xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 26721b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct list_head		fod_list;
144 	struct list_head		pending_cmd_list;
145 	struct list_head		avail_defer_list;
146 	struct workqueue_struct		*work_q;
147 	struct kref			ref;
148 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
150 
151 struct nvmet_fc_hostport {
152 	struct nvmet_fc_tgtport		*tgtport;
153 	void				*hosthandle;
154 	struct list_head		host_list;
155 	struct kref			ref;
156 	u8				invalid;
157 };
158 
159 struct nvmet_fc_tgt_assoc {
160 	u64				association_id;
161 	u32				a_id;
162 	atomic_t			terminating;
163 	struct nvmet_fc_tgtport		*tgtport;
164 	struct nvmet_fc_hostport	*hostport;
165 	struct nvmet_fc_ls_iod		*rcv_disconn;
166 	struct list_head		a_list;
167 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
168 	struct kref			ref;
169 	struct work_struct		del_work;
170 };
171 
172 
173 static inline int
174 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
175 {
176 	return (iodptr - iodptr->tgtport->iod);
177 }
178 
179 static inline int
180 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
181 {
182 	return (fodptr - fodptr->queue->fod);
183 }
184 
185 
186 /*
187  * Association and Connection IDs:
188  *
189  * Association ID will have random number in upper 6 bytes and zero
190  *   in lower 2 bytes
191  *
192  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
193  *
194  * note: Association ID = Connection ID for queue 0
195  */
196 #define BYTES_FOR_QID			sizeof(u16)
197 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
198 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
199 
200 static inline u64
201 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
202 {
203 	return (assoc->association_id | qid);
204 }
205 
206 static inline u64
207 nvmet_fc_getassociationid(u64 connectionid)
208 {
209 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
210 }
211 
212 static inline u16
213 nvmet_fc_getqueueid(u64 connectionid)
214 {
215 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
216 }
217 
218 static inline struct nvmet_fc_tgtport *
219 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
220 {
221 	return container_of(targetport, struct nvmet_fc_tgtport,
222 				 fc_target_port);
223 }
224 
225 static inline struct nvmet_fc_fcp_iod *
226 nvmet_req_to_fod(struct nvmet_req *nvme_req)
227 {
228 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
229 }
230 
231 
232 /* *************************** Globals **************************** */
233 
234 
235 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
236 
237 static LIST_HEAD(nvmet_fc_target_list);
238 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
239 static LIST_HEAD(nvmet_fc_portentry_list);
240 
241 
242 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
243 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
244 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
245 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
246 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
247 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
248 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
249 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
250 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
251 					struct nvmet_fc_fcp_iod *fod);
252 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
253 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
254 				struct nvmet_fc_ls_iod *iod);
255 
256 
257 /* *********************** FC-NVME DMA Handling **************************** */
258 
259 /*
260  * The fcloop device passes in a NULL device pointer. Real LLD's will
261  * pass in a valid device pointer. If NULL is passed to the dma mapping
262  * routines, depending on the platform, it may or may not succeed, and
263  * may crash.
264  *
265  * As such:
266  * Wrapper all the dma routines and check the dev pointer.
267  *
268  * If simple mappings (return just a dma address, we'll noop them,
269  * returning a dma address of 0.
270  *
271  * On more complex mappings (dma_map_sg), a pseudo routine fills
272  * in the scatter list, setting all dma addresses to 0.
273  */
274 
275 static inline dma_addr_t
276 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
277 		enum dma_data_direction dir)
278 {
279 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
280 }
281 
282 static inline int
283 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
284 {
285 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
286 }
287 
288 static inline void
289 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
290 	enum dma_data_direction dir)
291 {
292 	if (dev)
293 		dma_unmap_single(dev, addr, size, dir);
294 }
295 
296 static inline void
297 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
298 		enum dma_data_direction dir)
299 {
300 	if (dev)
301 		dma_sync_single_for_cpu(dev, addr, size, dir);
302 }
303 
304 static inline void
305 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
306 		enum dma_data_direction dir)
307 {
308 	if (dev)
309 		dma_sync_single_for_device(dev, addr, size, dir);
310 }
311 
312 /* pseudo dma_map_sg call */
313 static int
314 fc_map_sg(struct scatterlist *sg, int nents)
315 {
316 	struct scatterlist *s;
317 	int i;
318 
319 	WARN_ON(nents == 0 || sg[0].length == 0);
320 
321 	for_each_sg(sg, s, nents, i) {
322 		s->dma_address = 0L;
323 #ifdef CONFIG_NEED_SG_DMA_LENGTH
324 		s->dma_length = s->length;
325 #endif
326 	}
327 	return nents;
328 }
329 
330 static inline int
331 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
332 		enum dma_data_direction dir)
333 {
334 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
335 }
336 
337 static inline void
338 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
339 		enum dma_data_direction dir)
340 {
341 	if (dev)
342 		dma_unmap_sg(dev, sg, nents, dir);
343 }
344 
345 
346 /* ********************** FC-NVME LS XMT Handling ************************* */
347 
348 
349 static void
350 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
351 {
352 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
353 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&tgtport->lock, flags);
357 
358 	if (!lsop->req_queued) {
359 		spin_unlock_irqrestore(&tgtport->lock, flags);
360 		return;
361 	}
362 
363 	list_del(&lsop->lsreq_list);
364 
365 	lsop->req_queued = false;
366 
367 	spin_unlock_irqrestore(&tgtport->lock, flags);
368 
369 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
370 				  (lsreq->rqstlen + lsreq->rsplen),
371 				  DMA_BIDIRECTIONAL);
372 
373 	nvmet_fc_tgtport_put(tgtport);
374 }
375 
376 static int
377 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
378 		struct nvmet_fc_ls_req_op *lsop,
379 		void (*done)(struct nvmefc_ls_req *req, int status))
380 {
381 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
382 	unsigned long flags;
383 	int ret = 0;
384 
385 	if (!tgtport->ops->ls_req)
386 		return -EOPNOTSUPP;
387 
388 	if (!nvmet_fc_tgtport_get(tgtport))
389 		return -ESHUTDOWN;
390 
391 	lsreq->done = done;
392 	lsop->req_queued = false;
393 	INIT_LIST_HEAD(&lsop->lsreq_list);
394 
395 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
396 				  lsreq->rqstlen + lsreq->rsplen,
397 				  DMA_BIDIRECTIONAL);
398 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
399 		ret = -EFAULT;
400 		goto out_puttgtport;
401 	}
402 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
403 
404 	spin_lock_irqsave(&tgtport->lock, flags);
405 
406 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
407 
408 	lsop->req_queued = true;
409 
410 	spin_unlock_irqrestore(&tgtport->lock, flags);
411 
412 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
413 				   lsreq);
414 	if (ret)
415 		goto out_unlink;
416 
417 	return 0;
418 
419 out_unlink:
420 	lsop->ls_error = ret;
421 	spin_lock_irqsave(&tgtport->lock, flags);
422 	lsop->req_queued = false;
423 	list_del(&lsop->lsreq_list);
424 	spin_unlock_irqrestore(&tgtport->lock, flags);
425 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
426 				  (lsreq->rqstlen + lsreq->rsplen),
427 				  DMA_BIDIRECTIONAL);
428 out_puttgtport:
429 	nvmet_fc_tgtport_put(tgtport);
430 
431 	return ret;
432 }
433 
434 static int
435 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
436 		struct nvmet_fc_ls_req_op *lsop,
437 		void (*done)(struct nvmefc_ls_req *req, int status))
438 {
439 	/* don't wait for completion */
440 
441 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
442 }
443 
444 static void
445 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
446 {
447 	struct nvmet_fc_ls_req_op *lsop =
448 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
449 
450 	__nvmet_fc_finish_ls_req(lsop);
451 
452 	/* fc-nvme target doesn't care about success or failure of cmd */
453 
454 	kfree(lsop);
455 }
456 
457 /*
458  * This routine sends a FC-NVME LS to disconnect (aka terminate)
459  * the FC-NVME Association.  Terminating the association also
460  * terminates the FC-NVME connections (per queue, both admin and io
461  * queues) that are part of the association. E.g. things are torn
462  * down, and the related FC-NVME Association ID and Connection IDs
463  * become invalid.
464  *
465  * The behavior of the fc-nvme target is such that it's
466  * understanding of the association and connections will implicitly
467  * be torn down. The action is implicit as it may be due to a loss of
468  * connectivity with the fc-nvme host, so the target may never get a
469  * response even if it tried.  As such, the action of this routine
470  * is to asynchronously send the LS, ignore any results of the LS, and
471  * continue on with terminating the association. If the fc-nvme host
472  * is present and receives the LS, it too can tear down.
473  */
474 static void
475 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
476 {
477 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
478 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
479 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
480 	struct nvmet_fc_ls_req_op *lsop;
481 	struct nvmefc_ls_req *lsreq;
482 	int ret;
483 
484 	/*
485 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
486 	 * message is normal. Otherwise, send unless the hostport has
487 	 * already been invalidated by the lldd.
488 	 */
489 	if (!tgtport->ops->ls_req || !assoc->hostport ||
490 	    assoc->hostport->invalid)
491 		return;
492 
493 	lsop = kzalloc((sizeof(*lsop) +
494 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
495 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
496 	if (!lsop) {
497 		dev_info(tgtport->dev,
498 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
499 			tgtport->fc_target_port.port_num, assoc->a_id);
500 		return;
501 	}
502 
503 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
504 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
505 	lsreq = &lsop->ls_req;
506 	if (tgtport->ops->lsrqst_priv_sz)
507 		lsreq->private = (void *)&discon_acc[1];
508 	else
509 		lsreq->private = NULL;
510 
511 	lsop->tgtport = tgtport;
512 	lsop->hosthandle = assoc->hostport->hosthandle;
513 
514 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
515 				assoc->association_id);
516 
517 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
518 				nvmet_fc_disconnect_assoc_done);
519 	if (ret) {
520 		dev_info(tgtport->dev,
521 			"{%d:%d} XMT Disconnect Association failed: %d\n",
522 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
523 		kfree(lsop);
524 	}
525 }
526 
527 
528 /* *********************** FC-NVME Port Management ************************ */
529 
530 
531 static int
532 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
533 {
534 	struct nvmet_fc_ls_iod *iod;
535 	int i;
536 
537 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
538 			GFP_KERNEL);
539 	if (!iod)
540 		return -ENOMEM;
541 
542 	tgtport->iod = iod;
543 
544 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
545 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
546 		iod->tgtport = tgtport;
547 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
548 
549 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
550 				       sizeof(union nvmefc_ls_responses),
551 				       GFP_KERNEL);
552 		if (!iod->rqstbuf)
553 			goto out_fail;
554 
555 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
556 
557 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
558 						sizeof(*iod->rspbuf),
559 						DMA_TO_DEVICE);
560 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
561 			goto out_fail;
562 	}
563 
564 	return 0;
565 
566 out_fail:
567 	kfree(iod->rqstbuf);
568 	list_del(&iod->ls_rcv_list);
569 	for (iod--, i--; i >= 0; iod--, i--) {
570 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
571 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
572 		kfree(iod->rqstbuf);
573 		list_del(&iod->ls_rcv_list);
574 	}
575 
576 	kfree(iod);
577 
578 	return -EFAULT;
579 }
580 
581 static void
582 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
583 {
584 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
585 	int i;
586 
587 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
588 		fc_dma_unmap_single(tgtport->dev,
589 				iod->rspdma, sizeof(*iod->rspbuf),
590 				DMA_TO_DEVICE);
591 		kfree(iod->rqstbuf);
592 		list_del(&iod->ls_rcv_list);
593 	}
594 	kfree(tgtport->iod);
595 }
596 
597 static struct nvmet_fc_ls_iod *
598 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
599 {
600 	struct nvmet_fc_ls_iod *iod;
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&tgtport->lock, flags);
604 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
605 					struct nvmet_fc_ls_iod, ls_rcv_list);
606 	if (iod)
607 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
608 	spin_unlock_irqrestore(&tgtport->lock, flags);
609 	return iod;
610 }
611 
612 
613 static void
614 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
615 			struct nvmet_fc_ls_iod *iod)
616 {
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&tgtport->lock, flags);
620 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
621 	spin_unlock_irqrestore(&tgtport->lock, flags);
622 }
623 
624 static void
625 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
626 				struct nvmet_fc_tgt_queue *queue)
627 {
628 	struct nvmet_fc_fcp_iod *fod = queue->fod;
629 	int i;
630 
631 	for (i = 0; i < queue->sqsize; fod++, i++) {
632 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
633 		fod->tgtport = tgtport;
634 		fod->queue = queue;
635 		fod->active = false;
636 		fod->abort = false;
637 		fod->aborted = false;
638 		fod->fcpreq = NULL;
639 		list_add_tail(&fod->fcp_list, &queue->fod_list);
640 		spin_lock_init(&fod->flock);
641 
642 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
643 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
644 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
645 			list_del(&fod->fcp_list);
646 			for (fod--, i--; i >= 0; fod--, i--) {
647 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
648 						sizeof(fod->rspiubuf),
649 						DMA_TO_DEVICE);
650 				fod->rspdma = 0L;
651 				list_del(&fod->fcp_list);
652 			}
653 
654 			return;
655 		}
656 	}
657 }
658 
659 static void
660 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
661 				struct nvmet_fc_tgt_queue *queue)
662 {
663 	struct nvmet_fc_fcp_iod *fod = queue->fod;
664 	int i;
665 
666 	for (i = 0; i < queue->sqsize; fod++, i++) {
667 		if (fod->rspdma)
668 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
669 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
670 	}
671 }
672 
673 static struct nvmet_fc_fcp_iod *
674 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
675 {
676 	struct nvmet_fc_fcp_iod *fod;
677 
678 	lockdep_assert_held(&queue->qlock);
679 
680 	fod = list_first_entry_or_null(&queue->fod_list,
681 					struct nvmet_fc_fcp_iod, fcp_list);
682 	if (fod) {
683 		list_del(&fod->fcp_list);
684 		fod->active = true;
685 		/*
686 		 * no queue reference is taken, as it was taken by the
687 		 * queue lookup just prior to the allocation. The iod
688 		 * will "inherit" that reference.
689 		 */
690 	}
691 	return fod;
692 }
693 
694 
695 static void
696 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
697 		       struct nvmet_fc_tgt_queue *queue,
698 		       struct nvmefc_tgt_fcp_req *fcpreq)
699 {
700 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
701 
702 	/*
703 	 * put all admin cmds on hw queue id 0. All io commands go to
704 	 * the respective hw queue based on a modulo basis
705 	 */
706 	fcpreq->hwqid = queue->qid ?
707 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
708 
709 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
710 }
711 
712 static void
713 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
714 {
715 	struct nvmet_fc_fcp_iod *fod =
716 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
717 
718 	/* Submit deferred IO for processing */
719 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
720 
721 }
722 
723 static void
724 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
725 			struct nvmet_fc_fcp_iod *fod)
726 {
727 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
728 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
729 	struct nvmet_fc_defer_fcp_req *deferfcp;
730 	unsigned long flags;
731 
732 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
733 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
734 
735 	fcpreq->nvmet_fc_private = NULL;
736 
737 	fod->active = false;
738 	fod->abort = false;
739 	fod->aborted = false;
740 	fod->writedataactive = false;
741 	fod->fcpreq = NULL;
742 
743 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
744 
745 	/* release the queue lookup reference on the completed IO */
746 	nvmet_fc_tgt_q_put(queue);
747 
748 	spin_lock_irqsave(&queue->qlock, flags);
749 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
750 				struct nvmet_fc_defer_fcp_req, req_list);
751 	if (!deferfcp) {
752 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
753 		spin_unlock_irqrestore(&queue->qlock, flags);
754 		return;
755 	}
756 
757 	/* Re-use the fod for the next pending cmd that was deferred */
758 	list_del(&deferfcp->req_list);
759 
760 	fcpreq = deferfcp->fcp_req;
761 
762 	/* deferfcp can be reused for another IO at a later date */
763 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
764 
765 	spin_unlock_irqrestore(&queue->qlock, flags);
766 
767 	/* Save NVME CMD IO in fod */
768 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
769 
770 	/* Setup new fcpreq to be processed */
771 	fcpreq->rspaddr = NULL;
772 	fcpreq->rsplen  = 0;
773 	fcpreq->nvmet_fc_private = fod;
774 	fod->fcpreq = fcpreq;
775 	fod->active = true;
776 
777 	/* inform LLDD IO is now being processed */
778 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
779 
780 	/*
781 	 * Leave the queue lookup get reference taken when
782 	 * fod was originally allocated.
783 	 */
784 
785 	queue_work(queue->work_q, &fod->defer_work);
786 }
787 
788 static struct nvmet_fc_tgt_queue *
789 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
790 			u16 qid, u16 sqsize)
791 {
792 	struct nvmet_fc_tgt_queue *queue;
793 	unsigned long flags;
794 	int ret;
795 
796 	if (qid > NVMET_NR_QUEUES)
797 		return NULL;
798 
799 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
800 	if (!queue)
801 		return NULL;
802 
803 	if (!nvmet_fc_tgt_a_get(assoc))
804 		goto out_free_queue;
805 
806 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
807 				assoc->tgtport->fc_target_port.port_num,
808 				assoc->a_id, qid);
809 	if (!queue->work_q)
810 		goto out_a_put;
811 
812 	queue->qid = qid;
813 	queue->sqsize = sqsize;
814 	queue->assoc = assoc;
815 	INIT_LIST_HEAD(&queue->fod_list);
816 	INIT_LIST_HEAD(&queue->avail_defer_list);
817 	INIT_LIST_HEAD(&queue->pending_cmd_list);
818 	atomic_set(&queue->connected, 0);
819 	atomic_set(&queue->sqtail, 0);
820 	atomic_set(&queue->rsn, 1);
821 	atomic_set(&queue->zrspcnt, 0);
822 	spin_lock_init(&queue->qlock);
823 	kref_init(&queue->ref);
824 
825 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
826 
827 	ret = nvmet_sq_init(&queue->nvme_sq);
828 	if (ret)
829 		goto out_fail_iodlist;
830 
831 	WARN_ON(assoc->queues[qid]);
832 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
833 	assoc->queues[qid] = queue;
834 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
835 
836 	return queue;
837 
838 out_fail_iodlist:
839 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
840 	destroy_workqueue(queue->work_q);
841 out_a_put:
842 	nvmet_fc_tgt_a_put(assoc);
843 out_free_queue:
844 	kfree(queue);
845 	return NULL;
846 }
847 
848 
849 static void
850 nvmet_fc_tgt_queue_free(struct kref *ref)
851 {
852 	struct nvmet_fc_tgt_queue *queue =
853 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
854 	unsigned long flags;
855 
856 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
857 	queue->assoc->queues[queue->qid] = NULL;
858 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
859 
860 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
861 
862 	nvmet_fc_tgt_a_put(queue->assoc);
863 
864 	destroy_workqueue(queue->work_q);
865 
866 	kfree(queue);
867 }
868 
869 static void
870 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
871 {
872 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
873 }
874 
875 static int
876 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
877 {
878 	return kref_get_unless_zero(&queue->ref);
879 }
880 
881 
882 static void
883 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
884 {
885 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
886 	struct nvmet_fc_fcp_iod *fod = queue->fod;
887 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
888 	unsigned long flags;
889 	int i;
890 	bool disconnect;
891 
892 	disconnect = atomic_xchg(&queue->connected, 0);
893 
894 	/* if not connected, nothing to do */
895 	if (!disconnect)
896 		return;
897 
898 	spin_lock_irqsave(&queue->qlock, flags);
899 	/* abort outstanding io's */
900 	for (i = 0; i < queue->sqsize; fod++, i++) {
901 		if (fod->active) {
902 			spin_lock(&fod->flock);
903 			fod->abort = true;
904 			/*
905 			 * only call lldd abort routine if waiting for
906 			 * writedata. other outstanding ops should finish
907 			 * on their own.
908 			 */
909 			if (fod->writedataactive) {
910 				fod->aborted = true;
911 				spin_unlock(&fod->flock);
912 				tgtport->ops->fcp_abort(
913 					&tgtport->fc_target_port, fod->fcpreq);
914 			} else
915 				spin_unlock(&fod->flock);
916 		}
917 	}
918 
919 	/* Cleanup defer'ed IOs in queue */
920 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
921 				req_list) {
922 		list_del(&deferfcp->req_list);
923 		kfree(deferfcp);
924 	}
925 
926 	for (;;) {
927 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
928 				struct nvmet_fc_defer_fcp_req, req_list);
929 		if (!deferfcp)
930 			break;
931 
932 		list_del(&deferfcp->req_list);
933 		spin_unlock_irqrestore(&queue->qlock, flags);
934 
935 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
936 				deferfcp->fcp_req);
937 
938 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
939 				deferfcp->fcp_req);
940 
941 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
942 				deferfcp->fcp_req);
943 
944 		/* release the queue lookup reference */
945 		nvmet_fc_tgt_q_put(queue);
946 
947 		kfree(deferfcp);
948 
949 		spin_lock_irqsave(&queue->qlock, flags);
950 	}
951 	spin_unlock_irqrestore(&queue->qlock, flags);
952 
953 	flush_workqueue(queue->work_q);
954 
955 	nvmet_sq_destroy(&queue->nvme_sq);
956 
957 	nvmet_fc_tgt_q_put(queue);
958 }
959 
960 static struct nvmet_fc_tgt_queue *
961 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
962 				u64 connection_id)
963 {
964 	struct nvmet_fc_tgt_assoc *assoc;
965 	struct nvmet_fc_tgt_queue *queue;
966 	u64 association_id = nvmet_fc_getassociationid(connection_id);
967 	u16 qid = nvmet_fc_getqueueid(connection_id);
968 	unsigned long flags;
969 
970 	if (qid > NVMET_NR_QUEUES)
971 		return NULL;
972 
973 	spin_lock_irqsave(&tgtport->lock, flags);
974 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
975 		if (association_id == assoc->association_id) {
976 			queue = assoc->queues[qid];
977 			if (queue &&
978 			    (!atomic_read(&queue->connected) ||
979 			     !nvmet_fc_tgt_q_get(queue)))
980 				queue = NULL;
981 			spin_unlock_irqrestore(&tgtport->lock, flags);
982 			return queue;
983 		}
984 	}
985 	spin_unlock_irqrestore(&tgtport->lock, flags);
986 	return NULL;
987 }
988 
989 static void
990 nvmet_fc_hostport_free(struct kref *ref)
991 {
992 	struct nvmet_fc_hostport *hostport =
993 		container_of(ref, struct nvmet_fc_hostport, ref);
994 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
995 	unsigned long flags;
996 
997 	spin_lock_irqsave(&tgtport->lock, flags);
998 	list_del(&hostport->host_list);
999 	spin_unlock_irqrestore(&tgtport->lock, flags);
1000 	if (tgtport->ops->host_release && hostport->invalid)
1001 		tgtport->ops->host_release(hostport->hosthandle);
1002 	kfree(hostport);
1003 	nvmet_fc_tgtport_put(tgtport);
1004 }
1005 
1006 static void
1007 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1008 {
1009 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1010 }
1011 
1012 static int
1013 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1014 {
1015 	return kref_get_unless_zero(&hostport->ref);
1016 }
1017 
1018 static void
1019 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1020 {
1021 	/* if LLDD not implemented, leave as NULL */
1022 	if (!hostport->hosthandle)
1023 		return;
1024 
1025 	nvmet_fc_hostport_put(hostport);
1026 }
1027 
1028 static struct nvmet_fc_hostport *
1029 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1030 {
1031 	struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1032 	unsigned long flags;
1033 
1034 	/* if LLDD not implemented, leave as NULL */
1035 	if (!hosthandle)
1036 		return NULL;
1037 
1038 	/* take reference for what will be the newly allocated hostport */
1039 	if (!nvmet_fc_tgtport_get(tgtport))
1040 		return ERR_PTR(-EINVAL);
1041 
1042 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1043 	if (!newhost) {
1044 		spin_lock_irqsave(&tgtport->lock, flags);
1045 		list_for_each_entry(host, &tgtport->host_list, host_list) {
1046 			if (host->hosthandle == hosthandle && !host->invalid) {
1047 				if (nvmet_fc_hostport_get(host)) {
1048 					match = host;
1049 					break;
1050 				}
1051 			}
1052 		}
1053 		spin_unlock_irqrestore(&tgtport->lock, flags);
1054 		/* no allocation - release reference */
1055 		nvmet_fc_tgtport_put(tgtport);
1056 		return (match) ? match : ERR_PTR(-ENOMEM);
1057 	}
1058 
1059 	newhost->tgtport = tgtport;
1060 	newhost->hosthandle = hosthandle;
1061 	INIT_LIST_HEAD(&newhost->host_list);
1062 	kref_init(&newhost->ref);
1063 
1064 	spin_lock_irqsave(&tgtport->lock, flags);
1065 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1066 		if (host->hosthandle == hosthandle && !host->invalid) {
1067 			if (nvmet_fc_hostport_get(host)) {
1068 				match = host;
1069 				break;
1070 			}
1071 		}
1072 	}
1073 	if (match) {
1074 		kfree(newhost);
1075 		newhost = NULL;
1076 		/* releasing allocation - release reference */
1077 		nvmet_fc_tgtport_put(tgtport);
1078 	} else
1079 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1080 	spin_unlock_irqrestore(&tgtport->lock, flags);
1081 
1082 	return (match) ? match : newhost;
1083 }
1084 
1085 static void
1086 nvmet_fc_delete_assoc(struct work_struct *work)
1087 {
1088 	struct nvmet_fc_tgt_assoc *assoc =
1089 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090 
1091 	nvmet_fc_delete_target_assoc(assoc);
1092 	nvmet_fc_tgt_a_put(assoc);
1093 }
1094 
1095 static struct nvmet_fc_tgt_assoc *
1096 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1097 {
1098 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1099 	unsigned long flags;
1100 	u64 ran;
1101 	int idx;
1102 	bool needrandom = true;
1103 
1104 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1105 	if (!assoc)
1106 		return NULL;
1107 
1108 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1109 	if (idx < 0)
1110 		goto out_free_assoc;
1111 
1112 	if (!nvmet_fc_tgtport_get(tgtport))
1113 		goto out_ida;
1114 
1115 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1116 	if (IS_ERR(assoc->hostport))
1117 		goto out_put;
1118 
1119 	assoc->tgtport = tgtport;
1120 	assoc->a_id = idx;
1121 	INIT_LIST_HEAD(&assoc->a_list);
1122 	kref_init(&assoc->ref);
1123 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1124 	atomic_set(&assoc->terminating, 0);
1125 
1126 	while (needrandom) {
1127 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1128 		ran = ran << BYTES_FOR_QID_SHIFT;
1129 
1130 		spin_lock_irqsave(&tgtport->lock, flags);
1131 		needrandom = false;
1132 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1133 			if (ran == tmpassoc->association_id) {
1134 				needrandom = true;
1135 				break;
1136 			}
1137 		}
1138 		if (!needrandom) {
1139 			assoc->association_id = ran;
1140 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1141 		}
1142 		spin_unlock_irqrestore(&tgtport->lock, flags);
1143 	}
1144 
1145 	return assoc;
1146 
1147 out_put:
1148 	nvmet_fc_tgtport_put(tgtport);
1149 out_ida:
1150 	ida_simple_remove(&tgtport->assoc_cnt, idx);
1151 out_free_assoc:
1152 	kfree(assoc);
1153 	return NULL;
1154 }
1155 
1156 static void
1157 nvmet_fc_target_assoc_free(struct kref *ref)
1158 {
1159 	struct nvmet_fc_tgt_assoc *assoc =
1160 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162 	struct nvmet_fc_ls_iod	*oldls;
1163 	unsigned long flags;
1164 
1165 	/* Send Disconnect now that all i/o has completed */
1166 	nvmet_fc_xmt_disconnect_assoc(assoc);
1167 
1168 	nvmet_fc_free_hostport(assoc->hostport);
1169 	spin_lock_irqsave(&tgtport->lock, flags);
1170 	list_del(&assoc->a_list);
1171 	oldls = assoc->rcv_disconn;
1172 	spin_unlock_irqrestore(&tgtport->lock, flags);
1173 	/* if pending Rcv Disconnect Association LS, send rsp now */
1174 	if (oldls)
1175 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1176 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1177 	dev_info(tgtport->dev,
1178 		"{%d:%d} Association freed\n",
1179 		tgtport->fc_target_port.port_num, assoc->a_id);
1180 	kfree(assoc);
1181 	nvmet_fc_tgtport_put(tgtport);
1182 }
1183 
1184 static void
1185 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1186 {
1187 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1188 }
1189 
1190 static int
1191 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1192 {
1193 	return kref_get_unless_zero(&assoc->ref);
1194 }
1195 
1196 static void
1197 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1198 {
1199 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1200 	struct nvmet_fc_tgt_queue *queue;
1201 	unsigned long flags;
1202 	int i, terminating;
1203 
1204 	terminating = atomic_xchg(&assoc->terminating, 1);
1205 
1206 	/* if already terminating, do nothing */
1207 	if (terminating)
1208 		return;
1209 
1210 	spin_lock_irqsave(&tgtport->lock, flags);
1211 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1212 		queue = assoc->queues[i];
1213 		if (queue) {
1214 			if (!nvmet_fc_tgt_q_get(queue))
1215 				continue;
1216 			spin_unlock_irqrestore(&tgtport->lock, flags);
1217 			nvmet_fc_delete_target_queue(queue);
1218 			nvmet_fc_tgt_q_put(queue);
1219 			spin_lock_irqsave(&tgtport->lock, flags);
1220 		}
1221 	}
1222 	spin_unlock_irqrestore(&tgtport->lock, flags);
1223 
1224 	dev_info(tgtport->dev,
1225 		"{%d:%d} Association deleted\n",
1226 		tgtport->fc_target_port.port_num, assoc->a_id);
1227 
1228 	nvmet_fc_tgt_a_put(assoc);
1229 }
1230 
1231 static struct nvmet_fc_tgt_assoc *
1232 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1233 				u64 association_id)
1234 {
1235 	struct nvmet_fc_tgt_assoc *assoc;
1236 	struct nvmet_fc_tgt_assoc *ret = NULL;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&tgtport->lock, flags);
1240 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1241 		if (association_id == assoc->association_id) {
1242 			ret = assoc;
1243 			if (!nvmet_fc_tgt_a_get(assoc))
1244 				ret = NULL;
1245 			break;
1246 		}
1247 	}
1248 	spin_unlock_irqrestore(&tgtport->lock, flags);
1249 
1250 	return ret;
1251 }
1252 
1253 static void
1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255 			struct nvmet_fc_port_entry *pe,
1256 			struct nvmet_port *port)
1257 {
1258 	lockdep_assert_held(&nvmet_fc_tgtlock);
1259 
1260 	pe->tgtport = tgtport;
1261 	tgtport->pe = pe;
1262 
1263 	pe->port = port;
1264 	port->priv = pe;
1265 
1266 	pe->node_name = tgtport->fc_target_port.node_name;
1267 	pe->port_name = tgtport->fc_target_port.port_name;
1268 	INIT_LIST_HEAD(&pe->pe_list);
1269 
1270 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1271 }
1272 
1273 static void
1274 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1275 {
1276 	unsigned long flags;
1277 
1278 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1279 	if (pe->tgtport)
1280 		pe->tgtport->pe = NULL;
1281 	list_del(&pe->pe_list);
1282 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1283 }
1284 
1285 /*
1286  * called when a targetport deregisters. Breaks the relationship
1287  * with the nvmet port, but leaves the port_entry in place so that
1288  * re-registration can resume operation.
1289  */
1290 static void
1291 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1292 {
1293 	struct nvmet_fc_port_entry *pe;
1294 	unsigned long flags;
1295 
1296 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1297 	pe = tgtport->pe;
1298 	if (pe)
1299 		pe->tgtport = NULL;
1300 	tgtport->pe = NULL;
1301 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1302 }
1303 
1304 /*
1305  * called when a new targetport is registered. Looks in the
1306  * existing nvmet port_entries to see if the nvmet layer is
1307  * configured for the targetport's wwn's. (the targetport existed,
1308  * nvmet configured, the lldd unregistered the tgtport, and is now
1309  * reregistering the same targetport).  If so, set the nvmet port
1310  * port entry on the targetport.
1311  */
1312 static void
1313 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1314 {
1315 	struct nvmet_fc_port_entry *pe;
1316 	unsigned long flags;
1317 
1318 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1319 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1320 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1321 		    tgtport->fc_target_port.port_name == pe->port_name) {
1322 			WARN_ON(pe->tgtport);
1323 			tgtport->pe = pe;
1324 			pe->tgtport = tgtport;
1325 			break;
1326 		}
1327 	}
1328 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1329 }
1330 
1331 /**
1332  * nvme_fc_register_targetport - transport entry point called by an
1333  *                              LLDD to register the existence of a local
1334  *                              NVME subystem FC port.
1335  * @pinfo:     pointer to information about the port to be registered
1336  * @template:  LLDD entrypoints and operational parameters for the port
1337  * @dev:       physical hardware device node port corresponds to. Will be
1338  *             used for DMA mappings
1339  * @portptr:   pointer to a local port pointer. Upon success, the routine
1340  *             will allocate a nvme_fc_local_port structure and place its
1341  *             address in the local port pointer. Upon failure, local port
1342  *             pointer will be set to NULL.
1343  *
1344  * Returns:
1345  * a completion status. Must be 0 upon success; a negative errno
1346  * (ex: -ENXIO) upon failure.
1347  */
1348 int
1349 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1350 			struct nvmet_fc_target_template *template,
1351 			struct device *dev,
1352 			struct nvmet_fc_target_port **portptr)
1353 {
1354 	struct nvmet_fc_tgtport *newrec;
1355 	unsigned long flags;
1356 	int ret, idx;
1357 
1358 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1359 	    !template->fcp_abort ||
1360 	    !template->fcp_req_release || !template->targetport_delete ||
1361 	    !template->max_hw_queues || !template->max_sgl_segments ||
1362 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1363 		ret = -EINVAL;
1364 		goto out_regtgt_failed;
1365 	}
1366 
1367 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1368 			 GFP_KERNEL);
1369 	if (!newrec) {
1370 		ret = -ENOMEM;
1371 		goto out_regtgt_failed;
1372 	}
1373 
1374 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1375 	if (idx < 0) {
1376 		ret = -ENOSPC;
1377 		goto out_fail_kfree;
1378 	}
1379 
1380 	if (!get_device(dev) && dev) {
1381 		ret = -ENODEV;
1382 		goto out_ida_put;
1383 	}
1384 
1385 	newrec->fc_target_port.node_name = pinfo->node_name;
1386 	newrec->fc_target_port.port_name = pinfo->port_name;
1387 	if (template->target_priv_sz)
1388 		newrec->fc_target_port.private = &newrec[1];
1389 	else
1390 		newrec->fc_target_port.private = NULL;
1391 	newrec->fc_target_port.port_id = pinfo->port_id;
1392 	newrec->fc_target_port.port_num = idx;
1393 	INIT_LIST_HEAD(&newrec->tgt_list);
1394 	newrec->dev = dev;
1395 	newrec->ops = template;
1396 	spin_lock_init(&newrec->lock);
1397 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1398 	INIT_LIST_HEAD(&newrec->ls_req_list);
1399 	INIT_LIST_HEAD(&newrec->ls_busylist);
1400 	INIT_LIST_HEAD(&newrec->assoc_list);
1401 	INIT_LIST_HEAD(&newrec->host_list);
1402 	kref_init(&newrec->ref);
1403 	ida_init(&newrec->assoc_cnt);
1404 	newrec->max_sg_cnt = template->max_sgl_segments;
1405 
1406 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1407 	if (ret) {
1408 		ret = -ENOMEM;
1409 		goto out_free_newrec;
1410 	}
1411 
1412 	nvmet_fc_portentry_rebind_tgt(newrec);
1413 
1414 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1415 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1416 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1417 
1418 	*portptr = &newrec->fc_target_port;
1419 	return 0;
1420 
1421 out_free_newrec:
1422 	put_device(dev);
1423 out_ida_put:
1424 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1425 out_fail_kfree:
1426 	kfree(newrec);
1427 out_regtgt_failed:
1428 	*portptr = NULL;
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1432 
1433 
1434 static void
1435 nvmet_fc_free_tgtport(struct kref *ref)
1436 {
1437 	struct nvmet_fc_tgtport *tgtport =
1438 		container_of(ref, struct nvmet_fc_tgtport, ref);
1439 	struct device *dev = tgtport->dev;
1440 	unsigned long flags;
1441 
1442 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1443 	list_del(&tgtport->tgt_list);
1444 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1445 
1446 	nvmet_fc_free_ls_iodlist(tgtport);
1447 
1448 	/* let the LLDD know we've finished tearing it down */
1449 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1450 
1451 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1452 			tgtport->fc_target_port.port_num);
1453 
1454 	ida_destroy(&tgtport->assoc_cnt);
1455 
1456 	kfree(tgtport);
1457 
1458 	put_device(dev);
1459 }
1460 
1461 static void
1462 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1463 {
1464 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1465 }
1466 
1467 static int
1468 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1469 {
1470 	return kref_get_unless_zero(&tgtport->ref);
1471 }
1472 
1473 static void
1474 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1475 {
1476 	struct nvmet_fc_tgt_assoc *assoc, *next;
1477 	unsigned long flags;
1478 
1479 	spin_lock_irqsave(&tgtport->lock, flags);
1480 	list_for_each_entry_safe(assoc, next,
1481 				&tgtport->assoc_list, a_list) {
1482 		if (!nvmet_fc_tgt_a_get(assoc))
1483 			continue;
1484 		if (!schedule_work(&assoc->del_work))
1485 			/* already deleting - release local reference */
1486 			nvmet_fc_tgt_a_put(assoc);
1487 	}
1488 	spin_unlock_irqrestore(&tgtport->lock, flags);
1489 }
1490 
1491 /**
1492  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1493  *                       to remove references to a hosthandle for LS's.
1494  *
1495  * The nvmet-fc layer ensures that any references to the hosthandle
1496  * on the targetport are forgotten (set to NULL).  The LLDD will
1497  * typically call this when a login with a remote host port has been
1498  * lost, thus LS's for the remote host port are no longer possible.
1499  *
1500  * If an LS request is outstanding to the targetport/hosthandle (or
1501  * issued concurrently with the call to invalidate the host), the
1502  * LLDD is responsible for terminating/aborting the LS and completing
1503  * the LS request. It is recommended that these terminations/aborts
1504  * occur after calling to invalidate the host handle to avoid additional
1505  * retries by the nvmet-fc transport. The nvmet-fc transport may
1506  * continue to reference host handle while it cleans up outstanding
1507  * NVME associations. The nvmet-fc transport will call the
1508  * ops->host_release() callback to notify the LLDD that all references
1509  * are complete and the related host handle can be recovered.
1510  * Note: if there are no references, the callback may be called before
1511  * the invalidate host call returns.
1512  *
1513  * @target_port: pointer to the (registered) target port that a prior
1514  *              LS was received on and which supplied the transport the
1515  *              hosthandle.
1516  * @hosthandle: the handle (pointer) that represents the host port
1517  *              that no longer has connectivity and that LS's should
1518  *              no longer be directed to.
1519  */
1520 void
1521 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1522 			void *hosthandle)
1523 {
1524 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1525 	struct nvmet_fc_tgt_assoc *assoc, *next;
1526 	unsigned long flags;
1527 	bool noassoc = true;
1528 
1529 	spin_lock_irqsave(&tgtport->lock, flags);
1530 	list_for_each_entry_safe(assoc, next,
1531 				&tgtport->assoc_list, a_list) {
1532 		if (!assoc->hostport ||
1533 		    assoc->hostport->hosthandle != hosthandle)
1534 			continue;
1535 		if (!nvmet_fc_tgt_a_get(assoc))
1536 			continue;
1537 		assoc->hostport->invalid = 1;
1538 		noassoc = false;
1539 		if (!schedule_work(&assoc->del_work))
1540 			/* already deleting - release local reference */
1541 			nvmet_fc_tgt_a_put(assoc);
1542 	}
1543 	spin_unlock_irqrestore(&tgtport->lock, flags);
1544 
1545 	/* if there's nothing to wait for - call the callback */
1546 	if (noassoc && tgtport->ops->host_release)
1547 		tgtport->ops->host_release(hosthandle);
1548 }
1549 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1550 
1551 /*
1552  * nvmet layer has called to terminate an association
1553  */
1554 static void
1555 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1556 {
1557 	struct nvmet_fc_tgtport *tgtport, *next;
1558 	struct nvmet_fc_tgt_assoc *assoc;
1559 	struct nvmet_fc_tgt_queue *queue;
1560 	unsigned long flags;
1561 	bool found_ctrl = false;
1562 
1563 	/* this is a bit ugly, but don't want to make locks layered */
1564 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1565 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1566 			tgt_list) {
1567 		if (!nvmet_fc_tgtport_get(tgtport))
1568 			continue;
1569 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1570 
1571 		spin_lock_irqsave(&tgtport->lock, flags);
1572 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1573 			queue = assoc->queues[0];
1574 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1575 				if (nvmet_fc_tgt_a_get(assoc))
1576 					found_ctrl = true;
1577 				break;
1578 			}
1579 		}
1580 		spin_unlock_irqrestore(&tgtport->lock, flags);
1581 
1582 		nvmet_fc_tgtport_put(tgtport);
1583 
1584 		if (found_ctrl) {
1585 			if (!schedule_work(&assoc->del_work))
1586 				/* already deleting - release local reference */
1587 				nvmet_fc_tgt_a_put(assoc);
1588 			return;
1589 		}
1590 
1591 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592 	}
1593 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1594 }
1595 
1596 /**
1597  * nvme_fc_unregister_targetport - transport entry point called by an
1598  *                              LLDD to deregister/remove a previously
1599  *                              registered a local NVME subsystem FC port.
1600  * @target_port: pointer to the (registered) target port that is to be
1601  *               deregistered.
1602  *
1603  * Returns:
1604  * a completion status. Must be 0 upon success; a negative errno
1605  * (ex: -ENXIO) upon failure.
1606  */
1607 int
1608 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1609 {
1610 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1611 
1612 	nvmet_fc_portentry_unbind_tgt(tgtport);
1613 
1614 	/* terminate any outstanding associations */
1615 	__nvmet_fc_free_assocs(tgtport);
1616 
1617 	/*
1618 	 * should terminate LS's as well. However, LS's will be generated
1619 	 * at the tail end of association termination, so they likely don't
1620 	 * exist yet. And even if they did, it's worthwhile to just let
1621 	 * them finish and targetport ref counting will clean things up.
1622 	 */
1623 
1624 	nvmet_fc_tgtport_put(tgtport);
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1629 
1630 
1631 /* ********************** FC-NVME LS RCV Handling ************************* */
1632 
1633 
1634 static void
1635 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1636 			struct nvmet_fc_ls_iod *iod)
1637 {
1638 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1639 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1640 	struct nvmet_fc_tgt_queue *queue;
1641 	int ret = 0;
1642 
1643 	memset(acc, 0, sizeof(*acc));
1644 
1645 	/*
1646 	 * FC-NVME spec changes. There are initiators sending different
1647 	 * lengths as padding sizes for Create Association Cmd descriptor
1648 	 * was incorrect.
1649 	 * Accept anything of "minimum" length. Assume format per 1.15
1650 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1651 	 * trailing pad length is.
1652 	 */
1653 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1654 		ret = VERR_CR_ASSOC_LEN;
1655 	else if (be32_to_cpu(rqst->desc_list_len) <
1656 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1657 		ret = VERR_CR_ASSOC_RQST_LEN;
1658 	else if (rqst->assoc_cmd.desc_tag !=
1659 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1660 		ret = VERR_CR_ASSOC_CMD;
1661 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1662 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1663 		ret = VERR_CR_ASSOC_CMD_LEN;
1664 	else if (!rqst->assoc_cmd.ersp_ratio ||
1665 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1666 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1667 		ret = VERR_ERSP_RATIO;
1668 
1669 	else {
1670 		/* new association w/ admin queue */
1671 		iod->assoc = nvmet_fc_alloc_target_assoc(
1672 						tgtport, iod->hosthandle);
1673 		if (!iod->assoc)
1674 			ret = VERR_ASSOC_ALLOC_FAIL;
1675 		else {
1676 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1677 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1678 			if (!queue)
1679 				ret = VERR_QUEUE_ALLOC_FAIL;
1680 		}
1681 	}
1682 
1683 	if (ret) {
1684 		dev_err(tgtport->dev,
1685 			"Create Association LS failed: %s\n",
1686 			validation_errors[ret]);
1687 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1688 				sizeof(*acc), rqst->w0.ls_cmd,
1689 				FCNVME_RJT_RC_LOGIC,
1690 				FCNVME_RJT_EXP_NONE, 0);
1691 		return;
1692 	}
1693 
1694 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1695 	atomic_set(&queue->connected, 1);
1696 	queue->sqhd = 0;	/* best place to init value */
1697 
1698 	dev_info(tgtport->dev,
1699 		"{%d:%d} Association created\n",
1700 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1701 
1702 	/* format a response */
1703 
1704 	iod->lsrsp->rsplen = sizeof(*acc);
1705 
1706 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1707 			fcnvme_lsdesc_len(
1708 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1709 			FCNVME_LS_CREATE_ASSOCIATION);
1710 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1711 	acc->associd.desc_len =
1712 			fcnvme_lsdesc_len(
1713 				sizeof(struct fcnvme_lsdesc_assoc_id));
1714 	acc->associd.association_id =
1715 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1716 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1717 	acc->connectid.desc_len =
1718 			fcnvme_lsdesc_len(
1719 				sizeof(struct fcnvme_lsdesc_conn_id));
1720 	acc->connectid.connection_id = acc->associd.association_id;
1721 }
1722 
1723 static void
1724 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1725 			struct nvmet_fc_ls_iod *iod)
1726 {
1727 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1728 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1729 	struct nvmet_fc_tgt_queue *queue;
1730 	int ret = 0;
1731 
1732 	memset(acc, 0, sizeof(*acc));
1733 
1734 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1735 		ret = VERR_CR_CONN_LEN;
1736 	else if (rqst->desc_list_len !=
1737 			fcnvme_lsdesc_len(
1738 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1739 		ret = VERR_CR_CONN_RQST_LEN;
1740 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1741 		ret = VERR_ASSOC_ID;
1742 	else if (rqst->associd.desc_len !=
1743 			fcnvme_lsdesc_len(
1744 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1745 		ret = VERR_ASSOC_ID_LEN;
1746 	else if (rqst->connect_cmd.desc_tag !=
1747 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1748 		ret = VERR_CR_CONN_CMD;
1749 	else if (rqst->connect_cmd.desc_len !=
1750 			fcnvme_lsdesc_len(
1751 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1752 		ret = VERR_CR_CONN_CMD_LEN;
1753 	else if (!rqst->connect_cmd.ersp_ratio ||
1754 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1755 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1756 		ret = VERR_ERSP_RATIO;
1757 
1758 	else {
1759 		/* new io queue */
1760 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1761 				be64_to_cpu(rqst->associd.association_id));
1762 		if (!iod->assoc)
1763 			ret = VERR_NO_ASSOC;
1764 		else {
1765 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1766 					be16_to_cpu(rqst->connect_cmd.qid),
1767 					be16_to_cpu(rqst->connect_cmd.sqsize));
1768 			if (!queue)
1769 				ret = VERR_QUEUE_ALLOC_FAIL;
1770 
1771 			/* release get taken in nvmet_fc_find_target_assoc */
1772 			nvmet_fc_tgt_a_put(iod->assoc);
1773 		}
1774 	}
1775 
1776 	if (ret) {
1777 		dev_err(tgtport->dev,
1778 			"Create Connection LS failed: %s\n",
1779 			validation_errors[ret]);
1780 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1781 				sizeof(*acc), rqst->w0.ls_cmd,
1782 				(ret == VERR_NO_ASSOC) ?
1783 					FCNVME_RJT_RC_INV_ASSOC :
1784 					FCNVME_RJT_RC_LOGIC,
1785 				FCNVME_RJT_EXP_NONE, 0);
1786 		return;
1787 	}
1788 
1789 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1790 	atomic_set(&queue->connected, 1);
1791 	queue->sqhd = 0;	/* best place to init value */
1792 
1793 	/* format a response */
1794 
1795 	iod->lsrsp->rsplen = sizeof(*acc);
1796 
1797 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1798 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1799 			FCNVME_LS_CREATE_CONNECTION);
1800 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1801 	acc->connectid.desc_len =
1802 			fcnvme_lsdesc_len(
1803 				sizeof(struct fcnvme_lsdesc_conn_id));
1804 	acc->connectid.connection_id =
1805 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1806 				be16_to_cpu(rqst->connect_cmd.qid)));
1807 }
1808 
1809 /*
1810  * Returns true if the LS response is to be transmit
1811  * Returns false if the LS response is to be delayed
1812  */
1813 static int
1814 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1815 			struct nvmet_fc_ls_iod *iod)
1816 {
1817 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1818 						&iod->rqstbuf->rq_dis_assoc;
1819 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1820 						&iod->rspbuf->rsp_dis_assoc;
1821 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1822 	struct nvmet_fc_ls_iod *oldls = NULL;
1823 	unsigned long flags;
1824 	int ret = 0;
1825 
1826 	memset(acc, 0, sizeof(*acc));
1827 
1828 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1829 	if (!ret) {
1830 		/* match an active association - takes an assoc ref if !NULL */
1831 		assoc = nvmet_fc_find_target_assoc(tgtport,
1832 				be64_to_cpu(rqst->associd.association_id));
1833 		iod->assoc = assoc;
1834 		if (!assoc)
1835 			ret = VERR_NO_ASSOC;
1836 	}
1837 
1838 	if (ret || !assoc) {
1839 		dev_err(tgtport->dev,
1840 			"Disconnect LS failed: %s\n",
1841 			validation_errors[ret]);
1842 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1843 				sizeof(*acc), rqst->w0.ls_cmd,
1844 				(ret == VERR_NO_ASSOC) ?
1845 					FCNVME_RJT_RC_INV_ASSOC :
1846 					FCNVME_RJT_RC_LOGIC,
1847 				FCNVME_RJT_EXP_NONE, 0);
1848 		return true;
1849 	}
1850 
1851 	/* format a response */
1852 
1853 	iod->lsrsp->rsplen = sizeof(*acc);
1854 
1855 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1856 			fcnvme_lsdesc_len(
1857 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1858 			FCNVME_LS_DISCONNECT_ASSOC);
1859 
1860 	/* release get taken in nvmet_fc_find_target_assoc */
1861 	nvmet_fc_tgt_a_put(assoc);
1862 
1863 	/*
1864 	 * The rules for LS response says the response cannot
1865 	 * go back until ABTS's have been sent for all outstanding
1866 	 * I/O and a Disconnect Association LS has been sent.
1867 	 * So... save off the Disconnect LS to send the response
1868 	 * later. If there was a prior LS already saved, replace
1869 	 * it with the newer one and send a can't perform reject
1870 	 * on the older one.
1871 	 */
1872 	spin_lock_irqsave(&tgtport->lock, flags);
1873 	oldls = assoc->rcv_disconn;
1874 	assoc->rcv_disconn = iod;
1875 	spin_unlock_irqrestore(&tgtport->lock, flags);
1876 
1877 	nvmet_fc_delete_target_assoc(assoc);
1878 
1879 	if (oldls) {
1880 		dev_info(tgtport->dev,
1881 			"{%d:%d} Multiple Disconnect Association LS's "
1882 			"received\n",
1883 			tgtport->fc_target_port.port_num, assoc->a_id);
1884 		/* overwrite good response with bogus failure */
1885 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1886 						sizeof(*iod->rspbuf),
1887 						/* ok to use rqst, LS is same */
1888 						rqst->w0.ls_cmd,
1889 						FCNVME_RJT_RC_UNAB,
1890 						FCNVME_RJT_EXP_NONE, 0);
1891 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1892 	}
1893 
1894 	return false;
1895 }
1896 
1897 
1898 /* *********************** NVME Ctrl Routines **************************** */
1899 
1900 
1901 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1902 
1903 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1904 
1905 static void
1906 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1907 {
1908 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1909 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1910 
1911 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1912 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1913 	nvmet_fc_free_ls_iod(tgtport, iod);
1914 	nvmet_fc_tgtport_put(tgtport);
1915 }
1916 
1917 static void
1918 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1919 				struct nvmet_fc_ls_iod *iod)
1920 {
1921 	int ret;
1922 
1923 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1924 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1925 
1926 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1927 	if (ret)
1928 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1929 }
1930 
1931 /*
1932  * Actual processing routine for received FC-NVME LS Requests from the LLD
1933  */
1934 static void
1935 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1936 			struct nvmet_fc_ls_iod *iod)
1937 {
1938 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1939 	bool sendrsp = true;
1940 
1941 	iod->lsrsp->nvme_fc_private = iod;
1942 	iod->lsrsp->rspbuf = iod->rspbuf;
1943 	iod->lsrsp->rspdma = iod->rspdma;
1944 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1945 	/* Be preventative. handlers will later set to valid length */
1946 	iod->lsrsp->rsplen = 0;
1947 
1948 	iod->assoc = NULL;
1949 
1950 	/*
1951 	 * handlers:
1952 	 *   parse request input, execute the request, and format the
1953 	 *   LS response
1954 	 */
1955 	switch (w0->ls_cmd) {
1956 	case FCNVME_LS_CREATE_ASSOCIATION:
1957 		/* Creates Association and initial Admin Queue/Connection */
1958 		nvmet_fc_ls_create_association(tgtport, iod);
1959 		break;
1960 	case FCNVME_LS_CREATE_CONNECTION:
1961 		/* Creates an IO Queue/Connection */
1962 		nvmet_fc_ls_create_connection(tgtport, iod);
1963 		break;
1964 	case FCNVME_LS_DISCONNECT_ASSOC:
1965 		/* Terminate a Queue/Connection or the Association */
1966 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1967 		break;
1968 	default:
1969 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1970 				sizeof(*iod->rspbuf), w0->ls_cmd,
1971 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1972 	}
1973 
1974 	if (sendrsp)
1975 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1976 }
1977 
1978 /*
1979  * Actual processing routine for received FC-NVME LS Requests from the LLD
1980  */
1981 static void
1982 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1983 {
1984 	struct nvmet_fc_ls_iod *iod =
1985 		container_of(work, struct nvmet_fc_ls_iod, work);
1986 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1987 
1988 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1989 }
1990 
1991 
1992 /**
1993  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1994  *                       upon the reception of a NVME LS request.
1995  *
1996  * The nvmet-fc layer will copy payload to an internal structure for
1997  * processing.  As such, upon completion of the routine, the LLDD may
1998  * immediately free/reuse the LS request buffer passed in the call.
1999  *
2000  * If this routine returns error, the LLDD should abort the exchange.
2001  *
2002  * @target_port: pointer to the (registered) target port the LS was
2003  *              received on.
2004  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2005  *              the exchange corresponding to the LS.
2006  * @lsreqbuf:   pointer to the buffer containing the LS Request
2007  * @lsreqbuf_len: length, in bytes, of the received LS request
2008  */
2009 int
2010 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2011 			void *hosthandle,
2012 			struct nvmefc_ls_rsp *lsrsp,
2013 			void *lsreqbuf, u32 lsreqbuf_len)
2014 {
2015 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2016 	struct nvmet_fc_ls_iod *iod;
2017 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2018 
2019 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2020 		dev_info(tgtport->dev,
2021 			"RCV %s LS failed: payload too large (%d)\n",
2022 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2023 				nvmefc_ls_names[w0->ls_cmd] : "",
2024 			lsreqbuf_len);
2025 		return -E2BIG;
2026 	}
2027 
2028 	if (!nvmet_fc_tgtport_get(tgtport)) {
2029 		dev_info(tgtport->dev,
2030 			"RCV %s LS failed: target deleting\n",
2031 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2032 				nvmefc_ls_names[w0->ls_cmd] : "");
2033 		return -ESHUTDOWN;
2034 	}
2035 
2036 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2037 	if (!iod) {
2038 		dev_info(tgtport->dev,
2039 			"RCV %s LS failed: context allocation failed\n",
2040 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2041 				nvmefc_ls_names[w0->ls_cmd] : "");
2042 		nvmet_fc_tgtport_put(tgtport);
2043 		return -ENOENT;
2044 	}
2045 
2046 	iod->lsrsp = lsrsp;
2047 	iod->fcpreq = NULL;
2048 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2049 	iod->rqstdatalen = lsreqbuf_len;
2050 	iod->hosthandle = hosthandle;
2051 
2052 	schedule_work(&iod->work);
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2057 
2058 
2059 /*
2060  * **********************
2061  * Start of FCP handling
2062  * **********************
2063  */
2064 
2065 static int
2066 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2067 {
2068 	struct scatterlist *sg;
2069 	unsigned int nent;
2070 
2071 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2072 	if (!sg)
2073 		goto out;
2074 
2075 	fod->data_sg = sg;
2076 	fod->data_sg_cnt = nent;
2077 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2078 				((fod->io_dir == NVMET_FCP_WRITE) ?
2079 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2080 				/* note: write from initiator perspective */
2081 	fod->next_sg = fod->data_sg;
2082 
2083 	return 0;
2084 
2085 out:
2086 	return NVME_SC_INTERNAL;
2087 }
2088 
2089 static void
2090 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2091 {
2092 	if (!fod->data_sg || !fod->data_sg_cnt)
2093 		return;
2094 
2095 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2096 				((fod->io_dir == NVMET_FCP_WRITE) ?
2097 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2098 	sgl_free(fod->data_sg);
2099 	fod->data_sg = NULL;
2100 	fod->data_sg_cnt = 0;
2101 }
2102 
2103 
2104 static bool
2105 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2106 {
2107 	u32 sqtail, used;
2108 
2109 	/* egad, this is ugly. And sqtail is just a best guess */
2110 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2111 
2112 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2113 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2114 }
2115 
2116 /*
2117  * Prep RSP payload.
2118  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2119  */
2120 static void
2121 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2122 				struct nvmet_fc_fcp_iod *fod)
2123 {
2124 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2125 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2126 	struct nvme_completion *cqe = &ersp->cqe;
2127 	u32 *cqewd = (u32 *)cqe;
2128 	bool send_ersp = false;
2129 	u32 rsn, rspcnt, xfr_length;
2130 
2131 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2132 		xfr_length = fod->req.transfer_len;
2133 	else
2134 		xfr_length = fod->offset;
2135 
2136 	/*
2137 	 * check to see if we can send a 0's rsp.
2138 	 *   Note: to send a 0's response, the NVME-FC host transport will
2139 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2140 	 *   seen in an ersp), and command_id. Thus it will create a
2141 	 *   zero-filled CQE with those known fields filled in. Transport
2142 	 *   must send an ersp for any condition where the cqe won't match
2143 	 *   this.
2144 	 *
2145 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2146 	 *  every N responses, where N=ersp_ratio
2147 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2148 	 *    practice)
2149 	 *  normal cmds: any time status is non-zero, or status is zero
2150 	 *     but words 0 or 1 are non-zero.
2151 	 *  the SQ is 90% or more full
2152 	 *  the cmd is a fused command
2153 	 *  transferred data length not equal to cmd iu length
2154 	 */
2155 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2156 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2157 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2158 	    xfr_length != fod->req.transfer_len ||
2159 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2160 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2161 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2162 		send_ersp = true;
2163 
2164 	/* re-set the fields */
2165 	fod->fcpreq->rspaddr = ersp;
2166 	fod->fcpreq->rspdma = fod->rspdma;
2167 
2168 	if (!send_ersp) {
2169 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2170 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2171 	} else {
2172 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2173 		rsn = atomic_inc_return(&fod->queue->rsn);
2174 		ersp->rsn = cpu_to_be32(rsn);
2175 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2176 		fod->fcpreq->rsplen = sizeof(*ersp);
2177 	}
2178 
2179 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2180 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2181 }
2182 
2183 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2184 
2185 static void
2186 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2187 				struct nvmet_fc_fcp_iod *fod)
2188 {
2189 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2190 
2191 	/* data no longer needed */
2192 	nvmet_fc_free_tgt_pgs(fod);
2193 
2194 	/*
2195 	 * if an ABTS was received or we issued the fcp_abort early
2196 	 * don't call abort routine again.
2197 	 */
2198 	/* no need to take lock - lock was taken earlier to get here */
2199 	if (!fod->aborted)
2200 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2201 
2202 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2203 }
2204 
2205 static void
2206 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2207 				struct nvmet_fc_fcp_iod *fod)
2208 {
2209 	int ret;
2210 
2211 	fod->fcpreq->op = NVMET_FCOP_RSP;
2212 	fod->fcpreq->timeout = 0;
2213 
2214 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2215 
2216 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2217 	if (ret)
2218 		nvmet_fc_abort_op(tgtport, fod);
2219 }
2220 
2221 static void
2222 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2223 				struct nvmet_fc_fcp_iod *fod, u8 op)
2224 {
2225 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2226 	struct scatterlist *sg = fod->next_sg;
2227 	unsigned long flags;
2228 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2229 	u32 tlen = 0;
2230 	int ret;
2231 
2232 	fcpreq->op = op;
2233 	fcpreq->offset = fod->offset;
2234 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2235 
2236 	/*
2237 	 * for next sequence:
2238 	 *  break at a sg element boundary
2239 	 *  attempt to keep sequence length capped at
2240 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2241 	 *    be longer if a single sg element is larger
2242 	 *    than that amount. This is done to avoid creating
2243 	 *    a new sg list to use for the tgtport api.
2244 	 */
2245 	fcpreq->sg = sg;
2246 	fcpreq->sg_cnt = 0;
2247 	while (tlen < remaininglen &&
2248 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2249 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2250 		fcpreq->sg_cnt++;
2251 		tlen += sg_dma_len(sg);
2252 		sg = sg_next(sg);
2253 	}
2254 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2255 		fcpreq->sg_cnt++;
2256 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2257 		sg = sg_next(sg);
2258 	}
2259 	if (tlen < remaininglen)
2260 		fod->next_sg = sg;
2261 	else
2262 		fod->next_sg = NULL;
2263 
2264 	fcpreq->transfer_length = tlen;
2265 	fcpreq->transferred_length = 0;
2266 	fcpreq->fcp_error = 0;
2267 	fcpreq->rsplen = 0;
2268 
2269 	/*
2270 	 * If the last READDATA request: check if LLDD supports
2271 	 * combined xfr with response.
2272 	 */
2273 	if ((op == NVMET_FCOP_READDATA) &&
2274 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2275 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2276 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2277 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2278 	}
2279 
2280 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2281 	if (ret) {
2282 		/*
2283 		 * should be ok to set w/o lock as its in the thread of
2284 		 * execution (not an async timer routine) and doesn't
2285 		 * contend with any clearing action
2286 		 */
2287 		fod->abort = true;
2288 
2289 		if (op == NVMET_FCOP_WRITEDATA) {
2290 			spin_lock_irqsave(&fod->flock, flags);
2291 			fod->writedataactive = false;
2292 			spin_unlock_irqrestore(&fod->flock, flags);
2293 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2294 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2295 			fcpreq->fcp_error = ret;
2296 			fcpreq->transferred_length = 0;
2297 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2298 		}
2299 	}
2300 }
2301 
2302 static inline bool
2303 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2304 {
2305 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2306 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2307 
2308 	/* if in the middle of an io and we need to tear down */
2309 	if (abort) {
2310 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2311 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2312 			return true;
2313 		}
2314 
2315 		nvmet_fc_abort_op(tgtport, fod);
2316 		return true;
2317 	}
2318 
2319 	return false;
2320 }
2321 
2322 /*
2323  * actual done handler for FCP operations when completed by the lldd
2324  */
2325 static void
2326 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2327 {
2328 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2329 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2330 	unsigned long flags;
2331 	bool abort;
2332 
2333 	spin_lock_irqsave(&fod->flock, flags);
2334 	abort = fod->abort;
2335 	fod->writedataactive = false;
2336 	spin_unlock_irqrestore(&fod->flock, flags);
2337 
2338 	switch (fcpreq->op) {
2339 
2340 	case NVMET_FCOP_WRITEDATA:
2341 		if (__nvmet_fc_fod_op_abort(fod, abort))
2342 			return;
2343 		if (fcpreq->fcp_error ||
2344 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2345 			spin_lock(&fod->flock);
2346 			fod->abort = true;
2347 			spin_unlock(&fod->flock);
2348 
2349 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2350 			return;
2351 		}
2352 
2353 		fod->offset += fcpreq->transferred_length;
2354 		if (fod->offset != fod->req.transfer_len) {
2355 			spin_lock_irqsave(&fod->flock, flags);
2356 			fod->writedataactive = true;
2357 			spin_unlock_irqrestore(&fod->flock, flags);
2358 
2359 			/* transfer the next chunk */
2360 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2361 						NVMET_FCOP_WRITEDATA);
2362 			return;
2363 		}
2364 
2365 		/* data transfer complete, resume with nvmet layer */
2366 		fod->req.execute(&fod->req);
2367 		break;
2368 
2369 	case NVMET_FCOP_READDATA:
2370 	case NVMET_FCOP_READDATA_RSP:
2371 		if (__nvmet_fc_fod_op_abort(fod, abort))
2372 			return;
2373 		if (fcpreq->fcp_error ||
2374 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2375 			nvmet_fc_abort_op(tgtport, fod);
2376 			return;
2377 		}
2378 
2379 		/* success */
2380 
2381 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2382 			/* data no longer needed */
2383 			nvmet_fc_free_tgt_pgs(fod);
2384 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2385 			return;
2386 		}
2387 
2388 		fod->offset += fcpreq->transferred_length;
2389 		if (fod->offset != fod->req.transfer_len) {
2390 			/* transfer the next chunk */
2391 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2392 						NVMET_FCOP_READDATA);
2393 			return;
2394 		}
2395 
2396 		/* data transfer complete, send response */
2397 
2398 		/* data no longer needed */
2399 		nvmet_fc_free_tgt_pgs(fod);
2400 
2401 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2402 
2403 		break;
2404 
2405 	case NVMET_FCOP_RSP:
2406 		if (__nvmet_fc_fod_op_abort(fod, abort))
2407 			return;
2408 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2409 		break;
2410 
2411 	default:
2412 		break;
2413 	}
2414 }
2415 
2416 static void
2417 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2418 {
2419 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2420 
2421 	nvmet_fc_fod_op_done(fod);
2422 }
2423 
2424 /*
2425  * actual completion handler after execution by the nvmet layer
2426  */
2427 static void
2428 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2429 			struct nvmet_fc_fcp_iod *fod, int status)
2430 {
2431 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2432 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2433 	unsigned long flags;
2434 	bool abort;
2435 
2436 	spin_lock_irqsave(&fod->flock, flags);
2437 	abort = fod->abort;
2438 	spin_unlock_irqrestore(&fod->flock, flags);
2439 
2440 	/* if we have a CQE, snoop the last sq_head value */
2441 	if (!status)
2442 		fod->queue->sqhd = cqe->sq_head;
2443 
2444 	if (abort) {
2445 		nvmet_fc_abort_op(tgtport, fod);
2446 		return;
2447 	}
2448 
2449 	/* if an error handling the cmd post initial parsing */
2450 	if (status) {
2451 		/* fudge up a failed CQE status for our transport error */
2452 		memset(cqe, 0, sizeof(*cqe));
2453 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2454 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2455 		cqe->command_id = sqe->command_id;
2456 		cqe->status = cpu_to_le16(status);
2457 	} else {
2458 
2459 		/*
2460 		 * try to push the data even if the SQE status is non-zero.
2461 		 * There may be a status where data still was intended to
2462 		 * be moved
2463 		 */
2464 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2465 			/* push the data over before sending rsp */
2466 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2467 						NVMET_FCOP_READDATA);
2468 			return;
2469 		}
2470 
2471 		/* writes & no data - fall thru */
2472 	}
2473 
2474 	/* data no longer needed */
2475 	nvmet_fc_free_tgt_pgs(fod);
2476 
2477 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2478 }
2479 
2480 
2481 static void
2482 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2483 {
2484 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2485 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2486 
2487 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2488 }
2489 
2490 
2491 /*
2492  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2493  */
2494 static void
2495 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2496 			struct nvmet_fc_fcp_iod *fod)
2497 {
2498 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2499 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2500 	int ret;
2501 
2502 	/*
2503 	 * if there is no nvmet mapping to the targetport there
2504 	 * shouldn't be requests. just terminate them.
2505 	 */
2506 	if (!tgtport->pe)
2507 		goto transport_error;
2508 
2509 	/*
2510 	 * Fused commands are currently not supported in the linux
2511 	 * implementation.
2512 	 *
2513 	 * As such, the implementation of the FC transport does not
2514 	 * look at the fused commands and order delivery to the upper
2515 	 * layer until we have both based on csn.
2516 	 */
2517 
2518 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2519 
2520 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2521 		fod->io_dir = NVMET_FCP_WRITE;
2522 		if (!nvme_is_write(&cmdiu->sqe))
2523 			goto transport_error;
2524 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2525 		fod->io_dir = NVMET_FCP_READ;
2526 		if (nvme_is_write(&cmdiu->sqe))
2527 			goto transport_error;
2528 	} else {
2529 		fod->io_dir = NVMET_FCP_NODATA;
2530 		if (xfrlen)
2531 			goto transport_error;
2532 	}
2533 
2534 	fod->req.cmd = &fod->cmdiubuf.sqe;
2535 	fod->req.cqe = &fod->rspiubuf.cqe;
2536 	fod->req.port = tgtport->pe->port;
2537 
2538 	/* clear any response payload */
2539 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2540 
2541 	fod->data_sg = NULL;
2542 	fod->data_sg_cnt = 0;
2543 
2544 	ret = nvmet_req_init(&fod->req,
2545 				&fod->queue->nvme_cq,
2546 				&fod->queue->nvme_sq,
2547 				&nvmet_fc_tgt_fcp_ops);
2548 	if (!ret) {
2549 		/* bad SQE content or invalid ctrl state */
2550 		/* nvmet layer has already called op done to send rsp. */
2551 		return;
2552 	}
2553 
2554 	fod->req.transfer_len = xfrlen;
2555 
2556 	/* keep a running counter of tail position */
2557 	atomic_inc(&fod->queue->sqtail);
2558 
2559 	if (fod->req.transfer_len) {
2560 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2561 		if (ret) {
2562 			nvmet_req_complete(&fod->req, ret);
2563 			return;
2564 		}
2565 	}
2566 	fod->req.sg = fod->data_sg;
2567 	fod->req.sg_cnt = fod->data_sg_cnt;
2568 	fod->offset = 0;
2569 
2570 	if (fod->io_dir == NVMET_FCP_WRITE) {
2571 		/* pull the data over before invoking nvmet layer */
2572 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2573 		return;
2574 	}
2575 
2576 	/*
2577 	 * Reads or no data:
2578 	 *
2579 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2580 	 * push the data
2581 	 */
2582 	fod->req.execute(&fod->req);
2583 	return;
2584 
2585 transport_error:
2586 	nvmet_fc_abort_op(tgtport, fod);
2587 }
2588 
2589 /**
2590  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2591  *                       upon the reception of a NVME FCP CMD IU.
2592  *
2593  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2594  * layer for processing.
2595  *
2596  * The nvmet_fc layer allocates a local job structure (struct
2597  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2598  * CMD IU buffer to the job structure. As such, on a successful
2599  * completion (returns 0), the LLDD may immediately free/reuse
2600  * the CMD IU buffer passed in the call.
2601  *
2602  * However, in some circumstances, due to the packetized nature of FC
2603  * and the api of the FC LLDD which may issue a hw command to send the
2604  * response, but the LLDD may not get the hw completion for that command
2605  * and upcall the nvmet_fc layer before a new command may be
2606  * asynchronously received - its possible for a command to be received
2607  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2608  * the appearance of more commands received than fits in the sq.
2609  * To alleviate this scenario, a temporary queue is maintained in the
2610  * transport for pending LLDD requests waiting for a queue job structure.
2611  * In these "overrun" cases, a temporary queue element is allocated
2612  * the LLDD request and CMD iu buffer information remembered, and the
2613  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2614  * structure is freed, it is immediately reallocated for anything on the
2615  * pending request list. The LLDDs defer_rcv() callback is called,
2616  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2617  * is then started normally with the transport.
2618  *
2619  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2620  * the completion as successful but must not reuse the CMD IU buffer
2621  * until the LLDD's defer_rcv() callback has been called for the
2622  * corresponding struct nvmefc_tgt_fcp_req pointer.
2623  *
2624  * If there is any other condition in which an error occurs, the
2625  * transport will return a non-zero status indicating the error.
2626  * In all cases other than -EOVERFLOW, the transport has not accepted the
2627  * request and the LLDD should abort the exchange.
2628  *
2629  * @target_port: pointer to the (registered) target port the FCP CMD IU
2630  *              was received on.
2631  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2632  *              the exchange corresponding to the FCP Exchange.
2633  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2634  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2635  */
2636 int
2637 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2638 			struct nvmefc_tgt_fcp_req *fcpreq,
2639 			void *cmdiubuf, u32 cmdiubuf_len)
2640 {
2641 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2642 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2643 	struct nvmet_fc_tgt_queue *queue;
2644 	struct nvmet_fc_fcp_iod *fod;
2645 	struct nvmet_fc_defer_fcp_req *deferfcp;
2646 	unsigned long flags;
2647 
2648 	/* validate iu, so the connection id can be used to find the queue */
2649 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2650 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2651 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2652 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2653 		return -EIO;
2654 
2655 	queue = nvmet_fc_find_target_queue(tgtport,
2656 				be64_to_cpu(cmdiu->connection_id));
2657 	if (!queue)
2658 		return -ENOTCONN;
2659 
2660 	/*
2661 	 * note: reference taken by find_target_queue
2662 	 * After successful fod allocation, the fod will inherit the
2663 	 * ownership of that reference and will remove the reference
2664 	 * when the fod is freed.
2665 	 */
2666 
2667 	spin_lock_irqsave(&queue->qlock, flags);
2668 
2669 	fod = nvmet_fc_alloc_fcp_iod(queue);
2670 	if (fod) {
2671 		spin_unlock_irqrestore(&queue->qlock, flags);
2672 
2673 		fcpreq->nvmet_fc_private = fod;
2674 		fod->fcpreq = fcpreq;
2675 
2676 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2677 
2678 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2679 
2680 		return 0;
2681 	}
2682 
2683 	if (!tgtport->ops->defer_rcv) {
2684 		spin_unlock_irqrestore(&queue->qlock, flags);
2685 		/* release the queue lookup reference */
2686 		nvmet_fc_tgt_q_put(queue);
2687 		return -ENOENT;
2688 	}
2689 
2690 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2691 			struct nvmet_fc_defer_fcp_req, req_list);
2692 	if (deferfcp) {
2693 		/* Just re-use one that was previously allocated */
2694 		list_del(&deferfcp->req_list);
2695 	} else {
2696 		spin_unlock_irqrestore(&queue->qlock, flags);
2697 
2698 		/* Now we need to dynamically allocate one */
2699 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2700 		if (!deferfcp) {
2701 			/* release the queue lookup reference */
2702 			nvmet_fc_tgt_q_put(queue);
2703 			return -ENOMEM;
2704 		}
2705 		spin_lock_irqsave(&queue->qlock, flags);
2706 	}
2707 
2708 	/* For now, use rspaddr / rsplen to save payload information */
2709 	fcpreq->rspaddr = cmdiubuf;
2710 	fcpreq->rsplen  = cmdiubuf_len;
2711 	deferfcp->fcp_req = fcpreq;
2712 
2713 	/* defer processing till a fod becomes available */
2714 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2715 
2716 	/* NOTE: the queue lookup reference is still valid */
2717 
2718 	spin_unlock_irqrestore(&queue->qlock, flags);
2719 
2720 	return -EOVERFLOW;
2721 }
2722 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2723 
2724 /**
2725  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2726  *                       upon the reception of an ABTS for a FCP command
2727  *
2728  * Notify the transport that an ABTS has been received for a FCP command
2729  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2730  * LLDD believes the command is still being worked on
2731  * (template_ops->fcp_req_release() has not been called).
2732  *
2733  * The transport will wait for any outstanding work (an op to the LLDD,
2734  * which the lldd should complete with error due to the ABTS; or the
2735  * completion from the nvmet layer of the nvme command), then will
2736  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2737  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2738  * to the ABTS either after return from this function (assuming any
2739  * outstanding op work has been terminated) or upon the callback being
2740  * called.
2741  *
2742  * @target_port: pointer to the (registered) target port the FCP CMD IU
2743  *              was received on.
2744  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2745  *              to the exchange that received the ABTS.
2746  */
2747 void
2748 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2749 			struct nvmefc_tgt_fcp_req *fcpreq)
2750 {
2751 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2752 	struct nvmet_fc_tgt_queue *queue;
2753 	unsigned long flags;
2754 
2755 	if (!fod || fod->fcpreq != fcpreq)
2756 		/* job appears to have already completed, ignore abort */
2757 		return;
2758 
2759 	queue = fod->queue;
2760 
2761 	spin_lock_irqsave(&queue->qlock, flags);
2762 	if (fod->active) {
2763 		/*
2764 		 * mark as abort. The abort handler, invoked upon completion
2765 		 * of any work, will detect the aborted status and do the
2766 		 * callback.
2767 		 */
2768 		spin_lock(&fod->flock);
2769 		fod->abort = true;
2770 		fod->aborted = true;
2771 		spin_unlock(&fod->flock);
2772 	}
2773 	spin_unlock_irqrestore(&queue->qlock, flags);
2774 }
2775 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2776 
2777 
2778 struct nvmet_fc_traddr {
2779 	u64	nn;
2780 	u64	pn;
2781 };
2782 
2783 static int
2784 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2785 {
2786 	u64 token64;
2787 
2788 	if (match_u64(sstr, &token64))
2789 		return -EINVAL;
2790 	*val = token64;
2791 
2792 	return 0;
2793 }
2794 
2795 /*
2796  * This routine validates and extracts the WWN's from the TRADDR string.
2797  * As kernel parsers need the 0x to determine number base, universally
2798  * build string to parse with 0x prefix before parsing name strings.
2799  */
2800 static int
2801 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2802 {
2803 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2804 	substring_t wwn = { name, &name[sizeof(name)-1] };
2805 	int nnoffset, pnoffset;
2806 
2807 	/* validate if string is one of the 2 allowed formats */
2808 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2809 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2810 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2811 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2812 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2813 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2814 						NVME_FC_TRADDR_OXNNLEN;
2815 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2816 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2817 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2818 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2819 		nnoffset = NVME_FC_TRADDR_NNLEN;
2820 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2821 	} else
2822 		goto out_einval;
2823 
2824 	name[0] = '0';
2825 	name[1] = 'x';
2826 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2827 
2828 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2829 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2830 		goto out_einval;
2831 
2832 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2833 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2834 		goto out_einval;
2835 
2836 	return 0;
2837 
2838 out_einval:
2839 	pr_warn("%s: bad traddr string\n", __func__);
2840 	return -EINVAL;
2841 }
2842 
2843 static int
2844 nvmet_fc_add_port(struct nvmet_port *port)
2845 {
2846 	struct nvmet_fc_tgtport *tgtport;
2847 	struct nvmet_fc_port_entry *pe;
2848 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2849 	unsigned long flags;
2850 	int ret;
2851 
2852 	/* validate the address info */
2853 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2854 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2855 		return -EINVAL;
2856 
2857 	/* map the traddr address info to a target port */
2858 
2859 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2860 			sizeof(port->disc_addr.traddr));
2861 	if (ret)
2862 		return ret;
2863 
2864 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2865 	if (!pe)
2866 		return -ENOMEM;
2867 
2868 	ret = -ENXIO;
2869 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2870 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2871 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2872 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2873 			/* a FC port can only be 1 nvmet port id */
2874 			if (!tgtport->pe) {
2875 				nvmet_fc_portentry_bind(tgtport, pe, port);
2876 				ret = 0;
2877 			} else
2878 				ret = -EALREADY;
2879 			break;
2880 		}
2881 	}
2882 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2883 
2884 	if (ret)
2885 		kfree(pe);
2886 
2887 	return ret;
2888 }
2889 
2890 static void
2891 nvmet_fc_remove_port(struct nvmet_port *port)
2892 {
2893 	struct nvmet_fc_port_entry *pe = port->priv;
2894 
2895 	nvmet_fc_portentry_unbind(pe);
2896 
2897 	kfree(pe);
2898 }
2899 
2900 static void
2901 nvmet_fc_discovery_chg(struct nvmet_port *port)
2902 {
2903 	struct nvmet_fc_port_entry *pe = port->priv;
2904 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2905 
2906 	if (tgtport && tgtport->ops->discovery_event)
2907 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2908 }
2909 
2910 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2911 	.owner			= THIS_MODULE,
2912 	.type			= NVMF_TRTYPE_FC,
2913 	.msdbd			= 1,
2914 	.add_port		= nvmet_fc_add_port,
2915 	.remove_port		= nvmet_fc_remove_port,
2916 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2917 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2918 	.discovery_chg		= nvmet_fc_discovery_chg,
2919 };
2920 
2921 static int __init nvmet_fc_init_module(void)
2922 {
2923 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2924 }
2925 
2926 static void __exit nvmet_fc_exit_module(void)
2927 {
2928 	/* sanity check - all lports should be removed */
2929 	if (!list_empty(&nvmet_fc_target_list))
2930 		pr_warn("%s: targetport list not empty\n", __func__);
2931 
2932 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2933 
2934 	ida_destroy(&nvmet_fc_tgtport_cnt);
2935 }
2936 
2937 module_init(nvmet_fc_init_module);
2938 module_exit(nvmet_fc_exit_module);
2939 
2940 MODULE_LICENSE("GPL v2");
2941