1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 86 const char *subsysnqn); 87 88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 89 size_t len) 90 { 91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 92 req->error_loc = offsetof(struct nvme_common_command, dptr); 93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 94 } 95 return 0; 96 } 97 98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 99 { 100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 108 { 109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 117 { 118 unsigned long nsid = 0; 119 struct nvmet_ns *cur; 120 unsigned long idx; 121 122 xa_for_each(&subsys->namespaces, idx, cur) 123 nsid = cur->nsid; 124 125 return nsid; 126 } 127 128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 129 { 130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 131 } 132 133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 134 { 135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 136 struct nvmet_req *req; 137 138 mutex_lock(&ctrl->lock); 139 while (ctrl->nr_async_event_cmds) { 140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 141 mutex_unlock(&ctrl->lock); 142 nvmet_req_complete(req, status); 143 mutex_lock(&ctrl->lock); 144 } 145 mutex_unlock(&ctrl->lock); 146 } 147 148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 149 { 150 struct nvmet_async_event *aen; 151 struct nvmet_req *req; 152 153 mutex_lock(&ctrl->lock); 154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 155 aen = list_first_entry(&ctrl->async_events, 156 struct nvmet_async_event, entry); 157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 158 nvmet_set_result(req, nvmet_async_event_result(aen)); 159 160 list_del(&aen->entry); 161 kfree(aen); 162 163 mutex_unlock(&ctrl->lock); 164 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 165 nvmet_req_complete(req, 0); 166 mutex_lock(&ctrl->lock); 167 } 168 mutex_unlock(&ctrl->lock); 169 } 170 171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 172 { 173 struct nvmet_async_event *aen, *tmp; 174 175 mutex_lock(&ctrl->lock); 176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 177 list_del(&aen->entry); 178 kfree(aen); 179 } 180 mutex_unlock(&ctrl->lock); 181 } 182 183 static void nvmet_async_event_work(struct work_struct *work) 184 { 185 struct nvmet_ctrl *ctrl = 186 container_of(work, struct nvmet_ctrl, async_event_work); 187 188 nvmet_async_events_process(ctrl); 189 } 190 191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 192 u8 event_info, u8 log_page) 193 { 194 struct nvmet_async_event *aen; 195 196 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 197 if (!aen) 198 return; 199 200 aen->event_type = event_type; 201 aen->event_info = event_info; 202 aen->log_page = log_page; 203 204 mutex_lock(&ctrl->lock); 205 list_add_tail(&aen->entry, &ctrl->async_events); 206 mutex_unlock(&ctrl->lock); 207 208 schedule_work(&ctrl->async_event_work); 209 } 210 211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 212 { 213 u32 i; 214 215 mutex_lock(&ctrl->lock); 216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 217 goto out_unlock; 218 219 for (i = 0; i < ctrl->nr_changed_ns; i++) { 220 if (ctrl->changed_ns_list[i] == nsid) 221 goto out_unlock; 222 } 223 224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 226 ctrl->nr_changed_ns = U32_MAX; 227 goto out_unlock; 228 } 229 230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 231 out_unlock: 232 mutex_unlock(&ctrl->lock); 233 } 234 235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 236 { 237 struct nvmet_ctrl *ctrl; 238 239 lockdep_assert_held(&subsys->lock); 240 241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 244 continue; 245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 246 NVME_AER_NOTICE_NS_CHANGED, 247 NVME_LOG_CHANGED_NS); 248 } 249 } 250 251 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 252 struct nvmet_port *port) 253 { 254 struct nvmet_ctrl *ctrl; 255 256 mutex_lock(&subsys->lock); 257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 258 if (port && ctrl->port != port) 259 continue; 260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 261 continue; 262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 264 } 265 mutex_unlock(&subsys->lock); 266 } 267 268 void nvmet_port_send_ana_event(struct nvmet_port *port) 269 { 270 struct nvmet_subsys_link *p; 271 272 down_read(&nvmet_config_sem); 273 list_for_each_entry(p, &port->subsystems, entry) 274 nvmet_send_ana_event(p->subsys, port); 275 up_read(&nvmet_config_sem); 276 } 277 278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 279 { 280 int ret = 0; 281 282 down_write(&nvmet_config_sem); 283 if (nvmet_transports[ops->type]) 284 ret = -EINVAL; 285 else 286 nvmet_transports[ops->type] = ops; 287 up_write(&nvmet_config_sem); 288 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nvmet_register_transport); 292 293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 294 { 295 down_write(&nvmet_config_sem); 296 nvmet_transports[ops->type] = NULL; 297 up_write(&nvmet_config_sem); 298 } 299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 300 301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 302 { 303 struct nvmet_ctrl *ctrl; 304 305 mutex_lock(&subsys->lock); 306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 307 if (ctrl->port == port) 308 ctrl->ops->delete_ctrl(ctrl); 309 } 310 mutex_unlock(&subsys->lock); 311 } 312 313 int nvmet_enable_port(struct nvmet_port *port) 314 { 315 const struct nvmet_fabrics_ops *ops; 316 int ret; 317 318 lockdep_assert_held(&nvmet_config_sem); 319 320 ops = nvmet_transports[port->disc_addr.trtype]; 321 if (!ops) { 322 up_write(&nvmet_config_sem); 323 request_module("nvmet-transport-%d", port->disc_addr.trtype); 324 down_write(&nvmet_config_sem); 325 ops = nvmet_transports[port->disc_addr.trtype]; 326 if (!ops) { 327 pr_err("transport type %d not supported\n", 328 port->disc_addr.trtype); 329 return -EINVAL; 330 } 331 } 332 333 if (!try_module_get(ops->owner)) 334 return -EINVAL; 335 336 /* 337 * If the user requested PI support and the transport isn't pi capable, 338 * don't enable the port. 339 */ 340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 341 pr_err("T10-PI is not supported by transport type %d\n", 342 port->disc_addr.trtype); 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = ops->add_port(port); 348 if (ret) 349 goto out_put; 350 351 /* If the transport didn't set inline_data_size, then disable it. */ 352 if (port->inline_data_size < 0) 353 port->inline_data_size = 0; 354 355 port->enabled = true; 356 port->tr_ops = ops; 357 return 0; 358 359 out_put: 360 module_put(ops->owner); 361 return ret; 362 } 363 364 void nvmet_disable_port(struct nvmet_port *port) 365 { 366 const struct nvmet_fabrics_ops *ops; 367 368 lockdep_assert_held(&nvmet_config_sem); 369 370 port->enabled = false; 371 port->tr_ops = NULL; 372 373 ops = nvmet_transports[port->disc_addr.trtype]; 374 ops->remove_port(port); 375 module_put(ops->owner); 376 } 377 378 static void nvmet_keep_alive_timer(struct work_struct *work) 379 { 380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 381 struct nvmet_ctrl, ka_work); 382 bool cmd_seen = ctrl->cmd_seen; 383 384 ctrl->cmd_seen = false; 385 if (cmd_seen) { 386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 387 ctrl->cntlid); 388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 389 return; 390 } 391 392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 393 ctrl->cntlid, ctrl->kato); 394 395 nvmet_ctrl_fatal_error(ctrl); 396 } 397 398 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 399 { 400 if (unlikely(ctrl->kato == 0)) 401 return; 402 403 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 404 ctrl->cntlid, ctrl->kato); 405 406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 408 } 409 410 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 411 { 412 if (unlikely(ctrl->kato == 0)) 413 return; 414 415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 416 417 cancel_delayed_work_sync(&ctrl->ka_work); 418 } 419 420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) 421 { 422 struct nvmet_ns *ns; 423 424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid)); 425 if (ns) 426 percpu_ref_get(&ns->ref); 427 428 return ns; 429 } 430 431 static void nvmet_destroy_namespace(struct percpu_ref *ref) 432 { 433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 434 435 complete(&ns->disable_done); 436 } 437 438 void nvmet_put_namespace(struct nvmet_ns *ns) 439 { 440 percpu_ref_put(&ns->ref); 441 } 442 443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 444 { 445 nvmet_bdev_ns_disable(ns); 446 nvmet_file_ns_disable(ns); 447 } 448 449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 450 { 451 int ret; 452 struct pci_dev *p2p_dev; 453 454 if (!ns->use_p2pmem) 455 return 0; 456 457 if (!ns->bdev) { 458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 459 return -EINVAL; 460 } 461 462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 464 ns->device_path); 465 return -EINVAL; 466 } 467 468 if (ns->p2p_dev) { 469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 470 if (ret < 0) 471 return -EINVAL; 472 } else { 473 /* 474 * Right now we just check that there is p2pmem available so 475 * we can report an error to the user right away if there 476 * is not. We'll find the actual device to use once we 477 * setup the controller when the port's device is available. 478 */ 479 480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 481 if (!p2p_dev) { 482 pr_err("no peer-to-peer memory is available for %s\n", 483 ns->device_path); 484 return -EINVAL; 485 } 486 487 pci_dev_put(p2p_dev); 488 } 489 490 return 0; 491 } 492 493 /* 494 * Note: ctrl->subsys->lock should be held when calling this function 495 */ 496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 497 struct nvmet_ns *ns) 498 { 499 struct device *clients[2]; 500 struct pci_dev *p2p_dev; 501 int ret; 502 503 if (!ctrl->p2p_client || !ns->use_p2pmem) 504 return; 505 506 if (ns->p2p_dev) { 507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 508 if (ret < 0) 509 return; 510 511 p2p_dev = pci_dev_get(ns->p2p_dev); 512 } else { 513 clients[0] = ctrl->p2p_client; 514 clients[1] = nvmet_ns_dev(ns); 515 516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 517 if (!p2p_dev) { 518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 519 dev_name(ctrl->p2p_client), ns->device_path); 520 return; 521 } 522 } 523 524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 525 if (ret < 0) 526 pci_dev_put(p2p_dev); 527 528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 529 ns->nsid); 530 } 531 532 void nvmet_ns_revalidate(struct nvmet_ns *ns) 533 { 534 loff_t oldsize = ns->size; 535 536 if (ns->bdev) 537 nvmet_bdev_ns_revalidate(ns); 538 else 539 nvmet_file_ns_revalidate(ns); 540 541 if (oldsize != ns->size) 542 nvmet_ns_changed(ns->subsys, ns->nsid); 543 } 544 545 int nvmet_ns_enable(struct nvmet_ns *ns) 546 { 547 struct nvmet_subsys *subsys = ns->subsys; 548 struct nvmet_ctrl *ctrl; 549 int ret; 550 551 mutex_lock(&subsys->lock); 552 ret = 0; 553 554 if (nvmet_passthru_ctrl(subsys)) { 555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 556 goto out_unlock; 557 } 558 559 if (ns->enabled) 560 goto out_unlock; 561 562 ret = -EMFILE; 563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 564 goto out_unlock; 565 566 ret = nvmet_bdev_ns_enable(ns); 567 if (ret == -ENOTBLK) 568 ret = nvmet_file_ns_enable(ns); 569 if (ret) 570 goto out_unlock; 571 572 ret = nvmet_p2pmem_ns_enable(ns); 573 if (ret) 574 goto out_dev_disable; 575 576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 577 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 578 579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 580 0, GFP_KERNEL); 581 if (ret) 582 goto out_dev_put; 583 584 if (ns->nsid > subsys->max_nsid) 585 subsys->max_nsid = ns->nsid; 586 587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 588 if (ret) 589 goto out_restore_subsys_maxnsid; 590 591 subsys->nr_namespaces++; 592 593 nvmet_ns_changed(subsys, ns->nsid); 594 ns->enabled = true; 595 ret = 0; 596 out_unlock: 597 mutex_unlock(&subsys->lock); 598 return ret; 599 600 out_restore_subsys_maxnsid: 601 subsys->max_nsid = nvmet_max_nsid(subsys); 602 percpu_ref_exit(&ns->ref); 603 out_dev_put: 604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 606 out_dev_disable: 607 nvmet_ns_dev_disable(ns); 608 goto out_unlock; 609 } 610 611 void nvmet_ns_disable(struct nvmet_ns *ns) 612 { 613 struct nvmet_subsys *subsys = ns->subsys; 614 struct nvmet_ctrl *ctrl; 615 616 mutex_lock(&subsys->lock); 617 if (!ns->enabled) 618 goto out_unlock; 619 620 ns->enabled = false; 621 xa_erase(&ns->subsys->namespaces, ns->nsid); 622 if (ns->nsid == subsys->max_nsid) 623 subsys->max_nsid = nvmet_max_nsid(subsys); 624 625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 627 628 mutex_unlock(&subsys->lock); 629 630 /* 631 * Now that we removed the namespaces from the lookup list, we 632 * can kill the per_cpu ref and wait for any remaining references 633 * to be dropped, as well as a RCU grace period for anyone only 634 * using the namepace under rcu_read_lock(). Note that we can't 635 * use call_rcu here as we need to ensure the namespaces have 636 * been fully destroyed before unloading the module. 637 */ 638 percpu_ref_kill(&ns->ref); 639 synchronize_rcu(); 640 wait_for_completion(&ns->disable_done); 641 percpu_ref_exit(&ns->ref); 642 643 mutex_lock(&subsys->lock); 644 645 subsys->nr_namespaces--; 646 nvmet_ns_changed(subsys, ns->nsid); 647 nvmet_ns_dev_disable(ns); 648 out_unlock: 649 mutex_unlock(&subsys->lock); 650 } 651 652 void nvmet_ns_free(struct nvmet_ns *ns) 653 { 654 nvmet_ns_disable(ns); 655 656 down_write(&nvmet_ana_sem); 657 nvmet_ana_group_enabled[ns->anagrpid]--; 658 up_write(&nvmet_ana_sem); 659 660 kfree(ns->device_path); 661 kfree(ns); 662 } 663 664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 665 { 666 struct nvmet_ns *ns; 667 668 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 669 if (!ns) 670 return NULL; 671 672 init_completion(&ns->disable_done); 673 674 ns->nsid = nsid; 675 ns->subsys = subsys; 676 677 down_write(&nvmet_ana_sem); 678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 679 nvmet_ana_group_enabled[ns->anagrpid]++; 680 up_write(&nvmet_ana_sem); 681 682 uuid_gen(&ns->uuid); 683 ns->buffered_io = false; 684 685 return ns; 686 } 687 688 static void nvmet_update_sq_head(struct nvmet_req *req) 689 { 690 if (req->sq->size) { 691 u32 old_sqhd, new_sqhd; 692 693 do { 694 old_sqhd = req->sq->sqhd; 695 new_sqhd = (old_sqhd + 1) % req->sq->size; 696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 697 old_sqhd); 698 } 699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 700 } 701 702 static void nvmet_set_error(struct nvmet_req *req, u16 status) 703 { 704 struct nvmet_ctrl *ctrl = req->sq->ctrl; 705 struct nvme_error_slot *new_error_slot; 706 unsigned long flags; 707 708 req->cqe->status = cpu_to_le16(status << 1); 709 710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 711 return; 712 713 spin_lock_irqsave(&ctrl->error_lock, flags); 714 ctrl->err_counter++; 715 new_error_slot = 716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 717 718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 719 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 721 new_error_slot->status_field = cpu_to_le16(status << 1); 722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 723 new_error_slot->lba = cpu_to_le64(req->error_slba); 724 new_error_slot->nsid = req->cmd->common.nsid; 725 spin_unlock_irqrestore(&ctrl->error_lock, flags); 726 727 /* set the more bit for this request */ 728 req->cqe->status |= cpu_to_le16(1 << 14); 729 } 730 731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 732 { 733 if (!req->sq->sqhd_disabled) 734 nvmet_update_sq_head(req); 735 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 736 req->cqe->command_id = req->cmd->common.command_id; 737 738 if (unlikely(status)) 739 nvmet_set_error(req, status); 740 741 trace_nvmet_req_complete(req); 742 743 if (req->ns) 744 nvmet_put_namespace(req->ns); 745 req->ops->queue_response(req); 746 } 747 748 void nvmet_req_complete(struct nvmet_req *req, u16 status) 749 { 750 __nvmet_req_complete(req, status); 751 percpu_ref_put(&req->sq->ref); 752 } 753 EXPORT_SYMBOL_GPL(nvmet_req_complete); 754 755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 756 u16 qid, u16 size) 757 { 758 cq->qid = qid; 759 cq->size = size; 760 761 ctrl->cqs[qid] = cq; 762 } 763 764 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 765 u16 qid, u16 size) 766 { 767 sq->sqhd = 0; 768 sq->qid = qid; 769 sq->size = size; 770 771 ctrl->sqs[qid] = sq; 772 } 773 774 static void nvmet_confirm_sq(struct percpu_ref *ref) 775 { 776 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 777 778 complete(&sq->confirm_done); 779 } 780 781 void nvmet_sq_destroy(struct nvmet_sq *sq) 782 { 783 struct nvmet_ctrl *ctrl = sq->ctrl; 784 785 /* 786 * If this is the admin queue, complete all AERs so that our 787 * queue doesn't have outstanding requests on it. 788 */ 789 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 790 nvmet_async_events_failall(ctrl); 791 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 792 wait_for_completion(&sq->confirm_done); 793 wait_for_completion(&sq->free_done); 794 percpu_ref_exit(&sq->ref); 795 796 if (ctrl) { 797 nvmet_ctrl_put(ctrl); 798 sq->ctrl = NULL; /* allows reusing the queue later */ 799 } 800 } 801 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 802 803 static void nvmet_sq_free(struct percpu_ref *ref) 804 { 805 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 806 807 complete(&sq->free_done); 808 } 809 810 int nvmet_sq_init(struct nvmet_sq *sq) 811 { 812 int ret; 813 814 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 815 if (ret) { 816 pr_err("percpu_ref init failed!\n"); 817 return ret; 818 } 819 init_completion(&sq->free_done); 820 init_completion(&sq->confirm_done); 821 822 return 0; 823 } 824 EXPORT_SYMBOL_GPL(nvmet_sq_init); 825 826 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 827 struct nvmet_ns *ns) 828 { 829 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 830 831 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 832 return NVME_SC_ANA_INACCESSIBLE; 833 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 834 return NVME_SC_ANA_PERSISTENT_LOSS; 835 if (unlikely(state == NVME_ANA_CHANGE)) 836 return NVME_SC_ANA_TRANSITION; 837 return 0; 838 } 839 840 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 841 { 842 if (unlikely(req->ns->readonly)) { 843 switch (req->cmd->common.opcode) { 844 case nvme_cmd_read: 845 case nvme_cmd_flush: 846 break; 847 default: 848 return NVME_SC_NS_WRITE_PROTECTED; 849 } 850 } 851 852 return 0; 853 } 854 855 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 856 { 857 struct nvme_command *cmd = req->cmd; 858 u16 ret; 859 860 ret = nvmet_check_ctrl_status(req, cmd); 861 if (unlikely(ret)) 862 return ret; 863 864 if (nvmet_req_passthru_ctrl(req)) 865 return nvmet_parse_passthru_io_cmd(req); 866 867 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid); 868 if (unlikely(!req->ns)) { 869 req->error_loc = offsetof(struct nvme_common_command, nsid); 870 return NVME_SC_INVALID_NS | NVME_SC_DNR; 871 } 872 ret = nvmet_check_ana_state(req->port, req->ns); 873 if (unlikely(ret)) { 874 req->error_loc = offsetof(struct nvme_common_command, nsid); 875 return ret; 876 } 877 ret = nvmet_io_cmd_check_access(req); 878 if (unlikely(ret)) { 879 req->error_loc = offsetof(struct nvme_common_command, nsid); 880 return ret; 881 } 882 883 if (req->ns->file) 884 return nvmet_file_parse_io_cmd(req); 885 else 886 return nvmet_bdev_parse_io_cmd(req); 887 } 888 889 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 890 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 891 { 892 u8 flags = req->cmd->common.flags; 893 u16 status; 894 895 req->cq = cq; 896 req->sq = sq; 897 req->ops = ops; 898 req->sg = NULL; 899 req->metadata_sg = NULL; 900 req->sg_cnt = 0; 901 req->metadata_sg_cnt = 0; 902 req->transfer_len = 0; 903 req->metadata_len = 0; 904 req->cqe->status = 0; 905 req->cqe->sq_head = 0; 906 req->ns = NULL; 907 req->error_loc = NVMET_NO_ERROR_LOC; 908 req->error_slba = 0; 909 910 trace_nvmet_req_init(req, req->cmd); 911 912 /* no support for fused commands yet */ 913 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 914 req->error_loc = offsetof(struct nvme_common_command, flags); 915 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 916 goto fail; 917 } 918 919 /* 920 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 921 * contains an address of a single contiguous physical buffer that is 922 * byte aligned. 923 */ 924 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 925 req->error_loc = offsetof(struct nvme_common_command, flags); 926 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 927 goto fail; 928 } 929 930 if (unlikely(!req->sq->ctrl)) 931 /* will return an error for any non-connect command: */ 932 status = nvmet_parse_connect_cmd(req); 933 else if (likely(req->sq->qid != 0)) 934 status = nvmet_parse_io_cmd(req); 935 else 936 status = nvmet_parse_admin_cmd(req); 937 938 if (status) 939 goto fail; 940 941 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 942 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 943 goto fail; 944 } 945 946 if (sq->ctrl) 947 sq->ctrl->cmd_seen = true; 948 949 return true; 950 951 fail: 952 __nvmet_req_complete(req, status); 953 return false; 954 } 955 EXPORT_SYMBOL_GPL(nvmet_req_init); 956 957 void nvmet_req_uninit(struct nvmet_req *req) 958 { 959 percpu_ref_put(&req->sq->ref); 960 if (req->ns) 961 nvmet_put_namespace(req->ns); 962 } 963 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 964 965 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 966 { 967 if (unlikely(len != req->transfer_len)) { 968 req->error_loc = offsetof(struct nvme_common_command, dptr); 969 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 970 return false; 971 } 972 973 return true; 974 } 975 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 976 977 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 978 { 979 if (unlikely(data_len > req->transfer_len)) { 980 req->error_loc = offsetof(struct nvme_common_command, dptr); 981 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 982 return false; 983 } 984 985 return true; 986 } 987 988 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 989 { 990 return req->transfer_len - req->metadata_len; 991 } 992 993 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req) 994 { 995 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt, 996 nvmet_data_transfer_len(req)); 997 if (!req->sg) 998 goto out_err; 999 1000 if (req->metadata_len) { 1001 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev, 1002 &req->metadata_sg_cnt, req->metadata_len); 1003 if (!req->metadata_sg) 1004 goto out_free_sg; 1005 } 1006 return 0; 1007 out_free_sg: 1008 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1009 out_err: 1010 return -ENOMEM; 1011 } 1012 1013 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req) 1014 { 1015 if (!IS_ENABLED(CONFIG_PCI_P2PDMA)) 1016 return false; 1017 1018 if (req->sq->ctrl && req->sq->qid && req->ns) { 1019 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 1020 req->ns->nsid); 1021 if (req->p2p_dev) 1022 return true; 1023 } 1024 1025 req->p2p_dev = NULL; 1026 return false; 1027 } 1028 1029 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1030 { 1031 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req)) 1032 return 0; 1033 1034 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1035 &req->sg_cnt); 1036 if (unlikely(!req->sg)) 1037 goto out; 1038 1039 if (req->metadata_len) { 1040 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1041 &req->metadata_sg_cnt); 1042 if (unlikely(!req->metadata_sg)) 1043 goto out_free; 1044 } 1045 1046 return 0; 1047 out_free: 1048 sgl_free(req->sg); 1049 out: 1050 return -ENOMEM; 1051 } 1052 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1053 1054 void nvmet_req_free_sgls(struct nvmet_req *req) 1055 { 1056 if (req->p2p_dev) { 1057 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1058 if (req->metadata_sg) 1059 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1060 } else { 1061 sgl_free(req->sg); 1062 if (req->metadata_sg) 1063 sgl_free(req->metadata_sg); 1064 } 1065 1066 req->sg = NULL; 1067 req->metadata_sg = NULL; 1068 req->sg_cnt = 0; 1069 req->metadata_sg_cnt = 0; 1070 } 1071 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1072 1073 static inline bool nvmet_cc_en(u32 cc) 1074 { 1075 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1076 } 1077 1078 static inline u8 nvmet_cc_css(u32 cc) 1079 { 1080 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1081 } 1082 1083 static inline u8 nvmet_cc_mps(u32 cc) 1084 { 1085 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1086 } 1087 1088 static inline u8 nvmet_cc_ams(u32 cc) 1089 { 1090 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1091 } 1092 1093 static inline u8 nvmet_cc_shn(u32 cc) 1094 { 1095 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1096 } 1097 1098 static inline u8 nvmet_cc_iosqes(u32 cc) 1099 { 1100 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1101 } 1102 1103 static inline u8 nvmet_cc_iocqes(u32 cc) 1104 { 1105 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1106 } 1107 1108 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1109 { 1110 lockdep_assert_held(&ctrl->lock); 1111 1112 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1113 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1114 nvmet_cc_mps(ctrl->cc) != 0 || 1115 nvmet_cc_ams(ctrl->cc) != 0 || 1116 nvmet_cc_css(ctrl->cc) != 0) { 1117 ctrl->csts = NVME_CSTS_CFS; 1118 return; 1119 } 1120 1121 ctrl->csts = NVME_CSTS_RDY; 1122 1123 /* 1124 * Controllers that are not yet enabled should not really enforce the 1125 * keep alive timeout, but we still want to track a timeout and cleanup 1126 * in case a host died before it enabled the controller. Hence, simply 1127 * reset the keep alive timer when the controller is enabled. 1128 */ 1129 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1130 } 1131 1132 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1133 { 1134 lockdep_assert_held(&ctrl->lock); 1135 1136 /* XXX: tear down queues? */ 1137 ctrl->csts &= ~NVME_CSTS_RDY; 1138 ctrl->cc = 0; 1139 } 1140 1141 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1142 { 1143 u32 old; 1144 1145 mutex_lock(&ctrl->lock); 1146 old = ctrl->cc; 1147 ctrl->cc = new; 1148 1149 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1150 nvmet_start_ctrl(ctrl); 1151 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1152 nvmet_clear_ctrl(ctrl); 1153 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1154 nvmet_clear_ctrl(ctrl); 1155 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1156 } 1157 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1158 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1159 mutex_unlock(&ctrl->lock); 1160 } 1161 1162 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1163 { 1164 /* command sets supported: NVMe command set: */ 1165 ctrl->cap = (1ULL << 37); 1166 /* CC.EN timeout in 500msec units: */ 1167 ctrl->cap |= (15ULL << 24); 1168 /* maximum queue entries supported: */ 1169 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1170 } 1171 1172 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1173 struct nvmet_req *req, struct nvmet_ctrl **ret) 1174 { 1175 struct nvmet_subsys *subsys; 1176 struct nvmet_ctrl *ctrl; 1177 u16 status = 0; 1178 1179 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1180 if (!subsys) { 1181 pr_warn("connect request for invalid subsystem %s!\n", 1182 subsysnqn); 1183 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1184 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1185 } 1186 1187 mutex_lock(&subsys->lock); 1188 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1189 if (ctrl->cntlid == cntlid) { 1190 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1191 pr_warn("hostnqn mismatch.\n"); 1192 continue; 1193 } 1194 if (!kref_get_unless_zero(&ctrl->ref)) 1195 continue; 1196 1197 *ret = ctrl; 1198 goto out; 1199 } 1200 } 1201 1202 pr_warn("could not find controller %d for subsys %s / host %s\n", 1203 cntlid, subsysnqn, hostnqn); 1204 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1205 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1206 1207 out: 1208 mutex_unlock(&subsys->lock); 1209 nvmet_subsys_put(subsys); 1210 return status; 1211 } 1212 1213 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1214 { 1215 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1216 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1217 cmd->common.opcode, req->sq->qid); 1218 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1219 } 1220 1221 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1222 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1223 cmd->common.opcode, req->sq->qid); 1224 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1225 } 1226 return 0; 1227 } 1228 1229 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1230 { 1231 struct nvmet_host_link *p; 1232 1233 lockdep_assert_held(&nvmet_config_sem); 1234 1235 if (subsys->allow_any_host) 1236 return true; 1237 1238 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1239 return true; 1240 1241 list_for_each_entry(p, &subsys->hosts, entry) { 1242 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 1249 /* 1250 * Note: ctrl->subsys->lock should be held when calling this function 1251 */ 1252 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1253 struct nvmet_req *req) 1254 { 1255 struct nvmet_ns *ns; 1256 unsigned long idx; 1257 1258 if (!req->p2p_client) 1259 return; 1260 1261 ctrl->p2p_client = get_device(req->p2p_client); 1262 1263 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1264 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1265 } 1266 1267 /* 1268 * Note: ctrl->subsys->lock should be held when calling this function 1269 */ 1270 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1271 { 1272 struct radix_tree_iter iter; 1273 void __rcu **slot; 1274 1275 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1276 pci_dev_put(radix_tree_deref_slot(slot)); 1277 1278 put_device(ctrl->p2p_client); 1279 } 1280 1281 static void nvmet_fatal_error_handler(struct work_struct *work) 1282 { 1283 struct nvmet_ctrl *ctrl = 1284 container_of(work, struct nvmet_ctrl, fatal_err_work); 1285 1286 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1287 ctrl->ops->delete_ctrl(ctrl); 1288 } 1289 1290 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1291 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1292 { 1293 struct nvmet_subsys *subsys; 1294 struct nvmet_ctrl *ctrl; 1295 int ret; 1296 u16 status; 1297 1298 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1299 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1300 if (!subsys) { 1301 pr_warn("connect request for invalid subsystem %s!\n", 1302 subsysnqn); 1303 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1304 goto out; 1305 } 1306 1307 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1308 down_read(&nvmet_config_sem); 1309 if (!nvmet_host_allowed(subsys, hostnqn)) { 1310 pr_info("connect by host %s for subsystem %s not allowed\n", 1311 hostnqn, subsysnqn); 1312 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1313 up_read(&nvmet_config_sem); 1314 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1315 goto out_put_subsystem; 1316 } 1317 up_read(&nvmet_config_sem); 1318 1319 status = NVME_SC_INTERNAL; 1320 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1321 if (!ctrl) 1322 goto out_put_subsystem; 1323 mutex_init(&ctrl->lock); 1324 1325 nvmet_init_cap(ctrl); 1326 1327 ctrl->port = req->port; 1328 1329 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1330 INIT_LIST_HEAD(&ctrl->async_events); 1331 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1332 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1333 1334 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1335 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1336 1337 kref_init(&ctrl->ref); 1338 ctrl->subsys = subsys; 1339 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1340 1341 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1342 sizeof(__le32), GFP_KERNEL); 1343 if (!ctrl->changed_ns_list) 1344 goto out_free_ctrl; 1345 1346 ctrl->cqs = kcalloc(subsys->max_qid + 1, 1347 sizeof(struct nvmet_cq *), 1348 GFP_KERNEL); 1349 if (!ctrl->cqs) 1350 goto out_free_changed_ns_list; 1351 1352 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1353 sizeof(struct nvmet_sq *), 1354 GFP_KERNEL); 1355 if (!ctrl->sqs) 1356 goto out_free_cqs; 1357 1358 if (subsys->cntlid_min > subsys->cntlid_max) 1359 goto out_free_cqs; 1360 1361 ret = ida_simple_get(&cntlid_ida, 1362 subsys->cntlid_min, subsys->cntlid_max, 1363 GFP_KERNEL); 1364 if (ret < 0) { 1365 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1366 goto out_free_sqs; 1367 } 1368 ctrl->cntlid = ret; 1369 1370 ctrl->ops = req->ops; 1371 1372 /* 1373 * Discovery controllers may use some arbitrary high value 1374 * in order to cleanup stale discovery sessions 1375 */ 1376 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1377 kato = NVMET_DISC_KATO_MS; 1378 1379 /* keep-alive timeout in seconds */ 1380 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1381 1382 ctrl->err_counter = 0; 1383 spin_lock_init(&ctrl->error_lock); 1384 1385 nvmet_start_keep_alive_timer(ctrl); 1386 1387 mutex_lock(&subsys->lock); 1388 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1389 nvmet_setup_p2p_ns_map(ctrl, req); 1390 mutex_unlock(&subsys->lock); 1391 1392 *ctrlp = ctrl; 1393 return 0; 1394 1395 out_free_sqs: 1396 kfree(ctrl->sqs); 1397 out_free_cqs: 1398 kfree(ctrl->cqs); 1399 out_free_changed_ns_list: 1400 kfree(ctrl->changed_ns_list); 1401 out_free_ctrl: 1402 kfree(ctrl); 1403 out_put_subsystem: 1404 nvmet_subsys_put(subsys); 1405 out: 1406 return status; 1407 } 1408 1409 static void nvmet_ctrl_free(struct kref *ref) 1410 { 1411 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1412 struct nvmet_subsys *subsys = ctrl->subsys; 1413 1414 mutex_lock(&subsys->lock); 1415 nvmet_release_p2p_ns_map(ctrl); 1416 list_del(&ctrl->subsys_entry); 1417 mutex_unlock(&subsys->lock); 1418 1419 nvmet_stop_keep_alive_timer(ctrl); 1420 1421 flush_work(&ctrl->async_event_work); 1422 cancel_work_sync(&ctrl->fatal_err_work); 1423 1424 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1425 1426 nvmet_async_events_free(ctrl); 1427 kfree(ctrl->sqs); 1428 kfree(ctrl->cqs); 1429 kfree(ctrl->changed_ns_list); 1430 kfree(ctrl); 1431 1432 nvmet_subsys_put(subsys); 1433 } 1434 1435 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1436 { 1437 kref_put(&ctrl->ref, nvmet_ctrl_free); 1438 } 1439 1440 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1441 { 1442 mutex_lock(&ctrl->lock); 1443 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1444 ctrl->csts |= NVME_CSTS_CFS; 1445 schedule_work(&ctrl->fatal_err_work); 1446 } 1447 mutex_unlock(&ctrl->lock); 1448 } 1449 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1450 1451 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1452 const char *subsysnqn) 1453 { 1454 struct nvmet_subsys_link *p; 1455 1456 if (!port) 1457 return NULL; 1458 1459 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1460 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1461 return NULL; 1462 return nvmet_disc_subsys; 1463 } 1464 1465 down_read(&nvmet_config_sem); 1466 list_for_each_entry(p, &port->subsystems, entry) { 1467 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1468 NVMF_NQN_SIZE)) { 1469 if (!kref_get_unless_zero(&p->subsys->ref)) 1470 break; 1471 up_read(&nvmet_config_sem); 1472 return p->subsys; 1473 } 1474 } 1475 up_read(&nvmet_config_sem); 1476 return NULL; 1477 } 1478 1479 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1480 enum nvme_subsys_type type) 1481 { 1482 struct nvmet_subsys *subsys; 1483 1484 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1485 if (!subsys) 1486 return ERR_PTR(-ENOMEM); 1487 1488 subsys->ver = NVMET_DEFAULT_VS; 1489 /* generate a random serial number as our controllers are ephemeral: */ 1490 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1491 1492 switch (type) { 1493 case NVME_NQN_NVME: 1494 subsys->max_qid = NVMET_NR_QUEUES; 1495 break; 1496 case NVME_NQN_DISC: 1497 subsys->max_qid = 0; 1498 break; 1499 default: 1500 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1501 kfree(subsys); 1502 return ERR_PTR(-EINVAL); 1503 } 1504 subsys->type = type; 1505 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1506 GFP_KERNEL); 1507 if (!subsys->subsysnqn) { 1508 kfree(subsys); 1509 return ERR_PTR(-ENOMEM); 1510 } 1511 subsys->cntlid_min = NVME_CNTLID_MIN; 1512 subsys->cntlid_max = NVME_CNTLID_MAX; 1513 kref_init(&subsys->ref); 1514 1515 mutex_init(&subsys->lock); 1516 xa_init(&subsys->namespaces); 1517 INIT_LIST_HEAD(&subsys->ctrls); 1518 INIT_LIST_HEAD(&subsys->hosts); 1519 1520 return subsys; 1521 } 1522 1523 static void nvmet_subsys_free(struct kref *ref) 1524 { 1525 struct nvmet_subsys *subsys = 1526 container_of(ref, struct nvmet_subsys, ref); 1527 1528 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1529 1530 xa_destroy(&subsys->namespaces); 1531 nvmet_passthru_subsys_free(subsys); 1532 1533 kfree(subsys->subsysnqn); 1534 kfree_rcu(subsys->model, rcuhead); 1535 kfree(subsys); 1536 } 1537 1538 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1539 { 1540 struct nvmet_ctrl *ctrl; 1541 1542 mutex_lock(&subsys->lock); 1543 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1544 ctrl->ops->delete_ctrl(ctrl); 1545 mutex_unlock(&subsys->lock); 1546 } 1547 1548 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1549 { 1550 kref_put(&subsys->ref, nvmet_subsys_free); 1551 } 1552 1553 static int __init nvmet_init(void) 1554 { 1555 int error; 1556 1557 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1558 1559 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1560 WQ_MEM_RECLAIM, 0); 1561 if (!buffered_io_wq) { 1562 error = -ENOMEM; 1563 goto out; 1564 } 1565 1566 error = nvmet_init_discovery(); 1567 if (error) 1568 goto out_free_work_queue; 1569 1570 error = nvmet_init_configfs(); 1571 if (error) 1572 goto out_exit_discovery; 1573 return 0; 1574 1575 out_exit_discovery: 1576 nvmet_exit_discovery(); 1577 out_free_work_queue: 1578 destroy_workqueue(buffered_io_wq); 1579 out: 1580 return error; 1581 } 1582 1583 static void __exit nvmet_exit(void) 1584 { 1585 nvmet_exit_configfs(); 1586 nvmet_exit_discovery(); 1587 ida_destroy(&cntlid_ida); 1588 destroy_workqueue(buffered_io_wq); 1589 1590 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1591 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1592 } 1593 1594 module_init(nvmet_init); 1595 module_exit(nvmet_exit); 1596 1597 MODULE_LICENSE("GPL v2"); 1598