1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 4 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 #define NVMET_FC_MAX_KB_PER_XFR 256 62 63 enum nvmet_fcp_datadir { 64 NVMET_FCP_NODATA, 65 NVMET_FCP_WRITE, 66 NVMET_FCP_READ, 67 NVMET_FCP_ABORTED, 68 }; 69 70 struct nvmet_fc_fcp_iod { 71 struct nvmefc_tgt_fcp_req *fcpreq; 72 73 struct nvme_fc_cmd_iu cmdiubuf; 74 struct nvme_fc_ersp_iu rspiubuf; 75 dma_addr_t rspdma; 76 struct scatterlist *data_sg; 77 struct scatterlist *next_sg; 78 int data_sg_cnt; 79 u32 next_sg_offset; 80 u32 total_length; 81 u32 offset; 82 enum nvmet_fcp_datadir io_dir; 83 bool active; 84 bool abort; 85 bool aborted; 86 bool writedataactive; 87 spinlock_t flock; 88 89 struct nvmet_req req; 90 struct work_struct work; 91 struct work_struct done_work; 92 93 struct nvmet_fc_tgtport *tgtport; 94 struct nvmet_fc_tgt_queue *queue; 95 96 struct list_head fcp_list; /* tgtport->fcp_list */ 97 }; 98 99 struct nvmet_fc_tgtport { 100 101 struct nvmet_fc_target_port fc_target_port; 102 103 struct list_head tgt_list; /* nvmet_fc_target_list */ 104 struct device *dev; /* dev for dma mapping */ 105 struct nvmet_fc_target_template *ops; 106 107 struct nvmet_fc_ls_iod *iod; 108 spinlock_t lock; 109 struct list_head ls_list; 110 struct list_head ls_busylist; 111 struct list_head assoc_list; 112 struct ida assoc_cnt; 113 struct nvmet_port *port; 114 struct kref ref; 115 }; 116 117 struct nvmet_fc_tgt_queue { 118 bool ninetypercent; 119 u16 qid; 120 u16 sqsize; 121 u16 ersp_ratio; 122 __le16 sqhd; 123 int cpu; 124 atomic_t connected; 125 atomic_t sqtail; 126 atomic_t zrspcnt; 127 atomic_t rsn; 128 spinlock_t qlock; 129 struct nvmet_port *port; 130 struct nvmet_cq nvme_cq; 131 struct nvmet_sq nvme_sq; 132 struct nvmet_fc_tgt_assoc *assoc; 133 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 134 struct list_head fod_list; 135 struct workqueue_struct *work_q; 136 struct kref ref; 137 } __aligned(sizeof(unsigned long long)); 138 139 struct nvmet_fc_tgt_assoc { 140 u64 association_id; 141 u32 a_id; 142 struct nvmet_fc_tgtport *tgtport; 143 struct list_head a_list; 144 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES]; 145 struct kref ref; 146 }; 147 148 149 static inline int 150 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 151 { 152 return (iodptr - iodptr->tgtport->iod); 153 } 154 155 static inline int 156 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 157 { 158 return (fodptr - fodptr->queue->fod); 159 } 160 161 162 /* 163 * Association and Connection IDs: 164 * 165 * Association ID will have random number in upper 6 bytes and zero 166 * in lower 2 bytes 167 * 168 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 169 * 170 * note: Association ID = Connection ID for queue 0 171 */ 172 #define BYTES_FOR_QID sizeof(u16) 173 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 174 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 175 176 static inline u64 177 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 178 { 179 return (assoc->association_id | qid); 180 } 181 182 static inline u64 183 nvmet_fc_getassociationid(u64 connectionid) 184 { 185 return connectionid & ~NVMET_FC_QUEUEID_MASK; 186 } 187 188 static inline u16 189 nvmet_fc_getqueueid(u64 connectionid) 190 { 191 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 192 } 193 194 static inline struct nvmet_fc_tgtport * 195 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 196 { 197 return container_of(targetport, struct nvmet_fc_tgtport, 198 fc_target_port); 199 } 200 201 static inline struct nvmet_fc_fcp_iod * 202 nvmet_req_to_fod(struct nvmet_req *nvme_req) 203 { 204 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 205 } 206 207 208 /* *************************** Globals **************************** */ 209 210 211 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 212 213 static LIST_HEAD(nvmet_fc_target_list); 214 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 215 216 217 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 218 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); 219 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work); 220 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 221 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 222 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 223 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 224 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 225 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 226 227 228 /* *********************** FC-NVME DMA Handling **************************** */ 229 230 /* 231 * The fcloop device passes in a NULL device pointer. Real LLD's will 232 * pass in a valid device pointer. If NULL is passed to the dma mapping 233 * routines, depending on the platform, it may or may not succeed, and 234 * may crash. 235 * 236 * As such: 237 * Wrapper all the dma routines and check the dev pointer. 238 * 239 * If simple mappings (return just a dma address, we'll noop them, 240 * returning a dma address of 0. 241 * 242 * On more complex mappings (dma_map_sg), a pseudo routine fills 243 * in the scatter list, setting all dma addresses to 0. 244 */ 245 246 static inline dma_addr_t 247 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 248 enum dma_data_direction dir) 249 { 250 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 251 } 252 253 static inline int 254 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 255 { 256 return dev ? dma_mapping_error(dev, dma_addr) : 0; 257 } 258 259 static inline void 260 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 261 enum dma_data_direction dir) 262 { 263 if (dev) 264 dma_unmap_single(dev, addr, size, dir); 265 } 266 267 static inline void 268 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 269 enum dma_data_direction dir) 270 { 271 if (dev) 272 dma_sync_single_for_cpu(dev, addr, size, dir); 273 } 274 275 static inline void 276 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 277 enum dma_data_direction dir) 278 { 279 if (dev) 280 dma_sync_single_for_device(dev, addr, size, dir); 281 } 282 283 /* pseudo dma_map_sg call */ 284 static int 285 fc_map_sg(struct scatterlist *sg, int nents) 286 { 287 struct scatterlist *s; 288 int i; 289 290 WARN_ON(nents == 0 || sg[0].length == 0); 291 292 for_each_sg(sg, s, nents, i) { 293 s->dma_address = 0L; 294 #ifdef CONFIG_NEED_SG_DMA_LENGTH 295 s->dma_length = s->length; 296 #endif 297 } 298 return nents; 299 } 300 301 static inline int 302 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 303 enum dma_data_direction dir) 304 { 305 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 306 } 307 308 static inline void 309 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 310 enum dma_data_direction dir) 311 { 312 if (dev) 313 dma_unmap_sg(dev, sg, nents, dir); 314 } 315 316 317 /* *********************** FC-NVME Port Management ************************ */ 318 319 320 static int 321 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 322 { 323 struct nvmet_fc_ls_iod *iod; 324 int i; 325 326 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 327 GFP_KERNEL); 328 if (!iod) 329 return -ENOMEM; 330 331 tgtport->iod = iod; 332 333 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 334 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 335 iod->tgtport = tgtport; 336 list_add_tail(&iod->ls_list, &tgtport->ls_list); 337 338 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 339 GFP_KERNEL); 340 if (!iod->rqstbuf) 341 goto out_fail; 342 343 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 344 345 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 346 NVME_FC_MAX_LS_BUFFER_SIZE, 347 DMA_TO_DEVICE); 348 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 349 goto out_fail; 350 } 351 352 return 0; 353 354 out_fail: 355 kfree(iod->rqstbuf); 356 list_del(&iod->ls_list); 357 for (iod--, i--; i >= 0; iod--, i--) { 358 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 359 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 360 kfree(iod->rqstbuf); 361 list_del(&iod->ls_list); 362 } 363 364 kfree(iod); 365 366 return -EFAULT; 367 } 368 369 static void 370 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 371 { 372 struct nvmet_fc_ls_iod *iod = tgtport->iod; 373 int i; 374 375 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 376 fc_dma_unmap_single(tgtport->dev, 377 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 378 DMA_TO_DEVICE); 379 kfree(iod->rqstbuf); 380 list_del(&iod->ls_list); 381 } 382 kfree(tgtport->iod); 383 } 384 385 static struct nvmet_fc_ls_iod * 386 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 387 { 388 static struct nvmet_fc_ls_iod *iod; 389 unsigned long flags; 390 391 spin_lock_irqsave(&tgtport->lock, flags); 392 iod = list_first_entry_or_null(&tgtport->ls_list, 393 struct nvmet_fc_ls_iod, ls_list); 394 if (iod) 395 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 396 spin_unlock_irqrestore(&tgtport->lock, flags); 397 return iod; 398 } 399 400 401 static void 402 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 403 struct nvmet_fc_ls_iod *iod) 404 { 405 unsigned long flags; 406 407 spin_lock_irqsave(&tgtport->lock, flags); 408 list_move(&iod->ls_list, &tgtport->ls_list); 409 spin_unlock_irqrestore(&tgtport->lock, flags); 410 } 411 412 static void 413 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 414 struct nvmet_fc_tgt_queue *queue) 415 { 416 struct nvmet_fc_fcp_iod *fod = queue->fod; 417 int i; 418 419 for (i = 0; i < queue->sqsize; fod++, i++) { 420 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); 421 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work); 422 fod->tgtport = tgtport; 423 fod->queue = queue; 424 fod->active = false; 425 fod->abort = false; 426 fod->aborted = false; 427 fod->fcpreq = NULL; 428 list_add_tail(&fod->fcp_list, &queue->fod_list); 429 spin_lock_init(&fod->flock); 430 431 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 432 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 433 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 434 list_del(&fod->fcp_list); 435 for (fod--, i--; i >= 0; fod--, i--) { 436 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 437 sizeof(fod->rspiubuf), 438 DMA_TO_DEVICE); 439 fod->rspdma = 0L; 440 list_del(&fod->fcp_list); 441 } 442 443 return; 444 } 445 } 446 } 447 448 static void 449 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 450 struct nvmet_fc_tgt_queue *queue) 451 { 452 struct nvmet_fc_fcp_iod *fod = queue->fod; 453 int i; 454 455 for (i = 0; i < queue->sqsize; fod++, i++) { 456 if (fod->rspdma) 457 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 458 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 459 } 460 } 461 462 static struct nvmet_fc_fcp_iod * 463 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 464 { 465 static struct nvmet_fc_fcp_iod *fod; 466 unsigned long flags; 467 468 spin_lock_irqsave(&queue->qlock, flags); 469 fod = list_first_entry_or_null(&queue->fod_list, 470 struct nvmet_fc_fcp_iod, fcp_list); 471 if (fod) { 472 list_del(&fod->fcp_list); 473 fod->active = true; 474 /* 475 * no queue reference is taken, as it was taken by the 476 * queue lookup just prior to the allocation. The iod 477 * will "inherit" that reference. 478 */ 479 } 480 spin_unlock_irqrestore(&queue->qlock, flags); 481 return fod; 482 } 483 484 485 static void 486 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 487 struct nvmet_fc_fcp_iod *fod) 488 { 489 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 490 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 491 unsigned long flags; 492 493 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 494 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 495 496 fcpreq->nvmet_fc_private = NULL; 497 498 spin_lock_irqsave(&queue->qlock, flags); 499 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 500 fod->active = false; 501 fod->abort = false; 502 fod->aborted = false; 503 fod->writedataactive = false; 504 fod->fcpreq = NULL; 505 spin_unlock_irqrestore(&queue->qlock, flags); 506 507 /* 508 * release the reference taken at queue lookup and fod allocation 509 */ 510 nvmet_fc_tgt_q_put(queue); 511 512 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 513 } 514 515 static int 516 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) 517 { 518 int cpu, idx, cnt; 519 520 if (!(tgtport->ops->target_features & 521 NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED) || 522 tgtport->ops->max_hw_queues == 1) 523 return WORK_CPU_UNBOUND; 524 525 /* Simple cpu selection based on qid modulo active cpu count */ 526 idx = !qid ? 0 : (qid - 1) % num_active_cpus(); 527 528 /* find the n'th active cpu */ 529 for (cpu = 0, cnt = 0; ; ) { 530 if (cpu_active(cpu)) { 531 if (cnt == idx) 532 break; 533 cnt++; 534 } 535 cpu = (cpu + 1) % num_possible_cpus(); 536 } 537 538 return cpu; 539 } 540 541 static struct nvmet_fc_tgt_queue * 542 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 543 u16 qid, u16 sqsize) 544 { 545 struct nvmet_fc_tgt_queue *queue; 546 unsigned long flags; 547 int ret; 548 549 if (qid >= NVMET_NR_QUEUES) 550 return NULL; 551 552 queue = kzalloc((sizeof(*queue) + 553 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 554 GFP_KERNEL); 555 if (!queue) 556 return NULL; 557 558 if (!nvmet_fc_tgt_a_get(assoc)) 559 goto out_free_queue; 560 561 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 562 assoc->tgtport->fc_target_port.port_num, 563 assoc->a_id, qid); 564 if (!queue->work_q) 565 goto out_a_put; 566 567 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 568 queue->qid = qid; 569 queue->sqsize = sqsize; 570 queue->assoc = assoc; 571 queue->port = assoc->tgtport->port; 572 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); 573 INIT_LIST_HEAD(&queue->fod_list); 574 atomic_set(&queue->connected, 0); 575 atomic_set(&queue->sqtail, 0); 576 atomic_set(&queue->rsn, 1); 577 atomic_set(&queue->zrspcnt, 0); 578 spin_lock_init(&queue->qlock); 579 kref_init(&queue->ref); 580 581 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 582 583 ret = nvmet_sq_init(&queue->nvme_sq); 584 if (ret) 585 goto out_fail_iodlist; 586 587 WARN_ON(assoc->queues[qid]); 588 spin_lock_irqsave(&assoc->tgtport->lock, flags); 589 assoc->queues[qid] = queue; 590 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 591 592 return queue; 593 594 out_fail_iodlist: 595 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 596 destroy_workqueue(queue->work_q); 597 out_a_put: 598 nvmet_fc_tgt_a_put(assoc); 599 out_free_queue: 600 kfree(queue); 601 return NULL; 602 } 603 604 605 static void 606 nvmet_fc_tgt_queue_free(struct kref *ref) 607 { 608 struct nvmet_fc_tgt_queue *queue = 609 container_of(ref, struct nvmet_fc_tgt_queue, ref); 610 unsigned long flags; 611 612 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 613 queue->assoc->queues[queue->qid] = NULL; 614 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 615 616 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 617 618 nvmet_fc_tgt_a_put(queue->assoc); 619 620 destroy_workqueue(queue->work_q); 621 622 kfree(queue); 623 } 624 625 static void 626 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 627 { 628 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 629 } 630 631 static int 632 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 633 { 634 return kref_get_unless_zero(&queue->ref); 635 } 636 637 638 static void 639 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 640 { 641 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 642 struct nvmet_fc_fcp_iod *fod = queue->fod; 643 unsigned long flags; 644 int i, writedataactive; 645 bool disconnect; 646 647 disconnect = atomic_xchg(&queue->connected, 0); 648 649 spin_lock_irqsave(&queue->qlock, flags); 650 /* about outstanding io's */ 651 for (i = 0; i < queue->sqsize; fod++, i++) { 652 if (fod->active) { 653 spin_lock(&fod->flock); 654 fod->abort = true; 655 writedataactive = fod->writedataactive; 656 spin_unlock(&fod->flock); 657 /* 658 * only call lldd abort routine if waiting for 659 * writedata. other outstanding ops should finish 660 * on their own. 661 */ 662 if (writedataactive) { 663 spin_lock(&fod->flock); 664 fod->aborted = true; 665 spin_unlock(&fod->flock); 666 tgtport->ops->fcp_abort( 667 &tgtport->fc_target_port, fod->fcpreq); 668 } 669 } 670 } 671 spin_unlock_irqrestore(&queue->qlock, flags); 672 673 flush_workqueue(queue->work_q); 674 675 if (disconnect) 676 nvmet_sq_destroy(&queue->nvme_sq); 677 678 nvmet_fc_tgt_q_put(queue); 679 } 680 681 static struct nvmet_fc_tgt_queue * 682 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 683 u64 connection_id) 684 { 685 struct nvmet_fc_tgt_assoc *assoc; 686 struct nvmet_fc_tgt_queue *queue; 687 u64 association_id = nvmet_fc_getassociationid(connection_id); 688 u16 qid = nvmet_fc_getqueueid(connection_id); 689 unsigned long flags; 690 691 spin_lock_irqsave(&tgtport->lock, flags); 692 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 693 if (association_id == assoc->association_id) { 694 queue = assoc->queues[qid]; 695 if (queue && 696 (!atomic_read(&queue->connected) || 697 !nvmet_fc_tgt_q_get(queue))) 698 queue = NULL; 699 spin_unlock_irqrestore(&tgtport->lock, flags); 700 return queue; 701 } 702 } 703 spin_unlock_irqrestore(&tgtport->lock, flags); 704 return NULL; 705 } 706 707 static struct nvmet_fc_tgt_assoc * 708 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 709 { 710 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 711 unsigned long flags; 712 u64 ran; 713 int idx; 714 bool needrandom = true; 715 716 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 717 if (!assoc) 718 return NULL; 719 720 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 721 if (idx < 0) 722 goto out_free_assoc; 723 724 if (!nvmet_fc_tgtport_get(tgtport)) 725 goto out_ida_put; 726 727 assoc->tgtport = tgtport; 728 assoc->a_id = idx; 729 INIT_LIST_HEAD(&assoc->a_list); 730 kref_init(&assoc->ref); 731 732 while (needrandom) { 733 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 734 ran = ran << BYTES_FOR_QID_SHIFT; 735 736 spin_lock_irqsave(&tgtport->lock, flags); 737 needrandom = false; 738 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 739 if (ran == tmpassoc->association_id) { 740 needrandom = true; 741 break; 742 } 743 if (!needrandom) { 744 assoc->association_id = ran; 745 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 746 } 747 spin_unlock_irqrestore(&tgtport->lock, flags); 748 } 749 750 return assoc; 751 752 out_ida_put: 753 ida_simple_remove(&tgtport->assoc_cnt, idx); 754 out_free_assoc: 755 kfree(assoc); 756 return NULL; 757 } 758 759 static void 760 nvmet_fc_target_assoc_free(struct kref *ref) 761 { 762 struct nvmet_fc_tgt_assoc *assoc = 763 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 764 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 765 unsigned long flags; 766 767 spin_lock_irqsave(&tgtport->lock, flags); 768 list_del(&assoc->a_list); 769 spin_unlock_irqrestore(&tgtport->lock, flags); 770 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 771 kfree(assoc); 772 nvmet_fc_tgtport_put(tgtport); 773 } 774 775 static void 776 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 777 { 778 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 779 } 780 781 static int 782 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 783 { 784 return kref_get_unless_zero(&assoc->ref); 785 } 786 787 static void 788 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 789 { 790 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 791 struct nvmet_fc_tgt_queue *queue; 792 unsigned long flags; 793 int i; 794 795 spin_lock_irqsave(&tgtport->lock, flags); 796 for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) { 797 queue = assoc->queues[i]; 798 if (queue) { 799 if (!nvmet_fc_tgt_q_get(queue)) 800 continue; 801 spin_unlock_irqrestore(&tgtport->lock, flags); 802 nvmet_fc_delete_target_queue(queue); 803 nvmet_fc_tgt_q_put(queue); 804 spin_lock_irqsave(&tgtport->lock, flags); 805 } 806 } 807 spin_unlock_irqrestore(&tgtport->lock, flags); 808 809 nvmet_fc_tgt_a_put(assoc); 810 } 811 812 static struct nvmet_fc_tgt_assoc * 813 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 814 u64 association_id) 815 { 816 struct nvmet_fc_tgt_assoc *assoc; 817 struct nvmet_fc_tgt_assoc *ret = NULL; 818 unsigned long flags; 819 820 spin_lock_irqsave(&tgtport->lock, flags); 821 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 822 if (association_id == assoc->association_id) { 823 ret = assoc; 824 nvmet_fc_tgt_a_get(assoc); 825 break; 826 } 827 } 828 spin_unlock_irqrestore(&tgtport->lock, flags); 829 830 return ret; 831 } 832 833 834 /** 835 * nvme_fc_register_targetport - transport entry point called by an 836 * LLDD to register the existence of a local 837 * NVME subystem FC port. 838 * @pinfo: pointer to information about the port to be registered 839 * @template: LLDD entrypoints and operational parameters for the port 840 * @dev: physical hardware device node port corresponds to. Will be 841 * used for DMA mappings 842 * @portptr: pointer to a local port pointer. Upon success, the routine 843 * will allocate a nvme_fc_local_port structure and place its 844 * address in the local port pointer. Upon failure, local port 845 * pointer will be set to NULL. 846 * 847 * Returns: 848 * a completion status. Must be 0 upon success; a negative errno 849 * (ex: -ENXIO) upon failure. 850 */ 851 int 852 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 853 struct nvmet_fc_target_template *template, 854 struct device *dev, 855 struct nvmet_fc_target_port **portptr) 856 { 857 struct nvmet_fc_tgtport *newrec; 858 unsigned long flags; 859 int ret, idx; 860 861 if (!template->xmt_ls_rsp || !template->fcp_op || 862 !template->fcp_abort || 863 !template->fcp_req_release || !template->targetport_delete || 864 !template->max_hw_queues || !template->max_sgl_segments || 865 !template->max_dif_sgl_segments || !template->dma_boundary) { 866 ret = -EINVAL; 867 goto out_regtgt_failed; 868 } 869 870 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 871 GFP_KERNEL); 872 if (!newrec) { 873 ret = -ENOMEM; 874 goto out_regtgt_failed; 875 } 876 877 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 878 if (idx < 0) { 879 ret = -ENOSPC; 880 goto out_fail_kfree; 881 } 882 883 if (!get_device(dev) && dev) { 884 ret = -ENODEV; 885 goto out_ida_put; 886 } 887 888 newrec->fc_target_port.node_name = pinfo->node_name; 889 newrec->fc_target_port.port_name = pinfo->port_name; 890 newrec->fc_target_port.private = &newrec[1]; 891 newrec->fc_target_port.port_id = pinfo->port_id; 892 newrec->fc_target_port.port_num = idx; 893 INIT_LIST_HEAD(&newrec->tgt_list); 894 newrec->dev = dev; 895 newrec->ops = template; 896 spin_lock_init(&newrec->lock); 897 INIT_LIST_HEAD(&newrec->ls_list); 898 INIT_LIST_HEAD(&newrec->ls_busylist); 899 INIT_LIST_HEAD(&newrec->assoc_list); 900 kref_init(&newrec->ref); 901 ida_init(&newrec->assoc_cnt); 902 903 ret = nvmet_fc_alloc_ls_iodlist(newrec); 904 if (ret) { 905 ret = -ENOMEM; 906 goto out_free_newrec; 907 } 908 909 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 910 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 911 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 912 913 *portptr = &newrec->fc_target_port; 914 return 0; 915 916 out_free_newrec: 917 put_device(dev); 918 out_ida_put: 919 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 920 out_fail_kfree: 921 kfree(newrec); 922 out_regtgt_failed: 923 *portptr = NULL; 924 return ret; 925 } 926 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 927 928 929 static void 930 nvmet_fc_free_tgtport(struct kref *ref) 931 { 932 struct nvmet_fc_tgtport *tgtport = 933 container_of(ref, struct nvmet_fc_tgtport, ref); 934 struct device *dev = tgtport->dev; 935 unsigned long flags; 936 937 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 938 list_del(&tgtport->tgt_list); 939 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 940 941 nvmet_fc_free_ls_iodlist(tgtport); 942 943 /* let the LLDD know we've finished tearing it down */ 944 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 945 946 ida_simple_remove(&nvmet_fc_tgtport_cnt, 947 tgtport->fc_target_port.port_num); 948 949 ida_destroy(&tgtport->assoc_cnt); 950 951 kfree(tgtport); 952 953 put_device(dev); 954 } 955 956 static void 957 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 958 { 959 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 960 } 961 962 static int 963 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 964 { 965 return kref_get_unless_zero(&tgtport->ref); 966 } 967 968 static void 969 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 970 { 971 struct nvmet_fc_tgt_assoc *assoc, *next; 972 unsigned long flags; 973 974 spin_lock_irqsave(&tgtport->lock, flags); 975 list_for_each_entry_safe(assoc, next, 976 &tgtport->assoc_list, a_list) { 977 if (!nvmet_fc_tgt_a_get(assoc)) 978 continue; 979 spin_unlock_irqrestore(&tgtport->lock, flags); 980 nvmet_fc_delete_target_assoc(assoc); 981 nvmet_fc_tgt_a_put(assoc); 982 spin_lock_irqsave(&tgtport->lock, flags); 983 } 984 spin_unlock_irqrestore(&tgtport->lock, flags); 985 } 986 987 /* 988 * nvmet layer has called to terminate an association 989 */ 990 static void 991 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 992 { 993 struct nvmet_fc_tgtport *tgtport, *next; 994 struct nvmet_fc_tgt_assoc *assoc; 995 struct nvmet_fc_tgt_queue *queue; 996 unsigned long flags; 997 bool found_ctrl = false; 998 999 /* this is a bit ugly, but don't want to make locks layered */ 1000 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1001 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1002 tgt_list) { 1003 if (!nvmet_fc_tgtport_get(tgtport)) 1004 continue; 1005 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1006 1007 spin_lock_irqsave(&tgtport->lock, flags); 1008 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1009 queue = assoc->queues[0]; 1010 if (queue && queue->nvme_sq.ctrl == ctrl) { 1011 if (nvmet_fc_tgt_a_get(assoc)) 1012 found_ctrl = true; 1013 break; 1014 } 1015 } 1016 spin_unlock_irqrestore(&tgtport->lock, flags); 1017 1018 nvmet_fc_tgtport_put(tgtport); 1019 1020 if (found_ctrl) { 1021 nvmet_fc_delete_target_assoc(assoc); 1022 nvmet_fc_tgt_a_put(assoc); 1023 return; 1024 } 1025 1026 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1027 } 1028 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1029 } 1030 1031 /** 1032 * nvme_fc_unregister_targetport - transport entry point called by an 1033 * LLDD to deregister/remove a previously 1034 * registered a local NVME subsystem FC port. 1035 * @tgtport: pointer to the (registered) target port that is to be 1036 * deregistered. 1037 * 1038 * Returns: 1039 * a completion status. Must be 0 upon success; a negative errno 1040 * (ex: -ENXIO) upon failure. 1041 */ 1042 int 1043 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1044 { 1045 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1046 1047 /* terminate any outstanding associations */ 1048 __nvmet_fc_free_assocs(tgtport); 1049 1050 nvmet_fc_tgtport_put(tgtport); 1051 1052 return 0; 1053 } 1054 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1055 1056 1057 /* *********************** FC-NVME LS Handling **************************** */ 1058 1059 1060 static void 1061 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1062 { 1063 struct fcnvme_ls_acc_hdr *acc = buf; 1064 1065 acc->w0.ls_cmd = ls_cmd; 1066 acc->desc_list_len = desc_len; 1067 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1068 acc->rqst.desc_len = 1069 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1070 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1071 } 1072 1073 static int 1074 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1075 u8 reason, u8 explanation, u8 vendor) 1076 { 1077 struct fcnvme_ls_rjt *rjt = buf; 1078 1079 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1080 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1081 ls_cmd); 1082 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1083 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1084 rjt->rjt.reason_code = reason; 1085 rjt->rjt.reason_explanation = explanation; 1086 rjt->rjt.vendor = vendor; 1087 1088 return sizeof(struct fcnvme_ls_rjt); 1089 } 1090 1091 /* Validation Error indexes into the string table below */ 1092 enum { 1093 VERR_NO_ERROR = 0, 1094 VERR_CR_ASSOC_LEN = 1, 1095 VERR_CR_ASSOC_RQST_LEN = 2, 1096 VERR_CR_ASSOC_CMD = 3, 1097 VERR_CR_ASSOC_CMD_LEN = 4, 1098 VERR_ERSP_RATIO = 5, 1099 VERR_ASSOC_ALLOC_FAIL = 6, 1100 VERR_QUEUE_ALLOC_FAIL = 7, 1101 VERR_CR_CONN_LEN = 8, 1102 VERR_CR_CONN_RQST_LEN = 9, 1103 VERR_ASSOC_ID = 10, 1104 VERR_ASSOC_ID_LEN = 11, 1105 VERR_NO_ASSOC = 12, 1106 VERR_CONN_ID = 13, 1107 VERR_CONN_ID_LEN = 14, 1108 VERR_NO_CONN = 15, 1109 VERR_CR_CONN_CMD = 16, 1110 VERR_CR_CONN_CMD_LEN = 17, 1111 VERR_DISCONN_LEN = 18, 1112 VERR_DISCONN_RQST_LEN = 19, 1113 VERR_DISCONN_CMD = 20, 1114 VERR_DISCONN_CMD_LEN = 21, 1115 VERR_DISCONN_SCOPE = 22, 1116 VERR_RS_LEN = 23, 1117 VERR_RS_RQST_LEN = 24, 1118 VERR_RS_CMD = 25, 1119 VERR_RS_CMD_LEN = 26, 1120 VERR_RS_RCTL = 27, 1121 VERR_RS_RO = 28, 1122 }; 1123 1124 static char *validation_errors[] = { 1125 "OK", 1126 "Bad CR_ASSOC Length", 1127 "Bad CR_ASSOC Rqst Length", 1128 "Not CR_ASSOC Cmd", 1129 "Bad CR_ASSOC Cmd Length", 1130 "Bad Ersp Ratio", 1131 "Association Allocation Failed", 1132 "Queue Allocation Failed", 1133 "Bad CR_CONN Length", 1134 "Bad CR_CONN Rqst Length", 1135 "Not Association ID", 1136 "Bad Association ID Length", 1137 "No Association", 1138 "Not Connection ID", 1139 "Bad Connection ID Length", 1140 "No Connection", 1141 "Not CR_CONN Cmd", 1142 "Bad CR_CONN Cmd Length", 1143 "Bad DISCONN Length", 1144 "Bad DISCONN Rqst Length", 1145 "Not DISCONN Cmd", 1146 "Bad DISCONN Cmd Length", 1147 "Bad Disconnect Scope", 1148 "Bad RS Length", 1149 "Bad RS Rqst Length", 1150 "Not RS Cmd", 1151 "Bad RS Cmd Length", 1152 "Bad RS R_CTL", 1153 "Bad RS Relative Offset", 1154 }; 1155 1156 static void 1157 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1158 struct nvmet_fc_ls_iod *iod) 1159 { 1160 struct fcnvme_ls_cr_assoc_rqst *rqst = 1161 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1162 struct fcnvme_ls_cr_assoc_acc *acc = 1163 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1164 struct nvmet_fc_tgt_queue *queue; 1165 int ret = 0; 1166 1167 memset(acc, 0, sizeof(*acc)); 1168 1169 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_assoc_rqst)) 1170 ret = VERR_CR_ASSOC_LEN; 1171 else if (rqst->desc_list_len != 1172 fcnvme_lsdesc_len( 1173 sizeof(struct fcnvme_ls_cr_assoc_rqst))) 1174 ret = VERR_CR_ASSOC_RQST_LEN; 1175 else if (rqst->assoc_cmd.desc_tag != 1176 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1177 ret = VERR_CR_ASSOC_CMD; 1178 else if (rqst->assoc_cmd.desc_len != 1179 fcnvme_lsdesc_len( 1180 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd))) 1181 ret = VERR_CR_ASSOC_CMD_LEN; 1182 else if (!rqst->assoc_cmd.ersp_ratio || 1183 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1184 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1185 ret = VERR_ERSP_RATIO; 1186 1187 else { 1188 /* new association w/ admin queue */ 1189 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1190 if (!iod->assoc) 1191 ret = VERR_ASSOC_ALLOC_FAIL; 1192 else { 1193 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1194 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1195 if (!queue) 1196 ret = VERR_QUEUE_ALLOC_FAIL; 1197 } 1198 } 1199 1200 if (ret) { 1201 dev_err(tgtport->dev, 1202 "Create Association LS failed: %s\n", 1203 validation_errors[ret]); 1204 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1205 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1206 FCNVME_RJT_RC_LOGIC, 1207 FCNVME_RJT_EXP_NONE, 0); 1208 return; 1209 } 1210 1211 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1212 atomic_set(&queue->connected, 1); 1213 queue->sqhd = 0; /* best place to init value */ 1214 1215 /* format a response */ 1216 1217 iod->lsreq->rsplen = sizeof(*acc); 1218 1219 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1220 fcnvme_lsdesc_len( 1221 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1222 FCNVME_LS_CREATE_ASSOCIATION); 1223 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1224 acc->associd.desc_len = 1225 fcnvme_lsdesc_len( 1226 sizeof(struct fcnvme_lsdesc_assoc_id)); 1227 acc->associd.association_id = 1228 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1229 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1230 acc->connectid.desc_len = 1231 fcnvme_lsdesc_len( 1232 sizeof(struct fcnvme_lsdesc_conn_id)); 1233 acc->connectid.connection_id = acc->associd.association_id; 1234 } 1235 1236 static void 1237 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1238 struct nvmet_fc_ls_iod *iod) 1239 { 1240 struct fcnvme_ls_cr_conn_rqst *rqst = 1241 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1242 struct fcnvme_ls_cr_conn_acc *acc = 1243 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1244 struct nvmet_fc_tgt_queue *queue; 1245 int ret = 0; 1246 1247 memset(acc, 0, sizeof(*acc)); 1248 1249 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1250 ret = VERR_CR_CONN_LEN; 1251 else if (rqst->desc_list_len != 1252 fcnvme_lsdesc_len( 1253 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1254 ret = VERR_CR_CONN_RQST_LEN; 1255 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1256 ret = VERR_ASSOC_ID; 1257 else if (rqst->associd.desc_len != 1258 fcnvme_lsdesc_len( 1259 sizeof(struct fcnvme_lsdesc_assoc_id))) 1260 ret = VERR_ASSOC_ID_LEN; 1261 else if (rqst->connect_cmd.desc_tag != 1262 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1263 ret = VERR_CR_CONN_CMD; 1264 else if (rqst->connect_cmd.desc_len != 1265 fcnvme_lsdesc_len( 1266 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1267 ret = VERR_CR_CONN_CMD_LEN; 1268 else if (!rqst->connect_cmd.ersp_ratio || 1269 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1270 be16_to_cpu(rqst->connect_cmd.sqsize))) 1271 ret = VERR_ERSP_RATIO; 1272 1273 else { 1274 /* new io queue */ 1275 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1276 be64_to_cpu(rqst->associd.association_id)); 1277 if (!iod->assoc) 1278 ret = VERR_NO_ASSOC; 1279 else { 1280 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1281 be16_to_cpu(rqst->connect_cmd.qid), 1282 be16_to_cpu(rqst->connect_cmd.sqsize)); 1283 if (!queue) 1284 ret = VERR_QUEUE_ALLOC_FAIL; 1285 1286 /* release get taken in nvmet_fc_find_target_assoc */ 1287 nvmet_fc_tgt_a_put(iod->assoc); 1288 } 1289 } 1290 1291 if (ret) { 1292 dev_err(tgtport->dev, 1293 "Create Connection LS failed: %s\n", 1294 validation_errors[ret]); 1295 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1296 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1297 (ret == VERR_NO_ASSOC) ? 1298 FCNVME_RJT_RC_INV_ASSOC : 1299 FCNVME_RJT_RC_LOGIC, 1300 FCNVME_RJT_EXP_NONE, 0); 1301 return; 1302 } 1303 1304 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1305 atomic_set(&queue->connected, 1); 1306 queue->sqhd = 0; /* best place to init value */ 1307 1308 /* format a response */ 1309 1310 iod->lsreq->rsplen = sizeof(*acc); 1311 1312 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1313 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1314 FCNVME_LS_CREATE_CONNECTION); 1315 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1316 acc->connectid.desc_len = 1317 fcnvme_lsdesc_len( 1318 sizeof(struct fcnvme_lsdesc_conn_id)); 1319 acc->connectid.connection_id = 1320 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1321 be16_to_cpu(rqst->connect_cmd.qid))); 1322 } 1323 1324 static void 1325 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1326 struct nvmet_fc_ls_iod *iod) 1327 { 1328 struct fcnvme_ls_disconnect_rqst *rqst = 1329 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1330 struct fcnvme_ls_disconnect_acc *acc = 1331 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1332 struct nvmet_fc_tgt_queue *queue = NULL; 1333 struct nvmet_fc_tgt_assoc *assoc; 1334 int ret = 0; 1335 bool del_assoc = false; 1336 1337 memset(acc, 0, sizeof(*acc)); 1338 1339 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1340 ret = VERR_DISCONN_LEN; 1341 else if (rqst->desc_list_len != 1342 fcnvme_lsdesc_len( 1343 sizeof(struct fcnvme_ls_disconnect_rqst))) 1344 ret = VERR_DISCONN_RQST_LEN; 1345 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1346 ret = VERR_ASSOC_ID; 1347 else if (rqst->associd.desc_len != 1348 fcnvme_lsdesc_len( 1349 sizeof(struct fcnvme_lsdesc_assoc_id))) 1350 ret = VERR_ASSOC_ID_LEN; 1351 else if (rqst->discon_cmd.desc_tag != 1352 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1353 ret = VERR_DISCONN_CMD; 1354 else if (rqst->discon_cmd.desc_len != 1355 fcnvme_lsdesc_len( 1356 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1357 ret = VERR_DISCONN_CMD_LEN; 1358 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1359 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1360 ret = VERR_DISCONN_SCOPE; 1361 else { 1362 /* match an active association */ 1363 assoc = nvmet_fc_find_target_assoc(tgtport, 1364 be64_to_cpu(rqst->associd.association_id)); 1365 iod->assoc = assoc; 1366 if (assoc) { 1367 if (rqst->discon_cmd.scope == 1368 FCNVME_DISCONN_CONNECTION) { 1369 queue = nvmet_fc_find_target_queue(tgtport, 1370 be64_to_cpu( 1371 rqst->discon_cmd.id)); 1372 if (!queue) { 1373 nvmet_fc_tgt_a_put(assoc); 1374 ret = VERR_NO_CONN; 1375 } 1376 } 1377 } else 1378 ret = VERR_NO_ASSOC; 1379 } 1380 1381 if (ret) { 1382 dev_err(tgtport->dev, 1383 "Disconnect LS failed: %s\n", 1384 validation_errors[ret]); 1385 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1386 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1387 (ret == VERR_NO_ASSOC) ? 1388 FCNVME_RJT_RC_INV_ASSOC : 1389 (ret == VERR_NO_CONN) ? 1390 FCNVME_RJT_RC_INV_CONN : 1391 FCNVME_RJT_RC_LOGIC, 1392 FCNVME_RJT_EXP_NONE, 0); 1393 return; 1394 } 1395 1396 /* format a response */ 1397 1398 iod->lsreq->rsplen = sizeof(*acc); 1399 1400 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1401 fcnvme_lsdesc_len( 1402 sizeof(struct fcnvme_ls_disconnect_acc)), 1403 FCNVME_LS_DISCONNECT); 1404 1405 1406 /* are we to delete a Connection ID (queue) */ 1407 if (queue) { 1408 int qid = queue->qid; 1409 1410 nvmet_fc_delete_target_queue(queue); 1411 1412 /* release the get taken by find_target_queue */ 1413 nvmet_fc_tgt_q_put(queue); 1414 1415 /* tear association down if io queue terminated */ 1416 if (!qid) 1417 del_assoc = true; 1418 } 1419 1420 /* release get taken in nvmet_fc_find_target_assoc */ 1421 nvmet_fc_tgt_a_put(iod->assoc); 1422 1423 if (del_assoc) 1424 nvmet_fc_delete_target_assoc(iod->assoc); 1425 } 1426 1427 1428 /* *********************** NVME Ctrl Routines **************************** */ 1429 1430 1431 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1432 1433 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1434 1435 static void 1436 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1437 { 1438 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1439 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1440 1441 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1442 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1443 nvmet_fc_free_ls_iod(tgtport, iod); 1444 nvmet_fc_tgtport_put(tgtport); 1445 } 1446 1447 static void 1448 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1449 struct nvmet_fc_ls_iod *iod) 1450 { 1451 int ret; 1452 1453 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1454 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1455 1456 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1457 if (ret) 1458 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1459 } 1460 1461 /* 1462 * Actual processing routine for received FC-NVME LS Requests from the LLD 1463 */ 1464 static void 1465 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1466 struct nvmet_fc_ls_iod *iod) 1467 { 1468 struct fcnvme_ls_rqst_w0 *w0 = 1469 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1470 1471 iod->lsreq->nvmet_fc_private = iod; 1472 iod->lsreq->rspbuf = iod->rspbuf; 1473 iod->lsreq->rspdma = iod->rspdma; 1474 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1475 /* Be preventative. handlers will later set to valid length */ 1476 iod->lsreq->rsplen = 0; 1477 1478 iod->assoc = NULL; 1479 1480 /* 1481 * handlers: 1482 * parse request input, execute the request, and format the 1483 * LS response 1484 */ 1485 switch (w0->ls_cmd) { 1486 case FCNVME_LS_CREATE_ASSOCIATION: 1487 /* Creates Association and initial Admin Queue/Connection */ 1488 nvmet_fc_ls_create_association(tgtport, iod); 1489 break; 1490 case FCNVME_LS_CREATE_CONNECTION: 1491 /* Creates an IO Queue/Connection */ 1492 nvmet_fc_ls_create_connection(tgtport, iod); 1493 break; 1494 case FCNVME_LS_DISCONNECT: 1495 /* Terminate a Queue/Connection or the Association */ 1496 nvmet_fc_ls_disconnect(tgtport, iod); 1497 break; 1498 default: 1499 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1500 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1501 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1502 } 1503 1504 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1505 } 1506 1507 /* 1508 * Actual processing routine for received FC-NVME LS Requests from the LLD 1509 */ 1510 static void 1511 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1512 { 1513 struct nvmet_fc_ls_iod *iod = 1514 container_of(work, struct nvmet_fc_ls_iod, work); 1515 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1516 1517 nvmet_fc_handle_ls_rqst(tgtport, iod); 1518 } 1519 1520 1521 /** 1522 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1523 * upon the reception of a NVME LS request. 1524 * 1525 * The nvmet-fc layer will copy payload to an internal structure for 1526 * processing. As such, upon completion of the routine, the LLDD may 1527 * immediately free/reuse the LS request buffer passed in the call. 1528 * 1529 * If this routine returns error, the LLDD should abort the exchange. 1530 * 1531 * @tgtport: pointer to the (registered) target port the LS was 1532 * received on. 1533 * @lsreq: pointer to a lsreq request structure to be used to reference 1534 * the exchange corresponding to the LS. 1535 * @lsreqbuf: pointer to the buffer containing the LS Request 1536 * @lsreqbuf_len: length, in bytes, of the received LS request 1537 */ 1538 int 1539 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1540 struct nvmefc_tgt_ls_req *lsreq, 1541 void *lsreqbuf, u32 lsreqbuf_len) 1542 { 1543 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1544 struct nvmet_fc_ls_iod *iod; 1545 1546 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1547 return -E2BIG; 1548 1549 if (!nvmet_fc_tgtport_get(tgtport)) 1550 return -ESHUTDOWN; 1551 1552 iod = nvmet_fc_alloc_ls_iod(tgtport); 1553 if (!iod) { 1554 nvmet_fc_tgtport_put(tgtport); 1555 return -ENOENT; 1556 } 1557 1558 iod->lsreq = lsreq; 1559 iod->fcpreq = NULL; 1560 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1561 iod->rqstdatalen = lsreqbuf_len; 1562 1563 schedule_work(&iod->work); 1564 1565 return 0; 1566 } 1567 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1568 1569 1570 /* 1571 * ********************** 1572 * Start of FCP handling 1573 * ********************** 1574 */ 1575 1576 static int 1577 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1578 { 1579 struct scatterlist *sg; 1580 struct page *page; 1581 unsigned int nent; 1582 u32 page_len, length; 1583 int i = 0; 1584 1585 length = fod->total_length; 1586 nent = DIV_ROUND_UP(length, PAGE_SIZE); 1587 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 1588 if (!sg) 1589 goto out; 1590 1591 sg_init_table(sg, nent); 1592 1593 while (length) { 1594 page_len = min_t(u32, length, PAGE_SIZE); 1595 1596 page = alloc_page(GFP_KERNEL); 1597 if (!page) 1598 goto out_free_pages; 1599 1600 sg_set_page(&sg[i], page, page_len, 0); 1601 length -= page_len; 1602 i++; 1603 } 1604 1605 fod->data_sg = sg; 1606 fod->data_sg_cnt = nent; 1607 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1608 ((fod->io_dir == NVMET_FCP_WRITE) ? 1609 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1610 /* note: write from initiator perspective */ 1611 1612 return 0; 1613 1614 out_free_pages: 1615 while (i > 0) { 1616 i--; 1617 __free_page(sg_page(&sg[i])); 1618 } 1619 kfree(sg); 1620 fod->data_sg = NULL; 1621 fod->data_sg_cnt = 0; 1622 out: 1623 return NVME_SC_INTERNAL; 1624 } 1625 1626 static void 1627 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1628 { 1629 struct scatterlist *sg; 1630 int count; 1631 1632 if (!fod->data_sg || !fod->data_sg_cnt) 1633 return; 1634 1635 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1636 ((fod->io_dir == NVMET_FCP_WRITE) ? 1637 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1638 for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count) 1639 __free_page(sg_page(sg)); 1640 kfree(fod->data_sg); 1641 fod->data_sg = NULL; 1642 fod->data_sg_cnt = 0; 1643 } 1644 1645 1646 static bool 1647 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1648 { 1649 u32 sqtail, used; 1650 1651 /* egad, this is ugly. And sqtail is just a best guess */ 1652 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1653 1654 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1655 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1656 } 1657 1658 /* 1659 * Prep RSP payload. 1660 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1661 */ 1662 static void 1663 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1664 struct nvmet_fc_fcp_iod *fod) 1665 { 1666 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1667 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1668 struct nvme_completion *cqe = &ersp->cqe; 1669 u32 *cqewd = (u32 *)cqe; 1670 bool send_ersp = false; 1671 u32 rsn, rspcnt, xfr_length; 1672 1673 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1674 xfr_length = fod->total_length; 1675 else 1676 xfr_length = fod->offset; 1677 1678 /* 1679 * check to see if we can send a 0's rsp. 1680 * Note: to send a 0's response, the NVME-FC host transport will 1681 * recreate the CQE. The host transport knows: sq id, SQHD (last 1682 * seen in an ersp), and command_id. Thus it will create a 1683 * zero-filled CQE with those known fields filled in. Transport 1684 * must send an ersp for any condition where the cqe won't match 1685 * this. 1686 * 1687 * Here are the FC-NVME mandated cases where we must send an ersp: 1688 * every N responses, where N=ersp_ratio 1689 * force fabric commands to send ersp's (not in FC-NVME but good 1690 * practice) 1691 * normal cmds: any time status is non-zero, or status is zero 1692 * but words 0 or 1 are non-zero. 1693 * the SQ is 90% or more full 1694 * the cmd is a fused command 1695 * transferred data length not equal to cmd iu length 1696 */ 1697 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1698 if (!(rspcnt % fod->queue->ersp_ratio) || 1699 sqe->opcode == nvme_fabrics_command || 1700 xfr_length != fod->total_length || 1701 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1702 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1703 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1704 send_ersp = true; 1705 1706 /* re-set the fields */ 1707 fod->fcpreq->rspaddr = ersp; 1708 fod->fcpreq->rspdma = fod->rspdma; 1709 1710 if (!send_ersp) { 1711 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1712 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1713 } else { 1714 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1715 rsn = atomic_inc_return(&fod->queue->rsn); 1716 ersp->rsn = cpu_to_be32(rsn); 1717 ersp->xfrd_len = cpu_to_be32(xfr_length); 1718 fod->fcpreq->rsplen = sizeof(*ersp); 1719 } 1720 1721 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1722 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1723 } 1724 1725 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1726 1727 static void 1728 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1729 struct nvmet_fc_fcp_iod *fod) 1730 { 1731 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1732 1733 /* data no longer needed */ 1734 nvmet_fc_free_tgt_pgs(fod); 1735 1736 /* 1737 * if an ABTS was received or we issued the fcp_abort early 1738 * don't call abort routine again. 1739 */ 1740 /* no need to take lock - lock was taken earlier to get here */ 1741 if (!fod->aborted) 1742 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1743 1744 nvmet_fc_free_fcp_iod(fod->queue, fod); 1745 } 1746 1747 static void 1748 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1749 struct nvmet_fc_fcp_iod *fod) 1750 { 1751 int ret; 1752 1753 fod->fcpreq->op = NVMET_FCOP_RSP; 1754 fod->fcpreq->timeout = 0; 1755 1756 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1757 1758 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1759 if (ret) 1760 nvmet_fc_abort_op(tgtport, fod); 1761 } 1762 1763 static void 1764 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1765 struct nvmet_fc_fcp_iod *fod, u8 op) 1766 { 1767 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1768 struct scatterlist *sg, *datasg; 1769 unsigned long flags; 1770 u32 tlen, sg_off; 1771 int ret; 1772 1773 fcpreq->op = op; 1774 fcpreq->offset = fod->offset; 1775 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1776 tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024), 1777 (fod->total_length - fod->offset)); 1778 tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE); 1779 tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments 1780 * PAGE_SIZE); 1781 fcpreq->transfer_length = tlen; 1782 fcpreq->transferred_length = 0; 1783 fcpreq->fcp_error = 0; 1784 fcpreq->rsplen = 0; 1785 1786 fcpreq->sg_cnt = 0; 1787 1788 datasg = fod->next_sg; 1789 sg_off = fod->next_sg_offset; 1790 1791 for (sg = fcpreq->sg ; tlen; sg++) { 1792 *sg = *datasg; 1793 if (sg_off) { 1794 sg->offset += sg_off; 1795 sg->length -= sg_off; 1796 sg->dma_address += sg_off; 1797 sg_off = 0; 1798 } 1799 if (tlen < sg->length) { 1800 sg->length = tlen; 1801 fod->next_sg = datasg; 1802 fod->next_sg_offset += tlen; 1803 } else if (tlen == sg->length) { 1804 fod->next_sg_offset = 0; 1805 fod->next_sg = sg_next(datasg); 1806 } else { 1807 fod->next_sg_offset = 0; 1808 datasg = sg_next(datasg); 1809 } 1810 tlen -= sg->length; 1811 fcpreq->sg_cnt++; 1812 } 1813 1814 /* 1815 * If the last READDATA request: check if LLDD supports 1816 * combined xfr with response. 1817 */ 1818 if ((op == NVMET_FCOP_READDATA) && 1819 ((fod->offset + fcpreq->transfer_length) == fod->total_length) && 1820 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1821 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1822 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1823 } 1824 1825 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1826 if (ret) { 1827 /* 1828 * should be ok to set w/o lock as its in the thread of 1829 * execution (not an async timer routine) and doesn't 1830 * contend with any clearing action 1831 */ 1832 fod->abort = true; 1833 1834 if (op == NVMET_FCOP_WRITEDATA) { 1835 spin_lock_irqsave(&fod->flock, flags); 1836 fod->writedataactive = false; 1837 spin_unlock_irqrestore(&fod->flock, flags); 1838 nvmet_req_complete(&fod->req, 1839 NVME_SC_FC_TRANSPORT_ERROR); 1840 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1841 fcpreq->fcp_error = ret; 1842 fcpreq->transferred_length = 0; 1843 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1844 } 1845 } 1846 } 1847 1848 static inline bool 1849 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 1850 { 1851 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1852 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1853 1854 /* if in the middle of an io and we need to tear down */ 1855 if (abort) { 1856 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 1857 nvmet_req_complete(&fod->req, 1858 NVME_SC_FC_TRANSPORT_ERROR); 1859 return true; 1860 } 1861 1862 nvmet_fc_abort_op(tgtport, fod); 1863 return true; 1864 } 1865 1866 return false; 1867 } 1868 1869 /* 1870 * actual done handler for FCP operations when completed by the lldd 1871 */ 1872 static void 1873 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 1874 { 1875 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1876 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1877 unsigned long flags; 1878 bool abort; 1879 1880 spin_lock_irqsave(&fod->flock, flags); 1881 abort = fod->abort; 1882 fod->writedataactive = false; 1883 spin_unlock_irqrestore(&fod->flock, flags); 1884 1885 switch (fcpreq->op) { 1886 1887 case NVMET_FCOP_WRITEDATA: 1888 if (__nvmet_fc_fod_op_abort(fod, abort)) 1889 return; 1890 if (fcpreq->fcp_error || 1891 fcpreq->transferred_length != fcpreq->transfer_length) { 1892 spin_lock(&fod->flock); 1893 fod->abort = true; 1894 spin_unlock(&fod->flock); 1895 1896 nvmet_req_complete(&fod->req, 1897 NVME_SC_FC_TRANSPORT_ERROR); 1898 return; 1899 } 1900 1901 fod->offset += fcpreq->transferred_length; 1902 if (fod->offset != fod->total_length) { 1903 spin_lock_irqsave(&fod->flock, flags); 1904 fod->writedataactive = true; 1905 spin_unlock_irqrestore(&fod->flock, flags); 1906 1907 /* transfer the next chunk */ 1908 nvmet_fc_transfer_fcp_data(tgtport, fod, 1909 NVMET_FCOP_WRITEDATA); 1910 return; 1911 } 1912 1913 /* data transfer complete, resume with nvmet layer */ 1914 1915 fod->req.execute(&fod->req); 1916 1917 break; 1918 1919 case NVMET_FCOP_READDATA: 1920 case NVMET_FCOP_READDATA_RSP: 1921 if (__nvmet_fc_fod_op_abort(fod, abort)) 1922 return; 1923 if (fcpreq->fcp_error || 1924 fcpreq->transferred_length != fcpreq->transfer_length) { 1925 nvmet_fc_abort_op(tgtport, fod); 1926 return; 1927 } 1928 1929 /* success */ 1930 1931 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 1932 /* data no longer needed */ 1933 nvmet_fc_free_tgt_pgs(fod); 1934 nvmet_fc_free_fcp_iod(fod->queue, fod); 1935 return; 1936 } 1937 1938 fod->offset += fcpreq->transferred_length; 1939 if (fod->offset != fod->total_length) { 1940 /* transfer the next chunk */ 1941 nvmet_fc_transfer_fcp_data(tgtport, fod, 1942 NVMET_FCOP_READDATA); 1943 return; 1944 } 1945 1946 /* data transfer complete, send response */ 1947 1948 /* data no longer needed */ 1949 nvmet_fc_free_tgt_pgs(fod); 1950 1951 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 1952 1953 break; 1954 1955 case NVMET_FCOP_RSP: 1956 if (__nvmet_fc_fod_op_abort(fod, abort)) 1957 return; 1958 nvmet_fc_free_fcp_iod(fod->queue, fod); 1959 break; 1960 1961 default: 1962 break; 1963 } 1964 } 1965 1966 static void 1967 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work) 1968 { 1969 struct nvmet_fc_fcp_iod *fod = 1970 container_of(work, struct nvmet_fc_fcp_iod, done_work); 1971 1972 nvmet_fc_fod_op_done(fod); 1973 } 1974 1975 static void 1976 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 1977 { 1978 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 1979 struct nvmet_fc_tgt_queue *queue = fod->queue; 1980 1981 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR) 1982 /* context switch so completion is not in ISR context */ 1983 queue_work_on(queue->cpu, queue->work_q, &fod->done_work); 1984 else 1985 nvmet_fc_fod_op_done(fod); 1986 } 1987 1988 /* 1989 * actual completion handler after execution by the nvmet layer 1990 */ 1991 static void 1992 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 1993 struct nvmet_fc_fcp_iod *fod, int status) 1994 { 1995 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1996 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 1997 unsigned long flags; 1998 bool abort; 1999 2000 spin_lock_irqsave(&fod->flock, flags); 2001 abort = fod->abort; 2002 spin_unlock_irqrestore(&fod->flock, flags); 2003 2004 /* if we have a CQE, snoop the last sq_head value */ 2005 if (!status) 2006 fod->queue->sqhd = cqe->sq_head; 2007 2008 if (abort) { 2009 nvmet_fc_abort_op(tgtport, fod); 2010 return; 2011 } 2012 2013 /* if an error handling the cmd post initial parsing */ 2014 if (status) { 2015 /* fudge up a failed CQE status for our transport error */ 2016 memset(cqe, 0, sizeof(*cqe)); 2017 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2018 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2019 cqe->command_id = sqe->command_id; 2020 cqe->status = cpu_to_le16(status); 2021 } else { 2022 2023 /* 2024 * try to push the data even if the SQE status is non-zero. 2025 * There may be a status where data still was intended to 2026 * be moved 2027 */ 2028 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2029 /* push the data over before sending rsp */ 2030 nvmet_fc_transfer_fcp_data(tgtport, fod, 2031 NVMET_FCOP_READDATA); 2032 return; 2033 } 2034 2035 /* writes & no data - fall thru */ 2036 } 2037 2038 /* data no longer needed */ 2039 nvmet_fc_free_tgt_pgs(fod); 2040 2041 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2042 } 2043 2044 2045 static void 2046 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2047 { 2048 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2049 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2050 2051 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2052 } 2053 2054 2055 /* 2056 * Actual processing routine for received FC-NVME LS Requests from the LLD 2057 */ 2058 static void 2059 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2060 struct nvmet_fc_fcp_iod *fod) 2061 { 2062 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2063 int ret; 2064 2065 /* 2066 * Fused commands are currently not supported in the linux 2067 * implementation. 2068 * 2069 * As such, the implementation of the FC transport does not 2070 * look at the fused commands and order delivery to the upper 2071 * layer until we have both based on csn. 2072 */ 2073 2074 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2075 2076 fod->total_length = be32_to_cpu(cmdiu->data_len); 2077 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2078 fod->io_dir = NVMET_FCP_WRITE; 2079 if (!nvme_is_write(&cmdiu->sqe)) 2080 goto transport_error; 2081 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2082 fod->io_dir = NVMET_FCP_READ; 2083 if (nvme_is_write(&cmdiu->sqe)) 2084 goto transport_error; 2085 } else { 2086 fod->io_dir = NVMET_FCP_NODATA; 2087 if (fod->total_length) 2088 goto transport_error; 2089 } 2090 2091 fod->req.cmd = &fod->cmdiubuf.sqe; 2092 fod->req.rsp = &fod->rspiubuf.cqe; 2093 fod->req.port = fod->queue->port; 2094 2095 /* ensure nvmet handlers will set cmd handler callback */ 2096 fod->req.execute = NULL; 2097 2098 /* clear any response payload */ 2099 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2100 2101 ret = nvmet_req_init(&fod->req, 2102 &fod->queue->nvme_cq, 2103 &fod->queue->nvme_sq, 2104 &nvmet_fc_tgt_fcp_ops); 2105 if (!ret) { /* bad SQE content or invalid ctrl state */ 2106 nvmet_fc_abort_op(tgtport, fod); 2107 return; 2108 } 2109 2110 /* keep a running counter of tail position */ 2111 atomic_inc(&fod->queue->sqtail); 2112 2113 fod->data_sg = NULL; 2114 fod->data_sg_cnt = 0; 2115 if (fod->total_length) { 2116 ret = nvmet_fc_alloc_tgt_pgs(fod); 2117 if (ret) { 2118 nvmet_req_complete(&fod->req, ret); 2119 return; 2120 } 2121 } 2122 fod->req.sg = fod->data_sg; 2123 fod->req.sg_cnt = fod->data_sg_cnt; 2124 fod->offset = 0; 2125 fod->next_sg = fod->data_sg; 2126 fod->next_sg_offset = 0; 2127 2128 if (fod->io_dir == NVMET_FCP_WRITE) { 2129 /* pull the data over before invoking nvmet layer */ 2130 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2131 return; 2132 } 2133 2134 /* 2135 * Reads or no data: 2136 * 2137 * can invoke the nvmet_layer now. If read data, cmd completion will 2138 * push the data 2139 */ 2140 2141 fod->req.execute(&fod->req); 2142 2143 return; 2144 2145 transport_error: 2146 nvmet_fc_abort_op(tgtport, fod); 2147 } 2148 2149 /* 2150 * Actual processing routine for received FC-NVME LS Requests from the LLD 2151 */ 2152 static void 2153 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) 2154 { 2155 struct nvmet_fc_fcp_iod *fod = 2156 container_of(work, struct nvmet_fc_fcp_iod, work); 2157 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2158 2159 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2160 } 2161 2162 /** 2163 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2164 * upon the reception of a NVME FCP CMD IU. 2165 * 2166 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2167 * layer for processing. 2168 * 2169 * The nvmet-fc layer will copy cmd payload to an internal structure for 2170 * processing. As such, upon completion of the routine, the LLDD may 2171 * immediately free/reuse the CMD IU buffer passed in the call. 2172 * 2173 * If this routine returns error, the lldd should abort the exchange. 2174 * 2175 * @target_port: pointer to the (registered) target port the FCP CMD IU 2176 * was received on. 2177 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2178 * the exchange corresponding to the FCP Exchange. 2179 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2180 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2181 */ 2182 int 2183 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2184 struct nvmefc_tgt_fcp_req *fcpreq, 2185 void *cmdiubuf, u32 cmdiubuf_len) 2186 { 2187 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2188 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2189 struct nvmet_fc_tgt_queue *queue; 2190 struct nvmet_fc_fcp_iod *fod; 2191 2192 /* validate iu, so the connection id can be used to find the queue */ 2193 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2194 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2195 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2196 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2197 return -EIO; 2198 2199 queue = nvmet_fc_find_target_queue(tgtport, 2200 be64_to_cpu(cmdiu->connection_id)); 2201 if (!queue) 2202 return -ENOTCONN; 2203 2204 /* 2205 * note: reference taken by find_target_queue 2206 * After successful fod allocation, the fod will inherit the 2207 * ownership of that reference and will remove the reference 2208 * when the fod is freed. 2209 */ 2210 2211 fod = nvmet_fc_alloc_fcp_iod(queue); 2212 if (!fod) { 2213 /* release the queue lookup reference */ 2214 nvmet_fc_tgt_q_put(queue); 2215 return -ENOENT; 2216 } 2217 2218 fcpreq->nvmet_fc_private = fod; 2219 fod->fcpreq = fcpreq; 2220 /* 2221 * put all admin cmds on hw queue id 0. All io commands go to 2222 * the respective hw queue based on a modulo basis 2223 */ 2224 fcpreq->hwqid = queue->qid ? 2225 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 2226 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2227 2228 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR) 2229 queue_work_on(queue->cpu, queue->work_q, &fod->work); 2230 else 2231 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2232 2233 return 0; 2234 } 2235 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2236 2237 /** 2238 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2239 * upon the reception of an ABTS for a FCP command 2240 * 2241 * Notify the transport that an ABTS has been received for a FCP command 2242 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2243 * LLDD believes the command is still being worked on 2244 * (template_ops->fcp_req_release() has not been called). 2245 * 2246 * The transport will wait for any outstanding work (an op to the LLDD, 2247 * which the lldd should complete with error due to the ABTS; or the 2248 * completion from the nvmet layer of the nvme command), then will 2249 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2250 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2251 * to the ABTS either after return from this function (assuming any 2252 * outstanding op work has been terminated) or upon the callback being 2253 * called. 2254 * 2255 * @target_port: pointer to the (registered) target port the FCP CMD IU 2256 * was received on. 2257 * @fcpreq: pointer to the fcpreq request structure that corresponds 2258 * to the exchange that received the ABTS. 2259 */ 2260 void 2261 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2262 struct nvmefc_tgt_fcp_req *fcpreq) 2263 { 2264 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2265 struct nvmet_fc_tgt_queue *queue; 2266 unsigned long flags; 2267 2268 if (!fod || fod->fcpreq != fcpreq) 2269 /* job appears to have already completed, ignore abort */ 2270 return; 2271 2272 queue = fod->queue; 2273 2274 spin_lock_irqsave(&queue->qlock, flags); 2275 if (fod->active) { 2276 /* 2277 * mark as abort. The abort handler, invoked upon completion 2278 * of any work, will detect the aborted status and do the 2279 * callback. 2280 */ 2281 spin_lock(&fod->flock); 2282 fod->abort = true; 2283 fod->aborted = true; 2284 spin_unlock(&fod->flock); 2285 } 2286 spin_unlock_irqrestore(&queue->qlock, flags); 2287 } 2288 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2289 2290 enum { 2291 FCT_TRADDR_ERR = 0, 2292 FCT_TRADDR_WWNN = 1 << 0, 2293 FCT_TRADDR_WWPN = 1 << 1, 2294 }; 2295 2296 struct nvmet_fc_traddr { 2297 u64 nn; 2298 u64 pn; 2299 }; 2300 2301 static const match_table_t traddr_opt_tokens = { 2302 { FCT_TRADDR_WWNN, "nn-%s" }, 2303 { FCT_TRADDR_WWPN, "pn-%s" }, 2304 { FCT_TRADDR_ERR, NULL } 2305 }; 2306 2307 static int 2308 nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf) 2309 { 2310 substring_t args[MAX_OPT_ARGS]; 2311 char *options, *o, *p; 2312 int token, ret = 0; 2313 u64 token64; 2314 2315 options = o = kstrdup(buf, GFP_KERNEL); 2316 if (!options) 2317 return -ENOMEM; 2318 2319 while ((p = strsep(&o, ":\n")) != NULL) { 2320 if (!*p) 2321 continue; 2322 2323 token = match_token(p, traddr_opt_tokens, args); 2324 switch (token) { 2325 case FCT_TRADDR_WWNN: 2326 if (match_u64(args, &token64)) { 2327 ret = -EINVAL; 2328 goto out; 2329 } 2330 traddr->nn = token64; 2331 break; 2332 case FCT_TRADDR_WWPN: 2333 if (match_u64(args, &token64)) { 2334 ret = -EINVAL; 2335 goto out; 2336 } 2337 traddr->pn = token64; 2338 break; 2339 default: 2340 pr_warn("unknown traddr token or missing value '%s'\n", 2341 p); 2342 ret = -EINVAL; 2343 goto out; 2344 } 2345 } 2346 2347 out: 2348 kfree(options); 2349 return ret; 2350 } 2351 2352 static int 2353 nvmet_fc_add_port(struct nvmet_port *port) 2354 { 2355 struct nvmet_fc_tgtport *tgtport; 2356 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2357 unsigned long flags; 2358 int ret; 2359 2360 /* validate the address info */ 2361 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2362 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2363 return -EINVAL; 2364 2365 /* map the traddr address info to a target port */ 2366 2367 ret = nvmet_fc_parse_traddr(&traddr, port->disc_addr.traddr); 2368 if (ret) 2369 return ret; 2370 2371 ret = -ENXIO; 2372 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2373 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2374 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2375 (tgtport->fc_target_port.port_name == traddr.pn)) { 2376 /* a FC port can only be 1 nvmet port id */ 2377 if (!tgtport->port) { 2378 tgtport->port = port; 2379 port->priv = tgtport; 2380 nvmet_fc_tgtport_get(tgtport); 2381 ret = 0; 2382 } else 2383 ret = -EALREADY; 2384 break; 2385 } 2386 } 2387 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2388 return ret; 2389 } 2390 2391 static void 2392 nvmet_fc_remove_port(struct nvmet_port *port) 2393 { 2394 struct nvmet_fc_tgtport *tgtport = port->priv; 2395 unsigned long flags; 2396 2397 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2398 if (tgtport->port == port) { 2399 nvmet_fc_tgtport_put(tgtport); 2400 tgtport->port = NULL; 2401 } 2402 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2403 } 2404 2405 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2406 .owner = THIS_MODULE, 2407 .type = NVMF_TRTYPE_FC, 2408 .msdbd = 1, 2409 .add_port = nvmet_fc_add_port, 2410 .remove_port = nvmet_fc_remove_port, 2411 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2412 .delete_ctrl = nvmet_fc_delete_ctrl, 2413 }; 2414 2415 static int __init nvmet_fc_init_module(void) 2416 { 2417 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2418 } 2419 2420 static void __exit nvmet_fc_exit_module(void) 2421 { 2422 /* sanity check - all lports should be removed */ 2423 if (!list_empty(&nvmet_fc_target_list)) 2424 pr_warn("%s: targetport list not empty\n", __func__); 2425 2426 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2427 2428 ida_destroy(&nvmet_fc_tgtport_cnt); 2429 } 2430 2431 module_init(nvmet_fc_init_module); 2432 module_exit(nvmet_fc_exit_module); 2433 2434 MODULE_LICENSE("GPL v2"); 2435