xref: /openbmc/linux/drivers/nvme/target/fc.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct list_head		fod_list;
144 	struct list_head		pending_cmd_list;
145 	struct list_head		avail_defer_list;
146 	struct workqueue_struct		*work_q;
147 	struct kref			ref;
148 	struct rcu_head			rcu;
149 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
150 } __aligned(sizeof(unsigned long long));
151 
152 struct nvmet_fc_hostport {
153 	struct nvmet_fc_tgtport		*tgtport;
154 	void				*hosthandle;
155 	struct list_head		host_list;
156 	struct kref			ref;
157 	u8				invalid;
158 };
159 
160 struct nvmet_fc_tgt_assoc {
161 	u64				association_id;
162 	u32				a_id;
163 	atomic_t			terminating;
164 	struct nvmet_fc_tgtport		*tgtport;
165 	struct nvmet_fc_hostport	*hostport;
166 	struct nvmet_fc_ls_iod		*rcv_disconn;
167 	struct list_head		a_list;
168 	struct nvmet_fc_tgt_queue __rcu	*queues[NVMET_NR_QUEUES + 1];
169 	struct kref			ref;
170 	struct work_struct		del_work;
171 	struct rcu_head			rcu;
172 };
173 
174 
175 static inline int
176 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
177 {
178 	return (iodptr - iodptr->tgtport->iod);
179 }
180 
181 static inline int
182 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
183 {
184 	return (fodptr - fodptr->queue->fod);
185 }
186 
187 
188 /*
189  * Association and Connection IDs:
190  *
191  * Association ID will have random number in upper 6 bytes and zero
192  *   in lower 2 bytes
193  *
194  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
195  *
196  * note: Association ID = Connection ID for queue 0
197  */
198 #define BYTES_FOR_QID			sizeof(u16)
199 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
200 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
201 
202 static inline u64
203 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
204 {
205 	return (assoc->association_id | qid);
206 }
207 
208 static inline u64
209 nvmet_fc_getassociationid(u64 connectionid)
210 {
211 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
212 }
213 
214 static inline u16
215 nvmet_fc_getqueueid(u64 connectionid)
216 {
217 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
218 }
219 
220 static inline struct nvmet_fc_tgtport *
221 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
222 {
223 	return container_of(targetport, struct nvmet_fc_tgtport,
224 				 fc_target_port);
225 }
226 
227 static inline struct nvmet_fc_fcp_iod *
228 nvmet_req_to_fod(struct nvmet_req *nvme_req)
229 {
230 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
231 }
232 
233 
234 /* *************************** Globals **************************** */
235 
236 
237 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
238 
239 static LIST_HEAD(nvmet_fc_target_list);
240 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
241 static LIST_HEAD(nvmet_fc_portentry_list);
242 
243 
244 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
245 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
246 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
247 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
248 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
249 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
250 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
251 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
253 					struct nvmet_fc_fcp_iod *fod);
254 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
255 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
256 				struct nvmet_fc_ls_iod *iod);
257 
258 
259 /* *********************** FC-NVME DMA Handling **************************** */
260 
261 /*
262  * The fcloop device passes in a NULL device pointer. Real LLD's will
263  * pass in a valid device pointer. If NULL is passed to the dma mapping
264  * routines, depending on the platform, it may or may not succeed, and
265  * may crash.
266  *
267  * As such:
268  * Wrapper all the dma routines and check the dev pointer.
269  *
270  * If simple mappings (return just a dma address, we'll noop them,
271  * returning a dma address of 0.
272  *
273  * On more complex mappings (dma_map_sg), a pseudo routine fills
274  * in the scatter list, setting all dma addresses to 0.
275  */
276 
277 static inline dma_addr_t
278 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
279 		enum dma_data_direction dir)
280 {
281 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
282 }
283 
284 static inline int
285 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
286 {
287 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
288 }
289 
290 static inline void
291 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
292 	enum dma_data_direction dir)
293 {
294 	if (dev)
295 		dma_unmap_single(dev, addr, size, dir);
296 }
297 
298 static inline void
299 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
300 		enum dma_data_direction dir)
301 {
302 	if (dev)
303 		dma_sync_single_for_cpu(dev, addr, size, dir);
304 }
305 
306 static inline void
307 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
308 		enum dma_data_direction dir)
309 {
310 	if (dev)
311 		dma_sync_single_for_device(dev, addr, size, dir);
312 }
313 
314 /* pseudo dma_map_sg call */
315 static int
316 fc_map_sg(struct scatterlist *sg, int nents)
317 {
318 	struct scatterlist *s;
319 	int i;
320 
321 	WARN_ON(nents == 0 || sg[0].length == 0);
322 
323 	for_each_sg(sg, s, nents, i) {
324 		s->dma_address = 0L;
325 #ifdef CONFIG_NEED_SG_DMA_LENGTH
326 		s->dma_length = s->length;
327 #endif
328 	}
329 	return nents;
330 }
331 
332 static inline int
333 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
334 		enum dma_data_direction dir)
335 {
336 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
337 }
338 
339 static inline void
340 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
341 		enum dma_data_direction dir)
342 {
343 	if (dev)
344 		dma_unmap_sg(dev, sg, nents, dir);
345 }
346 
347 
348 /* ********************** FC-NVME LS XMT Handling ************************* */
349 
350 
351 static void
352 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
353 {
354 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
355 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&tgtport->lock, flags);
359 
360 	if (!lsop->req_queued) {
361 		spin_unlock_irqrestore(&tgtport->lock, flags);
362 		return;
363 	}
364 
365 	list_del(&lsop->lsreq_list);
366 
367 	lsop->req_queued = false;
368 
369 	spin_unlock_irqrestore(&tgtport->lock, flags);
370 
371 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
372 				  (lsreq->rqstlen + lsreq->rsplen),
373 				  DMA_BIDIRECTIONAL);
374 
375 	nvmet_fc_tgtport_put(tgtport);
376 }
377 
378 static int
379 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
380 		struct nvmet_fc_ls_req_op *lsop,
381 		void (*done)(struct nvmefc_ls_req *req, int status))
382 {
383 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
384 	unsigned long flags;
385 	int ret = 0;
386 
387 	if (!tgtport->ops->ls_req)
388 		return -EOPNOTSUPP;
389 
390 	if (!nvmet_fc_tgtport_get(tgtport))
391 		return -ESHUTDOWN;
392 
393 	lsreq->done = done;
394 	lsop->req_queued = false;
395 	INIT_LIST_HEAD(&lsop->lsreq_list);
396 
397 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
398 				  lsreq->rqstlen + lsreq->rsplen,
399 				  DMA_BIDIRECTIONAL);
400 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
401 		ret = -EFAULT;
402 		goto out_puttgtport;
403 	}
404 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
405 
406 	spin_lock_irqsave(&tgtport->lock, flags);
407 
408 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
409 
410 	lsop->req_queued = true;
411 
412 	spin_unlock_irqrestore(&tgtport->lock, flags);
413 
414 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
415 				   lsreq);
416 	if (ret)
417 		goto out_unlink;
418 
419 	return 0;
420 
421 out_unlink:
422 	lsop->ls_error = ret;
423 	spin_lock_irqsave(&tgtport->lock, flags);
424 	lsop->req_queued = false;
425 	list_del(&lsop->lsreq_list);
426 	spin_unlock_irqrestore(&tgtport->lock, flags);
427 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
428 				  (lsreq->rqstlen + lsreq->rsplen),
429 				  DMA_BIDIRECTIONAL);
430 out_puttgtport:
431 	nvmet_fc_tgtport_put(tgtport);
432 
433 	return ret;
434 }
435 
436 static int
437 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
438 		struct nvmet_fc_ls_req_op *lsop,
439 		void (*done)(struct nvmefc_ls_req *req, int status))
440 {
441 	/* don't wait for completion */
442 
443 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
444 }
445 
446 static void
447 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
448 {
449 	struct nvmet_fc_ls_req_op *lsop =
450 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
451 
452 	__nvmet_fc_finish_ls_req(lsop);
453 
454 	/* fc-nvme target doesn't care about success or failure of cmd */
455 
456 	kfree(lsop);
457 }
458 
459 /*
460  * This routine sends a FC-NVME LS to disconnect (aka terminate)
461  * the FC-NVME Association.  Terminating the association also
462  * terminates the FC-NVME connections (per queue, both admin and io
463  * queues) that are part of the association. E.g. things are torn
464  * down, and the related FC-NVME Association ID and Connection IDs
465  * become invalid.
466  *
467  * The behavior of the fc-nvme target is such that it's
468  * understanding of the association and connections will implicitly
469  * be torn down. The action is implicit as it may be due to a loss of
470  * connectivity with the fc-nvme host, so the target may never get a
471  * response even if it tried.  As such, the action of this routine
472  * is to asynchronously send the LS, ignore any results of the LS, and
473  * continue on with terminating the association. If the fc-nvme host
474  * is present and receives the LS, it too can tear down.
475  */
476 static void
477 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
478 {
479 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
480 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
481 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
482 	struct nvmet_fc_ls_req_op *lsop;
483 	struct nvmefc_ls_req *lsreq;
484 	int ret;
485 
486 	/*
487 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
488 	 * message is normal. Otherwise, send unless the hostport has
489 	 * already been invalidated by the lldd.
490 	 */
491 	if (!tgtport->ops->ls_req || !assoc->hostport ||
492 	    assoc->hostport->invalid)
493 		return;
494 
495 	lsop = kzalloc((sizeof(*lsop) +
496 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
497 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
498 	if (!lsop) {
499 		dev_info(tgtport->dev,
500 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
501 			tgtport->fc_target_port.port_num, assoc->a_id);
502 		return;
503 	}
504 
505 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
506 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
507 	lsreq = &lsop->ls_req;
508 	if (tgtport->ops->lsrqst_priv_sz)
509 		lsreq->private = (void *)&discon_acc[1];
510 	else
511 		lsreq->private = NULL;
512 
513 	lsop->tgtport = tgtport;
514 	lsop->hosthandle = assoc->hostport->hosthandle;
515 
516 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
517 				assoc->association_id);
518 
519 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
520 				nvmet_fc_disconnect_assoc_done);
521 	if (ret) {
522 		dev_info(tgtport->dev,
523 			"{%d:%d} XMT Disconnect Association failed: %d\n",
524 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
525 		kfree(lsop);
526 	}
527 }
528 
529 
530 /* *********************** FC-NVME Port Management ************************ */
531 
532 
533 static int
534 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
535 {
536 	struct nvmet_fc_ls_iod *iod;
537 	int i;
538 
539 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
540 			GFP_KERNEL);
541 	if (!iod)
542 		return -ENOMEM;
543 
544 	tgtport->iod = iod;
545 
546 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
547 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
548 		iod->tgtport = tgtport;
549 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
550 
551 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
552 				       sizeof(union nvmefc_ls_responses),
553 				       GFP_KERNEL);
554 		if (!iod->rqstbuf)
555 			goto out_fail;
556 
557 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
558 
559 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
560 						sizeof(*iod->rspbuf),
561 						DMA_TO_DEVICE);
562 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
563 			goto out_fail;
564 	}
565 
566 	return 0;
567 
568 out_fail:
569 	kfree(iod->rqstbuf);
570 	list_del(&iod->ls_rcv_list);
571 	for (iod--, i--; i >= 0; iod--, i--) {
572 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
573 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
574 		kfree(iod->rqstbuf);
575 		list_del(&iod->ls_rcv_list);
576 	}
577 
578 	kfree(iod);
579 
580 	return -EFAULT;
581 }
582 
583 static void
584 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
585 {
586 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
587 	int i;
588 
589 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
590 		fc_dma_unmap_single(tgtport->dev,
591 				iod->rspdma, sizeof(*iod->rspbuf),
592 				DMA_TO_DEVICE);
593 		kfree(iod->rqstbuf);
594 		list_del(&iod->ls_rcv_list);
595 	}
596 	kfree(tgtport->iod);
597 }
598 
599 static struct nvmet_fc_ls_iod *
600 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
601 {
602 	struct nvmet_fc_ls_iod *iod;
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&tgtport->lock, flags);
606 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
607 					struct nvmet_fc_ls_iod, ls_rcv_list);
608 	if (iod)
609 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
610 	spin_unlock_irqrestore(&tgtport->lock, flags);
611 	return iod;
612 }
613 
614 
615 static void
616 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
617 			struct nvmet_fc_ls_iod *iod)
618 {
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&tgtport->lock, flags);
622 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
623 	spin_unlock_irqrestore(&tgtport->lock, flags);
624 }
625 
626 static void
627 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
628 				struct nvmet_fc_tgt_queue *queue)
629 {
630 	struct nvmet_fc_fcp_iod *fod = queue->fod;
631 	int i;
632 
633 	for (i = 0; i < queue->sqsize; fod++, i++) {
634 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
635 		fod->tgtport = tgtport;
636 		fod->queue = queue;
637 		fod->active = false;
638 		fod->abort = false;
639 		fod->aborted = false;
640 		fod->fcpreq = NULL;
641 		list_add_tail(&fod->fcp_list, &queue->fod_list);
642 		spin_lock_init(&fod->flock);
643 
644 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
645 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
646 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
647 			list_del(&fod->fcp_list);
648 			for (fod--, i--; i >= 0; fod--, i--) {
649 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
650 						sizeof(fod->rspiubuf),
651 						DMA_TO_DEVICE);
652 				fod->rspdma = 0L;
653 				list_del(&fod->fcp_list);
654 			}
655 
656 			return;
657 		}
658 	}
659 }
660 
661 static void
662 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
663 				struct nvmet_fc_tgt_queue *queue)
664 {
665 	struct nvmet_fc_fcp_iod *fod = queue->fod;
666 	int i;
667 
668 	for (i = 0; i < queue->sqsize; fod++, i++) {
669 		if (fod->rspdma)
670 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
671 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
672 	}
673 }
674 
675 static struct nvmet_fc_fcp_iod *
676 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
677 {
678 	struct nvmet_fc_fcp_iod *fod;
679 
680 	lockdep_assert_held(&queue->qlock);
681 
682 	fod = list_first_entry_or_null(&queue->fod_list,
683 					struct nvmet_fc_fcp_iod, fcp_list);
684 	if (fod) {
685 		list_del(&fod->fcp_list);
686 		fod->active = true;
687 		/*
688 		 * no queue reference is taken, as it was taken by the
689 		 * queue lookup just prior to the allocation. The iod
690 		 * will "inherit" that reference.
691 		 */
692 	}
693 	return fod;
694 }
695 
696 
697 static void
698 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
699 		       struct nvmet_fc_tgt_queue *queue,
700 		       struct nvmefc_tgt_fcp_req *fcpreq)
701 {
702 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
703 
704 	/*
705 	 * put all admin cmds on hw queue id 0. All io commands go to
706 	 * the respective hw queue based on a modulo basis
707 	 */
708 	fcpreq->hwqid = queue->qid ?
709 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
710 
711 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
712 }
713 
714 static void
715 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
716 {
717 	struct nvmet_fc_fcp_iod *fod =
718 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
719 
720 	/* Submit deferred IO for processing */
721 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
722 
723 }
724 
725 static void
726 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
727 			struct nvmet_fc_fcp_iod *fod)
728 {
729 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
730 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
731 	struct nvmet_fc_defer_fcp_req *deferfcp;
732 	unsigned long flags;
733 
734 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
735 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
736 
737 	fcpreq->nvmet_fc_private = NULL;
738 
739 	fod->active = false;
740 	fod->abort = false;
741 	fod->aborted = false;
742 	fod->writedataactive = false;
743 	fod->fcpreq = NULL;
744 
745 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
746 
747 	/* release the queue lookup reference on the completed IO */
748 	nvmet_fc_tgt_q_put(queue);
749 
750 	spin_lock_irqsave(&queue->qlock, flags);
751 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
752 				struct nvmet_fc_defer_fcp_req, req_list);
753 	if (!deferfcp) {
754 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
755 		spin_unlock_irqrestore(&queue->qlock, flags);
756 		return;
757 	}
758 
759 	/* Re-use the fod for the next pending cmd that was deferred */
760 	list_del(&deferfcp->req_list);
761 
762 	fcpreq = deferfcp->fcp_req;
763 
764 	/* deferfcp can be reused for another IO at a later date */
765 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
766 
767 	spin_unlock_irqrestore(&queue->qlock, flags);
768 
769 	/* Save NVME CMD IO in fod */
770 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
771 
772 	/* Setup new fcpreq to be processed */
773 	fcpreq->rspaddr = NULL;
774 	fcpreq->rsplen  = 0;
775 	fcpreq->nvmet_fc_private = fod;
776 	fod->fcpreq = fcpreq;
777 	fod->active = true;
778 
779 	/* inform LLDD IO is now being processed */
780 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
781 
782 	/*
783 	 * Leave the queue lookup get reference taken when
784 	 * fod was originally allocated.
785 	 */
786 
787 	queue_work(queue->work_q, &fod->defer_work);
788 }
789 
790 static struct nvmet_fc_tgt_queue *
791 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
792 			u16 qid, u16 sqsize)
793 {
794 	struct nvmet_fc_tgt_queue *queue;
795 	int ret;
796 
797 	if (qid > NVMET_NR_QUEUES)
798 		return NULL;
799 
800 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801 	if (!queue)
802 		return NULL;
803 
804 	if (!nvmet_fc_tgt_a_get(assoc))
805 		goto out_free_queue;
806 
807 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808 				assoc->tgtport->fc_target_port.port_num,
809 				assoc->a_id, qid);
810 	if (!queue->work_q)
811 		goto out_a_put;
812 
813 	queue->qid = qid;
814 	queue->sqsize = sqsize;
815 	queue->assoc = assoc;
816 	INIT_LIST_HEAD(&queue->fod_list);
817 	INIT_LIST_HEAD(&queue->avail_defer_list);
818 	INIT_LIST_HEAD(&queue->pending_cmd_list);
819 	atomic_set(&queue->connected, 0);
820 	atomic_set(&queue->sqtail, 0);
821 	atomic_set(&queue->rsn, 1);
822 	atomic_set(&queue->zrspcnt, 0);
823 	spin_lock_init(&queue->qlock);
824 	kref_init(&queue->ref);
825 
826 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827 
828 	ret = nvmet_sq_init(&queue->nvme_sq);
829 	if (ret)
830 		goto out_fail_iodlist;
831 
832 	WARN_ON(assoc->queues[qid]);
833 	rcu_assign_pointer(assoc->queues[qid], queue);
834 
835 	return queue;
836 
837 out_fail_iodlist:
838 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
839 	destroy_workqueue(queue->work_q);
840 out_a_put:
841 	nvmet_fc_tgt_a_put(assoc);
842 out_free_queue:
843 	kfree(queue);
844 	return NULL;
845 }
846 
847 
848 static void
849 nvmet_fc_tgt_queue_free(struct kref *ref)
850 {
851 	struct nvmet_fc_tgt_queue *queue =
852 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
853 
854 	rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
855 
856 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
857 
858 	nvmet_fc_tgt_a_put(queue->assoc);
859 
860 	destroy_workqueue(queue->work_q);
861 
862 	kfree_rcu(queue, rcu);
863 }
864 
865 static void
866 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
867 {
868 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
869 }
870 
871 static int
872 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
873 {
874 	return kref_get_unless_zero(&queue->ref);
875 }
876 
877 
878 static void
879 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
880 {
881 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
882 	struct nvmet_fc_fcp_iod *fod = queue->fod;
883 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
884 	unsigned long flags;
885 	int i;
886 	bool disconnect;
887 
888 	disconnect = atomic_xchg(&queue->connected, 0);
889 
890 	/* if not connected, nothing to do */
891 	if (!disconnect)
892 		return;
893 
894 	spin_lock_irqsave(&queue->qlock, flags);
895 	/* abort outstanding io's */
896 	for (i = 0; i < queue->sqsize; fod++, i++) {
897 		if (fod->active) {
898 			spin_lock(&fod->flock);
899 			fod->abort = true;
900 			/*
901 			 * only call lldd abort routine if waiting for
902 			 * writedata. other outstanding ops should finish
903 			 * on their own.
904 			 */
905 			if (fod->writedataactive) {
906 				fod->aborted = true;
907 				spin_unlock(&fod->flock);
908 				tgtport->ops->fcp_abort(
909 					&tgtport->fc_target_port, fod->fcpreq);
910 			} else
911 				spin_unlock(&fod->flock);
912 		}
913 	}
914 
915 	/* Cleanup defer'ed IOs in queue */
916 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
917 				req_list) {
918 		list_del(&deferfcp->req_list);
919 		kfree(deferfcp);
920 	}
921 
922 	for (;;) {
923 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
924 				struct nvmet_fc_defer_fcp_req, req_list);
925 		if (!deferfcp)
926 			break;
927 
928 		list_del(&deferfcp->req_list);
929 		spin_unlock_irqrestore(&queue->qlock, flags);
930 
931 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
932 				deferfcp->fcp_req);
933 
934 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
935 				deferfcp->fcp_req);
936 
937 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
938 				deferfcp->fcp_req);
939 
940 		/* release the queue lookup reference */
941 		nvmet_fc_tgt_q_put(queue);
942 
943 		kfree(deferfcp);
944 
945 		spin_lock_irqsave(&queue->qlock, flags);
946 	}
947 	spin_unlock_irqrestore(&queue->qlock, flags);
948 
949 	flush_workqueue(queue->work_q);
950 
951 	nvmet_sq_destroy(&queue->nvme_sq);
952 
953 	nvmet_fc_tgt_q_put(queue);
954 }
955 
956 static struct nvmet_fc_tgt_queue *
957 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
958 				u64 connection_id)
959 {
960 	struct nvmet_fc_tgt_assoc *assoc;
961 	struct nvmet_fc_tgt_queue *queue;
962 	u64 association_id = nvmet_fc_getassociationid(connection_id);
963 	u16 qid = nvmet_fc_getqueueid(connection_id);
964 
965 	if (qid > NVMET_NR_QUEUES)
966 		return NULL;
967 
968 	rcu_read_lock();
969 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
970 		if (association_id == assoc->association_id) {
971 			queue = rcu_dereference(assoc->queues[qid]);
972 			if (queue &&
973 			    (!atomic_read(&queue->connected) ||
974 			     !nvmet_fc_tgt_q_get(queue)))
975 				queue = NULL;
976 			rcu_read_unlock();
977 			return queue;
978 		}
979 	}
980 	rcu_read_unlock();
981 	return NULL;
982 }
983 
984 static void
985 nvmet_fc_hostport_free(struct kref *ref)
986 {
987 	struct nvmet_fc_hostport *hostport =
988 		container_of(ref, struct nvmet_fc_hostport, ref);
989 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
990 	unsigned long flags;
991 
992 	spin_lock_irqsave(&tgtport->lock, flags);
993 	list_del(&hostport->host_list);
994 	spin_unlock_irqrestore(&tgtport->lock, flags);
995 	if (tgtport->ops->host_release && hostport->invalid)
996 		tgtport->ops->host_release(hostport->hosthandle);
997 	kfree(hostport);
998 	nvmet_fc_tgtport_put(tgtport);
999 }
1000 
1001 static void
1002 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1003 {
1004 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1005 }
1006 
1007 static int
1008 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1009 {
1010 	return kref_get_unless_zero(&hostport->ref);
1011 }
1012 
1013 static void
1014 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1015 {
1016 	/* if LLDD not implemented, leave as NULL */
1017 	if (!hostport || !hostport->hosthandle)
1018 		return;
1019 
1020 	nvmet_fc_hostport_put(hostport);
1021 }
1022 
1023 static struct nvmet_fc_hostport *
1024 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1025 {
1026 	struct nvmet_fc_hostport *host;
1027 
1028 	lockdep_assert_held(&tgtport->lock);
1029 
1030 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1031 		if (host->hosthandle == hosthandle && !host->invalid) {
1032 			if (nvmet_fc_hostport_get(host))
1033 				return (host);
1034 		}
1035 	}
1036 
1037 	return NULL;
1038 }
1039 
1040 static struct nvmet_fc_hostport *
1041 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1042 {
1043 	struct nvmet_fc_hostport *newhost, *match = NULL;
1044 	unsigned long flags;
1045 
1046 	/* if LLDD not implemented, leave as NULL */
1047 	if (!hosthandle)
1048 		return NULL;
1049 
1050 	/*
1051 	 * take reference for what will be the newly allocated hostport if
1052 	 * we end up using a new allocation
1053 	 */
1054 	if (!nvmet_fc_tgtport_get(tgtport))
1055 		return ERR_PTR(-EINVAL);
1056 
1057 	spin_lock_irqsave(&tgtport->lock, flags);
1058 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1059 	spin_unlock_irqrestore(&tgtport->lock, flags);
1060 
1061 	if (match) {
1062 		/* no new allocation - release reference */
1063 		nvmet_fc_tgtport_put(tgtport);
1064 		return match;
1065 	}
1066 
1067 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1068 	if (!newhost) {
1069 		/* no new allocation - release reference */
1070 		nvmet_fc_tgtport_put(tgtport);
1071 		return ERR_PTR(-ENOMEM);
1072 	}
1073 
1074 	spin_lock_irqsave(&tgtport->lock, flags);
1075 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1076 	if (match) {
1077 		/* new allocation not needed */
1078 		kfree(newhost);
1079 		newhost = match;
1080 		/* no new allocation - release reference */
1081 		nvmet_fc_tgtport_put(tgtport);
1082 	} else {
1083 		newhost->tgtport = tgtport;
1084 		newhost->hosthandle = hosthandle;
1085 		INIT_LIST_HEAD(&newhost->host_list);
1086 		kref_init(&newhost->ref);
1087 
1088 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1089 	}
1090 	spin_unlock_irqrestore(&tgtport->lock, flags);
1091 
1092 	return newhost;
1093 }
1094 
1095 static void
1096 nvmet_fc_delete_assoc(struct work_struct *work)
1097 {
1098 	struct nvmet_fc_tgt_assoc *assoc =
1099 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1100 
1101 	nvmet_fc_delete_target_assoc(assoc);
1102 	nvmet_fc_tgt_a_put(assoc);
1103 }
1104 
1105 static struct nvmet_fc_tgt_assoc *
1106 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1107 {
1108 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1109 	unsigned long flags;
1110 	u64 ran;
1111 	int idx;
1112 	bool needrandom = true;
1113 
1114 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1115 	if (!assoc)
1116 		return NULL;
1117 
1118 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1119 	if (idx < 0)
1120 		goto out_free_assoc;
1121 
1122 	if (!nvmet_fc_tgtport_get(tgtport))
1123 		goto out_ida;
1124 
1125 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1126 	if (IS_ERR(assoc->hostport))
1127 		goto out_put;
1128 
1129 	assoc->tgtport = tgtport;
1130 	assoc->a_id = idx;
1131 	INIT_LIST_HEAD(&assoc->a_list);
1132 	kref_init(&assoc->ref);
1133 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1134 	atomic_set(&assoc->terminating, 0);
1135 
1136 	while (needrandom) {
1137 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1138 		ran = ran << BYTES_FOR_QID_SHIFT;
1139 
1140 		spin_lock_irqsave(&tgtport->lock, flags);
1141 		needrandom = false;
1142 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1143 			if (ran == tmpassoc->association_id) {
1144 				needrandom = true;
1145 				break;
1146 			}
1147 		}
1148 		if (!needrandom) {
1149 			assoc->association_id = ran;
1150 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1151 		}
1152 		spin_unlock_irqrestore(&tgtport->lock, flags);
1153 	}
1154 
1155 	return assoc;
1156 
1157 out_put:
1158 	nvmet_fc_tgtport_put(tgtport);
1159 out_ida:
1160 	ida_simple_remove(&tgtport->assoc_cnt, idx);
1161 out_free_assoc:
1162 	kfree(assoc);
1163 	return NULL;
1164 }
1165 
1166 static void
1167 nvmet_fc_target_assoc_free(struct kref *ref)
1168 {
1169 	struct nvmet_fc_tgt_assoc *assoc =
1170 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1171 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1172 	struct nvmet_fc_ls_iod	*oldls;
1173 	unsigned long flags;
1174 
1175 	/* Send Disconnect now that all i/o has completed */
1176 	nvmet_fc_xmt_disconnect_assoc(assoc);
1177 
1178 	nvmet_fc_free_hostport(assoc->hostport);
1179 	spin_lock_irqsave(&tgtport->lock, flags);
1180 	list_del_rcu(&assoc->a_list);
1181 	oldls = assoc->rcv_disconn;
1182 	spin_unlock_irqrestore(&tgtport->lock, flags);
1183 	/* if pending Rcv Disconnect Association LS, send rsp now */
1184 	if (oldls)
1185 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1186 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1187 	dev_info(tgtport->dev,
1188 		"{%d:%d} Association freed\n",
1189 		tgtport->fc_target_port.port_num, assoc->a_id);
1190 	kfree_rcu(assoc, rcu);
1191 	nvmet_fc_tgtport_put(tgtport);
1192 }
1193 
1194 static void
1195 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1198 }
1199 
1200 static int
1201 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 	return kref_get_unless_zero(&assoc->ref);
1204 }
1205 
1206 static void
1207 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1208 {
1209 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1210 	struct nvmet_fc_tgt_queue *queue;
1211 	int i, terminating;
1212 
1213 	terminating = atomic_xchg(&assoc->terminating, 1);
1214 
1215 	/* if already terminating, do nothing */
1216 	if (terminating)
1217 		return;
1218 
1219 
1220 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1221 		rcu_read_lock();
1222 		queue = rcu_dereference(assoc->queues[i]);
1223 		if (!queue) {
1224 			rcu_read_unlock();
1225 			continue;
1226 		}
1227 
1228 		if (!nvmet_fc_tgt_q_get(queue)) {
1229 			rcu_read_unlock();
1230 			continue;
1231 		}
1232 		rcu_read_unlock();
1233 		nvmet_fc_delete_target_queue(queue);
1234 		nvmet_fc_tgt_q_put(queue);
1235 	}
1236 
1237 	dev_info(tgtport->dev,
1238 		"{%d:%d} Association deleted\n",
1239 		tgtport->fc_target_port.port_num, assoc->a_id);
1240 
1241 	nvmet_fc_tgt_a_put(assoc);
1242 }
1243 
1244 static struct nvmet_fc_tgt_assoc *
1245 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1246 				u64 association_id)
1247 {
1248 	struct nvmet_fc_tgt_assoc *assoc;
1249 	struct nvmet_fc_tgt_assoc *ret = NULL;
1250 
1251 	rcu_read_lock();
1252 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1253 		if (association_id == assoc->association_id) {
1254 			ret = assoc;
1255 			if (!nvmet_fc_tgt_a_get(assoc))
1256 				ret = NULL;
1257 			break;
1258 		}
1259 	}
1260 	rcu_read_unlock();
1261 
1262 	return ret;
1263 }
1264 
1265 static void
1266 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1267 			struct nvmet_fc_port_entry *pe,
1268 			struct nvmet_port *port)
1269 {
1270 	lockdep_assert_held(&nvmet_fc_tgtlock);
1271 
1272 	pe->tgtport = tgtport;
1273 	tgtport->pe = pe;
1274 
1275 	pe->port = port;
1276 	port->priv = pe;
1277 
1278 	pe->node_name = tgtport->fc_target_port.node_name;
1279 	pe->port_name = tgtport->fc_target_port.port_name;
1280 	INIT_LIST_HEAD(&pe->pe_list);
1281 
1282 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1283 }
1284 
1285 static void
1286 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1287 {
1288 	unsigned long flags;
1289 
1290 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1291 	if (pe->tgtport)
1292 		pe->tgtport->pe = NULL;
1293 	list_del(&pe->pe_list);
1294 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1295 }
1296 
1297 /*
1298  * called when a targetport deregisters. Breaks the relationship
1299  * with the nvmet port, but leaves the port_entry in place so that
1300  * re-registration can resume operation.
1301  */
1302 static void
1303 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1304 {
1305 	struct nvmet_fc_port_entry *pe;
1306 	unsigned long flags;
1307 
1308 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1309 	pe = tgtport->pe;
1310 	if (pe)
1311 		pe->tgtport = NULL;
1312 	tgtport->pe = NULL;
1313 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1314 }
1315 
1316 /*
1317  * called when a new targetport is registered. Looks in the
1318  * existing nvmet port_entries to see if the nvmet layer is
1319  * configured for the targetport's wwn's. (the targetport existed,
1320  * nvmet configured, the lldd unregistered the tgtport, and is now
1321  * reregistering the same targetport).  If so, set the nvmet port
1322  * port entry on the targetport.
1323  */
1324 static void
1325 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1326 {
1327 	struct nvmet_fc_port_entry *pe;
1328 	unsigned long flags;
1329 
1330 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1331 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1332 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1333 		    tgtport->fc_target_port.port_name == pe->port_name) {
1334 			WARN_ON(pe->tgtport);
1335 			tgtport->pe = pe;
1336 			pe->tgtport = tgtport;
1337 			break;
1338 		}
1339 	}
1340 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1341 }
1342 
1343 /**
1344  * nvme_fc_register_targetport - transport entry point called by an
1345  *                              LLDD to register the existence of a local
1346  *                              NVME subystem FC port.
1347  * @pinfo:     pointer to information about the port to be registered
1348  * @template:  LLDD entrypoints and operational parameters for the port
1349  * @dev:       physical hardware device node port corresponds to. Will be
1350  *             used for DMA mappings
1351  * @portptr:   pointer to a local port pointer. Upon success, the routine
1352  *             will allocate a nvme_fc_local_port structure and place its
1353  *             address in the local port pointer. Upon failure, local port
1354  *             pointer will be set to NULL.
1355  *
1356  * Returns:
1357  * a completion status. Must be 0 upon success; a negative errno
1358  * (ex: -ENXIO) upon failure.
1359  */
1360 int
1361 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1362 			struct nvmet_fc_target_template *template,
1363 			struct device *dev,
1364 			struct nvmet_fc_target_port **portptr)
1365 {
1366 	struct nvmet_fc_tgtport *newrec;
1367 	unsigned long flags;
1368 	int ret, idx;
1369 
1370 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1371 	    !template->fcp_abort ||
1372 	    !template->fcp_req_release || !template->targetport_delete ||
1373 	    !template->max_hw_queues || !template->max_sgl_segments ||
1374 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1375 		ret = -EINVAL;
1376 		goto out_regtgt_failed;
1377 	}
1378 
1379 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1380 			 GFP_KERNEL);
1381 	if (!newrec) {
1382 		ret = -ENOMEM;
1383 		goto out_regtgt_failed;
1384 	}
1385 
1386 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1387 	if (idx < 0) {
1388 		ret = -ENOSPC;
1389 		goto out_fail_kfree;
1390 	}
1391 
1392 	if (!get_device(dev) && dev) {
1393 		ret = -ENODEV;
1394 		goto out_ida_put;
1395 	}
1396 
1397 	newrec->fc_target_port.node_name = pinfo->node_name;
1398 	newrec->fc_target_port.port_name = pinfo->port_name;
1399 	if (template->target_priv_sz)
1400 		newrec->fc_target_port.private = &newrec[1];
1401 	else
1402 		newrec->fc_target_port.private = NULL;
1403 	newrec->fc_target_port.port_id = pinfo->port_id;
1404 	newrec->fc_target_port.port_num = idx;
1405 	INIT_LIST_HEAD(&newrec->tgt_list);
1406 	newrec->dev = dev;
1407 	newrec->ops = template;
1408 	spin_lock_init(&newrec->lock);
1409 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1410 	INIT_LIST_HEAD(&newrec->ls_req_list);
1411 	INIT_LIST_HEAD(&newrec->ls_busylist);
1412 	INIT_LIST_HEAD(&newrec->assoc_list);
1413 	INIT_LIST_HEAD(&newrec->host_list);
1414 	kref_init(&newrec->ref);
1415 	ida_init(&newrec->assoc_cnt);
1416 	newrec->max_sg_cnt = template->max_sgl_segments;
1417 
1418 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1419 	if (ret) {
1420 		ret = -ENOMEM;
1421 		goto out_free_newrec;
1422 	}
1423 
1424 	nvmet_fc_portentry_rebind_tgt(newrec);
1425 
1426 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1427 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1428 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1429 
1430 	*portptr = &newrec->fc_target_port;
1431 	return 0;
1432 
1433 out_free_newrec:
1434 	put_device(dev);
1435 out_ida_put:
1436 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1437 out_fail_kfree:
1438 	kfree(newrec);
1439 out_regtgt_failed:
1440 	*portptr = NULL;
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1444 
1445 
1446 static void
1447 nvmet_fc_free_tgtport(struct kref *ref)
1448 {
1449 	struct nvmet_fc_tgtport *tgtport =
1450 		container_of(ref, struct nvmet_fc_tgtport, ref);
1451 	struct device *dev = tgtport->dev;
1452 	unsigned long flags;
1453 
1454 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1455 	list_del(&tgtport->tgt_list);
1456 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1457 
1458 	nvmet_fc_free_ls_iodlist(tgtport);
1459 
1460 	/* let the LLDD know we've finished tearing it down */
1461 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1462 
1463 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1464 			tgtport->fc_target_port.port_num);
1465 
1466 	ida_destroy(&tgtport->assoc_cnt);
1467 
1468 	kfree(tgtport);
1469 
1470 	put_device(dev);
1471 }
1472 
1473 static void
1474 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1475 {
1476 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1477 }
1478 
1479 static int
1480 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1481 {
1482 	return kref_get_unless_zero(&tgtport->ref);
1483 }
1484 
1485 static void
1486 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1487 {
1488 	struct nvmet_fc_tgt_assoc *assoc;
1489 
1490 	rcu_read_lock();
1491 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1492 		if (!nvmet_fc_tgt_a_get(assoc))
1493 			continue;
1494 		if (!schedule_work(&assoc->del_work))
1495 			/* already deleting - release local reference */
1496 			nvmet_fc_tgt_a_put(assoc);
1497 	}
1498 	rcu_read_unlock();
1499 }
1500 
1501 /**
1502  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1503  *                       to remove references to a hosthandle for LS's.
1504  *
1505  * The nvmet-fc layer ensures that any references to the hosthandle
1506  * on the targetport are forgotten (set to NULL).  The LLDD will
1507  * typically call this when a login with a remote host port has been
1508  * lost, thus LS's for the remote host port are no longer possible.
1509  *
1510  * If an LS request is outstanding to the targetport/hosthandle (or
1511  * issued concurrently with the call to invalidate the host), the
1512  * LLDD is responsible for terminating/aborting the LS and completing
1513  * the LS request. It is recommended that these terminations/aborts
1514  * occur after calling to invalidate the host handle to avoid additional
1515  * retries by the nvmet-fc transport. The nvmet-fc transport may
1516  * continue to reference host handle while it cleans up outstanding
1517  * NVME associations. The nvmet-fc transport will call the
1518  * ops->host_release() callback to notify the LLDD that all references
1519  * are complete and the related host handle can be recovered.
1520  * Note: if there are no references, the callback may be called before
1521  * the invalidate host call returns.
1522  *
1523  * @target_port: pointer to the (registered) target port that a prior
1524  *              LS was received on and which supplied the transport the
1525  *              hosthandle.
1526  * @hosthandle: the handle (pointer) that represents the host port
1527  *              that no longer has connectivity and that LS's should
1528  *              no longer be directed to.
1529  */
1530 void
1531 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1532 			void *hosthandle)
1533 {
1534 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1535 	struct nvmet_fc_tgt_assoc *assoc, *next;
1536 	unsigned long flags;
1537 	bool noassoc = true;
1538 
1539 	spin_lock_irqsave(&tgtport->lock, flags);
1540 	list_for_each_entry_safe(assoc, next,
1541 				&tgtport->assoc_list, a_list) {
1542 		if (!assoc->hostport ||
1543 		    assoc->hostport->hosthandle != hosthandle)
1544 			continue;
1545 		if (!nvmet_fc_tgt_a_get(assoc))
1546 			continue;
1547 		assoc->hostport->invalid = 1;
1548 		noassoc = false;
1549 		if (!schedule_work(&assoc->del_work))
1550 			/* already deleting - release local reference */
1551 			nvmet_fc_tgt_a_put(assoc);
1552 	}
1553 	spin_unlock_irqrestore(&tgtport->lock, flags);
1554 
1555 	/* if there's nothing to wait for - call the callback */
1556 	if (noassoc && tgtport->ops->host_release)
1557 		tgtport->ops->host_release(hosthandle);
1558 }
1559 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1560 
1561 /*
1562  * nvmet layer has called to terminate an association
1563  */
1564 static void
1565 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1566 {
1567 	struct nvmet_fc_tgtport *tgtport, *next;
1568 	struct nvmet_fc_tgt_assoc *assoc;
1569 	struct nvmet_fc_tgt_queue *queue;
1570 	unsigned long flags;
1571 	bool found_ctrl = false;
1572 
1573 	/* this is a bit ugly, but don't want to make locks layered */
1574 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1575 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1576 			tgt_list) {
1577 		if (!nvmet_fc_tgtport_get(tgtport))
1578 			continue;
1579 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1580 
1581 		rcu_read_lock();
1582 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1583 			queue = rcu_dereference(assoc->queues[0]);
1584 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1585 				if (nvmet_fc_tgt_a_get(assoc))
1586 					found_ctrl = true;
1587 				break;
1588 			}
1589 		}
1590 		rcu_read_unlock();
1591 
1592 		nvmet_fc_tgtport_put(tgtport);
1593 
1594 		if (found_ctrl) {
1595 			if (!schedule_work(&assoc->del_work))
1596 				/* already deleting - release local reference */
1597 				nvmet_fc_tgt_a_put(assoc);
1598 			return;
1599 		}
1600 
1601 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1602 	}
1603 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1604 }
1605 
1606 /**
1607  * nvme_fc_unregister_targetport - transport entry point called by an
1608  *                              LLDD to deregister/remove a previously
1609  *                              registered a local NVME subsystem FC port.
1610  * @target_port: pointer to the (registered) target port that is to be
1611  *               deregistered.
1612  *
1613  * Returns:
1614  * a completion status. Must be 0 upon success; a negative errno
1615  * (ex: -ENXIO) upon failure.
1616  */
1617 int
1618 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1619 {
1620 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1621 
1622 	nvmet_fc_portentry_unbind_tgt(tgtport);
1623 
1624 	/* terminate any outstanding associations */
1625 	__nvmet_fc_free_assocs(tgtport);
1626 
1627 	/*
1628 	 * should terminate LS's as well. However, LS's will be generated
1629 	 * at the tail end of association termination, so they likely don't
1630 	 * exist yet. And even if they did, it's worthwhile to just let
1631 	 * them finish and targetport ref counting will clean things up.
1632 	 */
1633 
1634 	nvmet_fc_tgtport_put(tgtport);
1635 
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1639 
1640 
1641 /* ********************** FC-NVME LS RCV Handling ************************* */
1642 
1643 
1644 static void
1645 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1646 			struct nvmet_fc_ls_iod *iod)
1647 {
1648 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1649 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1650 	struct nvmet_fc_tgt_queue *queue;
1651 	int ret = 0;
1652 
1653 	memset(acc, 0, sizeof(*acc));
1654 
1655 	/*
1656 	 * FC-NVME spec changes. There are initiators sending different
1657 	 * lengths as padding sizes for Create Association Cmd descriptor
1658 	 * was incorrect.
1659 	 * Accept anything of "minimum" length. Assume format per 1.15
1660 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1661 	 * trailing pad length is.
1662 	 */
1663 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1664 		ret = VERR_CR_ASSOC_LEN;
1665 	else if (be32_to_cpu(rqst->desc_list_len) <
1666 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1667 		ret = VERR_CR_ASSOC_RQST_LEN;
1668 	else if (rqst->assoc_cmd.desc_tag !=
1669 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1670 		ret = VERR_CR_ASSOC_CMD;
1671 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1672 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1673 		ret = VERR_CR_ASSOC_CMD_LEN;
1674 	else if (!rqst->assoc_cmd.ersp_ratio ||
1675 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1676 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1677 		ret = VERR_ERSP_RATIO;
1678 
1679 	else {
1680 		/* new association w/ admin queue */
1681 		iod->assoc = nvmet_fc_alloc_target_assoc(
1682 						tgtport, iod->hosthandle);
1683 		if (!iod->assoc)
1684 			ret = VERR_ASSOC_ALLOC_FAIL;
1685 		else {
1686 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1687 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1688 			if (!queue)
1689 				ret = VERR_QUEUE_ALLOC_FAIL;
1690 		}
1691 	}
1692 
1693 	if (ret) {
1694 		dev_err(tgtport->dev,
1695 			"Create Association LS failed: %s\n",
1696 			validation_errors[ret]);
1697 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1698 				sizeof(*acc), rqst->w0.ls_cmd,
1699 				FCNVME_RJT_RC_LOGIC,
1700 				FCNVME_RJT_EXP_NONE, 0);
1701 		return;
1702 	}
1703 
1704 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1705 	atomic_set(&queue->connected, 1);
1706 	queue->sqhd = 0;	/* best place to init value */
1707 
1708 	dev_info(tgtport->dev,
1709 		"{%d:%d} Association created\n",
1710 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1711 
1712 	/* format a response */
1713 
1714 	iod->lsrsp->rsplen = sizeof(*acc);
1715 
1716 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1717 			fcnvme_lsdesc_len(
1718 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1719 			FCNVME_LS_CREATE_ASSOCIATION);
1720 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1721 	acc->associd.desc_len =
1722 			fcnvme_lsdesc_len(
1723 				sizeof(struct fcnvme_lsdesc_assoc_id));
1724 	acc->associd.association_id =
1725 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1726 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1727 	acc->connectid.desc_len =
1728 			fcnvme_lsdesc_len(
1729 				sizeof(struct fcnvme_lsdesc_conn_id));
1730 	acc->connectid.connection_id = acc->associd.association_id;
1731 }
1732 
1733 static void
1734 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1735 			struct nvmet_fc_ls_iod *iod)
1736 {
1737 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1738 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1739 	struct nvmet_fc_tgt_queue *queue;
1740 	int ret = 0;
1741 
1742 	memset(acc, 0, sizeof(*acc));
1743 
1744 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1745 		ret = VERR_CR_CONN_LEN;
1746 	else if (rqst->desc_list_len !=
1747 			fcnvme_lsdesc_len(
1748 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1749 		ret = VERR_CR_CONN_RQST_LEN;
1750 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1751 		ret = VERR_ASSOC_ID;
1752 	else if (rqst->associd.desc_len !=
1753 			fcnvme_lsdesc_len(
1754 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1755 		ret = VERR_ASSOC_ID_LEN;
1756 	else if (rqst->connect_cmd.desc_tag !=
1757 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1758 		ret = VERR_CR_CONN_CMD;
1759 	else if (rqst->connect_cmd.desc_len !=
1760 			fcnvme_lsdesc_len(
1761 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1762 		ret = VERR_CR_CONN_CMD_LEN;
1763 	else if (!rqst->connect_cmd.ersp_ratio ||
1764 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1765 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1766 		ret = VERR_ERSP_RATIO;
1767 
1768 	else {
1769 		/* new io queue */
1770 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1771 				be64_to_cpu(rqst->associd.association_id));
1772 		if (!iod->assoc)
1773 			ret = VERR_NO_ASSOC;
1774 		else {
1775 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1776 					be16_to_cpu(rqst->connect_cmd.qid),
1777 					be16_to_cpu(rqst->connect_cmd.sqsize));
1778 			if (!queue)
1779 				ret = VERR_QUEUE_ALLOC_FAIL;
1780 
1781 			/* release get taken in nvmet_fc_find_target_assoc */
1782 			nvmet_fc_tgt_a_put(iod->assoc);
1783 		}
1784 	}
1785 
1786 	if (ret) {
1787 		dev_err(tgtport->dev,
1788 			"Create Connection LS failed: %s\n",
1789 			validation_errors[ret]);
1790 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1791 				sizeof(*acc), rqst->w0.ls_cmd,
1792 				(ret == VERR_NO_ASSOC) ?
1793 					FCNVME_RJT_RC_INV_ASSOC :
1794 					FCNVME_RJT_RC_LOGIC,
1795 				FCNVME_RJT_EXP_NONE, 0);
1796 		return;
1797 	}
1798 
1799 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1800 	atomic_set(&queue->connected, 1);
1801 	queue->sqhd = 0;	/* best place to init value */
1802 
1803 	/* format a response */
1804 
1805 	iod->lsrsp->rsplen = sizeof(*acc);
1806 
1807 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1808 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1809 			FCNVME_LS_CREATE_CONNECTION);
1810 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1811 	acc->connectid.desc_len =
1812 			fcnvme_lsdesc_len(
1813 				sizeof(struct fcnvme_lsdesc_conn_id));
1814 	acc->connectid.connection_id =
1815 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1816 				be16_to_cpu(rqst->connect_cmd.qid)));
1817 }
1818 
1819 /*
1820  * Returns true if the LS response is to be transmit
1821  * Returns false if the LS response is to be delayed
1822  */
1823 static int
1824 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1825 			struct nvmet_fc_ls_iod *iod)
1826 {
1827 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1828 						&iod->rqstbuf->rq_dis_assoc;
1829 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1830 						&iod->rspbuf->rsp_dis_assoc;
1831 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1832 	struct nvmet_fc_ls_iod *oldls = NULL;
1833 	unsigned long flags;
1834 	int ret = 0;
1835 
1836 	memset(acc, 0, sizeof(*acc));
1837 
1838 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1839 	if (!ret) {
1840 		/* match an active association - takes an assoc ref if !NULL */
1841 		assoc = nvmet_fc_find_target_assoc(tgtport,
1842 				be64_to_cpu(rqst->associd.association_id));
1843 		iod->assoc = assoc;
1844 		if (!assoc)
1845 			ret = VERR_NO_ASSOC;
1846 	}
1847 
1848 	if (ret || !assoc) {
1849 		dev_err(tgtport->dev,
1850 			"Disconnect LS failed: %s\n",
1851 			validation_errors[ret]);
1852 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1853 				sizeof(*acc), rqst->w0.ls_cmd,
1854 				(ret == VERR_NO_ASSOC) ?
1855 					FCNVME_RJT_RC_INV_ASSOC :
1856 					FCNVME_RJT_RC_LOGIC,
1857 				FCNVME_RJT_EXP_NONE, 0);
1858 		return true;
1859 	}
1860 
1861 	/* format a response */
1862 
1863 	iod->lsrsp->rsplen = sizeof(*acc);
1864 
1865 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1866 			fcnvme_lsdesc_len(
1867 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1868 			FCNVME_LS_DISCONNECT_ASSOC);
1869 
1870 	/* release get taken in nvmet_fc_find_target_assoc */
1871 	nvmet_fc_tgt_a_put(assoc);
1872 
1873 	/*
1874 	 * The rules for LS response says the response cannot
1875 	 * go back until ABTS's have been sent for all outstanding
1876 	 * I/O and a Disconnect Association LS has been sent.
1877 	 * So... save off the Disconnect LS to send the response
1878 	 * later. If there was a prior LS already saved, replace
1879 	 * it with the newer one and send a can't perform reject
1880 	 * on the older one.
1881 	 */
1882 	spin_lock_irqsave(&tgtport->lock, flags);
1883 	oldls = assoc->rcv_disconn;
1884 	assoc->rcv_disconn = iod;
1885 	spin_unlock_irqrestore(&tgtport->lock, flags);
1886 
1887 	nvmet_fc_delete_target_assoc(assoc);
1888 
1889 	if (oldls) {
1890 		dev_info(tgtport->dev,
1891 			"{%d:%d} Multiple Disconnect Association LS's "
1892 			"received\n",
1893 			tgtport->fc_target_port.port_num, assoc->a_id);
1894 		/* overwrite good response with bogus failure */
1895 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1896 						sizeof(*iod->rspbuf),
1897 						/* ok to use rqst, LS is same */
1898 						rqst->w0.ls_cmd,
1899 						FCNVME_RJT_RC_UNAB,
1900 						FCNVME_RJT_EXP_NONE, 0);
1901 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1902 	}
1903 
1904 	return false;
1905 }
1906 
1907 
1908 /* *********************** NVME Ctrl Routines **************************** */
1909 
1910 
1911 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1912 
1913 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1914 
1915 static void
1916 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1917 {
1918 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1919 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1920 
1921 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1922 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1923 	nvmet_fc_free_ls_iod(tgtport, iod);
1924 	nvmet_fc_tgtport_put(tgtport);
1925 }
1926 
1927 static void
1928 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1929 				struct nvmet_fc_ls_iod *iod)
1930 {
1931 	int ret;
1932 
1933 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1934 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1935 
1936 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1937 	if (ret)
1938 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1939 }
1940 
1941 /*
1942  * Actual processing routine for received FC-NVME LS Requests from the LLD
1943  */
1944 static void
1945 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1946 			struct nvmet_fc_ls_iod *iod)
1947 {
1948 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1949 	bool sendrsp = true;
1950 
1951 	iod->lsrsp->nvme_fc_private = iod;
1952 	iod->lsrsp->rspbuf = iod->rspbuf;
1953 	iod->lsrsp->rspdma = iod->rspdma;
1954 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1955 	/* Be preventative. handlers will later set to valid length */
1956 	iod->lsrsp->rsplen = 0;
1957 
1958 	iod->assoc = NULL;
1959 
1960 	/*
1961 	 * handlers:
1962 	 *   parse request input, execute the request, and format the
1963 	 *   LS response
1964 	 */
1965 	switch (w0->ls_cmd) {
1966 	case FCNVME_LS_CREATE_ASSOCIATION:
1967 		/* Creates Association and initial Admin Queue/Connection */
1968 		nvmet_fc_ls_create_association(tgtport, iod);
1969 		break;
1970 	case FCNVME_LS_CREATE_CONNECTION:
1971 		/* Creates an IO Queue/Connection */
1972 		nvmet_fc_ls_create_connection(tgtport, iod);
1973 		break;
1974 	case FCNVME_LS_DISCONNECT_ASSOC:
1975 		/* Terminate a Queue/Connection or the Association */
1976 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1977 		break;
1978 	default:
1979 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1980 				sizeof(*iod->rspbuf), w0->ls_cmd,
1981 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1982 	}
1983 
1984 	if (sendrsp)
1985 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1986 }
1987 
1988 /*
1989  * Actual processing routine for received FC-NVME LS Requests from the LLD
1990  */
1991 static void
1992 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1993 {
1994 	struct nvmet_fc_ls_iod *iod =
1995 		container_of(work, struct nvmet_fc_ls_iod, work);
1996 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1997 
1998 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1999 }
2000 
2001 
2002 /**
2003  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2004  *                       upon the reception of a NVME LS request.
2005  *
2006  * The nvmet-fc layer will copy payload to an internal structure for
2007  * processing.  As such, upon completion of the routine, the LLDD may
2008  * immediately free/reuse the LS request buffer passed in the call.
2009  *
2010  * If this routine returns error, the LLDD should abort the exchange.
2011  *
2012  * @target_port: pointer to the (registered) target port the LS was
2013  *              received on.
2014  * @hosthandle: pointer to the host specific data, gets stored in iod.
2015  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2016  *              the exchange corresponding to the LS.
2017  * @lsreqbuf:   pointer to the buffer containing the LS Request
2018  * @lsreqbuf_len: length, in bytes, of the received LS request
2019  */
2020 int
2021 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2022 			void *hosthandle,
2023 			struct nvmefc_ls_rsp *lsrsp,
2024 			void *lsreqbuf, u32 lsreqbuf_len)
2025 {
2026 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2027 	struct nvmet_fc_ls_iod *iod;
2028 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2029 
2030 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2031 		dev_info(tgtport->dev,
2032 			"RCV %s LS failed: payload too large (%d)\n",
2033 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2034 				nvmefc_ls_names[w0->ls_cmd] : "",
2035 			lsreqbuf_len);
2036 		return -E2BIG;
2037 	}
2038 
2039 	if (!nvmet_fc_tgtport_get(tgtport)) {
2040 		dev_info(tgtport->dev,
2041 			"RCV %s LS failed: target deleting\n",
2042 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2043 				nvmefc_ls_names[w0->ls_cmd] : "");
2044 		return -ESHUTDOWN;
2045 	}
2046 
2047 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2048 	if (!iod) {
2049 		dev_info(tgtport->dev,
2050 			"RCV %s LS failed: context allocation failed\n",
2051 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2052 				nvmefc_ls_names[w0->ls_cmd] : "");
2053 		nvmet_fc_tgtport_put(tgtport);
2054 		return -ENOENT;
2055 	}
2056 
2057 	iod->lsrsp = lsrsp;
2058 	iod->fcpreq = NULL;
2059 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2060 	iod->rqstdatalen = lsreqbuf_len;
2061 	iod->hosthandle = hosthandle;
2062 
2063 	schedule_work(&iod->work);
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2068 
2069 
2070 /*
2071  * **********************
2072  * Start of FCP handling
2073  * **********************
2074  */
2075 
2076 static int
2077 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2078 {
2079 	struct scatterlist *sg;
2080 	unsigned int nent;
2081 
2082 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2083 	if (!sg)
2084 		goto out;
2085 
2086 	fod->data_sg = sg;
2087 	fod->data_sg_cnt = nent;
2088 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2089 				((fod->io_dir == NVMET_FCP_WRITE) ?
2090 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2091 				/* note: write from initiator perspective */
2092 	fod->next_sg = fod->data_sg;
2093 
2094 	return 0;
2095 
2096 out:
2097 	return NVME_SC_INTERNAL;
2098 }
2099 
2100 static void
2101 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2102 {
2103 	if (!fod->data_sg || !fod->data_sg_cnt)
2104 		return;
2105 
2106 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2107 				((fod->io_dir == NVMET_FCP_WRITE) ?
2108 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2109 	sgl_free(fod->data_sg);
2110 	fod->data_sg = NULL;
2111 	fod->data_sg_cnt = 0;
2112 }
2113 
2114 
2115 static bool
2116 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2117 {
2118 	u32 sqtail, used;
2119 
2120 	/* egad, this is ugly. And sqtail is just a best guess */
2121 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2122 
2123 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2124 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2125 }
2126 
2127 /*
2128  * Prep RSP payload.
2129  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2130  */
2131 static void
2132 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2133 				struct nvmet_fc_fcp_iod *fod)
2134 {
2135 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2136 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2137 	struct nvme_completion *cqe = &ersp->cqe;
2138 	u32 *cqewd = (u32 *)cqe;
2139 	bool send_ersp = false;
2140 	u32 rsn, rspcnt, xfr_length;
2141 
2142 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2143 		xfr_length = fod->req.transfer_len;
2144 	else
2145 		xfr_length = fod->offset;
2146 
2147 	/*
2148 	 * check to see if we can send a 0's rsp.
2149 	 *   Note: to send a 0's response, the NVME-FC host transport will
2150 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2151 	 *   seen in an ersp), and command_id. Thus it will create a
2152 	 *   zero-filled CQE with those known fields filled in. Transport
2153 	 *   must send an ersp for any condition where the cqe won't match
2154 	 *   this.
2155 	 *
2156 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2157 	 *  every N responses, where N=ersp_ratio
2158 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2159 	 *    practice)
2160 	 *  normal cmds: any time status is non-zero, or status is zero
2161 	 *     but words 0 or 1 are non-zero.
2162 	 *  the SQ is 90% or more full
2163 	 *  the cmd is a fused command
2164 	 *  transferred data length not equal to cmd iu length
2165 	 */
2166 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2167 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2168 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2169 	    xfr_length != fod->req.transfer_len ||
2170 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2171 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2172 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2173 		send_ersp = true;
2174 
2175 	/* re-set the fields */
2176 	fod->fcpreq->rspaddr = ersp;
2177 	fod->fcpreq->rspdma = fod->rspdma;
2178 
2179 	if (!send_ersp) {
2180 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2181 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2182 	} else {
2183 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2184 		rsn = atomic_inc_return(&fod->queue->rsn);
2185 		ersp->rsn = cpu_to_be32(rsn);
2186 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2187 		fod->fcpreq->rsplen = sizeof(*ersp);
2188 	}
2189 
2190 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2191 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2192 }
2193 
2194 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2195 
2196 static void
2197 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2198 				struct nvmet_fc_fcp_iod *fod)
2199 {
2200 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2201 
2202 	/* data no longer needed */
2203 	nvmet_fc_free_tgt_pgs(fod);
2204 
2205 	/*
2206 	 * if an ABTS was received or we issued the fcp_abort early
2207 	 * don't call abort routine again.
2208 	 */
2209 	/* no need to take lock - lock was taken earlier to get here */
2210 	if (!fod->aborted)
2211 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2212 
2213 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2214 }
2215 
2216 static void
2217 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2218 				struct nvmet_fc_fcp_iod *fod)
2219 {
2220 	int ret;
2221 
2222 	fod->fcpreq->op = NVMET_FCOP_RSP;
2223 	fod->fcpreq->timeout = 0;
2224 
2225 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2226 
2227 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2228 	if (ret)
2229 		nvmet_fc_abort_op(tgtport, fod);
2230 }
2231 
2232 static void
2233 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2234 				struct nvmet_fc_fcp_iod *fod, u8 op)
2235 {
2236 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2237 	struct scatterlist *sg = fod->next_sg;
2238 	unsigned long flags;
2239 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2240 	u32 tlen = 0;
2241 	int ret;
2242 
2243 	fcpreq->op = op;
2244 	fcpreq->offset = fod->offset;
2245 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2246 
2247 	/*
2248 	 * for next sequence:
2249 	 *  break at a sg element boundary
2250 	 *  attempt to keep sequence length capped at
2251 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2252 	 *    be longer if a single sg element is larger
2253 	 *    than that amount. This is done to avoid creating
2254 	 *    a new sg list to use for the tgtport api.
2255 	 */
2256 	fcpreq->sg = sg;
2257 	fcpreq->sg_cnt = 0;
2258 	while (tlen < remaininglen &&
2259 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2260 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2261 		fcpreq->sg_cnt++;
2262 		tlen += sg_dma_len(sg);
2263 		sg = sg_next(sg);
2264 	}
2265 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2266 		fcpreq->sg_cnt++;
2267 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2268 		sg = sg_next(sg);
2269 	}
2270 	if (tlen < remaininglen)
2271 		fod->next_sg = sg;
2272 	else
2273 		fod->next_sg = NULL;
2274 
2275 	fcpreq->transfer_length = tlen;
2276 	fcpreq->transferred_length = 0;
2277 	fcpreq->fcp_error = 0;
2278 	fcpreq->rsplen = 0;
2279 
2280 	/*
2281 	 * If the last READDATA request: check if LLDD supports
2282 	 * combined xfr with response.
2283 	 */
2284 	if ((op == NVMET_FCOP_READDATA) &&
2285 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2286 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2287 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2288 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2289 	}
2290 
2291 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2292 	if (ret) {
2293 		/*
2294 		 * should be ok to set w/o lock as its in the thread of
2295 		 * execution (not an async timer routine) and doesn't
2296 		 * contend with any clearing action
2297 		 */
2298 		fod->abort = true;
2299 
2300 		if (op == NVMET_FCOP_WRITEDATA) {
2301 			spin_lock_irqsave(&fod->flock, flags);
2302 			fod->writedataactive = false;
2303 			spin_unlock_irqrestore(&fod->flock, flags);
2304 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2305 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2306 			fcpreq->fcp_error = ret;
2307 			fcpreq->transferred_length = 0;
2308 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2309 		}
2310 	}
2311 }
2312 
2313 static inline bool
2314 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2315 {
2316 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2317 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2318 
2319 	/* if in the middle of an io and we need to tear down */
2320 	if (abort) {
2321 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2322 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2323 			return true;
2324 		}
2325 
2326 		nvmet_fc_abort_op(tgtport, fod);
2327 		return true;
2328 	}
2329 
2330 	return false;
2331 }
2332 
2333 /*
2334  * actual done handler for FCP operations when completed by the lldd
2335  */
2336 static void
2337 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2338 {
2339 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2340 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2341 	unsigned long flags;
2342 	bool abort;
2343 
2344 	spin_lock_irqsave(&fod->flock, flags);
2345 	abort = fod->abort;
2346 	fod->writedataactive = false;
2347 	spin_unlock_irqrestore(&fod->flock, flags);
2348 
2349 	switch (fcpreq->op) {
2350 
2351 	case NVMET_FCOP_WRITEDATA:
2352 		if (__nvmet_fc_fod_op_abort(fod, abort))
2353 			return;
2354 		if (fcpreq->fcp_error ||
2355 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2356 			spin_lock_irqsave(&fod->flock, flags);
2357 			fod->abort = true;
2358 			spin_unlock_irqrestore(&fod->flock, flags);
2359 
2360 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2361 			return;
2362 		}
2363 
2364 		fod->offset += fcpreq->transferred_length;
2365 		if (fod->offset != fod->req.transfer_len) {
2366 			spin_lock_irqsave(&fod->flock, flags);
2367 			fod->writedataactive = true;
2368 			spin_unlock_irqrestore(&fod->flock, flags);
2369 
2370 			/* transfer the next chunk */
2371 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2372 						NVMET_FCOP_WRITEDATA);
2373 			return;
2374 		}
2375 
2376 		/* data transfer complete, resume with nvmet layer */
2377 		fod->req.execute(&fod->req);
2378 		break;
2379 
2380 	case NVMET_FCOP_READDATA:
2381 	case NVMET_FCOP_READDATA_RSP:
2382 		if (__nvmet_fc_fod_op_abort(fod, abort))
2383 			return;
2384 		if (fcpreq->fcp_error ||
2385 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2386 			nvmet_fc_abort_op(tgtport, fod);
2387 			return;
2388 		}
2389 
2390 		/* success */
2391 
2392 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2393 			/* data no longer needed */
2394 			nvmet_fc_free_tgt_pgs(fod);
2395 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2396 			return;
2397 		}
2398 
2399 		fod->offset += fcpreq->transferred_length;
2400 		if (fod->offset != fod->req.transfer_len) {
2401 			/* transfer the next chunk */
2402 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2403 						NVMET_FCOP_READDATA);
2404 			return;
2405 		}
2406 
2407 		/* data transfer complete, send response */
2408 
2409 		/* data no longer needed */
2410 		nvmet_fc_free_tgt_pgs(fod);
2411 
2412 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2413 
2414 		break;
2415 
2416 	case NVMET_FCOP_RSP:
2417 		if (__nvmet_fc_fod_op_abort(fod, abort))
2418 			return;
2419 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2420 		break;
2421 
2422 	default:
2423 		break;
2424 	}
2425 }
2426 
2427 static void
2428 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2429 {
2430 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2431 
2432 	nvmet_fc_fod_op_done(fod);
2433 }
2434 
2435 /*
2436  * actual completion handler after execution by the nvmet layer
2437  */
2438 static void
2439 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2440 			struct nvmet_fc_fcp_iod *fod, int status)
2441 {
2442 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2443 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2444 	unsigned long flags;
2445 	bool abort;
2446 
2447 	spin_lock_irqsave(&fod->flock, flags);
2448 	abort = fod->abort;
2449 	spin_unlock_irqrestore(&fod->flock, flags);
2450 
2451 	/* if we have a CQE, snoop the last sq_head value */
2452 	if (!status)
2453 		fod->queue->sqhd = cqe->sq_head;
2454 
2455 	if (abort) {
2456 		nvmet_fc_abort_op(tgtport, fod);
2457 		return;
2458 	}
2459 
2460 	/* if an error handling the cmd post initial parsing */
2461 	if (status) {
2462 		/* fudge up a failed CQE status for our transport error */
2463 		memset(cqe, 0, sizeof(*cqe));
2464 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2465 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2466 		cqe->command_id = sqe->command_id;
2467 		cqe->status = cpu_to_le16(status);
2468 	} else {
2469 
2470 		/*
2471 		 * try to push the data even if the SQE status is non-zero.
2472 		 * There may be a status where data still was intended to
2473 		 * be moved
2474 		 */
2475 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2476 			/* push the data over before sending rsp */
2477 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2478 						NVMET_FCOP_READDATA);
2479 			return;
2480 		}
2481 
2482 		/* writes & no data - fall thru */
2483 	}
2484 
2485 	/* data no longer needed */
2486 	nvmet_fc_free_tgt_pgs(fod);
2487 
2488 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2489 }
2490 
2491 
2492 static void
2493 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2494 {
2495 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2496 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2497 
2498 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2499 }
2500 
2501 
2502 /*
2503  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2504  */
2505 static void
2506 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2507 			struct nvmet_fc_fcp_iod *fod)
2508 {
2509 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2510 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2511 	int ret;
2512 
2513 	/*
2514 	 * Fused commands are currently not supported in the linux
2515 	 * implementation.
2516 	 *
2517 	 * As such, the implementation of the FC transport does not
2518 	 * look at the fused commands and order delivery to the upper
2519 	 * layer until we have both based on csn.
2520 	 */
2521 
2522 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2523 
2524 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2525 		fod->io_dir = NVMET_FCP_WRITE;
2526 		if (!nvme_is_write(&cmdiu->sqe))
2527 			goto transport_error;
2528 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2529 		fod->io_dir = NVMET_FCP_READ;
2530 		if (nvme_is_write(&cmdiu->sqe))
2531 			goto transport_error;
2532 	} else {
2533 		fod->io_dir = NVMET_FCP_NODATA;
2534 		if (xfrlen)
2535 			goto transport_error;
2536 	}
2537 
2538 	fod->req.cmd = &fod->cmdiubuf.sqe;
2539 	fod->req.cqe = &fod->rspiubuf.cqe;
2540 	if (tgtport->pe)
2541 		fod->req.port = tgtport->pe->port;
2542 
2543 	/* clear any response payload */
2544 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2545 
2546 	fod->data_sg = NULL;
2547 	fod->data_sg_cnt = 0;
2548 
2549 	ret = nvmet_req_init(&fod->req,
2550 				&fod->queue->nvme_cq,
2551 				&fod->queue->nvme_sq,
2552 				&nvmet_fc_tgt_fcp_ops);
2553 	if (!ret) {
2554 		/* bad SQE content or invalid ctrl state */
2555 		/* nvmet layer has already called op done to send rsp. */
2556 		return;
2557 	}
2558 
2559 	fod->req.transfer_len = xfrlen;
2560 
2561 	/* keep a running counter of tail position */
2562 	atomic_inc(&fod->queue->sqtail);
2563 
2564 	if (fod->req.transfer_len) {
2565 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2566 		if (ret) {
2567 			nvmet_req_complete(&fod->req, ret);
2568 			return;
2569 		}
2570 	}
2571 	fod->req.sg = fod->data_sg;
2572 	fod->req.sg_cnt = fod->data_sg_cnt;
2573 	fod->offset = 0;
2574 
2575 	if (fod->io_dir == NVMET_FCP_WRITE) {
2576 		/* pull the data over before invoking nvmet layer */
2577 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2578 		return;
2579 	}
2580 
2581 	/*
2582 	 * Reads or no data:
2583 	 *
2584 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2585 	 * push the data
2586 	 */
2587 	fod->req.execute(&fod->req);
2588 	return;
2589 
2590 transport_error:
2591 	nvmet_fc_abort_op(tgtport, fod);
2592 }
2593 
2594 /**
2595  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2596  *                       upon the reception of a NVME FCP CMD IU.
2597  *
2598  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2599  * layer for processing.
2600  *
2601  * The nvmet_fc layer allocates a local job structure (struct
2602  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2603  * CMD IU buffer to the job structure. As such, on a successful
2604  * completion (returns 0), the LLDD may immediately free/reuse
2605  * the CMD IU buffer passed in the call.
2606  *
2607  * However, in some circumstances, due to the packetized nature of FC
2608  * and the api of the FC LLDD which may issue a hw command to send the
2609  * response, but the LLDD may not get the hw completion for that command
2610  * and upcall the nvmet_fc layer before a new command may be
2611  * asynchronously received - its possible for a command to be received
2612  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2613  * the appearance of more commands received than fits in the sq.
2614  * To alleviate this scenario, a temporary queue is maintained in the
2615  * transport for pending LLDD requests waiting for a queue job structure.
2616  * In these "overrun" cases, a temporary queue element is allocated
2617  * the LLDD request and CMD iu buffer information remembered, and the
2618  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2619  * structure is freed, it is immediately reallocated for anything on the
2620  * pending request list. The LLDDs defer_rcv() callback is called,
2621  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2622  * is then started normally with the transport.
2623  *
2624  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2625  * the completion as successful but must not reuse the CMD IU buffer
2626  * until the LLDD's defer_rcv() callback has been called for the
2627  * corresponding struct nvmefc_tgt_fcp_req pointer.
2628  *
2629  * If there is any other condition in which an error occurs, the
2630  * transport will return a non-zero status indicating the error.
2631  * In all cases other than -EOVERFLOW, the transport has not accepted the
2632  * request and the LLDD should abort the exchange.
2633  *
2634  * @target_port: pointer to the (registered) target port the FCP CMD IU
2635  *              was received on.
2636  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2637  *              the exchange corresponding to the FCP Exchange.
2638  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2639  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2640  */
2641 int
2642 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2643 			struct nvmefc_tgt_fcp_req *fcpreq,
2644 			void *cmdiubuf, u32 cmdiubuf_len)
2645 {
2646 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2647 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2648 	struct nvmet_fc_tgt_queue *queue;
2649 	struct nvmet_fc_fcp_iod *fod;
2650 	struct nvmet_fc_defer_fcp_req *deferfcp;
2651 	unsigned long flags;
2652 
2653 	/* validate iu, so the connection id can be used to find the queue */
2654 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2655 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2656 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2657 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2658 		return -EIO;
2659 
2660 	queue = nvmet_fc_find_target_queue(tgtport,
2661 				be64_to_cpu(cmdiu->connection_id));
2662 	if (!queue)
2663 		return -ENOTCONN;
2664 
2665 	/*
2666 	 * note: reference taken by find_target_queue
2667 	 * After successful fod allocation, the fod will inherit the
2668 	 * ownership of that reference and will remove the reference
2669 	 * when the fod is freed.
2670 	 */
2671 
2672 	spin_lock_irqsave(&queue->qlock, flags);
2673 
2674 	fod = nvmet_fc_alloc_fcp_iod(queue);
2675 	if (fod) {
2676 		spin_unlock_irqrestore(&queue->qlock, flags);
2677 
2678 		fcpreq->nvmet_fc_private = fod;
2679 		fod->fcpreq = fcpreq;
2680 
2681 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2682 
2683 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2684 
2685 		return 0;
2686 	}
2687 
2688 	if (!tgtport->ops->defer_rcv) {
2689 		spin_unlock_irqrestore(&queue->qlock, flags);
2690 		/* release the queue lookup reference */
2691 		nvmet_fc_tgt_q_put(queue);
2692 		return -ENOENT;
2693 	}
2694 
2695 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2696 			struct nvmet_fc_defer_fcp_req, req_list);
2697 	if (deferfcp) {
2698 		/* Just re-use one that was previously allocated */
2699 		list_del(&deferfcp->req_list);
2700 	} else {
2701 		spin_unlock_irqrestore(&queue->qlock, flags);
2702 
2703 		/* Now we need to dynamically allocate one */
2704 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2705 		if (!deferfcp) {
2706 			/* release the queue lookup reference */
2707 			nvmet_fc_tgt_q_put(queue);
2708 			return -ENOMEM;
2709 		}
2710 		spin_lock_irqsave(&queue->qlock, flags);
2711 	}
2712 
2713 	/* For now, use rspaddr / rsplen to save payload information */
2714 	fcpreq->rspaddr = cmdiubuf;
2715 	fcpreq->rsplen  = cmdiubuf_len;
2716 	deferfcp->fcp_req = fcpreq;
2717 
2718 	/* defer processing till a fod becomes available */
2719 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2720 
2721 	/* NOTE: the queue lookup reference is still valid */
2722 
2723 	spin_unlock_irqrestore(&queue->qlock, flags);
2724 
2725 	return -EOVERFLOW;
2726 }
2727 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2728 
2729 /**
2730  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2731  *                       upon the reception of an ABTS for a FCP command
2732  *
2733  * Notify the transport that an ABTS has been received for a FCP command
2734  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2735  * LLDD believes the command is still being worked on
2736  * (template_ops->fcp_req_release() has not been called).
2737  *
2738  * The transport will wait for any outstanding work (an op to the LLDD,
2739  * which the lldd should complete with error due to the ABTS; or the
2740  * completion from the nvmet layer of the nvme command), then will
2741  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2742  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2743  * to the ABTS either after return from this function (assuming any
2744  * outstanding op work has been terminated) or upon the callback being
2745  * called.
2746  *
2747  * @target_port: pointer to the (registered) target port the FCP CMD IU
2748  *              was received on.
2749  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2750  *              to the exchange that received the ABTS.
2751  */
2752 void
2753 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2754 			struct nvmefc_tgt_fcp_req *fcpreq)
2755 {
2756 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2757 	struct nvmet_fc_tgt_queue *queue;
2758 	unsigned long flags;
2759 
2760 	if (!fod || fod->fcpreq != fcpreq)
2761 		/* job appears to have already completed, ignore abort */
2762 		return;
2763 
2764 	queue = fod->queue;
2765 
2766 	spin_lock_irqsave(&queue->qlock, flags);
2767 	if (fod->active) {
2768 		/*
2769 		 * mark as abort. The abort handler, invoked upon completion
2770 		 * of any work, will detect the aborted status and do the
2771 		 * callback.
2772 		 */
2773 		spin_lock(&fod->flock);
2774 		fod->abort = true;
2775 		fod->aborted = true;
2776 		spin_unlock(&fod->flock);
2777 	}
2778 	spin_unlock_irqrestore(&queue->qlock, flags);
2779 }
2780 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2781 
2782 
2783 struct nvmet_fc_traddr {
2784 	u64	nn;
2785 	u64	pn;
2786 };
2787 
2788 static int
2789 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2790 {
2791 	u64 token64;
2792 
2793 	if (match_u64(sstr, &token64))
2794 		return -EINVAL;
2795 	*val = token64;
2796 
2797 	return 0;
2798 }
2799 
2800 /*
2801  * This routine validates and extracts the WWN's from the TRADDR string.
2802  * As kernel parsers need the 0x to determine number base, universally
2803  * build string to parse with 0x prefix before parsing name strings.
2804  */
2805 static int
2806 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2807 {
2808 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2809 	substring_t wwn = { name, &name[sizeof(name)-1] };
2810 	int nnoffset, pnoffset;
2811 
2812 	/* validate if string is one of the 2 allowed formats */
2813 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2814 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2815 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2816 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2817 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2818 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2819 						NVME_FC_TRADDR_OXNNLEN;
2820 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2821 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2822 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2823 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2824 		nnoffset = NVME_FC_TRADDR_NNLEN;
2825 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2826 	} else
2827 		goto out_einval;
2828 
2829 	name[0] = '0';
2830 	name[1] = 'x';
2831 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2832 
2833 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2834 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2835 		goto out_einval;
2836 
2837 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2838 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2839 		goto out_einval;
2840 
2841 	return 0;
2842 
2843 out_einval:
2844 	pr_warn("%s: bad traddr string\n", __func__);
2845 	return -EINVAL;
2846 }
2847 
2848 static int
2849 nvmet_fc_add_port(struct nvmet_port *port)
2850 {
2851 	struct nvmet_fc_tgtport *tgtport;
2852 	struct nvmet_fc_port_entry *pe;
2853 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2854 	unsigned long flags;
2855 	int ret;
2856 
2857 	/* validate the address info */
2858 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2859 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2860 		return -EINVAL;
2861 
2862 	/* map the traddr address info to a target port */
2863 
2864 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2865 			sizeof(port->disc_addr.traddr));
2866 	if (ret)
2867 		return ret;
2868 
2869 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2870 	if (!pe)
2871 		return -ENOMEM;
2872 
2873 	ret = -ENXIO;
2874 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2875 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2876 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2877 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2878 			/* a FC port can only be 1 nvmet port id */
2879 			if (!tgtport->pe) {
2880 				nvmet_fc_portentry_bind(tgtport, pe, port);
2881 				ret = 0;
2882 			} else
2883 				ret = -EALREADY;
2884 			break;
2885 		}
2886 	}
2887 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2888 
2889 	if (ret)
2890 		kfree(pe);
2891 
2892 	return ret;
2893 }
2894 
2895 static void
2896 nvmet_fc_remove_port(struct nvmet_port *port)
2897 {
2898 	struct nvmet_fc_port_entry *pe = port->priv;
2899 
2900 	nvmet_fc_portentry_unbind(pe);
2901 
2902 	kfree(pe);
2903 }
2904 
2905 static void
2906 nvmet_fc_discovery_chg(struct nvmet_port *port)
2907 {
2908 	struct nvmet_fc_port_entry *pe = port->priv;
2909 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2910 
2911 	if (tgtport && tgtport->ops->discovery_event)
2912 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2913 }
2914 
2915 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2916 	.owner			= THIS_MODULE,
2917 	.type			= NVMF_TRTYPE_FC,
2918 	.msdbd			= 1,
2919 	.add_port		= nvmet_fc_add_port,
2920 	.remove_port		= nvmet_fc_remove_port,
2921 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2922 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2923 	.discovery_chg		= nvmet_fc_discovery_chg,
2924 };
2925 
2926 static int __init nvmet_fc_init_module(void)
2927 {
2928 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2929 }
2930 
2931 static void __exit nvmet_fc_exit_module(void)
2932 {
2933 	/* sanity check - all lports should be removed */
2934 	if (!list_empty(&nvmet_fc_target_list))
2935 		pr_warn("%s: targetport list not empty\n", __func__);
2936 
2937 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2938 
2939 	ida_destroy(&nvmet_fc_tgtport_cnt);
2940 }
2941 
2942 module_init(nvmet_fc_init_module);
2943 module_exit(nvmet_fc_exit_module);
2944 
2945 MODULE_LICENSE("GPL v2");
2946