1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/slab.h> 8 #include <linux/blk-mq.h> 9 #include <linux/parser.h> 10 #include <linux/random.h> 11 #include <uapi/scsi/fc/fc_fs.h> 12 #include <uapi/scsi/fc/fc_els.h> 13 14 #include "nvmet.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "../host/fc.h" 18 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 #define NVMET_LS_CTX_COUNT 256 24 25 struct nvmet_fc_tgtport; 26 struct nvmet_fc_tgt_assoc; 27 28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */ 29 struct nvmefc_ls_rsp *lsrsp; 30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 31 32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */ 33 34 struct nvmet_fc_tgtport *tgtport; 35 struct nvmet_fc_tgt_assoc *assoc; 36 void *hosthandle; 37 38 union nvmefc_ls_requests *rqstbuf; 39 union nvmefc_ls_responses *rspbuf; 40 u16 rqstdatalen; 41 dma_addr_t rspdma; 42 43 struct scatterlist sg[2]; 44 45 struct work_struct work; 46 } __aligned(sizeof(unsigned long long)); 47 48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */ 49 struct nvmefc_ls_req ls_req; 50 51 struct nvmet_fc_tgtport *tgtport; 52 void *hosthandle; 53 54 int ls_error; 55 struct list_head lsreq_list; /* tgtport->ls_req_list */ 56 bool req_queued; 57 }; 58 59 60 /* desired maximum for a single sequence - if sg list allows it */ 61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 62 63 enum nvmet_fcp_datadir { 64 NVMET_FCP_NODATA, 65 NVMET_FCP_WRITE, 66 NVMET_FCP_READ, 67 NVMET_FCP_ABORTED, 68 }; 69 70 struct nvmet_fc_fcp_iod { 71 struct nvmefc_tgt_fcp_req *fcpreq; 72 73 struct nvme_fc_cmd_iu cmdiubuf; 74 struct nvme_fc_ersp_iu rspiubuf; 75 dma_addr_t rspdma; 76 struct scatterlist *next_sg; 77 struct scatterlist *data_sg; 78 int data_sg_cnt; 79 u32 offset; 80 enum nvmet_fcp_datadir io_dir; 81 bool active; 82 bool abort; 83 bool aborted; 84 bool writedataactive; 85 spinlock_t flock; 86 87 struct nvmet_req req; 88 struct work_struct defer_work; 89 90 struct nvmet_fc_tgtport *tgtport; 91 struct nvmet_fc_tgt_queue *queue; 92 93 struct list_head fcp_list; /* tgtport->fcp_list */ 94 }; 95 96 struct nvmet_fc_tgtport { 97 struct nvmet_fc_target_port fc_target_port; 98 99 struct list_head tgt_list; /* nvmet_fc_target_list */ 100 struct device *dev; /* dev for dma mapping */ 101 struct nvmet_fc_target_template *ops; 102 103 struct nvmet_fc_ls_iod *iod; 104 spinlock_t lock; 105 struct list_head ls_rcv_list; 106 struct list_head ls_req_list; 107 struct list_head ls_busylist; 108 struct list_head assoc_list; 109 struct list_head host_list; 110 struct ida assoc_cnt; 111 struct nvmet_fc_port_entry *pe; 112 struct kref ref; 113 u32 max_sg_cnt; 114 }; 115 116 struct nvmet_fc_port_entry { 117 struct nvmet_fc_tgtport *tgtport; 118 struct nvmet_port *port; 119 u64 node_name; 120 u64 port_name; 121 struct list_head pe_list; 122 }; 123 124 struct nvmet_fc_defer_fcp_req { 125 struct list_head req_list; 126 struct nvmefc_tgt_fcp_req *fcp_req; 127 }; 128 129 struct nvmet_fc_tgt_queue { 130 bool ninetypercent; 131 u16 qid; 132 u16 sqsize; 133 u16 ersp_ratio; 134 __le16 sqhd; 135 atomic_t connected; 136 atomic_t sqtail; 137 atomic_t zrspcnt; 138 atomic_t rsn; 139 spinlock_t qlock; 140 struct nvmet_cq nvme_cq; 141 struct nvmet_sq nvme_sq; 142 struct nvmet_fc_tgt_assoc *assoc; 143 struct list_head fod_list; 144 struct list_head pending_cmd_list; 145 struct list_head avail_defer_list; 146 struct workqueue_struct *work_q; 147 struct kref ref; 148 struct rcu_head rcu; 149 struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */ 150 } __aligned(sizeof(unsigned long long)); 151 152 struct nvmet_fc_hostport { 153 struct nvmet_fc_tgtport *tgtport; 154 void *hosthandle; 155 struct list_head host_list; 156 struct kref ref; 157 u8 invalid; 158 }; 159 160 struct nvmet_fc_tgt_assoc { 161 u64 association_id; 162 u32 a_id; 163 atomic_t terminating; 164 struct nvmet_fc_tgtport *tgtport; 165 struct nvmet_fc_hostport *hostport; 166 struct nvmet_fc_ls_iod *rcv_disconn; 167 struct list_head a_list; 168 struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1]; 169 struct kref ref; 170 struct work_struct del_work; 171 struct rcu_head rcu; 172 }; 173 174 175 static inline int 176 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 177 { 178 return (iodptr - iodptr->tgtport->iod); 179 } 180 181 static inline int 182 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 183 { 184 return (fodptr - fodptr->queue->fod); 185 } 186 187 188 /* 189 * Association and Connection IDs: 190 * 191 * Association ID will have random number in upper 6 bytes and zero 192 * in lower 2 bytes 193 * 194 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 195 * 196 * note: Association ID = Connection ID for queue 0 197 */ 198 #define BYTES_FOR_QID sizeof(u16) 199 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 200 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 201 202 static inline u64 203 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 204 { 205 return (assoc->association_id | qid); 206 } 207 208 static inline u64 209 nvmet_fc_getassociationid(u64 connectionid) 210 { 211 return connectionid & ~NVMET_FC_QUEUEID_MASK; 212 } 213 214 static inline u16 215 nvmet_fc_getqueueid(u64 connectionid) 216 { 217 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 218 } 219 220 static inline struct nvmet_fc_tgtport * 221 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 222 { 223 return container_of(targetport, struct nvmet_fc_tgtport, 224 fc_target_port); 225 } 226 227 static inline struct nvmet_fc_fcp_iod * 228 nvmet_req_to_fod(struct nvmet_req *nvme_req) 229 { 230 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 231 } 232 233 234 /* *************************** Globals **************************** */ 235 236 237 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 238 239 static LIST_HEAD(nvmet_fc_target_list); 240 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 241 static LIST_HEAD(nvmet_fc_portentry_list); 242 243 244 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 245 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work); 246 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 247 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 248 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 249 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 250 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 251 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 252 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 253 struct nvmet_fc_fcp_iod *fod); 254 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc); 255 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 256 struct nvmet_fc_ls_iod *iod); 257 258 259 /* *********************** FC-NVME DMA Handling **************************** */ 260 261 /* 262 * The fcloop device passes in a NULL device pointer. Real LLD's will 263 * pass in a valid device pointer. If NULL is passed to the dma mapping 264 * routines, depending on the platform, it may or may not succeed, and 265 * may crash. 266 * 267 * As such: 268 * Wrapper all the dma routines and check the dev pointer. 269 * 270 * If simple mappings (return just a dma address, we'll noop them, 271 * returning a dma address of 0. 272 * 273 * On more complex mappings (dma_map_sg), a pseudo routine fills 274 * in the scatter list, setting all dma addresses to 0. 275 */ 276 277 static inline dma_addr_t 278 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 279 enum dma_data_direction dir) 280 { 281 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 282 } 283 284 static inline int 285 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 286 { 287 return dev ? dma_mapping_error(dev, dma_addr) : 0; 288 } 289 290 static inline void 291 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 292 enum dma_data_direction dir) 293 { 294 if (dev) 295 dma_unmap_single(dev, addr, size, dir); 296 } 297 298 static inline void 299 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 300 enum dma_data_direction dir) 301 { 302 if (dev) 303 dma_sync_single_for_cpu(dev, addr, size, dir); 304 } 305 306 static inline void 307 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 308 enum dma_data_direction dir) 309 { 310 if (dev) 311 dma_sync_single_for_device(dev, addr, size, dir); 312 } 313 314 /* pseudo dma_map_sg call */ 315 static int 316 fc_map_sg(struct scatterlist *sg, int nents) 317 { 318 struct scatterlist *s; 319 int i; 320 321 WARN_ON(nents == 0 || sg[0].length == 0); 322 323 for_each_sg(sg, s, nents, i) { 324 s->dma_address = 0L; 325 #ifdef CONFIG_NEED_SG_DMA_LENGTH 326 s->dma_length = s->length; 327 #endif 328 } 329 return nents; 330 } 331 332 static inline int 333 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 334 enum dma_data_direction dir) 335 { 336 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 337 } 338 339 static inline void 340 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 341 enum dma_data_direction dir) 342 { 343 if (dev) 344 dma_unmap_sg(dev, sg, nents, dir); 345 } 346 347 348 /* ********************** FC-NVME LS XMT Handling ************************* */ 349 350 351 static void 352 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop) 353 { 354 struct nvmet_fc_tgtport *tgtport = lsop->tgtport; 355 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 356 unsigned long flags; 357 358 spin_lock_irqsave(&tgtport->lock, flags); 359 360 if (!lsop->req_queued) { 361 spin_unlock_irqrestore(&tgtport->lock, flags); 362 return; 363 } 364 365 list_del(&lsop->lsreq_list); 366 367 lsop->req_queued = false; 368 369 spin_unlock_irqrestore(&tgtport->lock, flags); 370 371 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma, 372 (lsreq->rqstlen + lsreq->rsplen), 373 DMA_BIDIRECTIONAL); 374 375 nvmet_fc_tgtport_put(tgtport); 376 } 377 378 static int 379 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport, 380 struct nvmet_fc_ls_req_op *lsop, 381 void (*done)(struct nvmefc_ls_req *req, int status)) 382 { 383 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 384 unsigned long flags; 385 int ret = 0; 386 387 if (!tgtport->ops->ls_req) 388 return -EOPNOTSUPP; 389 390 if (!nvmet_fc_tgtport_get(tgtport)) 391 return -ESHUTDOWN; 392 393 lsreq->done = done; 394 lsop->req_queued = false; 395 INIT_LIST_HEAD(&lsop->lsreq_list); 396 397 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr, 398 lsreq->rqstlen + lsreq->rsplen, 399 DMA_BIDIRECTIONAL); 400 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) { 401 ret = -EFAULT; 402 goto out_puttgtport; 403 } 404 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 405 406 spin_lock_irqsave(&tgtport->lock, flags); 407 408 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list); 409 410 lsop->req_queued = true; 411 412 spin_unlock_irqrestore(&tgtport->lock, flags); 413 414 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle, 415 lsreq); 416 if (ret) 417 goto out_unlink; 418 419 return 0; 420 421 out_unlink: 422 lsop->ls_error = ret; 423 spin_lock_irqsave(&tgtport->lock, flags); 424 lsop->req_queued = false; 425 list_del(&lsop->lsreq_list); 426 spin_unlock_irqrestore(&tgtport->lock, flags); 427 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma, 428 (lsreq->rqstlen + lsreq->rsplen), 429 DMA_BIDIRECTIONAL); 430 out_puttgtport: 431 nvmet_fc_tgtport_put(tgtport); 432 433 return ret; 434 } 435 436 static int 437 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport, 438 struct nvmet_fc_ls_req_op *lsop, 439 void (*done)(struct nvmefc_ls_req *req, int status)) 440 { 441 /* don't wait for completion */ 442 443 return __nvmet_fc_send_ls_req(tgtport, lsop, done); 444 } 445 446 static void 447 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 448 { 449 struct nvmet_fc_ls_req_op *lsop = 450 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req); 451 452 __nvmet_fc_finish_ls_req(lsop); 453 454 /* fc-nvme target doesn't care about success or failure of cmd */ 455 456 kfree(lsop); 457 } 458 459 /* 460 * This routine sends a FC-NVME LS to disconnect (aka terminate) 461 * the FC-NVME Association. Terminating the association also 462 * terminates the FC-NVME connections (per queue, both admin and io 463 * queues) that are part of the association. E.g. things are torn 464 * down, and the related FC-NVME Association ID and Connection IDs 465 * become invalid. 466 * 467 * The behavior of the fc-nvme target is such that it's 468 * understanding of the association and connections will implicitly 469 * be torn down. The action is implicit as it may be due to a loss of 470 * connectivity with the fc-nvme host, so the target may never get a 471 * response even if it tried. As such, the action of this routine 472 * is to asynchronously send the LS, ignore any results of the LS, and 473 * continue on with terminating the association. If the fc-nvme host 474 * is present and receives the LS, it too can tear down. 475 */ 476 static void 477 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc) 478 { 479 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 480 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 481 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 482 struct nvmet_fc_ls_req_op *lsop; 483 struct nvmefc_ls_req *lsreq; 484 int ret; 485 486 /* 487 * If ls_req is NULL or no hosthandle, it's an older lldd and no 488 * message is normal. Otherwise, send unless the hostport has 489 * already been invalidated by the lldd. 490 */ 491 if (!tgtport->ops->ls_req || !assoc->hostport || 492 assoc->hostport->invalid) 493 return; 494 495 lsop = kzalloc((sizeof(*lsop) + 496 sizeof(*discon_rqst) + sizeof(*discon_acc) + 497 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL); 498 if (!lsop) { 499 dev_info(tgtport->dev, 500 "{%d:%d} send Disconnect Association failed: ENOMEM\n", 501 tgtport->fc_target_port.port_num, assoc->a_id); 502 return; 503 } 504 505 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 506 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 507 lsreq = &lsop->ls_req; 508 if (tgtport->ops->lsrqst_priv_sz) 509 lsreq->private = (void *)&discon_acc[1]; 510 else 511 lsreq->private = NULL; 512 513 lsop->tgtport = tgtport; 514 lsop->hosthandle = assoc->hostport->hosthandle; 515 516 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 517 assoc->association_id); 518 519 ret = nvmet_fc_send_ls_req_async(tgtport, lsop, 520 nvmet_fc_disconnect_assoc_done); 521 if (ret) { 522 dev_info(tgtport->dev, 523 "{%d:%d} XMT Disconnect Association failed: %d\n", 524 tgtport->fc_target_port.port_num, assoc->a_id, ret); 525 kfree(lsop); 526 } 527 } 528 529 530 /* *********************** FC-NVME Port Management ************************ */ 531 532 533 static int 534 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 535 { 536 struct nvmet_fc_ls_iod *iod; 537 int i; 538 539 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 540 GFP_KERNEL); 541 if (!iod) 542 return -ENOMEM; 543 544 tgtport->iod = iod; 545 546 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 547 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 548 iod->tgtport = tgtport; 549 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list); 550 551 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) + 552 sizeof(union nvmefc_ls_responses), 553 GFP_KERNEL); 554 if (!iod->rqstbuf) 555 goto out_fail; 556 557 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1]; 558 559 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 560 sizeof(*iod->rspbuf), 561 DMA_TO_DEVICE); 562 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 563 goto out_fail; 564 } 565 566 return 0; 567 568 out_fail: 569 kfree(iod->rqstbuf); 570 list_del(&iod->ls_rcv_list); 571 for (iod--, i--; i >= 0; iod--, i--) { 572 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 573 sizeof(*iod->rspbuf), DMA_TO_DEVICE); 574 kfree(iod->rqstbuf); 575 list_del(&iod->ls_rcv_list); 576 } 577 578 kfree(iod); 579 580 return -EFAULT; 581 } 582 583 static void 584 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 585 { 586 struct nvmet_fc_ls_iod *iod = tgtport->iod; 587 int i; 588 589 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 590 fc_dma_unmap_single(tgtport->dev, 591 iod->rspdma, sizeof(*iod->rspbuf), 592 DMA_TO_DEVICE); 593 kfree(iod->rqstbuf); 594 list_del(&iod->ls_rcv_list); 595 } 596 kfree(tgtport->iod); 597 } 598 599 static struct nvmet_fc_ls_iod * 600 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 601 { 602 struct nvmet_fc_ls_iod *iod; 603 unsigned long flags; 604 605 spin_lock_irqsave(&tgtport->lock, flags); 606 iod = list_first_entry_or_null(&tgtport->ls_rcv_list, 607 struct nvmet_fc_ls_iod, ls_rcv_list); 608 if (iod) 609 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist); 610 spin_unlock_irqrestore(&tgtport->lock, flags); 611 return iod; 612 } 613 614 615 static void 616 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 617 struct nvmet_fc_ls_iod *iod) 618 { 619 unsigned long flags; 620 621 spin_lock_irqsave(&tgtport->lock, flags); 622 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list); 623 spin_unlock_irqrestore(&tgtport->lock, flags); 624 } 625 626 static void 627 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 628 struct nvmet_fc_tgt_queue *queue) 629 { 630 struct nvmet_fc_fcp_iod *fod = queue->fod; 631 int i; 632 633 for (i = 0; i < queue->sqsize; fod++, i++) { 634 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work); 635 fod->tgtport = tgtport; 636 fod->queue = queue; 637 fod->active = false; 638 fod->abort = false; 639 fod->aborted = false; 640 fod->fcpreq = NULL; 641 list_add_tail(&fod->fcp_list, &queue->fod_list); 642 spin_lock_init(&fod->flock); 643 644 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 645 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 646 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 647 list_del(&fod->fcp_list); 648 for (fod--, i--; i >= 0; fod--, i--) { 649 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 650 sizeof(fod->rspiubuf), 651 DMA_TO_DEVICE); 652 fod->rspdma = 0L; 653 list_del(&fod->fcp_list); 654 } 655 656 return; 657 } 658 } 659 } 660 661 static void 662 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 663 struct nvmet_fc_tgt_queue *queue) 664 { 665 struct nvmet_fc_fcp_iod *fod = queue->fod; 666 int i; 667 668 for (i = 0; i < queue->sqsize; fod++, i++) { 669 if (fod->rspdma) 670 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 671 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 672 } 673 } 674 675 static struct nvmet_fc_fcp_iod * 676 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 677 { 678 struct nvmet_fc_fcp_iod *fod; 679 680 lockdep_assert_held(&queue->qlock); 681 682 fod = list_first_entry_or_null(&queue->fod_list, 683 struct nvmet_fc_fcp_iod, fcp_list); 684 if (fod) { 685 list_del(&fod->fcp_list); 686 fod->active = true; 687 /* 688 * no queue reference is taken, as it was taken by the 689 * queue lookup just prior to the allocation. The iod 690 * will "inherit" that reference. 691 */ 692 } 693 return fod; 694 } 695 696 697 static void 698 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 699 struct nvmet_fc_tgt_queue *queue, 700 struct nvmefc_tgt_fcp_req *fcpreq) 701 { 702 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 703 704 /* 705 * put all admin cmds on hw queue id 0. All io commands go to 706 * the respective hw queue based on a modulo basis 707 */ 708 fcpreq->hwqid = queue->qid ? 709 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 710 711 nvmet_fc_handle_fcp_rqst(tgtport, fod); 712 } 713 714 static void 715 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work) 716 { 717 struct nvmet_fc_fcp_iod *fod = 718 container_of(work, struct nvmet_fc_fcp_iod, defer_work); 719 720 /* Submit deferred IO for processing */ 721 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq); 722 723 } 724 725 static void 726 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 727 struct nvmet_fc_fcp_iod *fod) 728 { 729 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 730 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 731 struct nvmet_fc_defer_fcp_req *deferfcp; 732 unsigned long flags; 733 734 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 735 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 736 737 fcpreq->nvmet_fc_private = NULL; 738 739 fod->active = false; 740 fod->abort = false; 741 fod->aborted = false; 742 fod->writedataactive = false; 743 fod->fcpreq = NULL; 744 745 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 746 747 /* release the queue lookup reference on the completed IO */ 748 nvmet_fc_tgt_q_put(queue); 749 750 spin_lock_irqsave(&queue->qlock, flags); 751 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 752 struct nvmet_fc_defer_fcp_req, req_list); 753 if (!deferfcp) { 754 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 755 spin_unlock_irqrestore(&queue->qlock, flags); 756 return; 757 } 758 759 /* Re-use the fod for the next pending cmd that was deferred */ 760 list_del(&deferfcp->req_list); 761 762 fcpreq = deferfcp->fcp_req; 763 764 /* deferfcp can be reused for another IO at a later date */ 765 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 766 767 spin_unlock_irqrestore(&queue->qlock, flags); 768 769 /* Save NVME CMD IO in fod */ 770 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 771 772 /* Setup new fcpreq to be processed */ 773 fcpreq->rspaddr = NULL; 774 fcpreq->rsplen = 0; 775 fcpreq->nvmet_fc_private = fod; 776 fod->fcpreq = fcpreq; 777 fod->active = true; 778 779 /* inform LLDD IO is now being processed */ 780 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 781 782 /* 783 * Leave the queue lookup get reference taken when 784 * fod was originally allocated. 785 */ 786 787 queue_work(queue->work_q, &fod->defer_work); 788 } 789 790 static struct nvmet_fc_tgt_queue * 791 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 792 u16 qid, u16 sqsize) 793 { 794 struct nvmet_fc_tgt_queue *queue; 795 int ret; 796 797 if (qid > NVMET_NR_QUEUES) 798 return NULL; 799 800 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL); 801 if (!queue) 802 return NULL; 803 804 if (!nvmet_fc_tgt_a_get(assoc)) 805 goto out_free_queue; 806 807 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 808 assoc->tgtport->fc_target_port.port_num, 809 assoc->a_id, qid); 810 if (!queue->work_q) 811 goto out_a_put; 812 813 queue->qid = qid; 814 queue->sqsize = sqsize; 815 queue->assoc = assoc; 816 INIT_LIST_HEAD(&queue->fod_list); 817 INIT_LIST_HEAD(&queue->avail_defer_list); 818 INIT_LIST_HEAD(&queue->pending_cmd_list); 819 atomic_set(&queue->connected, 0); 820 atomic_set(&queue->sqtail, 0); 821 atomic_set(&queue->rsn, 1); 822 atomic_set(&queue->zrspcnt, 0); 823 spin_lock_init(&queue->qlock); 824 kref_init(&queue->ref); 825 826 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 827 828 ret = nvmet_sq_init(&queue->nvme_sq); 829 if (ret) 830 goto out_fail_iodlist; 831 832 WARN_ON(assoc->queues[qid]); 833 rcu_assign_pointer(assoc->queues[qid], queue); 834 835 return queue; 836 837 out_fail_iodlist: 838 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 839 destroy_workqueue(queue->work_q); 840 out_a_put: 841 nvmet_fc_tgt_a_put(assoc); 842 out_free_queue: 843 kfree(queue); 844 return NULL; 845 } 846 847 848 static void 849 nvmet_fc_tgt_queue_free(struct kref *ref) 850 { 851 struct nvmet_fc_tgt_queue *queue = 852 container_of(ref, struct nvmet_fc_tgt_queue, ref); 853 854 rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL); 855 856 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 857 858 nvmet_fc_tgt_a_put(queue->assoc); 859 860 destroy_workqueue(queue->work_q); 861 862 kfree_rcu(queue, rcu); 863 } 864 865 static void 866 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 867 { 868 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 869 } 870 871 static int 872 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 873 { 874 return kref_get_unless_zero(&queue->ref); 875 } 876 877 878 static void 879 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 880 { 881 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 882 struct nvmet_fc_fcp_iod *fod = queue->fod; 883 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 884 unsigned long flags; 885 int i; 886 bool disconnect; 887 888 disconnect = atomic_xchg(&queue->connected, 0); 889 890 /* if not connected, nothing to do */ 891 if (!disconnect) 892 return; 893 894 spin_lock_irqsave(&queue->qlock, flags); 895 /* abort outstanding io's */ 896 for (i = 0; i < queue->sqsize; fod++, i++) { 897 if (fod->active) { 898 spin_lock(&fod->flock); 899 fod->abort = true; 900 /* 901 * only call lldd abort routine if waiting for 902 * writedata. other outstanding ops should finish 903 * on their own. 904 */ 905 if (fod->writedataactive) { 906 fod->aborted = true; 907 spin_unlock(&fod->flock); 908 tgtport->ops->fcp_abort( 909 &tgtport->fc_target_port, fod->fcpreq); 910 } else 911 spin_unlock(&fod->flock); 912 } 913 } 914 915 /* Cleanup defer'ed IOs in queue */ 916 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 917 req_list) { 918 list_del(&deferfcp->req_list); 919 kfree(deferfcp); 920 } 921 922 for (;;) { 923 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 924 struct nvmet_fc_defer_fcp_req, req_list); 925 if (!deferfcp) 926 break; 927 928 list_del(&deferfcp->req_list); 929 spin_unlock_irqrestore(&queue->qlock, flags); 930 931 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 932 deferfcp->fcp_req); 933 934 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 935 deferfcp->fcp_req); 936 937 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 938 deferfcp->fcp_req); 939 940 /* release the queue lookup reference */ 941 nvmet_fc_tgt_q_put(queue); 942 943 kfree(deferfcp); 944 945 spin_lock_irqsave(&queue->qlock, flags); 946 } 947 spin_unlock_irqrestore(&queue->qlock, flags); 948 949 flush_workqueue(queue->work_q); 950 951 nvmet_sq_destroy(&queue->nvme_sq); 952 953 nvmet_fc_tgt_q_put(queue); 954 } 955 956 static struct nvmet_fc_tgt_queue * 957 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 958 u64 connection_id) 959 { 960 struct nvmet_fc_tgt_assoc *assoc; 961 struct nvmet_fc_tgt_queue *queue; 962 u64 association_id = nvmet_fc_getassociationid(connection_id); 963 u16 qid = nvmet_fc_getqueueid(connection_id); 964 965 if (qid > NVMET_NR_QUEUES) 966 return NULL; 967 968 rcu_read_lock(); 969 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) { 970 if (association_id == assoc->association_id) { 971 queue = rcu_dereference(assoc->queues[qid]); 972 if (queue && 973 (!atomic_read(&queue->connected) || 974 !nvmet_fc_tgt_q_get(queue))) 975 queue = NULL; 976 rcu_read_unlock(); 977 return queue; 978 } 979 } 980 rcu_read_unlock(); 981 return NULL; 982 } 983 984 static void 985 nvmet_fc_hostport_free(struct kref *ref) 986 { 987 struct nvmet_fc_hostport *hostport = 988 container_of(ref, struct nvmet_fc_hostport, ref); 989 struct nvmet_fc_tgtport *tgtport = hostport->tgtport; 990 unsigned long flags; 991 992 spin_lock_irqsave(&tgtport->lock, flags); 993 list_del(&hostport->host_list); 994 spin_unlock_irqrestore(&tgtport->lock, flags); 995 if (tgtport->ops->host_release && hostport->invalid) 996 tgtport->ops->host_release(hostport->hosthandle); 997 kfree(hostport); 998 nvmet_fc_tgtport_put(tgtport); 999 } 1000 1001 static void 1002 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport) 1003 { 1004 kref_put(&hostport->ref, nvmet_fc_hostport_free); 1005 } 1006 1007 static int 1008 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport) 1009 { 1010 return kref_get_unless_zero(&hostport->ref); 1011 } 1012 1013 static void 1014 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport) 1015 { 1016 /* if LLDD not implemented, leave as NULL */ 1017 if (!hostport || !hostport->hosthandle) 1018 return; 1019 1020 nvmet_fc_hostport_put(hostport); 1021 } 1022 1023 static struct nvmet_fc_hostport * 1024 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle) 1025 { 1026 struct nvmet_fc_hostport *newhost, *host, *match = NULL; 1027 unsigned long flags; 1028 1029 /* if LLDD not implemented, leave as NULL */ 1030 if (!hosthandle) 1031 return NULL; 1032 1033 /* take reference for what will be the newly allocated hostport */ 1034 if (!nvmet_fc_tgtport_get(tgtport)) 1035 return ERR_PTR(-EINVAL); 1036 1037 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL); 1038 if (!newhost) { 1039 spin_lock_irqsave(&tgtport->lock, flags); 1040 list_for_each_entry(host, &tgtport->host_list, host_list) { 1041 if (host->hosthandle == hosthandle && !host->invalid) { 1042 if (nvmet_fc_hostport_get(host)) { 1043 match = host; 1044 break; 1045 } 1046 } 1047 } 1048 spin_unlock_irqrestore(&tgtport->lock, flags); 1049 /* no allocation - release reference */ 1050 nvmet_fc_tgtport_put(tgtport); 1051 return (match) ? match : ERR_PTR(-ENOMEM); 1052 } 1053 1054 newhost->tgtport = tgtport; 1055 newhost->hosthandle = hosthandle; 1056 INIT_LIST_HEAD(&newhost->host_list); 1057 kref_init(&newhost->ref); 1058 1059 spin_lock_irqsave(&tgtport->lock, flags); 1060 list_for_each_entry(host, &tgtport->host_list, host_list) { 1061 if (host->hosthandle == hosthandle && !host->invalid) { 1062 if (nvmet_fc_hostport_get(host)) { 1063 match = host; 1064 break; 1065 } 1066 } 1067 } 1068 if (match) { 1069 kfree(newhost); 1070 newhost = NULL; 1071 /* releasing allocation - release reference */ 1072 nvmet_fc_tgtport_put(tgtport); 1073 } else 1074 list_add_tail(&newhost->host_list, &tgtport->host_list); 1075 spin_unlock_irqrestore(&tgtport->lock, flags); 1076 1077 return (match) ? match : newhost; 1078 } 1079 1080 static void 1081 nvmet_fc_delete_assoc(struct work_struct *work) 1082 { 1083 struct nvmet_fc_tgt_assoc *assoc = 1084 container_of(work, struct nvmet_fc_tgt_assoc, del_work); 1085 1086 nvmet_fc_delete_target_assoc(assoc); 1087 nvmet_fc_tgt_a_put(assoc); 1088 } 1089 1090 static struct nvmet_fc_tgt_assoc * 1091 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle) 1092 { 1093 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 1094 unsigned long flags; 1095 u64 ran; 1096 int idx; 1097 bool needrandom = true; 1098 1099 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 1100 if (!assoc) 1101 return NULL; 1102 1103 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 1104 if (idx < 0) 1105 goto out_free_assoc; 1106 1107 if (!nvmet_fc_tgtport_get(tgtport)) 1108 goto out_ida; 1109 1110 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle); 1111 if (IS_ERR(assoc->hostport)) 1112 goto out_put; 1113 1114 assoc->tgtport = tgtport; 1115 assoc->a_id = idx; 1116 INIT_LIST_HEAD(&assoc->a_list); 1117 kref_init(&assoc->ref); 1118 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc); 1119 atomic_set(&assoc->terminating, 0); 1120 1121 while (needrandom) { 1122 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 1123 ran = ran << BYTES_FOR_QID_SHIFT; 1124 1125 spin_lock_irqsave(&tgtport->lock, flags); 1126 needrandom = false; 1127 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) { 1128 if (ran == tmpassoc->association_id) { 1129 needrandom = true; 1130 break; 1131 } 1132 } 1133 if (!needrandom) { 1134 assoc->association_id = ran; 1135 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list); 1136 } 1137 spin_unlock_irqrestore(&tgtport->lock, flags); 1138 } 1139 1140 return assoc; 1141 1142 out_put: 1143 nvmet_fc_tgtport_put(tgtport); 1144 out_ida: 1145 ida_simple_remove(&tgtport->assoc_cnt, idx); 1146 out_free_assoc: 1147 kfree(assoc); 1148 return NULL; 1149 } 1150 1151 static void 1152 nvmet_fc_target_assoc_free(struct kref *ref) 1153 { 1154 struct nvmet_fc_tgt_assoc *assoc = 1155 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 1156 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 1157 struct nvmet_fc_ls_iod *oldls; 1158 unsigned long flags; 1159 1160 /* Send Disconnect now that all i/o has completed */ 1161 nvmet_fc_xmt_disconnect_assoc(assoc); 1162 1163 nvmet_fc_free_hostport(assoc->hostport); 1164 spin_lock_irqsave(&tgtport->lock, flags); 1165 list_del_rcu(&assoc->a_list); 1166 oldls = assoc->rcv_disconn; 1167 spin_unlock_irqrestore(&tgtport->lock, flags); 1168 /* if pending Rcv Disconnect Association LS, send rsp now */ 1169 if (oldls) 1170 nvmet_fc_xmt_ls_rsp(tgtport, oldls); 1171 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 1172 dev_info(tgtport->dev, 1173 "{%d:%d} Association freed\n", 1174 tgtport->fc_target_port.port_num, assoc->a_id); 1175 kfree_rcu(assoc, rcu); 1176 nvmet_fc_tgtport_put(tgtport); 1177 } 1178 1179 static void 1180 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 1181 { 1182 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 1183 } 1184 1185 static int 1186 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 1187 { 1188 return kref_get_unless_zero(&assoc->ref); 1189 } 1190 1191 static void 1192 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 1193 { 1194 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 1195 struct nvmet_fc_tgt_queue *queue; 1196 int i, terminating; 1197 1198 terminating = atomic_xchg(&assoc->terminating, 1); 1199 1200 /* if already terminating, do nothing */ 1201 if (terminating) 1202 return; 1203 1204 1205 for (i = NVMET_NR_QUEUES; i >= 0; i--) { 1206 rcu_read_lock(); 1207 queue = rcu_dereference(assoc->queues[i]); 1208 if (!queue) { 1209 rcu_read_unlock(); 1210 continue; 1211 } 1212 1213 if (!nvmet_fc_tgt_q_get(queue)) { 1214 rcu_read_unlock(); 1215 continue; 1216 } 1217 rcu_read_unlock(); 1218 nvmet_fc_delete_target_queue(queue); 1219 nvmet_fc_tgt_q_put(queue); 1220 } 1221 1222 dev_info(tgtport->dev, 1223 "{%d:%d} Association deleted\n", 1224 tgtport->fc_target_port.port_num, assoc->a_id); 1225 1226 nvmet_fc_tgt_a_put(assoc); 1227 } 1228 1229 static struct nvmet_fc_tgt_assoc * 1230 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 1231 u64 association_id) 1232 { 1233 struct nvmet_fc_tgt_assoc *assoc; 1234 struct nvmet_fc_tgt_assoc *ret = NULL; 1235 1236 rcu_read_lock(); 1237 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) { 1238 if (association_id == assoc->association_id) { 1239 ret = assoc; 1240 if (!nvmet_fc_tgt_a_get(assoc)) 1241 ret = NULL; 1242 break; 1243 } 1244 } 1245 rcu_read_unlock(); 1246 1247 return ret; 1248 } 1249 1250 static void 1251 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport, 1252 struct nvmet_fc_port_entry *pe, 1253 struct nvmet_port *port) 1254 { 1255 lockdep_assert_held(&nvmet_fc_tgtlock); 1256 1257 pe->tgtport = tgtport; 1258 tgtport->pe = pe; 1259 1260 pe->port = port; 1261 port->priv = pe; 1262 1263 pe->node_name = tgtport->fc_target_port.node_name; 1264 pe->port_name = tgtport->fc_target_port.port_name; 1265 INIT_LIST_HEAD(&pe->pe_list); 1266 1267 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list); 1268 } 1269 1270 static void 1271 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe) 1272 { 1273 unsigned long flags; 1274 1275 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1276 if (pe->tgtport) 1277 pe->tgtport->pe = NULL; 1278 list_del(&pe->pe_list); 1279 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1280 } 1281 1282 /* 1283 * called when a targetport deregisters. Breaks the relationship 1284 * with the nvmet port, but leaves the port_entry in place so that 1285 * re-registration can resume operation. 1286 */ 1287 static void 1288 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport) 1289 { 1290 struct nvmet_fc_port_entry *pe; 1291 unsigned long flags; 1292 1293 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1294 pe = tgtport->pe; 1295 if (pe) 1296 pe->tgtport = NULL; 1297 tgtport->pe = NULL; 1298 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1299 } 1300 1301 /* 1302 * called when a new targetport is registered. Looks in the 1303 * existing nvmet port_entries to see if the nvmet layer is 1304 * configured for the targetport's wwn's. (the targetport existed, 1305 * nvmet configured, the lldd unregistered the tgtport, and is now 1306 * reregistering the same targetport). If so, set the nvmet port 1307 * port entry on the targetport. 1308 */ 1309 static void 1310 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport) 1311 { 1312 struct nvmet_fc_port_entry *pe; 1313 unsigned long flags; 1314 1315 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1316 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) { 1317 if (tgtport->fc_target_port.node_name == pe->node_name && 1318 tgtport->fc_target_port.port_name == pe->port_name) { 1319 WARN_ON(pe->tgtport); 1320 tgtport->pe = pe; 1321 pe->tgtport = tgtport; 1322 break; 1323 } 1324 } 1325 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1326 } 1327 1328 /** 1329 * nvme_fc_register_targetport - transport entry point called by an 1330 * LLDD to register the existence of a local 1331 * NVME subystem FC port. 1332 * @pinfo: pointer to information about the port to be registered 1333 * @template: LLDD entrypoints and operational parameters for the port 1334 * @dev: physical hardware device node port corresponds to. Will be 1335 * used for DMA mappings 1336 * @portptr: pointer to a local port pointer. Upon success, the routine 1337 * will allocate a nvme_fc_local_port structure and place its 1338 * address in the local port pointer. Upon failure, local port 1339 * pointer will be set to NULL. 1340 * 1341 * Returns: 1342 * a completion status. Must be 0 upon success; a negative errno 1343 * (ex: -ENXIO) upon failure. 1344 */ 1345 int 1346 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 1347 struct nvmet_fc_target_template *template, 1348 struct device *dev, 1349 struct nvmet_fc_target_port **portptr) 1350 { 1351 struct nvmet_fc_tgtport *newrec; 1352 unsigned long flags; 1353 int ret, idx; 1354 1355 if (!template->xmt_ls_rsp || !template->fcp_op || 1356 !template->fcp_abort || 1357 !template->fcp_req_release || !template->targetport_delete || 1358 !template->max_hw_queues || !template->max_sgl_segments || 1359 !template->max_dif_sgl_segments || !template->dma_boundary) { 1360 ret = -EINVAL; 1361 goto out_regtgt_failed; 1362 } 1363 1364 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 1365 GFP_KERNEL); 1366 if (!newrec) { 1367 ret = -ENOMEM; 1368 goto out_regtgt_failed; 1369 } 1370 1371 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 1372 if (idx < 0) { 1373 ret = -ENOSPC; 1374 goto out_fail_kfree; 1375 } 1376 1377 if (!get_device(dev) && dev) { 1378 ret = -ENODEV; 1379 goto out_ida_put; 1380 } 1381 1382 newrec->fc_target_port.node_name = pinfo->node_name; 1383 newrec->fc_target_port.port_name = pinfo->port_name; 1384 if (template->target_priv_sz) 1385 newrec->fc_target_port.private = &newrec[1]; 1386 else 1387 newrec->fc_target_port.private = NULL; 1388 newrec->fc_target_port.port_id = pinfo->port_id; 1389 newrec->fc_target_port.port_num = idx; 1390 INIT_LIST_HEAD(&newrec->tgt_list); 1391 newrec->dev = dev; 1392 newrec->ops = template; 1393 spin_lock_init(&newrec->lock); 1394 INIT_LIST_HEAD(&newrec->ls_rcv_list); 1395 INIT_LIST_HEAD(&newrec->ls_req_list); 1396 INIT_LIST_HEAD(&newrec->ls_busylist); 1397 INIT_LIST_HEAD(&newrec->assoc_list); 1398 INIT_LIST_HEAD(&newrec->host_list); 1399 kref_init(&newrec->ref); 1400 ida_init(&newrec->assoc_cnt); 1401 newrec->max_sg_cnt = template->max_sgl_segments; 1402 1403 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1404 if (ret) { 1405 ret = -ENOMEM; 1406 goto out_free_newrec; 1407 } 1408 1409 nvmet_fc_portentry_rebind_tgt(newrec); 1410 1411 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1412 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1413 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1414 1415 *portptr = &newrec->fc_target_port; 1416 return 0; 1417 1418 out_free_newrec: 1419 put_device(dev); 1420 out_ida_put: 1421 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1422 out_fail_kfree: 1423 kfree(newrec); 1424 out_regtgt_failed: 1425 *portptr = NULL; 1426 return ret; 1427 } 1428 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1429 1430 1431 static void 1432 nvmet_fc_free_tgtport(struct kref *ref) 1433 { 1434 struct nvmet_fc_tgtport *tgtport = 1435 container_of(ref, struct nvmet_fc_tgtport, ref); 1436 struct device *dev = tgtport->dev; 1437 unsigned long flags; 1438 1439 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1440 list_del(&tgtport->tgt_list); 1441 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1442 1443 nvmet_fc_free_ls_iodlist(tgtport); 1444 1445 /* let the LLDD know we've finished tearing it down */ 1446 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1447 1448 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1449 tgtport->fc_target_port.port_num); 1450 1451 ida_destroy(&tgtport->assoc_cnt); 1452 1453 kfree(tgtport); 1454 1455 put_device(dev); 1456 } 1457 1458 static void 1459 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1460 { 1461 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1462 } 1463 1464 static int 1465 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1466 { 1467 return kref_get_unless_zero(&tgtport->ref); 1468 } 1469 1470 static void 1471 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1472 { 1473 struct nvmet_fc_tgt_assoc *assoc; 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) { 1477 if (!nvmet_fc_tgt_a_get(assoc)) 1478 continue; 1479 if (!schedule_work(&assoc->del_work)) 1480 /* already deleting - release local reference */ 1481 nvmet_fc_tgt_a_put(assoc); 1482 } 1483 rcu_read_unlock(); 1484 } 1485 1486 /** 1487 * nvmet_fc_invalidate_host - transport entry point called by an LLDD 1488 * to remove references to a hosthandle for LS's. 1489 * 1490 * The nvmet-fc layer ensures that any references to the hosthandle 1491 * on the targetport are forgotten (set to NULL). The LLDD will 1492 * typically call this when a login with a remote host port has been 1493 * lost, thus LS's for the remote host port are no longer possible. 1494 * 1495 * If an LS request is outstanding to the targetport/hosthandle (or 1496 * issued concurrently with the call to invalidate the host), the 1497 * LLDD is responsible for terminating/aborting the LS and completing 1498 * the LS request. It is recommended that these terminations/aborts 1499 * occur after calling to invalidate the host handle to avoid additional 1500 * retries by the nvmet-fc transport. The nvmet-fc transport may 1501 * continue to reference host handle while it cleans up outstanding 1502 * NVME associations. The nvmet-fc transport will call the 1503 * ops->host_release() callback to notify the LLDD that all references 1504 * are complete and the related host handle can be recovered. 1505 * Note: if there are no references, the callback may be called before 1506 * the invalidate host call returns. 1507 * 1508 * @target_port: pointer to the (registered) target port that a prior 1509 * LS was received on and which supplied the transport the 1510 * hosthandle. 1511 * @hosthandle: the handle (pointer) that represents the host port 1512 * that no longer has connectivity and that LS's should 1513 * no longer be directed to. 1514 */ 1515 void 1516 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port, 1517 void *hosthandle) 1518 { 1519 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1520 struct nvmet_fc_tgt_assoc *assoc, *next; 1521 unsigned long flags; 1522 bool noassoc = true; 1523 1524 spin_lock_irqsave(&tgtport->lock, flags); 1525 list_for_each_entry_safe(assoc, next, 1526 &tgtport->assoc_list, a_list) { 1527 if (!assoc->hostport || 1528 assoc->hostport->hosthandle != hosthandle) 1529 continue; 1530 if (!nvmet_fc_tgt_a_get(assoc)) 1531 continue; 1532 assoc->hostport->invalid = 1; 1533 noassoc = false; 1534 if (!schedule_work(&assoc->del_work)) 1535 /* already deleting - release local reference */ 1536 nvmet_fc_tgt_a_put(assoc); 1537 } 1538 spin_unlock_irqrestore(&tgtport->lock, flags); 1539 1540 /* if there's nothing to wait for - call the callback */ 1541 if (noassoc && tgtport->ops->host_release) 1542 tgtport->ops->host_release(hosthandle); 1543 } 1544 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host); 1545 1546 /* 1547 * nvmet layer has called to terminate an association 1548 */ 1549 static void 1550 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1551 { 1552 struct nvmet_fc_tgtport *tgtport, *next; 1553 struct nvmet_fc_tgt_assoc *assoc; 1554 struct nvmet_fc_tgt_queue *queue; 1555 unsigned long flags; 1556 bool found_ctrl = false; 1557 1558 /* this is a bit ugly, but don't want to make locks layered */ 1559 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1560 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1561 tgt_list) { 1562 if (!nvmet_fc_tgtport_get(tgtport)) 1563 continue; 1564 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1565 1566 rcu_read_lock(); 1567 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) { 1568 queue = rcu_dereference(assoc->queues[0]); 1569 if (queue && queue->nvme_sq.ctrl == ctrl) { 1570 if (nvmet_fc_tgt_a_get(assoc)) 1571 found_ctrl = true; 1572 break; 1573 } 1574 } 1575 rcu_read_unlock(); 1576 1577 nvmet_fc_tgtport_put(tgtport); 1578 1579 if (found_ctrl) { 1580 if (!schedule_work(&assoc->del_work)) 1581 /* already deleting - release local reference */ 1582 nvmet_fc_tgt_a_put(assoc); 1583 return; 1584 } 1585 1586 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1587 } 1588 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1589 } 1590 1591 /** 1592 * nvme_fc_unregister_targetport - transport entry point called by an 1593 * LLDD to deregister/remove a previously 1594 * registered a local NVME subsystem FC port. 1595 * @target_port: pointer to the (registered) target port that is to be 1596 * deregistered. 1597 * 1598 * Returns: 1599 * a completion status. Must be 0 upon success; a negative errno 1600 * (ex: -ENXIO) upon failure. 1601 */ 1602 int 1603 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1604 { 1605 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1606 1607 nvmet_fc_portentry_unbind_tgt(tgtport); 1608 1609 /* terminate any outstanding associations */ 1610 __nvmet_fc_free_assocs(tgtport); 1611 1612 /* 1613 * should terminate LS's as well. However, LS's will be generated 1614 * at the tail end of association termination, so they likely don't 1615 * exist yet. And even if they did, it's worthwhile to just let 1616 * them finish and targetport ref counting will clean things up. 1617 */ 1618 1619 nvmet_fc_tgtport_put(tgtport); 1620 1621 return 0; 1622 } 1623 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1624 1625 1626 /* ********************** FC-NVME LS RCV Handling ************************* */ 1627 1628 1629 static void 1630 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1631 struct nvmet_fc_ls_iod *iod) 1632 { 1633 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc; 1634 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc; 1635 struct nvmet_fc_tgt_queue *queue; 1636 int ret = 0; 1637 1638 memset(acc, 0, sizeof(*acc)); 1639 1640 /* 1641 * FC-NVME spec changes. There are initiators sending different 1642 * lengths as padding sizes for Create Association Cmd descriptor 1643 * was incorrect. 1644 * Accept anything of "minimum" length. Assume format per 1.15 1645 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1646 * trailing pad length is. 1647 */ 1648 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1649 ret = VERR_CR_ASSOC_LEN; 1650 else if (be32_to_cpu(rqst->desc_list_len) < 1651 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1652 ret = VERR_CR_ASSOC_RQST_LEN; 1653 else if (rqst->assoc_cmd.desc_tag != 1654 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1655 ret = VERR_CR_ASSOC_CMD; 1656 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1657 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1658 ret = VERR_CR_ASSOC_CMD_LEN; 1659 else if (!rqst->assoc_cmd.ersp_ratio || 1660 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1661 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1662 ret = VERR_ERSP_RATIO; 1663 1664 else { 1665 /* new association w/ admin queue */ 1666 iod->assoc = nvmet_fc_alloc_target_assoc( 1667 tgtport, iod->hosthandle); 1668 if (!iod->assoc) 1669 ret = VERR_ASSOC_ALLOC_FAIL; 1670 else { 1671 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1672 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1673 if (!queue) 1674 ret = VERR_QUEUE_ALLOC_FAIL; 1675 } 1676 } 1677 1678 if (ret) { 1679 dev_err(tgtport->dev, 1680 "Create Association LS failed: %s\n", 1681 validation_errors[ret]); 1682 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1683 sizeof(*acc), rqst->w0.ls_cmd, 1684 FCNVME_RJT_RC_LOGIC, 1685 FCNVME_RJT_EXP_NONE, 0); 1686 return; 1687 } 1688 1689 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1690 atomic_set(&queue->connected, 1); 1691 queue->sqhd = 0; /* best place to init value */ 1692 1693 dev_info(tgtport->dev, 1694 "{%d:%d} Association created\n", 1695 tgtport->fc_target_port.port_num, iod->assoc->a_id); 1696 1697 /* format a response */ 1698 1699 iod->lsrsp->rsplen = sizeof(*acc); 1700 1701 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1702 fcnvme_lsdesc_len( 1703 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1704 FCNVME_LS_CREATE_ASSOCIATION); 1705 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1706 acc->associd.desc_len = 1707 fcnvme_lsdesc_len( 1708 sizeof(struct fcnvme_lsdesc_assoc_id)); 1709 acc->associd.association_id = 1710 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1711 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1712 acc->connectid.desc_len = 1713 fcnvme_lsdesc_len( 1714 sizeof(struct fcnvme_lsdesc_conn_id)); 1715 acc->connectid.connection_id = acc->associd.association_id; 1716 } 1717 1718 static void 1719 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1720 struct nvmet_fc_ls_iod *iod) 1721 { 1722 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn; 1723 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn; 1724 struct nvmet_fc_tgt_queue *queue; 1725 int ret = 0; 1726 1727 memset(acc, 0, sizeof(*acc)); 1728 1729 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1730 ret = VERR_CR_CONN_LEN; 1731 else if (rqst->desc_list_len != 1732 fcnvme_lsdesc_len( 1733 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1734 ret = VERR_CR_CONN_RQST_LEN; 1735 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1736 ret = VERR_ASSOC_ID; 1737 else if (rqst->associd.desc_len != 1738 fcnvme_lsdesc_len( 1739 sizeof(struct fcnvme_lsdesc_assoc_id))) 1740 ret = VERR_ASSOC_ID_LEN; 1741 else if (rqst->connect_cmd.desc_tag != 1742 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1743 ret = VERR_CR_CONN_CMD; 1744 else if (rqst->connect_cmd.desc_len != 1745 fcnvme_lsdesc_len( 1746 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1747 ret = VERR_CR_CONN_CMD_LEN; 1748 else if (!rqst->connect_cmd.ersp_ratio || 1749 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1750 be16_to_cpu(rqst->connect_cmd.sqsize))) 1751 ret = VERR_ERSP_RATIO; 1752 1753 else { 1754 /* new io queue */ 1755 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1756 be64_to_cpu(rqst->associd.association_id)); 1757 if (!iod->assoc) 1758 ret = VERR_NO_ASSOC; 1759 else { 1760 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1761 be16_to_cpu(rqst->connect_cmd.qid), 1762 be16_to_cpu(rqst->connect_cmd.sqsize)); 1763 if (!queue) 1764 ret = VERR_QUEUE_ALLOC_FAIL; 1765 1766 /* release get taken in nvmet_fc_find_target_assoc */ 1767 nvmet_fc_tgt_a_put(iod->assoc); 1768 } 1769 } 1770 1771 if (ret) { 1772 dev_err(tgtport->dev, 1773 "Create Connection LS failed: %s\n", 1774 validation_errors[ret]); 1775 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1776 sizeof(*acc), rqst->w0.ls_cmd, 1777 (ret == VERR_NO_ASSOC) ? 1778 FCNVME_RJT_RC_INV_ASSOC : 1779 FCNVME_RJT_RC_LOGIC, 1780 FCNVME_RJT_EXP_NONE, 0); 1781 return; 1782 } 1783 1784 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1785 atomic_set(&queue->connected, 1); 1786 queue->sqhd = 0; /* best place to init value */ 1787 1788 /* format a response */ 1789 1790 iod->lsrsp->rsplen = sizeof(*acc); 1791 1792 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1793 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1794 FCNVME_LS_CREATE_CONNECTION); 1795 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1796 acc->connectid.desc_len = 1797 fcnvme_lsdesc_len( 1798 sizeof(struct fcnvme_lsdesc_conn_id)); 1799 acc->connectid.connection_id = 1800 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1801 be16_to_cpu(rqst->connect_cmd.qid))); 1802 } 1803 1804 /* 1805 * Returns true if the LS response is to be transmit 1806 * Returns false if the LS response is to be delayed 1807 */ 1808 static int 1809 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1810 struct nvmet_fc_ls_iod *iod) 1811 { 1812 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1813 &iod->rqstbuf->rq_dis_assoc; 1814 struct fcnvme_ls_disconnect_assoc_acc *acc = 1815 &iod->rspbuf->rsp_dis_assoc; 1816 struct nvmet_fc_tgt_assoc *assoc = NULL; 1817 struct nvmet_fc_ls_iod *oldls = NULL; 1818 unsigned long flags; 1819 int ret = 0; 1820 1821 memset(acc, 0, sizeof(*acc)); 1822 1823 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst); 1824 if (!ret) { 1825 /* match an active association - takes an assoc ref if !NULL */ 1826 assoc = nvmet_fc_find_target_assoc(tgtport, 1827 be64_to_cpu(rqst->associd.association_id)); 1828 iod->assoc = assoc; 1829 if (!assoc) 1830 ret = VERR_NO_ASSOC; 1831 } 1832 1833 if (ret || !assoc) { 1834 dev_err(tgtport->dev, 1835 "Disconnect LS failed: %s\n", 1836 validation_errors[ret]); 1837 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1838 sizeof(*acc), rqst->w0.ls_cmd, 1839 (ret == VERR_NO_ASSOC) ? 1840 FCNVME_RJT_RC_INV_ASSOC : 1841 FCNVME_RJT_RC_LOGIC, 1842 FCNVME_RJT_EXP_NONE, 0); 1843 return true; 1844 } 1845 1846 /* format a response */ 1847 1848 iod->lsrsp->rsplen = sizeof(*acc); 1849 1850 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1851 fcnvme_lsdesc_len( 1852 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1853 FCNVME_LS_DISCONNECT_ASSOC); 1854 1855 /* release get taken in nvmet_fc_find_target_assoc */ 1856 nvmet_fc_tgt_a_put(assoc); 1857 1858 /* 1859 * The rules for LS response says the response cannot 1860 * go back until ABTS's have been sent for all outstanding 1861 * I/O and a Disconnect Association LS has been sent. 1862 * So... save off the Disconnect LS to send the response 1863 * later. If there was a prior LS already saved, replace 1864 * it with the newer one and send a can't perform reject 1865 * on the older one. 1866 */ 1867 spin_lock_irqsave(&tgtport->lock, flags); 1868 oldls = assoc->rcv_disconn; 1869 assoc->rcv_disconn = iod; 1870 spin_unlock_irqrestore(&tgtport->lock, flags); 1871 1872 nvmet_fc_delete_target_assoc(assoc); 1873 1874 if (oldls) { 1875 dev_info(tgtport->dev, 1876 "{%d:%d} Multiple Disconnect Association LS's " 1877 "received\n", 1878 tgtport->fc_target_port.port_num, assoc->a_id); 1879 /* overwrite good response with bogus failure */ 1880 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1881 sizeof(*iod->rspbuf), 1882 /* ok to use rqst, LS is same */ 1883 rqst->w0.ls_cmd, 1884 FCNVME_RJT_RC_UNAB, 1885 FCNVME_RJT_EXP_NONE, 0); 1886 nvmet_fc_xmt_ls_rsp(tgtport, oldls); 1887 } 1888 1889 return false; 1890 } 1891 1892 1893 /* *********************** NVME Ctrl Routines **************************** */ 1894 1895 1896 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1897 1898 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1899 1900 static void 1901 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1902 { 1903 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private; 1904 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1905 1906 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1907 sizeof(*iod->rspbuf), DMA_TO_DEVICE); 1908 nvmet_fc_free_ls_iod(tgtport, iod); 1909 nvmet_fc_tgtport_put(tgtport); 1910 } 1911 1912 static void 1913 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1914 struct nvmet_fc_ls_iod *iod) 1915 { 1916 int ret; 1917 1918 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1919 sizeof(*iod->rspbuf), DMA_TO_DEVICE); 1920 1921 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp); 1922 if (ret) 1923 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp); 1924 } 1925 1926 /* 1927 * Actual processing routine for received FC-NVME LS Requests from the LLD 1928 */ 1929 static void 1930 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1931 struct nvmet_fc_ls_iod *iod) 1932 { 1933 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0; 1934 bool sendrsp = true; 1935 1936 iod->lsrsp->nvme_fc_private = iod; 1937 iod->lsrsp->rspbuf = iod->rspbuf; 1938 iod->lsrsp->rspdma = iod->rspdma; 1939 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done; 1940 /* Be preventative. handlers will later set to valid length */ 1941 iod->lsrsp->rsplen = 0; 1942 1943 iod->assoc = NULL; 1944 1945 /* 1946 * handlers: 1947 * parse request input, execute the request, and format the 1948 * LS response 1949 */ 1950 switch (w0->ls_cmd) { 1951 case FCNVME_LS_CREATE_ASSOCIATION: 1952 /* Creates Association and initial Admin Queue/Connection */ 1953 nvmet_fc_ls_create_association(tgtport, iod); 1954 break; 1955 case FCNVME_LS_CREATE_CONNECTION: 1956 /* Creates an IO Queue/Connection */ 1957 nvmet_fc_ls_create_connection(tgtport, iod); 1958 break; 1959 case FCNVME_LS_DISCONNECT_ASSOC: 1960 /* Terminate a Queue/Connection or the Association */ 1961 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod); 1962 break; 1963 default: 1964 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf, 1965 sizeof(*iod->rspbuf), w0->ls_cmd, 1966 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1967 } 1968 1969 if (sendrsp) 1970 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1971 } 1972 1973 /* 1974 * Actual processing routine for received FC-NVME LS Requests from the LLD 1975 */ 1976 static void 1977 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1978 { 1979 struct nvmet_fc_ls_iod *iod = 1980 container_of(work, struct nvmet_fc_ls_iod, work); 1981 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1982 1983 nvmet_fc_handle_ls_rqst(tgtport, iod); 1984 } 1985 1986 1987 /** 1988 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1989 * upon the reception of a NVME LS request. 1990 * 1991 * The nvmet-fc layer will copy payload to an internal structure for 1992 * processing. As such, upon completion of the routine, the LLDD may 1993 * immediately free/reuse the LS request buffer passed in the call. 1994 * 1995 * If this routine returns error, the LLDD should abort the exchange. 1996 * 1997 * @target_port: pointer to the (registered) target port the LS was 1998 * received on. 1999 * @lsrsp: pointer to a lsrsp structure to be used to reference 2000 * the exchange corresponding to the LS. 2001 * @lsreqbuf: pointer to the buffer containing the LS Request 2002 * @lsreqbuf_len: length, in bytes, of the received LS request 2003 */ 2004 int 2005 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 2006 void *hosthandle, 2007 struct nvmefc_ls_rsp *lsrsp, 2008 void *lsreqbuf, u32 lsreqbuf_len) 2009 { 2010 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2011 struct nvmet_fc_ls_iod *iod; 2012 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 2013 2014 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 2015 dev_info(tgtport->dev, 2016 "RCV %s LS failed: payload too large (%d)\n", 2017 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 2018 nvmefc_ls_names[w0->ls_cmd] : "", 2019 lsreqbuf_len); 2020 return -E2BIG; 2021 } 2022 2023 if (!nvmet_fc_tgtport_get(tgtport)) { 2024 dev_info(tgtport->dev, 2025 "RCV %s LS failed: target deleting\n", 2026 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 2027 nvmefc_ls_names[w0->ls_cmd] : ""); 2028 return -ESHUTDOWN; 2029 } 2030 2031 iod = nvmet_fc_alloc_ls_iod(tgtport); 2032 if (!iod) { 2033 dev_info(tgtport->dev, 2034 "RCV %s LS failed: context allocation failed\n", 2035 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 2036 nvmefc_ls_names[w0->ls_cmd] : ""); 2037 nvmet_fc_tgtport_put(tgtport); 2038 return -ENOENT; 2039 } 2040 2041 iod->lsrsp = lsrsp; 2042 iod->fcpreq = NULL; 2043 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 2044 iod->rqstdatalen = lsreqbuf_len; 2045 iod->hosthandle = hosthandle; 2046 2047 schedule_work(&iod->work); 2048 2049 return 0; 2050 } 2051 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 2052 2053 2054 /* 2055 * ********************** 2056 * Start of FCP handling 2057 * ********************** 2058 */ 2059 2060 static int 2061 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 2062 { 2063 struct scatterlist *sg; 2064 unsigned int nent; 2065 2066 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent); 2067 if (!sg) 2068 goto out; 2069 2070 fod->data_sg = sg; 2071 fod->data_sg_cnt = nent; 2072 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 2073 ((fod->io_dir == NVMET_FCP_WRITE) ? 2074 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 2075 /* note: write from initiator perspective */ 2076 fod->next_sg = fod->data_sg; 2077 2078 return 0; 2079 2080 out: 2081 return NVME_SC_INTERNAL; 2082 } 2083 2084 static void 2085 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 2086 { 2087 if (!fod->data_sg || !fod->data_sg_cnt) 2088 return; 2089 2090 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 2091 ((fod->io_dir == NVMET_FCP_WRITE) ? 2092 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 2093 sgl_free(fod->data_sg); 2094 fod->data_sg = NULL; 2095 fod->data_sg_cnt = 0; 2096 } 2097 2098 2099 static bool 2100 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 2101 { 2102 u32 sqtail, used; 2103 2104 /* egad, this is ugly. And sqtail is just a best guess */ 2105 sqtail = atomic_read(&q->sqtail) % q->sqsize; 2106 2107 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 2108 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 2109 } 2110 2111 /* 2112 * Prep RSP payload. 2113 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 2114 */ 2115 static void 2116 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 2117 struct nvmet_fc_fcp_iod *fod) 2118 { 2119 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 2120 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2121 struct nvme_completion *cqe = &ersp->cqe; 2122 u32 *cqewd = (u32 *)cqe; 2123 bool send_ersp = false; 2124 u32 rsn, rspcnt, xfr_length; 2125 2126 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 2127 xfr_length = fod->req.transfer_len; 2128 else 2129 xfr_length = fod->offset; 2130 2131 /* 2132 * check to see if we can send a 0's rsp. 2133 * Note: to send a 0's response, the NVME-FC host transport will 2134 * recreate the CQE. The host transport knows: sq id, SQHD (last 2135 * seen in an ersp), and command_id. Thus it will create a 2136 * zero-filled CQE with those known fields filled in. Transport 2137 * must send an ersp for any condition where the cqe won't match 2138 * this. 2139 * 2140 * Here are the FC-NVME mandated cases where we must send an ersp: 2141 * every N responses, where N=ersp_ratio 2142 * force fabric commands to send ersp's (not in FC-NVME but good 2143 * practice) 2144 * normal cmds: any time status is non-zero, or status is zero 2145 * but words 0 or 1 are non-zero. 2146 * the SQ is 90% or more full 2147 * the cmd is a fused command 2148 * transferred data length not equal to cmd iu length 2149 */ 2150 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 2151 if (!(rspcnt % fod->queue->ersp_ratio) || 2152 nvme_is_fabrics((struct nvme_command *) sqe) || 2153 xfr_length != fod->req.transfer_len || 2154 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 2155 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 2156 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 2157 send_ersp = true; 2158 2159 /* re-set the fields */ 2160 fod->fcpreq->rspaddr = ersp; 2161 fod->fcpreq->rspdma = fod->rspdma; 2162 2163 if (!send_ersp) { 2164 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 2165 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 2166 } else { 2167 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 2168 rsn = atomic_inc_return(&fod->queue->rsn); 2169 ersp->rsn = cpu_to_be32(rsn); 2170 ersp->xfrd_len = cpu_to_be32(xfr_length); 2171 fod->fcpreq->rsplen = sizeof(*ersp); 2172 } 2173 2174 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 2175 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 2176 } 2177 2178 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 2179 2180 static void 2181 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 2182 struct nvmet_fc_fcp_iod *fod) 2183 { 2184 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2185 2186 /* data no longer needed */ 2187 nvmet_fc_free_tgt_pgs(fod); 2188 2189 /* 2190 * if an ABTS was received or we issued the fcp_abort early 2191 * don't call abort routine again. 2192 */ 2193 /* no need to take lock - lock was taken earlier to get here */ 2194 if (!fod->aborted) 2195 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 2196 2197 nvmet_fc_free_fcp_iod(fod->queue, fod); 2198 } 2199 2200 static void 2201 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 2202 struct nvmet_fc_fcp_iod *fod) 2203 { 2204 int ret; 2205 2206 fod->fcpreq->op = NVMET_FCOP_RSP; 2207 fod->fcpreq->timeout = 0; 2208 2209 nvmet_fc_prep_fcp_rsp(tgtport, fod); 2210 2211 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 2212 if (ret) 2213 nvmet_fc_abort_op(tgtport, fod); 2214 } 2215 2216 static void 2217 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 2218 struct nvmet_fc_fcp_iod *fod, u8 op) 2219 { 2220 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2221 struct scatterlist *sg = fod->next_sg; 2222 unsigned long flags; 2223 u32 remaininglen = fod->req.transfer_len - fod->offset; 2224 u32 tlen = 0; 2225 int ret; 2226 2227 fcpreq->op = op; 2228 fcpreq->offset = fod->offset; 2229 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 2230 2231 /* 2232 * for next sequence: 2233 * break at a sg element boundary 2234 * attempt to keep sequence length capped at 2235 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to 2236 * be longer if a single sg element is larger 2237 * than that amount. This is done to avoid creating 2238 * a new sg list to use for the tgtport api. 2239 */ 2240 fcpreq->sg = sg; 2241 fcpreq->sg_cnt = 0; 2242 while (tlen < remaininglen && 2243 fcpreq->sg_cnt < tgtport->max_sg_cnt && 2244 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) { 2245 fcpreq->sg_cnt++; 2246 tlen += sg_dma_len(sg); 2247 sg = sg_next(sg); 2248 } 2249 if (tlen < remaininglen && fcpreq->sg_cnt == 0) { 2250 fcpreq->sg_cnt++; 2251 tlen += min_t(u32, sg_dma_len(sg), remaininglen); 2252 sg = sg_next(sg); 2253 } 2254 if (tlen < remaininglen) 2255 fod->next_sg = sg; 2256 else 2257 fod->next_sg = NULL; 2258 2259 fcpreq->transfer_length = tlen; 2260 fcpreq->transferred_length = 0; 2261 fcpreq->fcp_error = 0; 2262 fcpreq->rsplen = 0; 2263 2264 /* 2265 * If the last READDATA request: check if LLDD supports 2266 * combined xfr with response. 2267 */ 2268 if ((op == NVMET_FCOP_READDATA) && 2269 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) && 2270 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 2271 fcpreq->op = NVMET_FCOP_READDATA_RSP; 2272 nvmet_fc_prep_fcp_rsp(tgtport, fod); 2273 } 2274 2275 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 2276 if (ret) { 2277 /* 2278 * should be ok to set w/o lock as its in the thread of 2279 * execution (not an async timer routine) and doesn't 2280 * contend with any clearing action 2281 */ 2282 fod->abort = true; 2283 2284 if (op == NVMET_FCOP_WRITEDATA) { 2285 spin_lock_irqsave(&fod->flock, flags); 2286 fod->writedataactive = false; 2287 spin_unlock_irqrestore(&fod->flock, flags); 2288 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2289 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 2290 fcpreq->fcp_error = ret; 2291 fcpreq->transferred_length = 0; 2292 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 2293 } 2294 } 2295 } 2296 2297 static inline bool 2298 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 2299 { 2300 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2301 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2302 2303 /* if in the middle of an io and we need to tear down */ 2304 if (abort) { 2305 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 2306 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2307 return true; 2308 } 2309 2310 nvmet_fc_abort_op(tgtport, fod); 2311 return true; 2312 } 2313 2314 return false; 2315 } 2316 2317 /* 2318 * actual done handler for FCP operations when completed by the lldd 2319 */ 2320 static void 2321 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 2322 { 2323 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2324 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2325 unsigned long flags; 2326 bool abort; 2327 2328 spin_lock_irqsave(&fod->flock, flags); 2329 abort = fod->abort; 2330 fod->writedataactive = false; 2331 spin_unlock_irqrestore(&fod->flock, flags); 2332 2333 switch (fcpreq->op) { 2334 2335 case NVMET_FCOP_WRITEDATA: 2336 if (__nvmet_fc_fod_op_abort(fod, abort)) 2337 return; 2338 if (fcpreq->fcp_error || 2339 fcpreq->transferred_length != fcpreq->transfer_length) { 2340 spin_lock_irqsave(&fod->flock, flags); 2341 fod->abort = true; 2342 spin_unlock_irqrestore(&fod->flock, flags); 2343 2344 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2345 return; 2346 } 2347 2348 fod->offset += fcpreq->transferred_length; 2349 if (fod->offset != fod->req.transfer_len) { 2350 spin_lock_irqsave(&fod->flock, flags); 2351 fod->writedataactive = true; 2352 spin_unlock_irqrestore(&fod->flock, flags); 2353 2354 /* transfer the next chunk */ 2355 nvmet_fc_transfer_fcp_data(tgtport, fod, 2356 NVMET_FCOP_WRITEDATA); 2357 return; 2358 } 2359 2360 /* data transfer complete, resume with nvmet layer */ 2361 fod->req.execute(&fod->req); 2362 break; 2363 2364 case NVMET_FCOP_READDATA: 2365 case NVMET_FCOP_READDATA_RSP: 2366 if (__nvmet_fc_fod_op_abort(fod, abort)) 2367 return; 2368 if (fcpreq->fcp_error || 2369 fcpreq->transferred_length != fcpreq->transfer_length) { 2370 nvmet_fc_abort_op(tgtport, fod); 2371 return; 2372 } 2373 2374 /* success */ 2375 2376 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2377 /* data no longer needed */ 2378 nvmet_fc_free_tgt_pgs(fod); 2379 nvmet_fc_free_fcp_iod(fod->queue, fod); 2380 return; 2381 } 2382 2383 fod->offset += fcpreq->transferred_length; 2384 if (fod->offset != fod->req.transfer_len) { 2385 /* transfer the next chunk */ 2386 nvmet_fc_transfer_fcp_data(tgtport, fod, 2387 NVMET_FCOP_READDATA); 2388 return; 2389 } 2390 2391 /* data transfer complete, send response */ 2392 2393 /* data no longer needed */ 2394 nvmet_fc_free_tgt_pgs(fod); 2395 2396 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2397 2398 break; 2399 2400 case NVMET_FCOP_RSP: 2401 if (__nvmet_fc_fod_op_abort(fod, abort)) 2402 return; 2403 nvmet_fc_free_fcp_iod(fod->queue, fod); 2404 break; 2405 2406 default: 2407 break; 2408 } 2409 } 2410 2411 static void 2412 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2413 { 2414 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2415 2416 nvmet_fc_fod_op_done(fod); 2417 } 2418 2419 /* 2420 * actual completion handler after execution by the nvmet layer 2421 */ 2422 static void 2423 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2424 struct nvmet_fc_fcp_iod *fod, int status) 2425 { 2426 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2427 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2428 unsigned long flags; 2429 bool abort; 2430 2431 spin_lock_irqsave(&fod->flock, flags); 2432 abort = fod->abort; 2433 spin_unlock_irqrestore(&fod->flock, flags); 2434 2435 /* if we have a CQE, snoop the last sq_head value */ 2436 if (!status) 2437 fod->queue->sqhd = cqe->sq_head; 2438 2439 if (abort) { 2440 nvmet_fc_abort_op(tgtport, fod); 2441 return; 2442 } 2443 2444 /* if an error handling the cmd post initial parsing */ 2445 if (status) { 2446 /* fudge up a failed CQE status for our transport error */ 2447 memset(cqe, 0, sizeof(*cqe)); 2448 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2449 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2450 cqe->command_id = sqe->command_id; 2451 cqe->status = cpu_to_le16(status); 2452 } else { 2453 2454 /* 2455 * try to push the data even if the SQE status is non-zero. 2456 * There may be a status where data still was intended to 2457 * be moved 2458 */ 2459 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2460 /* push the data over before sending rsp */ 2461 nvmet_fc_transfer_fcp_data(tgtport, fod, 2462 NVMET_FCOP_READDATA); 2463 return; 2464 } 2465 2466 /* writes & no data - fall thru */ 2467 } 2468 2469 /* data no longer needed */ 2470 nvmet_fc_free_tgt_pgs(fod); 2471 2472 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2473 } 2474 2475 2476 static void 2477 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2478 { 2479 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2480 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2481 2482 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2483 } 2484 2485 2486 /* 2487 * Actual processing routine for received FC-NVME I/O Requests from the LLD 2488 */ 2489 static void 2490 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2491 struct nvmet_fc_fcp_iod *fod) 2492 { 2493 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2494 u32 xfrlen = be32_to_cpu(cmdiu->data_len); 2495 int ret; 2496 2497 /* 2498 * if there is no nvmet mapping to the targetport there 2499 * shouldn't be requests. just terminate them. 2500 */ 2501 if (!tgtport->pe) 2502 goto transport_error; 2503 2504 /* 2505 * Fused commands are currently not supported in the linux 2506 * implementation. 2507 * 2508 * As such, the implementation of the FC transport does not 2509 * look at the fused commands and order delivery to the upper 2510 * layer until we have both based on csn. 2511 */ 2512 2513 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2514 2515 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2516 fod->io_dir = NVMET_FCP_WRITE; 2517 if (!nvme_is_write(&cmdiu->sqe)) 2518 goto transport_error; 2519 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2520 fod->io_dir = NVMET_FCP_READ; 2521 if (nvme_is_write(&cmdiu->sqe)) 2522 goto transport_error; 2523 } else { 2524 fod->io_dir = NVMET_FCP_NODATA; 2525 if (xfrlen) 2526 goto transport_error; 2527 } 2528 2529 fod->req.cmd = &fod->cmdiubuf.sqe; 2530 fod->req.cqe = &fod->rspiubuf.cqe; 2531 fod->req.port = tgtport->pe->port; 2532 2533 /* clear any response payload */ 2534 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2535 2536 fod->data_sg = NULL; 2537 fod->data_sg_cnt = 0; 2538 2539 ret = nvmet_req_init(&fod->req, 2540 &fod->queue->nvme_cq, 2541 &fod->queue->nvme_sq, 2542 &nvmet_fc_tgt_fcp_ops); 2543 if (!ret) { 2544 /* bad SQE content or invalid ctrl state */ 2545 /* nvmet layer has already called op done to send rsp. */ 2546 return; 2547 } 2548 2549 fod->req.transfer_len = xfrlen; 2550 2551 /* keep a running counter of tail position */ 2552 atomic_inc(&fod->queue->sqtail); 2553 2554 if (fod->req.transfer_len) { 2555 ret = nvmet_fc_alloc_tgt_pgs(fod); 2556 if (ret) { 2557 nvmet_req_complete(&fod->req, ret); 2558 return; 2559 } 2560 } 2561 fod->req.sg = fod->data_sg; 2562 fod->req.sg_cnt = fod->data_sg_cnt; 2563 fod->offset = 0; 2564 2565 if (fod->io_dir == NVMET_FCP_WRITE) { 2566 /* pull the data over before invoking nvmet layer */ 2567 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2568 return; 2569 } 2570 2571 /* 2572 * Reads or no data: 2573 * 2574 * can invoke the nvmet_layer now. If read data, cmd completion will 2575 * push the data 2576 */ 2577 fod->req.execute(&fod->req); 2578 return; 2579 2580 transport_error: 2581 nvmet_fc_abort_op(tgtport, fod); 2582 } 2583 2584 /** 2585 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2586 * upon the reception of a NVME FCP CMD IU. 2587 * 2588 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2589 * layer for processing. 2590 * 2591 * The nvmet_fc layer allocates a local job structure (struct 2592 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2593 * CMD IU buffer to the job structure. As such, on a successful 2594 * completion (returns 0), the LLDD may immediately free/reuse 2595 * the CMD IU buffer passed in the call. 2596 * 2597 * However, in some circumstances, due to the packetized nature of FC 2598 * and the api of the FC LLDD which may issue a hw command to send the 2599 * response, but the LLDD may not get the hw completion for that command 2600 * and upcall the nvmet_fc layer before a new command may be 2601 * asynchronously received - its possible for a command to be received 2602 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2603 * the appearance of more commands received than fits in the sq. 2604 * To alleviate this scenario, a temporary queue is maintained in the 2605 * transport for pending LLDD requests waiting for a queue job structure. 2606 * In these "overrun" cases, a temporary queue element is allocated 2607 * the LLDD request and CMD iu buffer information remembered, and the 2608 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2609 * structure is freed, it is immediately reallocated for anything on the 2610 * pending request list. The LLDDs defer_rcv() callback is called, 2611 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2612 * is then started normally with the transport. 2613 * 2614 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2615 * the completion as successful but must not reuse the CMD IU buffer 2616 * until the LLDD's defer_rcv() callback has been called for the 2617 * corresponding struct nvmefc_tgt_fcp_req pointer. 2618 * 2619 * If there is any other condition in which an error occurs, the 2620 * transport will return a non-zero status indicating the error. 2621 * In all cases other than -EOVERFLOW, the transport has not accepted the 2622 * request and the LLDD should abort the exchange. 2623 * 2624 * @target_port: pointer to the (registered) target port the FCP CMD IU 2625 * was received on. 2626 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2627 * the exchange corresponding to the FCP Exchange. 2628 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2629 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2630 */ 2631 int 2632 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2633 struct nvmefc_tgt_fcp_req *fcpreq, 2634 void *cmdiubuf, u32 cmdiubuf_len) 2635 { 2636 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2637 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2638 struct nvmet_fc_tgt_queue *queue; 2639 struct nvmet_fc_fcp_iod *fod; 2640 struct nvmet_fc_defer_fcp_req *deferfcp; 2641 unsigned long flags; 2642 2643 /* validate iu, so the connection id can be used to find the queue */ 2644 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2645 (cmdiu->format_id != NVME_CMD_FORMAT_ID) || 2646 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2647 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2648 return -EIO; 2649 2650 queue = nvmet_fc_find_target_queue(tgtport, 2651 be64_to_cpu(cmdiu->connection_id)); 2652 if (!queue) 2653 return -ENOTCONN; 2654 2655 /* 2656 * note: reference taken by find_target_queue 2657 * After successful fod allocation, the fod will inherit the 2658 * ownership of that reference and will remove the reference 2659 * when the fod is freed. 2660 */ 2661 2662 spin_lock_irqsave(&queue->qlock, flags); 2663 2664 fod = nvmet_fc_alloc_fcp_iod(queue); 2665 if (fod) { 2666 spin_unlock_irqrestore(&queue->qlock, flags); 2667 2668 fcpreq->nvmet_fc_private = fod; 2669 fod->fcpreq = fcpreq; 2670 2671 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2672 2673 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2674 2675 return 0; 2676 } 2677 2678 if (!tgtport->ops->defer_rcv) { 2679 spin_unlock_irqrestore(&queue->qlock, flags); 2680 /* release the queue lookup reference */ 2681 nvmet_fc_tgt_q_put(queue); 2682 return -ENOENT; 2683 } 2684 2685 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2686 struct nvmet_fc_defer_fcp_req, req_list); 2687 if (deferfcp) { 2688 /* Just re-use one that was previously allocated */ 2689 list_del(&deferfcp->req_list); 2690 } else { 2691 spin_unlock_irqrestore(&queue->qlock, flags); 2692 2693 /* Now we need to dynamically allocate one */ 2694 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2695 if (!deferfcp) { 2696 /* release the queue lookup reference */ 2697 nvmet_fc_tgt_q_put(queue); 2698 return -ENOMEM; 2699 } 2700 spin_lock_irqsave(&queue->qlock, flags); 2701 } 2702 2703 /* For now, use rspaddr / rsplen to save payload information */ 2704 fcpreq->rspaddr = cmdiubuf; 2705 fcpreq->rsplen = cmdiubuf_len; 2706 deferfcp->fcp_req = fcpreq; 2707 2708 /* defer processing till a fod becomes available */ 2709 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2710 2711 /* NOTE: the queue lookup reference is still valid */ 2712 2713 spin_unlock_irqrestore(&queue->qlock, flags); 2714 2715 return -EOVERFLOW; 2716 } 2717 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2718 2719 /** 2720 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2721 * upon the reception of an ABTS for a FCP command 2722 * 2723 * Notify the transport that an ABTS has been received for a FCP command 2724 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2725 * LLDD believes the command is still being worked on 2726 * (template_ops->fcp_req_release() has not been called). 2727 * 2728 * The transport will wait for any outstanding work (an op to the LLDD, 2729 * which the lldd should complete with error due to the ABTS; or the 2730 * completion from the nvmet layer of the nvme command), then will 2731 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2732 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2733 * to the ABTS either after return from this function (assuming any 2734 * outstanding op work has been terminated) or upon the callback being 2735 * called. 2736 * 2737 * @target_port: pointer to the (registered) target port the FCP CMD IU 2738 * was received on. 2739 * @fcpreq: pointer to the fcpreq request structure that corresponds 2740 * to the exchange that received the ABTS. 2741 */ 2742 void 2743 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2744 struct nvmefc_tgt_fcp_req *fcpreq) 2745 { 2746 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2747 struct nvmet_fc_tgt_queue *queue; 2748 unsigned long flags; 2749 2750 if (!fod || fod->fcpreq != fcpreq) 2751 /* job appears to have already completed, ignore abort */ 2752 return; 2753 2754 queue = fod->queue; 2755 2756 spin_lock_irqsave(&queue->qlock, flags); 2757 if (fod->active) { 2758 /* 2759 * mark as abort. The abort handler, invoked upon completion 2760 * of any work, will detect the aborted status and do the 2761 * callback. 2762 */ 2763 spin_lock(&fod->flock); 2764 fod->abort = true; 2765 fod->aborted = true; 2766 spin_unlock(&fod->flock); 2767 } 2768 spin_unlock_irqrestore(&queue->qlock, flags); 2769 } 2770 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2771 2772 2773 struct nvmet_fc_traddr { 2774 u64 nn; 2775 u64 pn; 2776 }; 2777 2778 static int 2779 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2780 { 2781 u64 token64; 2782 2783 if (match_u64(sstr, &token64)) 2784 return -EINVAL; 2785 *val = token64; 2786 2787 return 0; 2788 } 2789 2790 /* 2791 * This routine validates and extracts the WWN's from the TRADDR string. 2792 * As kernel parsers need the 0x to determine number base, universally 2793 * build string to parse with 0x prefix before parsing name strings. 2794 */ 2795 static int 2796 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2797 { 2798 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2799 substring_t wwn = { name, &name[sizeof(name)-1] }; 2800 int nnoffset, pnoffset; 2801 2802 /* validate if string is one of the 2 allowed formats */ 2803 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2804 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2805 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2806 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2807 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2808 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2809 NVME_FC_TRADDR_OXNNLEN; 2810 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2811 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2812 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2813 "pn-", NVME_FC_TRADDR_NNLEN))) { 2814 nnoffset = NVME_FC_TRADDR_NNLEN; 2815 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2816 } else 2817 goto out_einval; 2818 2819 name[0] = '0'; 2820 name[1] = 'x'; 2821 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2822 2823 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2824 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2825 goto out_einval; 2826 2827 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2828 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2829 goto out_einval; 2830 2831 return 0; 2832 2833 out_einval: 2834 pr_warn("%s: bad traddr string\n", __func__); 2835 return -EINVAL; 2836 } 2837 2838 static int 2839 nvmet_fc_add_port(struct nvmet_port *port) 2840 { 2841 struct nvmet_fc_tgtport *tgtport; 2842 struct nvmet_fc_port_entry *pe; 2843 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2844 unsigned long flags; 2845 int ret; 2846 2847 /* validate the address info */ 2848 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2849 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2850 return -EINVAL; 2851 2852 /* map the traddr address info to a target port */ 2853 2854 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2855 sizeof(port->disc_addr.traddr)); 2856 if (ret) 2857 return ret; 2858 2859 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2860 if (!pe) 2861 return -ENOMEM; 2862 2863 ret = -ENXIO; 2864 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2865 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2866 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2867 (tgtport->fc_target_port.port_name == traddr.pn)) { 2868 /* a FC port can only be 1 nvmet port id */ 2869 if (!tgtport->pe) { 2870 nvmet_fc_portentry_bind(tgtport, pe, port); 2871 ret = 0; 2872 } else 2873 ret = -EALREADY; 2874 break; 2875 } 2876 } 2877 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2878 2879 if (ret) 2880 kfree(pe); 2881 2882 return ret; 2883 } 2884 2885 static void 2886 nvmet_fc_remove_port(struct nvmet_port *port) 2887 { 2888 struct nvmet_fc_port_entry *pe = port->priv; 2889 2890 nvmet_fc_portentry_unbind(pe); 2891 2892 kfree(pe); 2893 } 2894 2895 static void 2896 nvmet_fc_discovery_chg(struct nvmet_port *port) 2897 { 2898 struct nvmet_fc_port_entry *pe = port->priv; 2899 struct nvmet_fc_tgtport *tgtport = pe->tgtport; 2900 2901 if (tgtport && tgtport->ops->discovery_event) 2902 tgtport->ops->discovery_event(&tgtport->fc_target_port); 2903 } 2904 2905 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2906 .owner = THIS_MODULE, 2907 .type = NVMF_TRTYPE_FC, 2908 .msdbd = 1, 2909 .add_port = nvmet_fc_add_port, 2910 .remove_port = nvmet_fc_remove_port, 2911 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2912 .delete_ctrl = nvmet_fc_delete_ctrl, 2913 .discovery_chg = nvmet_fc_discovery_chg, 2914 }; 2915 2916 static int __init nvmet_fc_init_module(void) 2917 { 2918 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2919 } 2920 2921 static void __exit nvmet_fc_exit_module(void) 2922 { 2923 /* sanity check - all lports should be removed */ 2924 if (!list_empty(&nvmet_fc_target_list)) 2925 pr_warn("%s: targetport list not empty\n", __func__); 2926 2927 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2928 2929 ida_destroy(&nvmet_fc_tgtport_cnt); 2930 } 2931 2932 module_init(nvmet_fc_init_module); 2933 module_exit(nvmet_fc_exit_module); 2934 2935 MODULE_LICENSE("GPL v2"); 2936