xref: /openbmc/linux/drivers/nvme/target/core.c (revision dc794d3d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		fallthrough;
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
86 {
87 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
88 		 req->sq->qid);
89 
90 	req->error_loc = offsetof(struct nvme_common_command, opcode);
91 	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
92 }
93 
94 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
95 		const char *subsysnqn);
96 
97 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
98 		size_t len)
99 {
100 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
108 {
109 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
117 {
118 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
119 		req->error_loc = offsetof(struct nvme_common_command, dptr);
120 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
121 	}
122 	return 0;
123 }
124 
125 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
126 {
127 	unsigned long nsid = 0;
128 	struct nvmet_ns *cur;
129 	unsigned long idx;
130 
131 	xa_for_each(&subsys->namespaces, idx, cur)
132 		nsid = cur->nsid;
133 
134 	return nsid;
135 }
136 
137 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
138 {
139 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
140 }
141 
142 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
143 {
144 	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
145 	struct nvmet_req *req;
146 
147 	mutex_lock(&ctrl->lock);
148 	while (ctrl->nr_async_event_cmds) {
149 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
150 		mutex_unlock(&ctrl->lock);
151 		nvmet_req_complete(req, status);
152 		mutex_lock(&ctrl->lock);
153 	}
154 	mutex_unlock(&ctrl->lock);
155 }
156 
157 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
158 {
159 	struct nvmet_async_event *aen;
160 	struct nvmet_req *req;
161 
162 	mutex_lock(&ctrl->lock);
163 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
164 		aen = list_first_entry(&ctrl->async_events,
165 				       struct nvmet_async_event, entry);
166 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
167 		nvmet_set_result(req, nvmet_async_event_result(aen));
168 
169 		list_del(&aen->entry);
170 		kfree(aen);
171 
172 		mutex_unlock(&ctrl->lock);
173 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
174 		nvmet_req_complete(req, 0);
175 		mutex_lock(&ctrl->lock);
176 	}
177 	mutex_unlock(&ctrl->lock);
178 }
179 
180 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
181 {
182 	struct nvmet_async_event *aen, *tmp;
183 
184 	mutex_lock(&ctrl->lock);
185 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
186 		list_del(&aen->entry);
187 		kfree(aen);
188 	}
189 	mutex_unlock(&ctrl->lock);
190 }
191 
192 static void nvmet_async_event_work(struct work_struct *work)
193 {
194 	struct nvmet_ctrl *ctrl =
195 		container_of(work, struct nvmet_ctrl, async_event_work);
196 
197 	nvmet_async_events_process(ctrl);
198 }
199 
200 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
201 		u8 event_info, u8 log_page)
202 {
203 	struct nvmet_async_event *aen;
204 
205 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
206 	if (!aen)
207 		return;
208 
209 	aen->event_type = event_type;
210 	aen->event_info = event_info;
211 	aen->log_page = log_page;
212 
213 	mutex_lock(&ctrl->lock);
214 	list_add_tail(&aen->entry, &ctrl->async_events);
215 	mutex_unlock(&ctrl->lock);
216 
217 	schedule_work(&ctrl->async_event_work);
218 }
219 
220 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
221 {
222 	u32 i;
223 
224 	mutex_lock(&ctrl->lock);
225 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
226 		goto out_unlock;
227 
228 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
229 		if (ctrl->changed_ns_list[i] == nsid)
230 			goto out_unlock;
231 	}
232 
233 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
234 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
235 		ctrl->nr_changed_ns = U32_MAX;
236 		goto out_unlock;
237 	}
238 
239 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
240 out_unlock:
241 	mutex_unlock(&ctrl->lock);
242 }
243 
244 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
245 {
246 	struct nvmet_ctrl *ctrl;
247 
248 	lockdep_assert_held(&subsys->lock);
249 
250 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
251 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
252 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
253 			continue;
254 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
255 				NVME_AER_NOTICE_NS_CHANGED,
256 				NVME_LOG_CHANGED_NS);
257 	}
258 }
259 
260 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
261 		struct nvmet_port *port)
262 {
263 	struct nvmet_ctrl *ctrl;
264 
265 	mutex_lock(&subsys->lock);
266 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
267 		if (port && ctrl->port != port)
268 			continue;
269 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
270 			continue;
271 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
272 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
273 	}
274 	mutex_unlock(&subsys->lock);
275 }
276 
277 void nvmet_port_send_ana_event(struct nvmet_port *port)
278 {
279 	struct nvmet_subsys_link *p;
280 
281 	down_read(&nvmet_config_sem);
282 	list_for_each_entry(p, &port->subsystems, entry)
283 		nvmet_send_ana_event(p->subsys, port);
284 	up_read(&nvmet_config_sem);
285 }
286 
287 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
288 {
289 	int ret = 0;
290 
291 	down_write(&nvmet_config_sem);
292 	if (nvmet_transports[ops->type])
293 		ret = -EINVAL;
294 	else
295 		nvmet_transports[ops->type] = ops;
296 	up_write(&nvmet_config_sem);
297 
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(nvmet_register_transport);
301 
302 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
303 {
304 	down_write(&nvmet_config_sem);
305 	nvmet_transports[ops->type] = NULL;
306 	up_write(&nvmet_config_sem);
307 }
308 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
309 
310 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
311 {
312 	struct nvmet_ctrl *ctrl;
313 
314 	mutex_lock(&subsys->lock);
315 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
316 		if (ctrl->port == port)
317 			ctrl->ops->delete_ctrl(ctrl);
318 	}
319 	mutex_unlock(&subsys->lock);
320 }
321 
322 int nvmet_enable_port(struct nvmet_port *port)
323 {
324 	const struct nvmet_fabrics_ops *ops;
325 	int ret;
326 
327 	lockdep_assert_held(&nvmet_config_sem);
328 
329 	ops = nvmet_transports[port->disc_addr.trtype];
330 	if (!ops) {
331 		up_write(&nvmet_config_sem);
332 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
333 		down_write(&nvmet_config_sem);
334 		ops = nvmet_transports[port->disc_addr.trtype];
335 		if (!ops) {
336 			pr_err("transport type %d not supported\n",
337 				port->disc_addr.trtype);
338 			return -EINVAL;
339 		}
340 	}
341 
342 	if (!try_module_get(ops->owner))
343 		return -EINVAL;
344 
345 	/*
346 	 * If the user requested PI support and the transport isn't pi capable,
347 	 * don't enable the port.
348 	 */
349 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
350 		pr_err("T10-PI is not supported by transport type %d\n",
351 		       port->disc_addr.trtype);
352 		ret = -EINVAL;
353 		goto out_put;
354 	}
355 
356 	ret = ops->add_port(port);
357 	if (ret)
358 		goto out_put;
359 
360 	/* If the transport didn't set inline_data_size, then disable it. */
361 	if (port->inline_data_size < 0)
362 		port->inline_data_size = 0;
363 
364 	port->enabled = true;
365 	port->tr_ops = ops;
366 	return 0;
367 
368 out_put:
369 	module_put(ops->owner);
370 	return ret;
371 }
372 
373 void nvmet_disable_port(struct nvmet_port *port)
374 {
375 	const struct nvmet_fabrics_ops *ops;
376 
377 	lockdep_assert_held(&nvmet_config_sem);
378 
379 	port->enabled = false;
380 	port->tr_ops = NULL;
381 
382 	ops = nvmet_transports[port->disc_addr.trtype];
383 	ops->remove_port(port);
384 	module_put(ops->owner);
385 }
386 
387 static void nvmet_keep_alive_timer(struct work_struct *work)
388 {
389 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
390 			struct nvmet_ctrl, ka_work);
391 	bool reset_tbkas = ctrl->reset_tbkas;
392 
393 	ctrl->reset_tbkas = false;
394 	if (reset_tbkas) {
395 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
396 			ctrl->cntlid);
397 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
398 		return;
399 	}
400 
401 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
402 		ctrl->cntlid, ctrl->kato);
403 
404 	nvmet_ctrl_fatal_error(ctrl);
405 }
406 
407 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
408 {
409 	if (unlikely(ctrl->kato == 0))
410 		return;
411 
412 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
413 		ctrl->cntlid, ctrl->kato);
414 
415 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
416 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
417 }
418 
419 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
420 {
421 	if (unlikely(ctrl->kato == 0))
422 		return;
423 
424 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
425 
426 	cancel_delayed_work_sync(&ctrl->ka_work);
427 }
428 
429 u16 nvmet_req_find_ns(struct nvmet_req *req)
430 {
431 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
432 
433 	req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
434 	if (unlikely(!req->ns)) {
435 		req->error_loc = offsetof(struct nvme_common_command, nsid);
436 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
437 	}
438 
439 	percpu_ref_get(&req->ns->ref);
440 	return NVME_SC_SUCCESS;
441 }
442 
443 static void nvmet_destroy_namespace(struct percpu_ref *ref)
444 {
445 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
446 
447 	complete(&ns->disable_done);
448 }
449 
450 void nvmet_put_namespace(struct nvmet_ns *ns)
451 {
452 	percpu_ref_put(&ns->ref);
453 }
454 
455 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
456 {
457 	nvmet_bdev_ns_disable(ns);
458 	nvmet_file_ns_disable(ns);
459 }
460 
461 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
462 {
463 	int ret;
464 	struct pci_dev *p2p_dev;
465 
466 	if (!ns->use_p2pmem)
467 		return 0;
468 
469 	if (!ns->bdev) {
470 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
471 		return -EINVAL;
472 	}
473 
474 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
475 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
476 		       ns->device_path);
477 		return -EINVAL;
478 	}
479 
480 	if (ns->p2p_dev) {
481 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
482 		if (ret < 0)
483 			return -EINVAL;
484 	} else {
485 		/*
486 		 * Right now we just check that there is p2pmem available so
487 		 * we can report an error to the user right away if there
488 		 * is not. We'll find the actual device to use once we
489 		 * setup the controller when the port's device is available.
490 		 */
491 
492 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
493 		if (!p2p_dev) {
494 			pr_err("no peer-to-peer memory is available for %s\n",
495 			       ns->device_path);
496 			return -EINVAL;
497 		}
498 
499 		pci_dev_put(p2p_dev);
500 	}
501 
502 	return 0;
503 }
504 
505 /*
506  * Note: ctrl->subsys->lock should be held when calling this function
507  */
508 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
509 				    struct nvmet_ns *ns)
510 {
511 	struct device *clients[2];
512 	struct pci_dev *p2p_dev;
513 	int ret;
514 
515 	if (!ctrl->p2p_client || !ns->use_p2pmem)
516 		return;
517 
518 	if (ns->p2p_dev) {
519 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
520 		if (ret < 0)
521 			return;
522 
523 		p2p_dev = pci_dev_get(ns->p2p_dev);
524 	} else {
525 		clients[0] = ctrl->p2p_client;
526 		clients[1] = nvmet_ns_dev(ns);
527 
528 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
529 		if (!p2p_dev) {
530 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
531 			       dev_name(ctrl->p2p_client), ns->device_path);
532 			return;
533 		}
534 	}
535 
536 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
537 	if (ret < 0)
538 		pci_dev_put(p2p_dev);
539 
540 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
541 		ns->nsid);
542 }
543 
544 void nvmet_ns_revalidate(struct nvmet_ns *ns)
545 {
546 	loff_t oldsize = ns->size;
547 
548 	if (ns->bdev)
549 		nvmet_bdev_ns_revalidate(ns);
550 	else
551 		nvmet_file_ns_revalidate(ns);
552 
553 	if (oldsize != ns->size)
554 		nvmet_ns_changed(ns->subsys, ns->nsid);
555 }
556 
557 int nvmet_ns_enable(struct nvmet_ns *ns)
558 {
559 	struct nvmet_subsys *subsys = ns->subsys;
560 	struct nvmet_ctrl *ctrl;
561 	int ret;
562 
563 	mutex_lock(&subsys->lock);
564 	ret = 0;
565 
566 	if (nvmet_passthru_ctrl(subsys)) {
567 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
568 		goto out_unlock;
569 	}
570 
571 	if (ns->enabled)
572 		goto out_unlock;
573 
574 	ret = -EMFILE;
575 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
576 		goto out_unlock;
577 
578 	ret = nvmet_bdev_ns_enable(ns);
579 	if (ret == -ENOTBLK)
580 		ret = nvmet_file_ns_enable(ns);
581 	if (ret)
582 		goto out_unlock;
583 
584 	ret = nvmet_p2pmem_ns_enable(ns);
585 	if (ret)
586 		goto out_dev_disable;
587 
588 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
589 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
590 
591 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
592 				0, GFP_KERNEL);
593 	if (ret)
594 		goto out_dev_put;
595 
596 	if (ns->nsid > subsys->max_nsid)
597 		subsys->max_nsid = ns->nsid;
598 
599 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
600 	if (ret)
601 		goto out_restore_subsys_maxnsid;
602 
603 	subsys->nr_namespaces++;
604 
605 	nvmet_ns_changed(subsys, ns->nsid);
606 	ns->enabled = true;
607 	ret = 0;
608 out_unlock:
609 	mutex_unlock(&subsys->lock);
610 	return ret;
611 
612 out_restore_subsys_maxnsid:
613 	subsys->max_nsid = nvmet_max_nsid(subsys);
614 	percpu_ref_exit(&ns->ref);
615 out_dev_put:
616 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
617 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
618 out_dev_disable:
619 	nvmet_ns_dev_disable(ns);
620 	goto out_unlock;
621 }
622 
623 void nvmet_ns_disable(struct nvmet_ns *ns)
624 {
625 	struct nvmet_subsys *subsys = ns->subsys;
626 	struct nvmet_ctrl *ctrl;
627 
628 	mutex_lock(&subsys->lock);
629 	if (!ns->enabled)
630 		goto out_unlock;
631 
632 	ns->enabled = false;
633 	xa_erase(&ns->subsys->namespaces, ns->nsid);
634 	if (ns->nsid == subsys->max_nsid)
635 		subsys->max_nsid = nvmet_max_nsid(subsys);
636 
637 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
638 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
639 
640 	mutex_unlock(&subsys->lock);
641 
642 	/*
643 	 * Now that we removed the namespaces from the lookup list, we
644 	 * can kill the per_cpu ref and wait for any remaining references
645 	 * to be dropped, as well as a RCU grace period for anyone only
646 	 * using the namepace under rcu_read_lock().  Note that we can't
647 	 * use call_rcu here as we need to ensure the namespaces have
648 	 * been fully destroyed before unloading the module.
649 	 */
650 	percpu_ref_kill(&ns->ref);
651 	synchronize_rcu();
652 	wait_for_completion(&ns->disable_done);
653 	percpu_ref_exit(&ns->ref);
654 
655 	mutex_lock(&subsys->lock);
656 
657 	subsys->nr_namespaces--;
658 	nvmet_ns_changed(subsys, ns->nsid);
659 	nvmet_ns_dev_disable(ns);
660 out_unlock:
661 	mutex_unlock(&subsys->lock);
662 }
663 
664 void nvmet_ns_free(struct nvmet_ns *ns)
665 {
666 	nvmet_ns_disable(ns);
667 
668 	down_write(&nvmet_ana_sem);
669 	nvmet_ana_group_enabled[ns->anagrpid]--;
670 	up_write(&nvmet_ana_sem);
671 
672 	kfree(ns->device_path);
673 	kfree(ns);
674 }
675 
676 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
677 {
678 	struct nvmet_ns *ns;
679 
680 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
681 	if (!ns)
682 		return NULL;
683 
684 	init_completion(&ns->disable_done);
685 
686 	ns->nsid = nsid;
687 	ns->subsys = subsys;
688 
689 	down_write(&nvmet_ana_sem);
690 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
691 	nvmet_ana_group_enabled[ns->anagrpid]++;
692 	up_write(&nvmet_ana_sem);
693 
694 	uuid_gen(&ns->uuid);
695 	ns->buffered_io = false;
696 
697 	return ns;
698 }
699 
700 static void nvmet_update_sq_head(struct nvmet_req *req)
701 {
702 	if (req->sq->size) {
703 		u32 old_sqhd, new_sqhd;
704 
705 		do {
706 			old_sqhd = req->sq->sqhd;
707 			new_sqhd = (old_sqhd + 1) % req->sq->size;
708 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
709 					old_sqhd);
710 	}
711 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
712 }
713 
714 static void nvmet_set_error(struct nvmet_req *req, u16 status)
715 {
716 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
717 	struct nvme_error_slot *new_error_slot;
718 	unsigned long flags;
719 
720 	req->cqe->status = cpu_to_le16(status << 1);
721 
722 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
723 		return;
724 
725 	spin_lock_irqsave(&ctrl->error_lock, flags);
726 	ctrl->err_counter++;
727 	new_error_slot =
728 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
729 
730 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
731 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
732 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
733 	new_error_slot->status_field = cpu_to_le16(status << 1);
734 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
735 	new_error_slot->lba = cpu_to_le64(req->error_slba);
736 	new_error_slot->nsid = req->cmd->common.nsid;
737 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
738 
739 	/* set the more bit for this request */
740 	req->cqe->status |= cpu_to_le16(1 << 14);
741 }
742 
743 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
744 {
745 	if (!req->sq->sqhd_disabled)
746 		nvmet_update_sq_head(req);
747 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
748 	req->cqe->command_id = req->cmd->common.command_id;
749 
750 	if (unlikely(status))
751 		nvmet_set_error(req, status);
752 
753 	trace_nvmet_req_complete(req);
754 
755 	if (req->ns)
756 		nvmet_put_namespace(req->ns);
757 	req->ops->queue_response(req);
758 }
759 
760 void nvmet_req_complete(struct nvmet_req *req, u16 status)
761 {
762 	__nvmet_req_complete(req, status);
763 	percpu_ref_put(&req->sq->ref);
764 }
765 EXPORT_SYMBOL_GPL(nvmet_req_complete);
766 
767 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
768 		u16 qid, u16 size)
769 {
770 	cq->qid = qid;
771 	cq->size = size;
772 }
773 
774 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
775 		u16 qid, u16 size)
776 {
777 	sq->sqhd = 0;
778 	sq->qid = qid;
779 	sq->size = size;
780 
781 	ctrl->sqs[qid] = sq;
782 }
783 
784 static void nvmet_confirm_sq(struct percpu_ref *ref)
785 {
786 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
787 
788 	complete(&sq->confirm_done);
789 }
790 
791 void nvmet_sq_destroy(struct nvmet_sq *sq)
792 {
793 	struct nvmet_ctrl *ctrl = sq->ctrl;
794 
795 	/*
796 	 * If this is the admin queue, complete all AERs so that our
797 	 * queue doesn't have outstanding requests on it.
798 	 */
799 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
800 		nvmet_async_events_failall(ctrl);
801 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
802 	wait_for_completion(&sq->confirm_done);
803 	wait_for_completion(&sq->free_done);
804 	percpu_ref_exit(&sq->ref);
805 
806 	if (ctrl) {
807 		/*
808 		 * The teardown flow may take some time, and the host may not
809 		 * send us keep-alive during this period, hence reset the
810 		 * traffic based keep-alive timer so we don't trigger a
811 		 * controller teardown as a result of a keep-alive expiration.
812 		 */
813 		ctrl->reset_tbkas = true;
814 		nvmet_ctrl_put(ctrl);
815 		sq->ctrl = NULL; /* allows reusing the queue later */
816 	}
817 }
818 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
819 
820 static void nvmet_sq_free(struct percpu_ref *ref)
821 {
822 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
823 
824 	complete(&sq->free_done);
825 }
826 
827 int nvmet_sq_init(struct nvmet_sq *sq)
828 {
829 	int ret;
830 
831 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
832 	if (ret) {
833 		pr_err("percpu_ref init failed!\n");
834 		return ret;
835 	}
836 	init_completion(&sq->free_done);
837 	init_completion(&sq->confirm_done);
838 
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(nvmet_sq_init);
842 
843 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
844 		struct nvmet_ns *ns)
845 {
846 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
847 
848 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
849 		return NVME_SC_ANA_INACCESSIBLE;
850 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
851 		return NVME_SC_ANA_PERSISTENT_LOSS;
852 	if (unlikely(state == NVME_ANA_CHANGE))
853 		return NVME_SC_ANA_TRANSITION;
854 	return 0;
855 }
856 
857 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
858 {
859 	if (unlikely(req->ns->readonly)) {
860 		switch (req->cmd->common.opcode) {
861 		case nvme_cmd_read:
862 		case nvme_cmd_flush:
863 			break;
864 		default:
865 			return NVME_SC_NS_WRITE_PROTECTED;
866 		}
867 	}
868 
869 	return 0;
870 }
871 
872 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
873 {
874 	u16 ret;
875 
876 	ret = nvmet_check_ctrl_status(req);
877 	if (unlikely(ret))
878 		return ret;
879 
880 	if (nvmet_req_passthru_ctrl(req))
881 		return nvmet_parse_passthru_io_cmd(req);
882 
883 	ret = nvmet_req_find_ns(req);
884 	if (unlikely(ret))
885 		return ret;
886 
887 	ret = nvmet_check_ana_state(req->port, req->ns);
888 	if (unlikely(ret)) {
889 		req->error_loc = offsetof(struct nvme_common_command, nsid);
890 		return ret;
891 	}
892 	ret = nvmet_io_cmd_check_access(req);
893 	if (unlikely(ret)) {
894 		req->error_loc = offsetof(struct nvme_common_command, nsid);
895 		return ret;
896 	}
897 
898 	if (req->ns->file)
899 		return nvmet_file_parse_io_cmd(req);
900 
901 	return nvmet_bdev_parse_io_cmd(req);
902 }
903 
904 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
905 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
906 {
907 	u8 flags = req->cmd->common.flags;
908 	u16 status;
909 
910 	req->cq = cq;
911 	req->sq = sq;
912 	req->ops = ops;
913 	req->sg = NULL;
914 	req->metadata_sg = NULL;
915 	req->sg_cnt = 0;
916 	req->metadata_sg_cnt = 0;
917 	req->transfer_len = 0;
918 	req->metadata_len = 0;
919 	req->cqe->status = 0;
920 	req->cqe->sq_head = 0;
921 	req->ns = NULL;
922 	req->error_loc = NVMET_NO_ERROR_LOC;
923 	req->error_slba = 0;
924 
925 	/* no support for fused commands yet */
926 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
927 		req->error_loc = offsetof(struct nvme_common_command, flags);
928 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
929 		goto fail;
930 	}
931 
932 	/*
933 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
934 	 * contains an address of a single contiguous physical buffer that is
935 	 * byte aligned.
936 	 */
937 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
938 		req->error_loc = offsetof(struct nvme_common_command, flags);
939 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
940 		goto fail;
941 	}
942 
943 	if (unlikely(!req->sq->ctrl))
944 		/* will return an error for any non-connect command: */
945 		status = nvmet_parse_connect_cmd(req);
946 	else if (likely(req->sq->qid != 0))
947 		status = nvmet_parse_io_cmd(req);
948 	else
949 		status = nvmet_parse_admin_cmd(req);
950 
951 	if (status)
952 		goto fail;
953 
954 	trace_nvmet_req_init(req, req->cmd);
955 
956 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
957 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
958 		goto fail;
959 	}
960 
961 	if (sq->ctrl)
962 		sq->ctrl->reset_tbkas = true;
963 
964 	return true;
965 
966 fail:
967 	__nvmet_req_complete(req, status);
968 	return false;
969 }
970 EXPORT_SYMBOL_GPL(nvmet_req_init);
971 
972 void nvmet_req_uninit(struct nvmet_req *req)
973 {
974 	percpu_ref_put(&req->sq->ref);
975 	if (req->ns)
976 		nvmet_put_namespace(req->ns);
977 }
978 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
979 
980 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
981 {
982 	if (unlikely(len != req->transfer_len)) {
983 		req->error_loc = offsetof(struct nvme_common_command, dptr);
984 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
985 		return false;
986 	}
987 
988 	return true;
989 }
990 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
991 
992 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
993 {
994 	if (unlikely(data_len > req->transfer_len)) {
995 		req->error_loc = offsetof(struct nvme_common_command, dptr);
996 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
997 		return false;
998 	}
999 
1000 	return true;
1001 }
1002 
1003 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1004 {
1005 	return req->transfer_len - req->metadata_len;
1006 }
1007 
1008 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
1009 {
1010 	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
1011 			nvmet_data_transfer_len(req));
1012 	if (!req->sg)
1013 		goto out_err;
1014 
1015 	if (req->metadata_len) {
1016 		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
1017 				&req->metadata_sg_cnt, req->metadata_len);
1018 		if (!req->metadata_sg)
1019 			goto out_free_sg;
1020 	}
1021 	return 0;
1022 out_free_sg:
1023 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1024 out_err:
1025 	return -ENOMEM;
1026 }
1027 
1028 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1029 {
1030 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1031 		return false;
1032 
1033 	if (req->sq->ctrl && req->sq->qid && req->ns) {
1034 		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1035 						 req->ns->nsid);
1036 		if (req->p2p_dev)
1037 			return true;
1038 	}
1039 
1040 	req->p2p_dev = NULL;
1041 	return false;
1042 }
1043 
1044 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1045 {
1046 	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1047 		return 0;
1048 
1049 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1050 			    &req->sg_cnt);
1051 	if (unlikely(!req->sg))
1052 		goto out;
1053 
1054 	if (req->metadata_len) {
1055 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1056 					     &req->metadata_sg_cnt);
1057 		if (unlikely(!req->metadata_sg))
1058 			goto out_free;
1059 	}
1060 
1061 	return 0;
1062 out_free:
1063 	sgl_free(req->sg);
1064 out:
1065 	return -ENOMEM;
1066 }
1067 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1068 
1069 void nvmet_req_free_sgls(struct nvmet_req *req)
1070 {
1071 	if (req->p2p_dev) {
1072 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1073 		if (req->metadata_sg)
1074 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1075 	} else {
1076 		sgl_free(req->sg);
1077 		if (req->metadata_sg)
1078 			sgl_free(req->metadata_sg);
1079 	}
1080 
1081 	req->sg = NULL;
1082 	req->metadata_sg = NULL;
1083 	req->sg_cnt = 0;
1084 	req->metadata_sg_cnt = 0;
1085 }
1086 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1087 
1088 static inline bool nvmet_cc_en(u32 cc)
1089 {
1090 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1091 }
1092 
1093 static inline u8 nvmet_cc_css(u32 cc)
1094 {
1095 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1096 }
1097 
1098 static inline u8 nvmet_cc_mps(u32 cc)
1099 {
1100 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1101 }
1102 
1103 static inline u8 nvmet_cc_ams(u32 cc)
1104 {
1105 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1106 }
1107 
1108 static inline u8 nvmet_cc_shn(u32 cc)
1109 {
1110 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1111 }
1112 
1113 static inline u8 nvmet_cc_iosqes(u32 cc)
1114 {
1115 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1116 }
1117 
1118 static inline u8 nvmet_cc_iocqes(u32 cc)
1119 {
1120 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1121 }
1122 
1123 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1124 {
1125 	lockdep_assert_held(&ctrl->lock);
1126 
1127 	/*
1128 	 * Only I/O controllers should verify iosqes,iocqes.
1129 	 * Strictly speaking, the spec says a discovery controller
1130 	 * should verify iosqes,iocqes are zeroed, however that
1131 	 * would break backwards compatibility, so don't enforce it.
1132 	 */
1133 	if (ctrl->subsys->type != NVME_NQN_DISC &&
1134 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1135 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1136 		ctrl->csts = NVME_CSTS_CFS;
1137 		return;
1138 	}
1139 
1140 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1141 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1142 	    nvmet_cc_css(ctrl->cc) != 0) {
1143 		ctrl->csts = NVME_CSTS_CFS;
1144 		return;
1145 	}
1146 
1147 	ctrl->csts = NVME_CSTS_RDY;
1148 
1149 	/*
1150 	 * Controllers that are not yet enabled should not really enforce the
1151 	 * keep alive timeout, but we still want to track a timeout and cleanup
1152 	 * in case a host died before it enabled the controller.  Hence, simply
1153 	 * reset the keep alive timer when the controller is enabled.
1154 	 */
1155 	if (ctrl->kato)
1156 		mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1157 }
1158 
1159 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1160 {
1161 	lockdep_assert_held(&ctrl->lock);
1162 
1163 	/* XXX: tear down queues? */
1164 	ctrl->csts &= ~NVME_CSTS_RDY;
1165 	ctrl->cc = 0;
1166 }
1167 
1168 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1169 {
1170 	u32 old;
1171 
1172 	mutex_lock(&ctrl->lock);
1173 	old = ctrl->cc;
1174 	ctrl->cc = new;
1175 
1176 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1177 		nvmet_start_ctrl(ctrl);
1178 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1179 		nvmet_clear_ctrl(ctrl);
1180 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1181 		nvmet_clear_ctrl(ctrl);
1182 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1183 	}
1184 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1185 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1186 	mutex_unlock(&ctrl->lock);
1187 }
1188 
1189 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1190 {
1191 	/* command sets supported: NVMe command set: */
1192 	ctrl->cap = (1ULL << 37);
1193 	/* CC.EN timeout in 500msec units: */
1194 	ctrl->cap |= (15ULL << 24);
1195 	/* maximum queue entries supported: */
1196 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1197 }
1198 
1199 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1200 				       const char *hostnqn, u16 cntlid,
1201 				       struct nvmet_req *req)
1202 {
1203 	struct nvmet_ctrl *ctrl = NULL;
1204 	struct nvmet_subsys *subsys;
1205 
1206 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1207 	if (!subsys) {
1208 		pr_warn("connect request for invalid subsystem %s!\n",
1209 			subsysnqn);
1210 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1211 		goto out;
1212 	}
1213 
1214 	mutex_lock(&subsys->lock);
1215 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1216 		if (ctrl->cntlid == cntlid) {
1217 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1218 				pr_warn("hostnqn mismatch.\n");
1219 				continue;
1220 			}
1221 			if (!kref_get_unless_zero(&ctrl->ref))
1222 				continue;
1223 
1224 			/* ctrl found */
1225 			goto found;
1226 		}
1227 	}
1228 
1229 	ctrl = NULL; /* ctrl not found */
1230 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1231 		cntlid, subsysnqn, hostnqn);
1232 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1233 
1234 found:
1235 	mutex_unlock(&subsys->lock);
1236 	nvmet_subsys_put(subsys);
1237 out:
1238 	return ctrl;
1239 }
1240 
1241 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1242 {
1243 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1244 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1245 		       req->cmd->common.opcode, req->sq->qid);
1246 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1247 	}
1248 
1249 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1250 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1251 		       req->cmd->common.opcode, req->sq->qid);
1252 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1253 	}
1254 	return 0;
1255 }
1256 
1257 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1258 {
1259 	struct nvmet_host_link *p;
1260 
1261 	lockdep_assert_held(&nvmet_config_sem);
1262 
1263 	if (subsys->allow_any_host)
1264 		return true;
1265 
1266 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1267 		return true;
1268 
1269 	list_for_each_entry(p, &subsys->hosts, entry) {
1270 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1271 			return true;
1272 	}
1273 
1274 	return false;
1275 }
1276 
1277 /*
1278  * Note: ctrl->subsys->lock should be held when calling this function
1279  */
1280 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1281 		struct nvmet_req *req)
1282 {
1283 	struct nvmet_ns *ns;
1284 	unsigned long idx;
1285 
1286 	if (!req->p2p_client)
1287 		return;
1288 
1289 	ctrl->p2p_client = get_device(req->p2p_client);
1290 
1291 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1292 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1293 }
1294 
1295 /*
1296  * Note: ctrl->subsys->lock should be held when calling this function
1297  */
1298 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1299 {
1300 	struct radix_tree_iter iter;
1301 	void __rcu **slot;
1302 
1303 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1304 		pci_dev_put(radix_tree_deref_slot(slot));
1305 
1306 	put_device(ctrl->p2p_client);
1307 }
1308 
1309 static void nvmet_fatal_error_handler(struct work_struct *work)
1310 {
1311 	struct nvmet_ctrl *ctrl =
1312 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1313 
1314 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1315 	ctrl->ops->delete_ctrl(ctrl);
1316 }
1317 
1318 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1319 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1320 {
1321 	struct nvmet_subsys *subsys;
1322 	struct nvmet_ctrl *ctrl;
1323 	int ret;
1324 	u16 status;
1325 
1326 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1327 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1328 	if (!subsys) {
1329 		pr_warn("connect request for invalid subsystem %s!\n",
1330 			subsysnqn);
1331 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1332 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1333 		goto out;
1334 	}
1335 
1336 	down_read(&nvmet_config_sem);
1337 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1338 		pr_info("connect by host %s for subsystem %s not allowed\n",
1339 			hostnqn, subsysnqn);
1340 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1341 		up_read(&nvmet_config_sem);
1342 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1343 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1344 		goto out_put_subsystem;
1345 	}
1346 	up_read(&nvmet_config_sem);
1347 
1348 	status = NVME_SC_INTERNAL;
1349 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1350 	if (!ctrl)
1351 		goto out_put_subsystem;
1352 	mutex_init(&ctrl->lock);
1353 
1354 	nvmet_init_cap(ctrl);
1355 
1356 	ctrl->port = req->port;
1357 
1358 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1359 	INIT_LIST_HEAD(&ctrl->async_events);
1360 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1361 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1362 
1363 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1364 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1365 
1366 	kref_init(&ctrl->ref);
1367 	ctrl->subsys = subsys;
1368 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1369 
1370 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1371 			sizeof(__le32), GFP_KERNEL);
1372 	if (!ctrl->changed_ns_list)
1373 		goto out_free_ctrl;
1374 
1375 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1376 			sizeof(struct nvmet_sq *),
1377 			GFP_KERNEL);
1378 	if (!ctrl->sqs)
1379 		goto out_free_changed_ns_list;
1380 
1381 	if (subsys->cntlid_min > subsys->cntlid_max)
1382 		goto out_free_sqs;
1383 
1384 	ret = ida_simple_get(&cntlid_ida,
1385 			     subsys->cntlid_min, subsys->cntlid_max,
1386 			     GFP_KERNEL);
1387 	if (ret < 0) {
1388 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1389 		goto out_free_sqs;
1390 	}
1391 	ctrl->cntlid = ret;
1392 
1393 	ctrl->ops = req->ops;
1394 
1395 	/*
1396 	 * Discovery controllers may use some arbitrary high value
1397 	 * in order to cleanup stale discovery sessions
1398 	 */
1399 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1400 		kato = NVMET_DISC_KATO_MS;
1401 
1402 	/* keep-alive timeout in seconds */
1403 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1404 
1405 	ctrl->err_counter = 0;
1406 	spin_lock_init(&ctrl->error_lock);
1407 
1408 	nvmet_start_keep_alive_timer(ctrl);
1409 
1410 	mutex_lock(&subsys->lock);
1411 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1412 	nvmet_setup_p2p_ns_map(ctrl, req);
1413 	mutex_unlock(&subsys->lock);
1414 
1415 	*ctrlp = ctrl;
1416 	return 0;
1417 
1418 out_free_sqs:
1419 	kfree(ctrl->sqs);
1420 out_free_changed_ns_list:
1421 	kfree(ctrl->changed_ns_list);
1422 out_free_ctrl:
1423 	kfree(ctrl);
1424 out_put_subsystem:
1425 	nvmet_subsys_put(subsys);
1426 out:
1427 	return status;
1428 }
1429 
1430 static void nvmet_ctrl_free(struct kref *ref)
1431 {
1432 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1433 	struct nvmet_subsys *subsys = ctrl->subsys;
1434 
1435 	mutex_lock(&subsys->lock);
1436 	nvmet_release_p2p_ns_map(ctrl);
1437 	list_del(&ctrl->subsys_entry);
1438 	mutex_unlock(&subsys->lock);
1439 
1440 	nvmet_stop_keep_alive_timer(ctrl);
1441 
1442 	flush_work(&ctrl->async_event_work);
1443 	cancel_work_sync(&ctrl->fatal_err_work);
1444 
1445 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1446 
1447 	nvmet_async_events_free(ctrl);
1448 	kfree(ctrl->sqs);
1449 	kfree(ctrl->changed_ns_list);
1450 	kfree(ctrl);
1451 
1452 	nvmet_subsys_put(subsys);
1453 }
1454 
1455 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1456 {
1457 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1458 }
1459 
1460 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1461 {
1462 	mutex_lock(&ctrl->lock);
1463 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1464 		ctrl->csts |= NVME_CSTS_CFS;
1465 		schedule_work(&ctrl->fatal_err_work);
1466 	}
1467 	mutex_unlock(&ctrl->lock);
1468 }
1469 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1470 
1471 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1472 		const char *subsysnqn)
1473 {
1474 	struct nvmet_subsys_link *p;
1475 
1476 	if (!port)
1477 		return NULL;
1478 
1479 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1480 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1481 			return NULL;
1482 		return nvmet_disc_subsys;
1483 	}
1484 
1485 	down_read(&nvmet_config_sem);
1486 	list_for_each_entry(p, &port->subsystems, entry) {
1487 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1488 				NVMF_NQN_SIZE)) {
1489 			if (!kref_get_unless_zero(&p->subsys->ref))
1490 				break;
1491 			up_read(&nvmet_config_sem);
1492 			return p->subsys;
1493 		}
1494 	}
1495 	up_read(&nvmet_config_sem);
1496 	return NULL;
1497 }
1498 
1499 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1500 		enum nvme_subsys_type type)
1501 {
1502 	struct nvmet_subsys *subsys;
1503 
1504 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1505 	if (!subsys)
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	subsys->ver = NVMET_DEFAULT_VS;
1509 	/* generate a random serial number as our controllers are ephemeral: */
1510 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1511 
1512 	switch (type) {
1513 	case NVME_NQN_NVME:
1514 		subsys->max_qid = NVMET_NR_QUEUES;
1515 		break;
1516 	case NVME_NQN_DISC:
1517 		subsys->max_qid = 0;
1518 		break;
1519 	default:
1520 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1521 		kfree(subsys);
1522 		return ERR_PTR(-EINVAL);
1523 	}
1524 	subsys->type = type;
1525 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1526 			GFP_KERNEL);
1527 	if (!subsys->subsysnqn) {
1528 		kfree(subsys);
1529 		return ERR_PTR(-ENOMEM);
1530 	}
1531 	subsys->cntlid_min = NVME_CNTLID_MIN;
1532 	subsys->cntlid_max = NVME_CNTLID_MAX;
1533 	kref_init(&subsys->ref);
1534 
1535 	mutex_init(&subsys->lock);
1536 	xa_init(&subsys->namespaces);
1537 	INIT_LIST_HEAD(&subsys->ctrls);
1538 	INIT_LIST_HEAD(&subsys->hosts);
1539 
1540 	return subsys;
1541 }
1542 
1543 static void nvmet_subsys_free(struct kref *ref)
1544 {
1545 	struct nvmet_subsys *subsys =
1546 		container_of(ref, struct nvmet_subsys, ref);
1547 
1548 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1549 
1550 	xa_destroy(&subsys->namespaces);
1551 	nvmet_passthru_subsys_free(subsys);
1552 
1553 	kfree(subsys->subsysnqn);
1554 	kfree(subsys->model_number);
1555 	kfree(subsys);
1556 }
1557 
1558 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1559 {
1560 	struct nvmet_ctrl *ctrl;
1561 
1562 	mutex_lock(&subsys->lock);
1563 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1564 		ctrl->ops->delete_ctrl(ctrl);
1565 	mutex_unlock(&subsys->lock);
1566 }
1567 
1568 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1569 {
1570 	kref_put(&subsys->ref, nvmet_subsys_free);
1571 }
1572 
1573 static int __init nvmet_init(void)
1574 {
1575 	int error;
1576 
1577 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1578 
1579 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1580 			WQ_MEM_RECLAIM, 0);
1581 	if (!buffered_io_wq) {
1582 		error = -ENOMEM;
1583 		goto out;
1584 	}
1585 
1586 	error = nvmet_init_discovery();
1587 	if (error)
1588 		goto out_free_work_queue;
1589 
1590 	error = nvmet_init_configfs();
1591 	if (error)
1592 		goto out_exit_discovery;
1593 	return 0;
1594 
1595 out_exit_discovery:
1596 	nvmet_exit_discovery();
1597 out_free_work_queue:
1598 	destroy_workqueue(buffered_io_wq);
1599 out:
1600 	return error;
1601 }
1602 
1603 static void __exit nvmet_exit(void)
1604 {
1605 	nvmet_exit_configfs();
1606 	nvmet_exit_discovery();
1607 	ida_destroy(&cntlid_ida);
1608 	destroy_workqueue(buffered_io_wq);
1609 
1610 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1611 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1612 }
1613 
1614 module_init(nvmet_init);
1615 module_exit(nvmet_exit);
1616 
1617 MODULE_LICENSE("GPL v2");
1618