylist); 1060 INIT_LIST_HEAD(&newrec->assoc_list); 1061 kref_init(&newrec->ref); 1062 ida_init(&newrec->assoc_cnt); 1063 newrec->max_sg_cnt = template->max_sgl_segments; 1064 1065 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1066 if (ret) { 1067 ret = -ENOMEM; 1068 goto out_free_newrec; 1069 } 1070 1071 nvmet_fc_portentry_rebind_tgt(newrec); 1072 1073 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1074 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1075 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1076 1077 *portptr = &newrec->fc_target_port; 1078 return 0; 1079 1080 out_free_newrec: 1081 put_device(dev); 1082 out_ida_put: 1083 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1084 out_fail_kfree: 1085 kfree(newrec); 1086 out_regtgt_failed: 1087 *portptr = NULL; 1088 return ret; 1089 } 1090 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1091 1092 1093 static void 1094 nvmet_fc_free_tgtport(struct kref *ref) 1095 { 1096 struct nvmet_fc_tgtport *tgtport = 1097 container_of(ref, struct nvmet_fc_tgtport, ref); 1098 struct device *dev = tgtport->dev; 1099 unsigned long flags; 1100 1101 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1102 list_del(&tgtport->tgt_list); 1103 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1104 1105 nvmet_fc_free_ls_iodlist(tgtport); 1106 1107 /* let the LLDD know we've finished tearing it down */ 1108 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1109 1110 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1111 tgtport->fc_target_port.port_num); 1112 1113 ida_destroy(&tgtport->assoc_cnt); 1114 1115 kfree(tgtport); 1116 1117 put_device(dev); 1118 } 1119 1120 static void 1121 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1122 { 1123 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1124 } 1125 1126 static int 1127 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1128 { 1129 return kref_get_unless_zero(&tgtport->ref); 1130 } 1131 1132 static void 1133 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1134 { 1135 struct nvmet_fc_tgt_assoc *assoc, *next; 1136 unsigned long flags; 1137 1138 spin_lock_irqsave(&tgtport->lock, flags); 1139 list_for_each_entry_safe(assoc, next, 1140 &tgtport->assoc_list, a_list) { 1141 if (!nvmet_fc_tgt_a_get(assoc)) 1142 continue; 1143 if (!schedule_work(&assoc->del_work)) 1144 nvmet_fc_tgt_a_put(assoc); 1145 } 1146 spin_unlock_irqrestore(&tgtport->lock, flags); 1147 } 1148 1149 /* 1150 * nvmet layer has called to terminate an association 1151 */ 1152 static void 1153 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1154 { 1155 struct nvmet_fc_tgtport *tgtport, *next; 1156 struct nvmet_fc_tgt_assoc *assoc; 1157 struct nvmet_fc_tgt_queue *queue; 1158 unsigned long flags; 1159 bool found_ctrl = false; 1160 1161 /* this is a bit ugly, but don't want to make locks layered */ 1162 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1163 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1164 tgt_list) { 1165 if (!nvmet_fc_tgtport_get(tgtport)) 1166 continue; 1167 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1168 1169 spin_lock_irqsave(&tgtport->lock, flags); 1170 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1171 queue = assoc->queues[0]; 1172 if (queue && queue->nvme_sq.ctrl == ctrl) { 1173 if (nvmet_fc_tgt_a_get(assoc)) 1174 found_ctrl = true; 1175 break; 1176 } 1177 } 1178 spin_unlock_irqrestore(&tgtport->lock, flags); 1179 1180 nvmet_fc_tgtport_put(tgtport); 1181 1182 if (found_ctrl) { 1183 if (!schedule_work(&assoc->del_work)) 1184 nvmet_fc_tgt_a_put(assoc); 1185 return; 1186 } 1187 1188 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1189 } 1190 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1191 } 1192 1193 /** 1194 * nvme_fc_unregister_targetport - transport entry point called by an 1195 * LLDD to deregister/remove a previously 1196 * registered a local NVME subsystem FC port. 1197 * @target_port: pointer to the (registered) target port that is to be 1198 * deregistered. 1199 * 1200 * Returns: 1201 * a completion status. Must be 0 upon success; a negative errno 1202 * (ex: -ENXIO) upon failure. 1203 */ 1204 int 1205 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1206 { 1207 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1208 1209 nvmet_fc_portentry_unbind_tgt(tgtport); 1210 1211 /* terminate any outstanding associations */ 1212 __nvmet_fc_free_assocs(tgtport); 1213 1214 nvmet_fc_tgtport_put(tgtport); 1215 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1219 1220 1221 /* *********************** FC-NVME LS Handling **************************** */ 1222 1223 1224 static void 1225 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1226 { 1227 struct fcnvme_ls_acc_hdr *acc = buf; 1228 1229 acc->w0.ls_cmd = ls_cmd; 1230 acc->desc_list_len = desc_len; 1231 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1232 acc->rqst.desc_len = 1233 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1234 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1235 } 1236 1237 static int 1238 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1239 u8 reason, u8 explanation, u8 vendor) 1240 { 1241 struct fcnvme_ls_rjt *rjt = buf; 1242 1243 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1244 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1245 ls_cmd); 1246 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1247 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1248 rjt->rjt.reason_code = reason; 1249 rjt->rjt.reason_explanation = explanation; 1250 rjt->rjt.vendor = vendor; 1251 1252 return sizeof(struct fcnvme_ls_rjt); 1253 } 1254 1255 /* Validation Error indexes into the string table below */ 1256 enum { 1257 VERR_NO_ERROR = 0, 1258 VERR_CR_ASSOC_LEN = 1, 1259 VERR_CR_ASSOC_RQST_LEN = 2, 1260 VERR_CR_ASSOC_CMD = 3, 1261 VERR_CR_ASSOC_CMD_LEN = 4, 1262 VERR_ERSP_RATIO = 5, 1263 VERR_ASSOC_ALLOC_FAIL = 6, 1264 VERR_QUEUE_ALLOC_FAIL = 7, 1265 VERR_CR_CONN_LEN = 8, 1266 VERR_CR_CONN_RQST_LEN = 9, 1267 VERR_ASSOC_ID = 10, 1268 VERR_ASSOC_ID_LEN = 11, 1269 VERR_NO_ASSOC = 12, 1270 VERR_CONN_ID = 13, 1271 VERR_CONN_ID_LEN = 14, 1272 VERR_NO_CONN = 15, 1273 VERR_CR_CONN_CMD = 16, 1274 VERR_CR_CONN_CMD_LEN = 17, 1275 VERR_DISCONN_LEN = 18, 1276 VERR_DISCONN_RQST_LEN = 19, 1277 VERR_DISCONN_CMD = 20, 1278 VERR_DISCONN_CMD_LEN = 21, 1279 VERR_DISCONN_SCOPE = 22, 1280 VERR_RS_LEN = 23, 1281 VERR_RS_RQST_LEN = 24, 1282 VERR_RS_CMD = 25, 1283 VERR_RS_CMD_LEN = 26, 1284 VERR_RS_RCTL = 27, 1285 VERR_RS_RO = 28, 1286 }; 1287 1288 static char *validation_errors[] = { 1289 "OK", 1290 "Bad CR_ASSOC Length", 1291 "Bad CR_ASSOC Rqst Length", 1292 "Not CR_ASSOC Cmd", 1293 "Bad CR_ASSOC Cmd Length", 1294 "Bad Ersp Ratio", 1295 "Association Allocation Failed", 1296 "Queue Allocation Failed", 1297 "Bad CR_CONN Length", 1298 "Bad CR_CONN Rqst Length", 1299 "Not Association ID", 1300 "Bad Association ID Length", 1301 "No Association", 1302 "Not Connection ID", 1303 "Bad Connection ID Length", 1304 "No Connection", 1305 "Not CR_CONN Cmd", 1306 "Bad CR_CONN Cmd Length", 1307 "Bad DISCONN Length", 1308 "Bad DISCONN Rqst Length", 1309 "Not DISCONN Cmd", 1310 "Bad DISCONN Cmd Length", 1311 "Bad Disconnect Scope", 1312 "Bad RS Length", 1313 "Bad RS Rqst Length", 1314 "Not RS Cmd", 1315 "Bad RS Cmd Length", 1316 "Bad RS R_CTL", 1317 "Bad RS Relative Offset", 1318 }; 1319 1320 static void 1321 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1322 struct nvmet_fc_ls_iod *iod) 1323 { 1324 struct fcnvme_ls_cr_assoc_rqst *rqst = 1325 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1326 struct fcnvme_ls_cr_assoc_acc *acc = 1327 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1328 struct nvmet_fc_tgt_queue *queue; 1329 int ret = 0; 1330 1331 memset(acc, 0, sizeof(*acc)); 1332 1333 /* 1334 * FC-NVME spec changes. There are initiators sending different 1335 * lengths as padding sizes for Create Association Cmd descriptor 1336 * was incorrect. 1337 * Accept anything of "minimum" length. Assume format per 1.15 1338 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1339 * trailing pad length is. 1340 */ 1341 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1342 ret = VERR_CR_ASSOC_LEN; 1343 else if (be32_to_cpu(rqst->desc_list_len) < 1344 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1345 ret = VERR_CR_ASSOC_RQST_LEN; 1346 else if (rqst->assoc_cmd.desc_tag != 1347 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1348 ret = VERR_CR_ASSOC_CMD; 1349 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1350 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1351 ret = VERR_CR_ASSOC_CMD_LEN; 1352 else if (!rqst->assoc_cmd.ersp_ratio || 1353 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1354 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1355 ret = VERR_ERSP_RATIO; 1356 1357 else { 1358 /* new association w/ admin queue */ 1359 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1360 if (!iod->assoc) 1361 ret = VERR_ASSOC_ALLOC_FAIL; 1362 else { 1363 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1364 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1365 if (!queue) 1366 ret = VERR_QUEUE_ALLOC_FAIL; 1367 } 1368 } 1369 1370 if (ret) { 1371 dev_err(tgtport->dev, 1372 "Create Association LS failed: %s\n", 1373 validation_errors[ret]); 1374 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1375 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1376 FCNVME_RJT_RC_LOGIC, 1377 FCNVME_RJT_EXP_NONE, 0); 1378 return; 1379 } 1380 1381 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1382 atomic_set(&queue->connected, 1); 1383 queue->sqhd = 0; /* best place to init value */ 1384 1385 /* format a response */ 1386 1387 iod->lsreq->rsplen = sizeof(*acc); 1388 1389 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1390 fcnvme_lsdesc_len( 1391 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1392 FCNVME_LS_CREATE_ASSOCIATION); 1393 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1394 acc->associd.desc_len = 1395 fcnvme_lsdesc_len( 1396 sizeof(struct fcnvme_lsdesc_assoc_id)); 1397 acc->associd.association_id = 1398 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1399 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1400 acc->connectid.desc_len = 1401 fcnvme_lsdesc_len( 1402 sizeof(struct fcnvme_lsdesc_conn_id)); 1403 acc->connectid.connection_id = acc->associd.association_id; 1404 } 1405 1406 static void 1407 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1408 struct nvmet_fc_ls_iod *iod) 1409 { 1410 struct fcnvme_ls_cr_conn_rqst *rqst = 1411 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1412 struct fcnvme_ls_cr_conn_acc *acc = 1413 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1414 struct nvmet_fc_tgt_queue *queue; 1415 int ret = 0; 1416 1417 memset(acc, 0, sizeof(*acc)); 1418 1419 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1420 ret = VERR_CR_CONN_LEN; 1421 else if (rqst->desc_list_len != 1422 fcnvme_lsdesc_len( 1423 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1424 ret = VERR_CR_CONN_RQST_LEN; 1425 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1426 ret = VERR_ASSOC_ID; 1427 else if (rqst->associd.desc_len != 1428 fcnvme_lsdesc_len( 1429 sizeof(struct fcnvme_lsdesc_assoc_id))) 1430 ret = VERR_ASSOC_ID_LEN; 1431 else if (rqst->connect_cmd.desc_tag != 1432 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1433 ret = VERR_CR_CONN_CMD; 1434 else if (rqst->connect_cmd.desc_len != 1435 fcnvme_lsdesc_len( 1436 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1437 ret = VERR_CR_CONN_CMD_LEN; 1438 else if (!rqst->connect_cmd.ersp_ratio || 1439 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1440 be16_to_cpu(rqst->connect_cmd.sqsize))) 1441 ret = VERR_ERSP_RATIO; 1442 1443 else { 1444 /* new io queue */ 1445 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1446 be64_to_cpu(rqst->associd.association_id)); 1447 if (!iod->assoc) 1448 ret = VERR_NO_ASSOC; 1449 else { 1450 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1451 be16_to_cpu(rqst->connect_cmd.qid), 1452 be16_to_cpu(rqst->connect_cmd.sqsize)); 1453 if (!queue) 1454 ret = VERR_QUEUE_ALLOC_FAIL; 1455 1456 /* release get taken in nvmet_fc_find_target_assoc */ 1457 nvmet_fc_tgt_a_put(iod->assoc); 1458 } 1459 } 1460 1461 if (ret) { 1462 dev_err(tgtport->dev, 1463 "Create Connection LS failed: %s\n", 1464 validation_errors[ret]); 1465 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1466 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1467 (ret == VERR_NO_ASSOC) ? 1468 FCNVME_RJT_RC_INV_ASSOC : 1469 FCNVME_RJT_RC_LOGIC, 1470 FCNVME_RJT_EXP_NONE, 0); 1471 return; 1472 } 1473 1474 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1475 atomic_set(&queue->connected, 1); 1476 queue->sqhd = 0; /* best place to init value */ 1477 1478 /* format a response */ 1479 1480 iod->lsreq->rsplen = sizeof(*acc); 1481 1482 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1483 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1484 FCNVME_LS_CREATE_CONNECTION); 1485 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1486 acc->connectid.desc_len = 1487 fcnvme_lsdesc_len( 1488 sizeof(struct fcnvme_lsdesc_conn_id)); 1489 acc->connectid.connection_id = 1490 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1491 be16_to_cpu(rqst->connect_cmd.qid))); 1492 } 1493 1494 static void 1495 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1496 struct nvmet_fc_ls_iod *iod) 1497 { 1498 struct fcnvme_ls_disconnect_rqst *rqst = 1499 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1500 struct fcnvme_ls_disconnect_acc *acc = 1501 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1502 struct nvmet_fc_tgt_assoc *assoc; 1503 int ret = 0; 1504 1505 memset(acc, 0, sizeof(*acc)); 1506 1507 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1508 ret = VERR_DISCONN_LEN; 1509 else if (rqst->desc_list_len != 1510 fcnvme_lsdesc_len( 1511 sizeof(struct fcnvme_ls_disconnect_rqst))) 1512 ret = VERR_DISCONN_RQST_LEN; 1513 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1514 ret = VERR_ASSOC_ID; 1515 else if (rqst->associd.desc_len != 1516 fcnvme_lsdesc_len( 1517 sizeof(struct fcnvme_lsdesc_assoc_id))) 1518 ret = VERR_ASSOC_ID_LEN; 1519 else if (rqst->discon_cmd.desc_tag != 1520 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1521 ret = VERR_DISCONN_CMD; 1522 else if (rqst->discon_cmd.desc_len != 1523 fcnvme_lsdesc_len( 1524 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1525 ret = VERR_DISCONN_CMD_LEN; 1526 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1527 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1528 ret = VERR_DISCONN_SCOPE; 1529 else { 1530 /* match an active association */ 1531 assoc = nvmet_fc_find_target_assoc(tgtport, 1532 be64_to_cpu(rqst->associd.association_id)); 1533 iod->assoc = assoc; 1534 if (!assoc) 1535 ret = VERR_NO_ASSOC; 1536 } 1537 1538 if (ret) { 1539 dev_err(tgtport->dev, 1540 "Disconnect LS failed: %s\n", 1541 validation_errors[ret]); 1542 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1543 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1544 (ret == VERR_NO_ASSOC) ? 1545 FCNVME_RJT_RC_INV_ASSOC : 1546 (ret == VERR_NO_CONN) ? 1547 FCNVME_RJT_RC_INV_CONN : 1548 FCNVME_RJT_RC_LOGIC, 1549 FCNVME_RJT_EXP_NONE, 0); 1550 return; 1551 } 1552 1553 /* format a response */ 1554 1555 iod->lsreq->rsplen = sizeof(*acc); 1556 1557 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1558 fcnvme_lsdesc_len( 1559 sizeof(struct fcnvme_ls_disconnect_acc)), 1560 FCNVME_LS_DISCONNECT); 1561 1562 /* release get taken in nvmet_fc_find_target_assoc */ 1563 nvmet_fc_tgt_a_put(iod->assoc); 1564 1565 nvmet_fc_delete_target_assoc(iod->assoc); 1566 } 1567 1568 1569 /* *********************** NVME Ctrl Routines **************************** */ 1570 1571 1572 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1573 1574 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1575 1576 static void 1577 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1578 { 1579 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1580 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1581 1582 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1583 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1584 nvmet_fc_free_ls_iod(tgtport, iod); 1585 nvmet_fc_tgtport_put(tgtport); 1586 } 1587 1588 static void 1589 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1590 struct nvmet_fc_ls_iod *iod) 1591 { 1592 int ret; 1593 1594 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1595 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1596 1597 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1598 if (ret) 1599 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1600 } 1601 1602 /* 1603 * Actual processing routine for received FC-NVME LS Requests from the LLD 1604 */ 1605 static void 1606 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1607 struct nvmet_fc_ls_iod *iod) 1608 { 1609 struct fcnvme_ls_rqst_w0 *w0 = 1610 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1611 1612 iod->lsreq->nvmet_fc_private = iod; 1613 iod->lsreq->rspbuf = iod->rspbuf; 1614 iod->lsreq->rspdma = iod->rspdma; 1615 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1616 /* Be preventative. handlers will later set to valid length */ 1617 iod->lsreq->rsplen = 0; 1618 1619 iod->assoc = NULL; 1620 1621 /* 1622 * handlers: 1623 * parse request input, execute the request, and format the 1624 * LS response 1625 */ 1626 switch (w0->ls_cmd) { 1627 case FCNVME_LS_CREATE_ASSOCIATION: 1628 /* Creates Association and initial Admin Queue/Connection */ 1629 nvmet_fc_ls_create_association(tgtport, iod); 1630 break; 1631 case FCNVME_LS_CREATE_CONNECTION: 1632 /* Creates an IO Queue/Connection */ 1633 nvmet_fc_ls_create_connection(tgtport, iod); 1634 break; 1635 case FCNVME_LS_DISCONNECT: 1636 /* Terminate a Queue/Connection or the Association */ 1637 nvmet_fc_ls_disconnect(tgtport, iod); 1638 break; 1639 default: 1640 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1641 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1642 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1643 } 1644 1645 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1646 } 1647 1648 /* 1649 * Actual processing routine for received FC-NVME LS Requests from the LLD 1650 */ 1651 static void 1652 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1653 { 1654 struct nvmet_fc_ls_iod *iod = 1655 container_of(work, struct nvmet_fc_ls_iod, work); 1656 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1657 1658 nvmet_fc_handle_ls_rqst(tgtport, iod); 1659 } 1660 1661 1662 /** 1663 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1664 * upon the reception of a NVME LS request. 1665 * 1666 * The nvmet-fc layer will copy payload to an internal structure for 1667 * processing. As such, upon completion of the routine, the LLDD may 1668 * immediately free/reuse the LS request buffer passed in the call. 1669 * 1670 * If this routine returns error, the LLDD should abort the exchange. 1671 * 1672 * @target_port: pointer to the (registered) target port the LS was 1673 * received on. 1674 * @lsreq: pointer to a lsreq request structure to be used to reference 1675 * the exchange corresponding to the LS. 1676 * @lsreqbuf: pointer to the buffer containing the LS Request 1677 * @lsreqbuf_len: length, in bytes, of the received LS request 1678 */ 1679 int 1680 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1681 struct nvmefc_tgt_ls_req *lsreq, 1682 void *lsreqbuf, u32 lsreqbuf_len) 1683 { 1684 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1685 struct nvmet_fc_ls_iod *iod; 1686 1687 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1688 return -E2BIG; 1689 1690 if (!nvmet_fc_tgtport_get(tgtport)) 1691 return -ESHUTDOWN; 1692 1693 iod = nvmet_fc_alloc_ls_iod(tgtport); 1694 if (!iod) { 1695 nvmet_fc_tgtport_put(tgtport); 1696 return -ENOENT; 1697 } 1698 1699 iod->lsreq = lsreq; 1700 iod->fcpreq = NULL; 1701 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1702 iod->rqstdatalen = lsreqbuf_len; 1703 1704 schedule_work(&iod->work); 1705 1706 return 0; 1707 } 1708 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1709 1710 1711 /* 1712 * ********************** 1713 * Start of FCP handling 1714 * ********************** 1715 */ 1716 1717 static int 1718 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1719 { 1720 struct scatterlist *sg; 1721 unsigned int nent; 1722 1723 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent); 1724 if (!sg) 1725 goto out; 1726 1727 fod->data_sg = sg; 1728 fod->data_sg_cnt = nent; 1729 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1730 ((fod->io_dir == NVMET_FCP_WRITE) ? 1731 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1732 /* note: write from initiator perspective */ 1733 fod->next_sg = fod->data_sg; 1734 1735 return 0; 1736 1737 out: 1738 return NVME_SC_INTERNAL; 1739 } 1740 1741 static void 1742 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1743 { 1744 if (!fod->data_sg || !fod->data_sg_cnt) 1745 return; 1746 1747 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1748 ((fod->io_dir == NVMET_FCP_WRITE) ? 1749 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1750 sgl_free(fod->data_sg); 1751 fod->data_sg = NULL; 1752 fod->data_sg_cnt = 0; 1753 } 1754 1755 1756 static bool 1757 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1758 { 1759 u32 sqtail, used; 1760 1761 /* egad, this is ugly. And sqtail is just a best guess */ 1762 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1763 1764 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1765 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1766 } 1767 1768 /* 1769 * Prep RSP payload. 1770 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1771 */ 1772 static void 1773 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1774 struct nvmet_fc_fcp_iod *fod) 1775 { 1776 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1777 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1778 struct nvme_completion *cqe = &ersp->cqe; 1779 u32 *cqewd = (u32 *)cqe; 1780 bool send_ersp = false; 1781 u32 rsn, rspcnt, xfr_length; 1782 1783 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1784 xfr_length = fod->req.transfer_len; 1785 else 1786 xfr_length = fod->offset; 1787 1788 /* 1789 * check to see if we can send a 0's rsp. 1790 * Note: to send a 0's response, the NVME-FC host transport will 1791 * recreate the CQE. The host transport knows: sq id, SQHD (last 1792 * seen in an ersp), and command_id. Thus it will create a 1793 * zero-filled CQE with those known fields filled in. Transport 1794 * must send an ersp for any condition where the cqe won't match 1795 * this. 1796 * 1797 * Here are the FC-NVME mandated cases where we must send an ersp: 1798 * every N responses, where N=ersp_ratio 1799 * force fabric commands to send ersp's (not in FC-NVME but good 1800 * practice) 1801 * normal cmds: any time status is non-zero, or status is zero 1802 * but words 0 or 1 are non-zero. 1803 * the SQ is 90% or more full 1804 * the cmd is a fused command 1805 * transferred data length not equal to cmd iu length 1806 */ 1807 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1808 if (!(rspcnt % fod->queue->ersp_ratio) || 1809 sqe->opcode == nvme_fabrics_command || 1810 xfr_length != fod->req.transfer_len || 1811 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1812 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1813 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1814 send_ersp = true; 1815 1816 /* re-set the fields */ 1817 fod->fcpreq->rspaddr = ersp; 1818 fod->fcpreq->rspdma = fod->rspdma; 1819 1820 if (!send_ersp) { 1821 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1822 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1823 } else { 1824 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1825 rsn = atomic_inc_return(&fod->queue->rsn); 1826 ersp->rsn = cpu_to_be32(rsn); 1827 ersp->xfrd_len = cpu_to_be32(xfr_length); 1828 fod->fcpreq->rsplen = sizeof(*ersp); 1829 } 1830 1831 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1832 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1833 } 1834 1835 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1836 1837 static void 1838 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1839 struct nvmet_fc_fcp_iod *fod) 1840 { 1841 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1842 1843 /* data no longer needed */ 1844 nvmet_fc_free_tgt_pgs(fod); 1845 1846 /* 1847 * if an ABTS was received or we issued the fcp_abort early 1848 * don't call abort routine again. 1849 */ 1850 /* no need to take lock - lock was taken earlier to get here */ 1851 if (!fod->aborted) 1852 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1853 1854 nvmet_fc_free_fcp_iod(fod->queue, fod); 1855 } 1856 1857 static void 1858 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1859 struct nvmet_fc_fcp_iod *fod) 1860 { 1861 int ret; 1862 1863 fod->fcpreq->op = NVMET_FCOP_RSP; 1864 fod->fcpreq->timeout = 0; 1865 1866 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1867 1868 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1869 if (ret) 1870 nvmet_fc_abort_op(tgtport, fod); 1871 } 1872 1873 static void 1874 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1875 struct nvmet_fc_fcp_iod *fod, u8 op) 1876 { 1877 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1878 struct scatterlist *sg = fod->next_sg; 1879 unsigned long flags; 1880 u32 remaininglen = fod->req.transfer_len - fod->offset; 1881 u32 tlen = 0; 1882 int ret; 1883 1884 fcpreq->op = op; 1885 fcpreq->offset = fod->offset; 1886 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1887 1888 /* 1889 * for next sequence: 1890 * break at a sg element boundary 1891 * attempt to keep sequence length capped at 1892 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to 1893 * be longer if a single sg element is larger 1894 * than that amount. This is done to avoid creating 1895 * a new sg list to use for the tgtport api. 1896 */ 1897 fcpreq->sg = sg; 1898 fcpreq->sg_cnt = 0; 1899 while (tlen < remaininglen && 1900 fcpreq->sg_cnt < tgtport->max_sg_cnt && 1901 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) { 1902 fcpreq->sg_cnt++; 1903 tlen += sg_dma_len(sg); 1904 sg = sg_next(sg); 1905 } 1906 if (tlen < remaininglen && fcpreq->sg_cnt == 0) { 1907 fcpreq->sg_cnt++; 1908 tlen += min_t(u32, sg_dma_len(sg), remaininglen); 1909 sg = sg_next(sg); 1910 } 1911 if (tlen < remaininglen) 1912 fod->next_sg = sg; 1913 else 1914 fod->next_sg = NULL; 1915 1916 fcpreq->transfer_length = tlen; 1917 fcpreq->transferred_length = 0; 1918 fcpreq->fcp_error = 0; 1919 fcpreq->rsplen = 0; 1920 1921 /* 1922 * If the last READDATA request: check if LLDD supports 1923 * combined xfr with response. 1924 */ 1925 if ((op == NVMET_FCOP_READDATA) && 1926 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) && 1927 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1928 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1929 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1930 } 1931 1932 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1933 if (ret) { 1934 /* 1935 * should be ok to set w/o lock as its in the thread of 1936 * execution (not an async timer routine) and doesn't 1937 * contend with any clearing action 1938 */ 1939 fod->abort = true; 1940 1941 if (op == NVMET_FCOP_WRITEDATA) { 1942 spin_lock_irqsave(&fod->flock, flags); 1943 fod->writedataactive = false; 1944 spin_unlock_irqrestore(&fod->flock, flags); 1945 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1946 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1947 fcpreq->fcp_error = ret; 1948 fcpreq->transferred_length = 0; 1949 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1950 } 1951 } 1952 } 1953 1954 static inline bool 1955 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 1956 { 1957 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1958 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1959 1960 /* if in the middle of an io and we need to tear down */ 1961 if (abort) { 1962 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 1963 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1964 return true; 1965 } 1966 1967 nvmet_fc_abort_op(tgtport, fod); 1968 return true; 1969 } 1970 1971 return false; 1972 } 1973 1974 /* 1975 * actual done handler for FCP operations when completed by the lldd 1976 */ 1977 static void 1978 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 1979 { 1980 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1981 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1982 unsigned long flags; 1983 bool abort; 1984 1985 spin_lock_irqsave(&fod->flock, flags); 1986 abort = fod->abort; 1987 fod->writedataactive = false; 1988 spin_unlock_irqrestore(&fod->flock, flags); 1989 1990 switch (fcpreq->op) { 1991 1992 case NVMET_FCOP_WRITEDATA: 1993 if (__nvmet_fc_fod_op_abort(fod, abort)) 1994 return; 1995 if (fcpreq->fcp_error || 1996 fcpreq->transferred_length != fcpreq->transfer_length) { 1997 spin_lock(&fod->flock); 1998 fod->abort = true; 1999 spin_unlock(&fod->flock); 2000 2001 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2002 return; 2003 } 2004 2005 fod->offset += fcpreq->transferred_length; 2006 if (fod->offset != fod->req.transfer_len) { 2007 spin_lock_irqsave(&fod->flock, flags); 2008 fod->writedataactive = true; 2009 spin_unlock_irqrestore(&fod->flock, flags); 2010 2011 /* transfer the next chunk */ 2012 nvmet_fc_transfer_fcp_data(tgtport, fod, 2013 NVMET_FCOP_WRITEDATA); 2014 return; 2015 } 2016 2017 /* data transfer complete, resume with nvmet layer */ 2018 nvmet_req_execute(&fod->req); 2019 break; 2020 2021 case NVMET_FCOP_READDATA: 2022 case NVMET_FCOP_READDATA_RSP: 2023 if (__nvmet_fc_fod_op_abort(fod, abort)) 2024 return; 2025 if (fcpreq->fcp_error || 2026 fcpreq->transferred_length != fcpreq->transfer_length) { 2027 nvmet_fc_abort_op(tgtport, fod); 2028 return; 2029 } 2030 2031 /* success */ 2032 2033 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2034 /* data no longer needed */ 2035 nvmet_fc_free_tgt_pgs(fod); 2036 nvmet_fc_free_fcp_iod(fod->queue, fod); 2037 return; 2038 } 2039 2040 fod->offset += fcpreq->transferred_length; 2041 if (fod->offset != fod->req.transfer_len) { 2042 /* transfer the next chunk */ 2043 nvmet_fc_transfer_fcp_data(tgtport, fod, 2044 NVMET_FCOP_READDATA); 2045 return; 2046 } 2047 2048 /* data transfer complete, send response */ 2049 2050 /* data no longer needed */ 2051 nvmet_fc_free_tgt_pgs(fod); 2052 2053 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2054 2055 break; 2056 2057 case NVMET_FCOP_RSP: 2058 if (__nvmet_fc_fod_op_abort(fod, abort)) 2059 return; 2060 nvmet_fc_free_fcp_iod(fod->queue, fod); 2061 break; 2062 2063 default: 2064 break; 2065 } 2066 } 2067 2068 static void 2069 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2070 { 2071 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2072 2073 nvmet_fc_fod_op_done(fod); 2074 } 2075 2076 /* 2077 * actual completion handler after execution by the nvmet layer 2078 */ 2079 static void 2080 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2081 struct nvmet_fc_fcp_iod *fod, int status) 2082 { 2083 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2084 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2085 unsigned long flags; 2086 bool abort; 2087 2088 spin_lock_irqsave(&fod->flock, flags); 2089 abort = fod->abort; 2090 spin_unlock_irqrestore(&fod->flock, flags); 2091 2092 /* if we have a CQE, snoop the last sq_head value */ 2093 if (!status) 2094 fod->queue->sqhd = cqe->sq_head; 2095 2096 if (abort) { 2097 nvmet_fc_abort_op(tgtport, fod); 2098 return; 2099 } 2100 2101 /* if an error handling the cmd post initial parsing */ 2102 if (status) { 2103 /* fudge up a failed CQE status for our transport error */ 2104 memset(cqe, 0, sizeof(*cqe)); 2105 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2106 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2107 cqe->command_id = sqe->command_id; 2108 cqe->status = cpu_to_le16(status); 2109 } else { 2110 2111 /* 2112 * try to push the data even if the SQE status is non-zero. 2113 * There may be a status where data still was intended to 2114 * be moved 2115 */ 2116 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2117 /* push the data over before sending rsp */ 2118 nvmet_fc_transfer_fcp_data(tgtport, fod, 2119 NVMET_FCOP_READDATA); 2120 return; 2121 } 2122 2123 /* writes & no data - fall thru */ 2124 } 2125 2126 /* data no longer needed */ 2127 nvmet_fc_free_tgt_pgs(fod); 2128 2129 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2130 } 2131 2132 2133 static void 2134 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2135 { 2136 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2137 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2138 2139 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2140 } 2141 2142 2143 /* 2144 * Actual processing routine for received FC-NVME I/O Requests from the LLD 2145 */ 2146 static void 2147 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2148 struct nvmet_fc_fcp_iod *fod) 2149 { 2150 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2151 u32 xfrlen = be32_to_cpu(cmdiu->data_len); 2152 int ret; 2153 2154 /* 2155 * if there is no nvmet mapping to the targetport there 2156 * shouldn't be requests. just terminate them. 2157 */ 2158 if (!tgtport->pe) 2159 goto transport_error; 2160 2161 /* 2162 * Fused commands are currently not supported in the linux 2163 * implementation. 2164 * 2165 * As such, the implementation of the FC transport does not 2166 * look at the fused commands and order delivery to the upper 2167 * layer until we have both based on csn. 2168 */ 2169 2170 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2171 2172 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2173 fod->io_dir = NVMET_FCP_WRITE; 2174 if (!nvme_is_write(&cmdiu->sqe)) 2175 goto transport_error; 2176 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2177 fod->io_dir = NVMET_FCP_READ; 2178 if (nvme_is_write(&cmdiu->sqe)) 2179 goto transport_error; 2180 } else { 2181 fod->io_dir = NVMET_FCP_NODATA; 2182 if (xfrlen) 2183 goto transport_error; 2184 } 2185 2186 fod->req.cmd = &fod->cmdiubuf.sqe; 2187 fod->req.cqe = &fod->rspiubuf.cqe; 2188 fod->req.port = tgtport->pe->port; 2189 2190 /* clear any response payload */ 2191 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2192 2193 fod->data_sg = NULL; 2194 fod->data_sg_cnt = 0; 2195 2196 ret = nvmet_req_init(&fod->req, 2197 &fod->queue->nvme_cq, 2198 &fod->queue->nvme_sq, 2199 &nvmet_fc_tgt_fcp_ops); 2200 if (!ret) { 2201 /* bad SQE content or invalid ctrl state */ 2202 /* nvmet layer has already called op done to send rsp. */ 2203 return; 2204 } 2205 2206 fod->req.transfer_len = xfrlen; 2207 2208 /* keep a running counter of tail position */ 2209 atomic_inc(&fod->queue->sqtail); 2210 2211 if (fod->req.transfer_len) { 2212 ret = nvmet_fc_alloc_tgt_pgs(fod); 2213 if (ret) { 2214 nvmet_req_complete(&fod->req, ret); 2215 return; 2216 } 2217 } 2218 fod->req.sg = fod->data_sg; 2219 fod->req.sg_cnt = fod->data_sg_cnt; 2220 fod->offset = 0; 2221 2222 if (fod->io_dir == NVMET_FCP_WRITE) { 2223 /* pull the data over before invoking nvmet layer */ 2224 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2225 return; 2226 } 2227 2228 /* 2229 * Reads or no data: 2230 * 2231 * can invoke the nvmet_layer now. If read data, cmd completion will 2232 * push the data 2233 */ 2234 nvmet_req_execute(&fod->req); 2235 return; 2236 2237 transport_error: 2238 nvmet_fc_abort_op(tgtport, fod); 2239 } 2240 2241 /** 2242 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2243 * upon the reception of a NVME FCP CMD IU. 2244 * 2245 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2246 * layer for processing. 2247 * 2248 * The nvmet_fc layer allocates a local job structure (struct 2249 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2250 * CMD IU buffer to the job structure. As such, on a successful 2251 * completion (returns 0), the LLDD may immediately free/reuse 2252 * the CMD IU buffer passed in the call. 2253 * 2254 * However, in some circumstances, due to the packetized nature of FC 2255 * and the api of the FC LLDD which may issue a hw command to send the 2256 * response, but the LLDD may not get the hw completion for that command 2257 * and upcall the nvmet_fc layer before a new command may be 2258 * asynchronously received - its possible for a command to be received 2259 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2260 * the appearance of more commands received than fits in the sq. 2261 * To alleviate this scenario, a temporary queue is maintained in the 2262 * transport for pending LLDD requests waiting for a queue job structure. 2263 * In these "overrun" cases, a temporary queue element is allocated 2264 * the LLDD request and CMD iu buffer information remembered, and the 2265 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2266 * structure is freed, it is immediately reallocated for anything on the 2267 * pending request list. The LLDDs defer_rcv() callback is called, 2268 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2269 * is then started normally with the transport. 2270 * 2271 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2272 * the completion as successful but must not reuse the CMD IU buffer 2273 * until the LLDD's defer_rcv() callback has been called for the 2274 * corresponding struct nvmefc_tgt_fcp_req pointer. 2275 * 2276 * If there is any other condition in which an error occurs, the 2277 * transport will return a non-zero status indicating the error. 2278 * In all cases other than -EOVERFLOW, the transport has not accepted the 2279 * request and the LLDD should abort the exchange. 2280 * 2281 * @target_port: pointer to the (registered) target port the FCP CMD IU 2282 * was received on. 2283 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2284 * the exchange corresponding to the FCP Exchange. 2285 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2286 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2287 */ 2288 int 2289 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2290 struct nvmefc_tgt_fcp_req *fcpreq, 2291 void *cmdiubuf, u32 cmdiubuf_len) 2292 { 2293 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2294 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2295 struct nvmet_fc_tgt_queue *queue; 2296 struct nvmet_fc_fcp_iod *fod; 2297 struct nvmet_fc_defer_fcp_req *deferfcp; 2298 unsigned long flags; 2299 2300 /* validate iu, so the connection id can be used to find the queue */ 2301 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2302 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2303 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2304 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2305 return -EIO; 2306 2307 queue = nvmet_fc_find_target_queue(tgtport, 2308 be64_to_cpu(cmdiu->connection_id)); 2309 if (!queue) 2310 return -ENOTCONN; 2311 2312 /* 2313 * note: reference taken by find_target_queue 2314 * After successful fod allocation, the fod will inherit the 2315 * ownership of that reference and will remove the reference 2316 * when the fod is freed. 2317 */ 2318 2319 spin_lock_irqsave(&queue->qlock, flags); 2320 2321 fod = nvmet_fc_alloc_fcp_iod(queue); 2322 if (fod) { 2323 spin_unlock_irqrestore(&queue->qlock, flags); 2324 2325 fcpreq->nvmet_fc_private = fod; 2326 fod->fcpreq = fcpreq; 2327 2328 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2329 2330 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2331 2332 return 0; 2333 } 2334 2335 if (!tgtport->ops->defer_rcv) { 2336 spin_unlock_irqrestore(&queue->qlock, flags); 2337 /* release the queue lookup reference */ 2338 nvmet_fc_tgt_q_put(queue); 2339 return -ENOENT; 2340 } 2341 2342 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2343 struct nvmet_fc_defer_fcp_req, req_list); 2344 if (deferfcp) { 2345 /* Just re-use one that was previously allocated */ 2346 list_del(&deferfcp->req_list); 2347 } else { 2348 spin_unlock_irqrestore(&queue->qlock, flags); 2349 2350 /* Now we need to dynamically allocate one */ 2351 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2352 if (!deferfcp) { 2353 /* release the queue lookup reference */ 2354 nvmet_fc_tgt_q_put(queue); 2355 return -ENOMEM; 2356 } 2357 spin_lock_irqsave(&queue->qlock, flags); 2358 } 2359 2360 /* For now, use rspaddr / rsplen to save payload information */ 2361 fcpreq->rspaddr = cmdiubuf; 2362 fcpreq->rsplen = cmdiubuf_len; 2363 deferfcp->fcp_req = fcpreq; 2364 2365 /* defer processing till a fod becomes available */ 2366 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2367 2368 /* NOTE: the queue lookup reference is still valid */ 2369 2370 spin_unlock_irqrestore(&queue->qlock, flags); 2371 2372 return -EOVERFLOW; 2373 } 2374 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2375 2376 /** 2377 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2378 * upon the reception of an ABTS for a FCP command 2379 * 2380 * Notify the transport that an ABTS has been received for a FCP command 2381 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2382 * LLDD believes the command is still being worked on 2383 * (template_ops->fcp_req_release() has not been called). 2384 * 2385 * The transport will wait for any outstanding work (an op to the LLDD, 2386 * which the lldd should complete with error due to the ABTS; or the 2387 * completion from the nvmet layer of the nvme command), then will 2388 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2389 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2390 * to the ABTS either after return from this function (assuming any 2391 * outstanding op work has been terminated) or upon the callback being 2392 * called. 2393 * 2394 * @target_port: pointer to the (registered) target port the FCP CMD IU 2395 * was received on. 2396 * @fcpreq: pointer to the fcpreq request structure that corresponds 2397 * to the exchange that received the ABTS. 2398 */ 2399 void 2400 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2401 struct nvmefc_tgt_fcp_req *fcpreq) 2402 { 2403 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2404 struct nvmet_fc_tgt_queue *queue; 2405 unsigned long flags; 2406 2407 if (!fod || fod->fcpreq != fcpreq) 2408 /* job appears to have already completed, ignore abort */ 2409 return; 2410 2411 queue = fod->queue; 2412 2413 spin_lock_irqsave(&queue->qlock, flags); 2414 if (fod->active) { 2415 /* 2416 * mark as abort. The abort handler, invoked upon completion 2417 * of any work, will detect the aborted status and do the 2418 * callback. 2419 */ 2420 spin_lock(&fod->flock); 2421 fod->abort = true; 2422 fod->aborted = true; 2423 spin_unlock(&fod->flock); 2424 } 2425 spin_unlock_irqrestore(&queue->qlock, flags); 2426 } 2427 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2428 2429 2430 struct nvmet_fc_traddr { 2431 u64 nn; 2432 u64 pn; 2433 }; 2434 2435 static int 2436 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2437 { 2438 u64 token64; 2439 2440 if (match_u64(sstr, &token64)) 2441 return -EINVAL; 2442 *val = token64; 2443 2444 return 0; 2445 } 2446 2447 /* 2448 * This routine validates and extracts the WWN's from the TRADDR string. 2449 * As kernel parsers need the 0x to determine number base, universally 2450 * build string to parse with 0x prefix before parsing name strings. 2451 */ 2452 static int 2453 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2454 { 2455 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2456 substring_t wwn = { name, &name[sizeof(name)-1] }; 2457 int nnoffset, pnoffset; 2458 2459 /* validate if string is one of the 2 allowed formats */ 2460 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2461 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2462 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2463 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2464 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2465 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2466 NVME_FC_TRADDR_OXNNLEN; 2467 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2468 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2469 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2470 "pn-", NVME_FC_TRADDR_NNLEN))) { 2471 nnoffset = NVME_FC_TRADDR_NNLEN; 2472 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2473 } else 2474 goto out_einval; 2475 2476 name[0] = '0'; 2477 name[1] = 'x'; 2478 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2479 2480 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2481 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2482 goto out_einval; 2483 2484 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2485 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2486 goto out_einval; 2487 2488 return 0; 2489 2490 out_einval: 2491 pr_warn("%s: bad traddr string\n", __func__); 2492 return -EINVAL; 2493 } 2494 2495 static int 2496 nvmet_fc_add_port(struct nvmet_port *port) 2497 { 2498 struct nvmet_fc_tgtport *tgtport; 2499 struct nvmet_fc_port_entry *pe; 2500 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2501 unsigned long flags; 2502 int ret; 2503 2504 /* validate the address info */ 2505 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2506 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2507 return -EINVAL; 2508 2509 /* map the traddr address info to a target port */ 2510 2511 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2512 sizeof(port->disc_addr.traddr)); 2513 if (ret) 2514 return ret; 2515 2516 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2517 if (!pe) 2518 return -ENOMEM; 2519 2520 ret = -ENXIO; 2521 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2522 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2523 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2524 (tgtport->fc_target_port.port_name == traddr.pn)) { 2525 /* a FC port can only be 1 nvmet port id */ 2526 if (!tgtport->pe) { 2527 nvmet_fc_portentry_bind(tgtport, pe, port); 2528 ret = 0; 2529 } else 2530 ret = -EALREADY; 2531 break; 2532 } 2533 } 2534 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2535 2536 if (ret) 2537 kfree(pe); 2538 2539 return ret; 2540 } 2541 2542 static void 2543 nvmet_fc_remove_port(struct nvmet_port *port) 2544 { 2545 struct nvmet_fc_port_entry *pe = port->priv; 2546 2547 nvmet_fc_portentry_unbind(pe); 2548 2549 kfree(pe); 2550 } 2551 2552 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2553 .owner = THIS_MODULE, 2554 .type = NVMF_TRTYPE_FC, 2555 .msdbd = 1, 2556 .add_port = nvmet_fc_add_port, 2557 .remove_port = nvmet_fc_remove_port, 2558 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2559 .delete_ctrl = nvmet_fc_delete_ctrl, 2560 }; 2561 2562 static int __init nvmet_fc_init_module(void) 2563 { 2564 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2565 } 2566 2567 static void __exit nvmet_fc_exit_module(void) 2568 { 2569 /* sanity check - all lports should be removed */ 2570 if (!list_empty(&nvmet_fc_target_list)) 2571 pr_warn("%s: targetport list not empty\n", __func__); 2572 2573 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2574 2575 ida_destroy(&nvmet_fc_tgtport_cnt); 2576 } 2577 2578 module_init(nvmet_fc_init_module); 2579 module_exit(nvmet_fc_exit_module); 2580 2581 MODULE_LICENSE("GPL v2"); 2582