1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 86 { 87 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 88 req->sq->qid); 89 90 req->error_loc = offsetof(struct nvme_common_command, opcode); 91 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 92 } 93 94 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 95 const char *subsysnqn); 96 97 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 98 size_t len) 99 { 100 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 108 { 109 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 117 { 118 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 119 req->error_loc = offsetof(struct nvme_common_command, dptr); 120 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 121 } 122 return 0; 123 } 124 125 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 126 { 127 unsigned long nsid = 0; 128 struct nvmet_ns *cur; 129 unsigned long idx; 130 131 xa_for_each(&subsys->namespaces, idx, cur) 132 nsid = cur->nsid; 133 134 return nsid; 135 } 136 137 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 138 { 139 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 140 } 141 142 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 143 { 144 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 145 struct nvmet_req *req; 146 147 mutex_lock(&ctrl->lock); 148 while (ctrl->nr_async_event_cmds) { 149 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 150 mutex_unlock(&ctrl->lock); 151 nvmet_req_complete(req, status); 152 mutex_lock(&ctrl->lock); 153 } 154 mutex_unlock(&ctrl->lock); 155 } 156 157 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 158 { 159 struct nvmet_async_event *aen; 160 struct nvmet_req *req; 161 162 mutex_lock(&ctrl->lock); 163 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 164 aen = list_first_entry(&ctrl->async_events, 165 struct nvmet_async_event, entry); 166 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 167 nvmet_set_result(req, nvmet_async_event_result(aen)); 168 169 list_del(&aen->entry); 170 kfree(aen); 171 172 mutex_unlock(&ctrl->lock); 173 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 174 nvmet_req_complete(req, 0); 175 mutex_lock(&ctrl->lock); 176 } 177 mutex_unlock(&ctrl->lock); 178 } 179 180 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 181 { 182 struct nvmet_async_event *aen, *tmp; 183 184 mutex_lock(&ctrl->lock); 185 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 186 list_del(&aen->entry); 187 kfree(aen); 188 } 189 mutex_unlock(&ctrl->lock); 190 } 191 192 static void nvmet_async_event_work(struct work_struct *work) 193 { 194 struct nvmet_ctrl *ctrl = 195 container_of(work, struct nvmet_ctrl, async_event_work); 196 197 nvmet_async_events_process(ctrl); 198 } 199 200 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 201 u8 event_info, u8 log_page) 202 { 203 struct nvmet_async_event *aen; 204 205 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 206 if (!aen) 207 return; 208 209 aen->event_type = event_type; 210 aen->event_info = event_info; 211 aen->log_page = log_page; 212 213 mutex_lock(&ctrl->lock); 214 list_add_tail(&aen->entry, &ctrl->async_events); 215 mutex_unlock(&ctrl->lock); 216 217 schedule_work(&ctrl->async_event_work); 218 } 219 220 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 221 { 222 u32 i; 223 224 mutex_lock(&ctrl->lock); 225 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 226 goto out_unlock; 227 228 for (i = 0; i < ctrl->nr_changed_ns; i++) { 229 if (ctrl->changed_ns_list[i] == nsid) 230 goto out_unlock; 231 } 232 233 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 234 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 235 ctrl->nr_changed_ns = U32_MAX; 236 goto out_unlock; 237 } 238 239 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 240 out_unlock: 241 mutex_unlock(&ctrl->lock); 242 } 243 244 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 245 { 246 struct nvmet_ctrl *ctrl; 247 248 lockdep_assert_held(&subsys->lock); 249 250 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 251 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 252 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 253 continue; 254 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 255 NVME_AER_NOTICE_NS_CHANGED, 256 NVME_LOG_CHANGED_NS); 257 } 258 } 259 260 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 261 struct nvmet_port *port) 262 { 263 struct nvmet_ctrl *ctrl; 264 265 mutex_lock(&subsys->lock); 266 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 267 if (port && ctrl->port != port) 268 continue; 269 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 270 continue; 271 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 272 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 273 } 274 mutex_unlock(&subsys->lock); 275 } 276 277 void nvmet_port_send_ana_event(struct nvmet_port *port) 278 { 279 struct nvmet_subsys_link *p; 280 281 down_read(&nvmet_config_sem); 282 list_for_each_entry(p, &port->subsystems, entry) 283 nvmet_send_ana_event(p->subsys, port); 284 up_read(&nvmet_config_sem); 285 } 286 287 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 288 { 289 int ret = 0; 290 291 down_write(&nvmet_config_sem); 292 if (nvmet_transports[ops->type]) 293 ret = -EINVAL; 294 else 295 nvmet_transports[ops->type] = ops; 296 up_write(&nvmet_config_sem); 297 298 return ret; 299 } 300 EXPORT_SYMBOL_GPL(nvmet_register_transport); 301 302 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 303 { 304 down_write(&nvmet_config_sem); 305 nvmet_transports[ops->type] = NULL; 306 up_write(&nvmet_config_sem); 307 } 308 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 309 310 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 311 { 312 struct nvmet_ctrl *ctrl; 313 314 mutex_lock(&subsys->lock); 315 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 316 if (ctrl->port == port) 317 ctrl->ops->delete_ctrl(ctrl); 318 } 319 mutex_unlock(&subsys->lock); 320 } 321 322 int nvmet_enable_port(struct nvmet_port *port) 323 { 324 const struct nvmet_fabrics_ops *ops; 325 int ret; 326 327 lockdep_assert_held(&nvmet_config_sem); 328 329 ops = nvmet_transports[port->disc_addr.trtype]; 330 if (!ops) { 331 up_write(&nvmet_config_sem); 332 request_module("nvmet-transport-%d", port->disc_addr.trtype); 333 down_write(&nvmet_config_sem); 334 ops = nvmet_transports[port->disc_addr.trtype]; 335 if (!ops) { 336 pr_err("transport type %d not supported\n", 337 port->disc_addr.trtype); 338 return -EINVAL; 339 } 340 } 341 342 if (!try_module_get(ops->owner)) 343 return -EINVAL; 344 345 /* 346 * If the user requested PI support and the transport isn't pi capable, 347 * don't enable the port. 348 */ 349 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 350 pr_err("T10-PI is not supported by transport type %d\n", 351 port->disc_addr.trtype); 352 ret = -EINVAL; 353 goto out_put; 354 } 355 356 ret = ops->add_port(port); 357 if (ret) 358 goto out_put; 359 360 /* If the transport didn't set inline_data_size, then disable it. */ 361 if (port->inline_data_size < 0) 362 port->inline_data_size = 0; 363 364 port->enabled = true; 365 port->tr_ops = ops; 366 return 0; 367 368 out_put: 369 module_put(ops->owner); 370 return ret; 371 } 372 373 void nvmet_disable_port(struct nvmet_port *port) 374 { 375 const struct nvmet_fabrics_ops *ops; 376 377 lockdep_assert_held(&nvmet_config_sem); 378 379 port->enabled = false; 380 port->tr_ops = NULL; 381 382 ops = nvmet_transports[port->disc_addr.trtype]; 383 ops->remove_port(port); 384 module_put(ops->owner); 385 } 386 387 static void nvmet_keep_alive_timer(struct work_struct *work) 388 { 389 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 390 struct nvmet_ctrl, ka_work); 391 bool cmd_seen = ctrl->cmd_seen; 392 393 ctrl->cmd_seen = false; 394 if (cmd_seen) { 395 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 396 ctrl->cntlid); 397 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 398 return; 399 } 400 401 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 402 ctrl->cntlid, ctrl->kato); 403 404 nvmet_ctrl_fatal_error(ctrl); 405 } 406 407 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 408 { 409 if (unlikely(ctrl->kato == 0)) 410 return; 411 412 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 413 ctrl->cntlid, ctrl->kato); 414 415 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 416 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 417 } 418 419 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 420 { 421 if (unlikely(ctrl->kato == 0)) 422 return; 423 424 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 425 426 cancel_delayed_work_sync(&ctrl->ka_work); 427 } 428 429 u16 nvmet_req_find_ns(struct nvmet_req *req) 430 { 431 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 432 433 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid); 434 if (unlikely(!req->ns)) { 435 req->error_loc = offsetof(struct nvme_common_command, nsid); 436 return NVME_SC_INVALID_NS | NVME_SC_DNR; 437 } 438 439 percpu_ref_get(&req->ns->ref); 440 return NVME_SC_SUCCESS; 441 } 442 443 static void nvmet_destroy_namespace(struct percpu_ref *ref) 444 { 445 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 446 447 complete(&ns->disable_done); 448 } 449 450 void nvmet_put_namespace(struct nvmet_ns *ns) 451 { 452 percpu_ref_put(&ns->ref); 453 } 454 455 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 456 { 457 nvmet_bdev_ns_disable(ns); 458 nvmet_file_ns_disable(ns); 459 } 460 461 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 462 { 463 int ret; 464 struct pci_dev *p2p_dev; 465 466 if (!ns->use_p2pmem) 467 return 0; 468 469 if (!ns->bdev) { 470 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 471 return -EINVAL; 472 } 473 474 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 475 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 476 ns->device_path); 477 return -EINVAL; 478 } 479 480 if (ns->p2p_dev) { 481 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 482 if (ret < 0) 483 return -EINVAL; 484 } else { 485 /* 486 * Right now we just check that there is p2pmem available so 487 * we can report an error to the user right away if there 488 * is not. We'll find the actual device to use once we 489 * setup the controller when the port's device is available. 490 */ 491 492 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 493 if (!p2p_dev) { 494 pr_err("no peer-to-peer memory is available for %s\n", 495 ns->device_path); 496 return -EINVAL; 497 } 498 499 pci_dev_put(p2p_dev); 500 } 501 502 return 0; 503 } 504 505 /* 506 * Note: ctrl->subsys->lock should be held when calling this function 507 */ 508 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 509 struct nvmet_ns *ns) 510 { 511 struct device *clients[2]; 512 struct pci_dev *p2p_dev; 513 int ret; 514 515 if (!ctrl->p2p_client || !ns->use_p2pmem) 516 return; 517 518 if (ns->p2p_dev) { 519 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 520 if (ret < 0) 521 return; 522 523 p2p_dev = pci_dev_get(ns->p2p_dev); 524 } else { 525 clients[0] = ctrl->p2p_client; 526 clients[1] = nvmet_ns_dev(ns); 527 528 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 529 if (!p2p_dev) { 530 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 531 dev_name(ctrl->p2p_client), ns->device_path); 532 return; 533 } 534 } 535 536 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 537 if (ret < 0) 538 pci_dev_put(p2p_dev); 539 540 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 541 ns->nsid); 542 } 543 544 void nvmet_ns_revalidate(struct nvmet_ns *ns) 545 { 546 loff_t oldsize = ns->size; 547 548 if (ns->bdev) 549 nvmet_bdev_ns_revalidate(ns); 550 else 551 nvmet_file_ns_revalidate(ns); 552 553 if (oldsize != ns->size) 554 nvmet_ns_changed(ns->subsys, ns->nsid); 555 } 556 557 int nvmet_ns_enable(struct nvmet_ns *ns) 558 { 559 struct nvmet_subsys *subsys = ns->subsys; 560 struct nvmet_ctrl *ctrl; 561 int ret; 562 563 mutex_lock(&subsys->lock); 564 ret = 0; 565 566 if (nvmet_passthru_ctrl(subsys)) { 567 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 568 goto out_unlock; 569 } 570 571 if (ns->enabled) 572 goto out_unlock; 573 574 ret = -EMFILE; 575 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 576 goto out_unlock; 577 578 ret = nvmet_bdev_ns_enable(ns); 579 if (ret == -ENOTBLK) 580 ret = nvmet_file_ns_enable(ns); 581 if (ret) 582 goto out_unlock; 583 584 ret = nvmet_p2pmem_ns_enable(ns); 585 if (ret) 586 goto out_dev_disable; 587 588 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 589 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 590 591 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 592 0, GFP_KERNEL); 593 if (ret) 594 goto out_dev_put; 595 596 if (ns->nsid > subsys->max_nsid) 597 subsys->max_nsid = ns->nsid; 598 599 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 600 if (ret) 601 goto out_restore_subsys_maxnsid; 602 603 subsys->nr_namespaces++; 604 605 nvmet_ns_changed(subsys, ns->nsid); 606 ns->enabled = true; 607 ret = 0; 608 out_unlock: 609 mutex_unlock(&subsys->lock); 610 return ret; 611 612 out_restore_subsys_maxnsid: 613 subsys->max_nsid = nvmet_max_nsid(subsys); 614 percpu_ref_exit(&ns->ref); 615 out_dev_put: 616 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 617 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 618 out_dev_disable: 619 nvmet_ns_dev_disable(ns); 620 goto out_unlock; 621 } 622 623 void nvmet_ns_disable(struct nvmet_ns *ns) 624 { 625 struct nvmet_subsys *subsys = ns->subsys; 626 struct nvmet_ctrl *ctrl; 627 628 mutex_lock(&subsys->lock); 629 if (!ns->enabled) 630 goto out_unlock; 631 632 ns->enabled = false; 633 xa_erase(&ns->subsys->namespaces, ns->nsid); 634 if (ns->nsid == subsys->max_nsid) 635 subsys->max_nsid = nvmet_max_nsid(subsys); 636 637 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 638 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 639 640 mutex_unlock(&subsys->lock); 641 642 /* 643 * Now that we removed the namespaces from the lookup list, we 644 * can kill the per_cpu ref and wait for any remaining references 645 * to be dropped, as well as a RCU grace period for anyone only 646 * using the namepace under rcu_read_lock(). Note that we can't 647 * use call_rcu here as we need to ensure the namespaces have 648 * been fully destroyed before unloading the module. 649 */ 650 percpu_ref_kill(&ns->ref); 651 synchronize_rcu(); 652 wait_for_completion(&ns->disable_done); 653 percpu_ref_exit(&ns->ref); 654 655 mutex_lock(&subsys->lock); 656 657 subsys->nr_namespaces--; 658 nvmet_ns_changed(subsys, ns->nsid); 659 nvmet_ns_dev_disable(ns); 660 out_unlock: 661 mutex_unlock(&subsys->lock); 662 } 663 664 void nvmet_ns_free(struct nvmet_ns *ns) 665 { 666 nvmet_ns_disable(ns); 667 668 down_write(&nvmet_ana_sem); 669 nvmet_ana_group_enabled[ns->anagrpid]--; 670 up_write(&nvmet_ana_sem); 671 672 kfree(ns->device_path); 673 kfree(ns); 674 } 675 676 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 677 { 678 struct nvmet_ns *ns; 679 680 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 681 if (!ns) 682 return NULL; 683 684 init_completion(&ns->disable_done); 685 686 ns->nsid = nsid; 687 ns->subsys = subsys; 688 689 down_write(&nvmet_ana_sem); 690 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 691 nvmet_ana_group_enabled[ns->anagrpid]++; 692 up_write(&nvmet_ana_sem); 693 694 uuid_gen(&ns->uuid); 695 ns->buffered_io = false; 696 697 return ns; 698 } 699 700 static void nvmet_update_sq_head(struct nvmet_req *req) 701 { 702 if (req->sq->size) { 703 u32 old_sqhd, new_sqhd; 704 705 do { 706 old_sqhd = req->sq->sqhd; 707 new_sqhd = (old_sqhd + 1) % req->sq->size; 708 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 709 old_sqhd); 710 } 711 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 712 } 713 714 static void nvmet_set_error(struct nvmet_req *req, u16 status) 715 { 716 struct nvmet_ctrl *ctrl = req->sq->ctrl; 717 struct nvme_error_slot *new_error_slot; 718 unsigned long flags; 719 720 req->cqe->status = cpu_to_le16(status << 1); 721 722 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 723 return; 724 725 spin_lock_irqsave(&ctrl->error_lock, flags); 726 ctrl->err_counter++; 727 new_error_slot = 728 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 729 730 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 731 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 732 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 733 new_error_slot->status_field = cpu_to_le16(status << 1); 734 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 735 new_error_slot->lba = cpu_to_le64(req->error_slba); 736 new_error_slot->nsid = req->cmd->common.nsid; 737 spin_unlock_irqrestore(&ctrl->error_lock, flags); 738 739 /* set the more bit for this request */ 740 req->cqe->status |= cpu_to_le16(1 << 14); 741 } 742 743 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 744 { 745 if (!req->sq->sqhd_disabled) 746 nvmet_update_sq_head(req); 747 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 748 req->cqe->command_id = req->cmd->common.command_id; 749 750 if (unlikely(status)) 751 nvmet_set_error(req, status); 752 753 trace_nvmet_req_complete(req); 754 755 if (req->ns) 756 nvmet_put_namespace(req->ns); 757 req->ops->queue_response(req); 758 } 759 760 void nvmet_req_complete(struct nvmet_req *req, u16 status) 761 { 762 __nvmet_req_complete(req, status); 763 percpu_ref_put(&req->sq->ref); 764 } 765 EXPORT_SYMBOL_GPL(nvmet_req_complete); 766 767 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 768 u16 qid, u16 size) 769 { 770 cq->qid = qid; 771 cq->size = size; 772 } 773 774 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 775 u16 qid, u16 size) 776 { 777 sq->sqhd = 0; 778 sq->qid = qid; 779 sq->size = size; 780 781 ctrl->sqs[qid] = sq; 782 } 783 784 static void nvmet_confirm_sq(struct percpu_ref *ref) 785 { 786 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 787 788 complete(&sq->confirm_done); 789 } 790 791 void nvmet_sq_destroy(struct nvmet_sq *sq) 792 { 793 struct nvmet_ctrl *ctrl = sq->ctrl; 794 795 /* 796 * If this is the admin queue, complete all AERs so that our 797 * queue doesn't have outstanding requests on it. 798 */ 799 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 800 nvmet_async_events_failall(ctrl); 801 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 802 wait_for_completion(&sq->confirm_done); 803 wait_for_completion(&sq->free_done); 804 percpu_ref_exit(&sq->ref); 805 806 if (ctrl) { 807 nvmet_ctrl_put(ctrl); 808 sq->ctrl = NULL; /* allows reusing the queue later */ 809 } 810 } 811 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 812 813 static void nvmet_sq_free(struct percpu_ref *ref) 814 { 815 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 816 817 complete(&sq->free_done); 818 } 819 820 int nvmet_sq_init(struct nvmet_sq *sq) 821 { 822 int ret; 823 824 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 825 if (ret) { 826 pr_err("percpu_ref init failed!\n"); 827 return ret; 828 } 829 init_completion(&sq->free_done); 830 init_completion(&sq->confirm_done); 831 832 return 0; 833 } 834 EXPORT_SYMBOL_GPL(nvmet_sq_init); 835 836 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 837 struct nvmet_ns *ns) 838 { 839 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 840 841 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 842 return NVME_SC_ANA_INACCESSIBLE; 843 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 844 return NVME_SC_ANA_PERSISTENT_LOSS; 845 if (unlikely(state == NVME_ANA_CHANGE)) 846 return NVME_SC_ANA_TRANSITION; 847 return 0; 848 } 849 850 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 851 { 852 if (unlikely(req->ns->readonly)) { 853 switch (req->cmd->common.opcode) { 854 case nvme_cmd_read: 855 case nvme_cmd_flush: 856 break; 857 default: 858 return NVME_SC_NS_WRITE_PROTECTED; 859 } 860 } 861 862 return 0; 863 } 864 865 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 866 { 867 struct nvme_command *cmd = req->cmd; 868 u16 ret; 869 870 ret = nvmet_check_ctrl_status(req, cmd); 871 if (unlikely(ret)) 872 return ret; 873 874 if (nvmet_req_passthru_ctrl(req)) 875 return nvmet_parse_passthru_io_cmd(req); 876 877 ret = nvmet_req_find_ns(req); 878 if (unlikely(ret)) 879 return ret; 880 881 ret = nvmet_check_ana_state(req->port, req->ns); 882 if (unlikely(ret)) { 883 req->error_loc = offsetof(struct nvme_common_command, nsid); 884 return ret; 885 } 886 ret = nvmet_io_cmd_check_access(req); 887 if (unlikely(ret)) { 888 req->error_loc = offsetof(struct nvme_common_command, nsid); 889 return ret; 890 } 891 892 if (req->ns->file) 893 return nvmet_file_parse_io_cmd(req); 894 895 return nvmet_bdev_parse_io_cmd(req); 896 } 897 898 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 899 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 900 { 901 u8 flags = req->cmd->common.flags; 902 u16 status; 903 904 req->cq = cq; 905 req->sq = sq; 906 req->ops = ops; 907 req->sg = NULL; 908 req->metadata_sg = NULL; 909 req->sg_cnt = 0; 910 req->metadata_sg_cnt = 0; 911 req->transfer_len = 0; 912 req->metadata_len = 0; 913 req->cqe->status = 0; 914 req->cqe->sq_head = 0; 915 req->ns = NULL; 916 req->error_loc = NVMET_NO_ERROR_LOC; 917 req->error_slba = 0; 918 919 /* no support for fused commands yet */ 920 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 921 req->error_loc = offsetof(struct nvme_common_command, flags); 922 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 923 goto fail; 924 } 925 926 /* 927 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 928 * contains an address of a single contiguous physical buffer that is 929 * byte aligned. 930 */ 931 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 932 req->error_loc = offsetof(struct nvme_common_command, flags); 933 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 934 goto fail; 935 } 936 937 if (unlikely(!req->sq->ctrl)) 938 /* will return an error for any non-connect command: */ 939 status = nvmet_parse_connect_cmd(req); 940 else if (likely(req->sq->qid != 0)) 941 status = nvmet_parse_io_cmd(req); 942 else 943 status = nvmet_parse_admin_cmd(req); 944 945 if (status) 946 goto fail; 947 948 trace_nvmet_req_init(req, req->cmd); 949 950 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 951 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 952 goto fail; 953 } 954 955 if (sq->ctrl) 956 sq->ctrl->cmd_seen = true; 957 958 return true; 959 960 fail: 961 __nvmet_req_complete(req, status); 962 return false; 963 } 964 EXPORT_SYMBOL_GPL(nvmet_req_init); 965 966 void nvmet_req_uninit(struct nvmet_req *req) 967 { 968 percpu_ref_put(&req->sq->ref); 969 if (req->ns) 970 nvmet_put_namespace(req->ns); 971 } 972 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 973 974 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 975 { 976 if (unlikely(len != req->transfer_len)) { 977 req->error_loc = offsetof(struct nvme_common_command, dptr); 978 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 979 return false; 980 } 981 982 return true; 983 } 984 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 985 986 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 987 { 988 if (unlikely(data_len > req->transfer_len)) { 989 req->error_loc = offsetof(struct nvme_common_command, dptr); 990 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 991 return false; 992 } 993 994 return true; 995 } 996 997 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 998 { 999 return req->transfer_len - req->metadata_len; 1000 } 1001 1002 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req) 1003 { 1004 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt, 1005 nvmet_data_transfer_len(req)); 1006 if (!req->sg) 1007 goto out_err; 1008 1009 if (req->metadata_len) { 1010 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev, 1011 &req->metadata_sg_cnt, req->metadata_len); 1012 if (!req->metadata_sg) 1013 goto out_free_sg; 1014 } 1015 return 0; 1016 out_free_sg: 1017 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1018 out_err: 1019 return -ENOMEM; 1020 } 1021 1022 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req) 1023 { 1024 if (!IS_ENABLED(CONFIG_PCI_P2PDMA)) 1025 return false; 1026 1027 if (req->sq->ctrl && req->sq->qid && req->ns) { 1028 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 1029 req->ns->nsid); 1030 if (req->p2p_dev) 1031 return true; 1032 } 1033 1034 req->p2p_dev = NULL; 1035 return false; 1036 } 1037 1038 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1039 { 1040 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req)) 1041 return 0; 1042 1043 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1044 &req->sg_cnt); 1045 if (unlikely(!req->sg)) 1046 goto out; 1047 1048 if (req->metadata_len) { 1049 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1050 &req->metadata_sg_cnt); 1051 if (unlikely(!req->metadata_sg)) 1052 goto out_free; 1053 } 1054 1055 return 0; 1056 out_free: 1057 sgl_free(req->sg); 1058 out: 1059 return -ENOMEM; 1060 } 1061 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1062 1063 void nvmet_req_free_sgls(struct nvmet_req *req) 1064 { 1065 if (req->p2p_dev) { 1066 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1067 if (req->metadata_sg) 1068 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1069 } else { 1070 sgl_free(req->sg); 1071 if (req->metadata_sg) 1072 sgl_free(req->metadata_sg); 1073 } 1074 1075 req->sg = NULL; 1076 req->metadata_sg = NULL; 1077 req->sg_cnt = 0; 1078 req->metadata_sg_cnt = 0; 1079 } 1080 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1081 1082 static inline bool nvmet_cc_en(u32 cc) 1083 { 1084 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1085 } 1086 1087 static inline u8 nvmet_cc_css(u32 cc) 1088 { 1089 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1090 } 1091 1092 static inline u8 nvmet_cc_mps(u32 cc) 1093 { 1094 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1095 } 1096 1097 static inline u8 nvmet_cc_ams(u32 cc) 1098 { 1099 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1100 } 1101 1102 static inline u8 nvmet_cc_shn(u32 cc) 1103 { 1104 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1105 } 1106 1107 static inline u8 nvmet_cc_iosqes(u32 cc) 1108 { 1109 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1110 } 1111 1112 static inline u8 nvmet_cc_iocqes(u32 cc) 1113 { 1114 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1115 } 1116 1117 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1118 { 1119 lockdep_assert_held(&ctrl->lock); 1120 1121 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1122 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1123 nvmet_cc_mps(ctrl->cc) != 0 || 1124 nvmet_cc_ams(ctrl->cc) != 0 || 1125 nvmet_cc_css(ctrl->cc) != 0) { 1126 ctrl->csts = NVME_CSTS_CFS; 1127 return; 1128 } 1129 1130 ctrl->csts = NVME_CSTS_RDY; 1131 1132 /* 1133 * Controllers that are not yet enabled should not really enforce the 1134 * keep alive timeout, but we still want to track a timeout and cleanup 1135 * in case a host died before it enabled the controller. Hence, simply 1136 * reset the keep alive timer when the controller is enabled. 1137 */ 1138 if (ctrl->kato) 1139 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1140 } 1141 1142 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1143 { 1144 lockdep_assert_held(&ctrl->lock); 1145 1146 /* XXX: tear down queues? */ 1147 ctrl->csts &= ~NVME_CSTS_RDY; 1148 ctrl->cc = 0; 1149 } 1150 1151 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1152 { 1153 u32 old; 1154 1155 mutex_lock(&ctrl->lock); 1156 old = ctrl->cc; 1157 ctrl->cc = new; 1158 1159 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1160 nvmet_start_ctrl(ctrl); 1161 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1162 nvmet_clear_ctrl(ctrl); 1163 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1164 nvmet_clear_ctrl(ctrl); 1165 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1166 } 1167 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1168 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1169 mutex_unlock(&ctrl->lock); 1170 } 1171 1172 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1173 { 1174 /* command sets supported: NVMe command set: */ 1175 ctrl->cap = (1ULL << 37); 1176 /* CC.EN timeout in 500msec units: */ 1177 ctrl->cap |= (15ULL << 24); 1178 /* maximum queue entries supported: */ 1179 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1180 } 1181 1182 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1183 struct nvmet_req *req, struct nvmet_ctrl **ret) 1184 { 1185 struct nvmet_subsys *subsys; 1186 struct nvmet_ctrl *ctrl; 1187 u16 status = 0; 1188 1189 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1190 if (!subsys) { 1191 pr_warn("connect request for invalid subsystem %s!\n", 1192 subsysnqn); 1193 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1194 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1195 } 1196 1197 mutex_lock(&subsys->lock); 1198 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1199 if (ctrl->cntlid == cntlid) { 1200 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1201 pr_warn("hostnqn mismatch.\n"); 1202 continue; 1203 } 1204 if (!kref_get_unless_zero(&ctrl->ref)) 1205 continue; 1206 1207 *ret = ctrl; 1208 goto out; 1209 } 1210 } 1211 1212 pr_warn("could not find controller %d for subsys %s / host %s\n", 1213 cntlid, subsysnqn, hostnqn); 1214 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1215 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1216 1217 out: 1218 mutex_unlock(&subsys->lock); 1219 nvmet_subsys_put(subsys); 1220 return status; 1221 } 1222 1223 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1224 { 1225 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1226 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1227 cmd->common.opcode, req->sq->qid); 1228 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1229 } 1230 1231 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1232 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1233 cmd->common.opcode, req->sq->qid); 1234 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1235 } 1236 return 0; 1237 } 1238 1239 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1240 { 1241 struct nvmet_host_link *p; 1242 1243 lockdep_assert_held(&nvmet_config_sem); 1244 1245 if (subsys->allow_any_host) 1246 return true; 1247 1248 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1249 return true; 1250 1251 list_for_each_entry(p, &subsys->hosts, entry) { 1252 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /* 1260 * Note: ctrl->subsys->lock should be held when calling this function 1261 */ 1262 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1263 struct nvmet_req *req) 1264 { 1265 struct nvmet_ns *ns; 1266 unsigned long idx; 1267 1268 if (!req->p2p_client) 1269 return; 1270 1271 ctrl->p2p_client = get_device(req->p2p_client); 1272 1273 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1274 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1275 } 1276 1277 /* 1278 * Note: ctrl->subsys->lock should be held when calling this function 1279 */ 1280 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1281 { 1282 struct radix_tree_iter iter; 1283 void __rcu **slot; 1284 1285 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1286 pci_dev_put(radix_tree_deref_slot(slot)); 1287 1288 put_device(ctrl->p2p_client); 1289 } 1290 1291 static void nvmet_fatal_error_handler(struct work_struct *work) 1292 { 1293 struct nvmet_ctrl *ctrl = 1294 container_of(work, struct nvmet_ctrl, fatal_err_work); 1295 1296 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1297 ctrl->ops->delete_ctrl(ctrl); 1298 } 1299 1300 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1301 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1302 { 1303 struct nvmet_subsys *subsys; 1304 struct nvmet_ctrl *ctrl; 1305 int ret; 1306 u16 status; 1307 1308 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1309 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1310 if (!subsys) { 1311 pr_warn("connect request for invalid subsystem %s!\n", 1312 subsysnqn); 1313 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1314 goto out; 1315 } 1316 1317 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1318 down_read(&nvmet_config_sem); 1319 if (!nvmet_host_allowed(subsys, hostnqn)) { 1320 pr_info("connect by host %s for subsystem %s not allowed\n", 1321 hostnqn, subsysnqn); 1322 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1323 up_read(&nvmet_config_sem); 1324 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1325 goto out_put_subsystem; 1326 } 1327 up_read(&nvmet_config_sem); 1328 1329 status = NVME_SC_INTERNAL; 1330 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1331 if (!ctrl) 1332 goto out_put_subsystem; 1333 mutex_init(&ctrl->lock); 1334 1335 nvmet_init_cap(ctrl); 1336 1337 ctrl->port = req->port; 1338 1339 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1340 INIT_LIST_HEAD(&ctrl->async_events); 1341 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1342 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1343 1344 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1345 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1346 1347 kref_init(&ctrl->ref); 1348 ctrl->subsys = subsys; 1349 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1350 1351 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1352 sizeof(__le32), GFP_KERNEL); 1353 if (!ctrl->changed_ns_list) 1354 goto out_free_ctrl; 1355 1356 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1357 sizeof(struct nvmet_sq *), 1358 GFP_KERNEL); 1359 if (!ctrl->sqs) 1360 goto out_free_changed_ns_list; 1361 1362 if (subsys->cntlid_min > subsys->cntlid_max) 1363 goto out_free_changed_ns_list; 1364 1365 ret = ida_simple_get(&cntlid_ida, 1366 subsys->cntlid_min, subsys->cntlid_max, 1367 GFP_KERNEL); 1368 if (ret < 0) { 1369 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1370 goto out_free_sqs; 1371 } 1372 ctrl->cntlid = ret; 1373 1374 ctrl->ops = req->ops; 1375 1376 /* 1377 * Discovery controllers may use some arbitrary high value 1378 * in order to cleanup stale discovery sessions 1379 */ 1380 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1381 kato = NVMET_DISC_KATO_MS; 1382 1383 /* keep-alive timeout in seconds */ 1384 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1385 1386 ctrl->err_counter = 0; 1387 spin_lock_init(&ctrl->error_lock); 1388 1389 nvmet_start_keep_alive_timer(ctrl); 1390 1391 mutex_lock(&subsys->lock); 1392 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1393 nvmet_setup_p2p_ns_map(ctrl, req); 1394 mutex_unlock(&subsys->lock); 1395 1396 *ctrlp = ctrl; 1397 return 0; 1398 1399 out_free_sqs: 1400 kfree(ctrl->sqs); 1401 out_free_changed_ns_list: 1402 kfree(ctrl->changed_ns_list); 1403 out_free_ctrl: 1404 kfree(ctrl); 1405 out_put_subsystem: 1406 nvmet_subsys_put(subsys); 1407 out: 1408 return status; 1409 } 1410 1411 static void nvmet_ctrl_free(struct kref *ref) 1412 { 1413 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1414 struct nvmet_subsys *subsys = ctrl->subsys; 1415 1416 mutex_lock(&subsys->lock); 1417 nvmet_release_p2p_ns_map(ctrl); 1418 list_del(&ctrl->subsys_entry); 1419 mutex_unlock(&subsys->lock); 1420 1421 nvmet_stop_keep_alive_timer(ctrl); 1422 1423 flush_work(&ctrl->async_event_work); 1424 cancel_work_sync(&ctrl->fatal_err_work); 1425 1426 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1427 1428 nvmet_async_events_free(ctrl); 1429 kfree(ctrl->sqs); 1430 kfree(ctrl->changed_ns_list); 1431 kfree(ctrl); 1432 1433 nvmet_subsys_put(subsys); 1434 } 1435 1436 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1437 { 1438 kref_put(&ctrl->ref, nvmet_ctrl_free); 1439 } 1440 1441 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1442 { 1443 mutex_lock(&ctrl->lock); 1444 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1445 ctrl->csts |= NVME_CSTS_CFS; 1446 schedule_work(&ctrl->fatal_err_work); 1447 } 1448 mutex_unlock(&ctrl->lock); 1449 } 1450 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1451 1452 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1453 const char *subsysnqn) 1454 { 1455 struct nvmet_subsys_link *p; 1456 1457 if (!port) 1458 return NULL; 1459 1460 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1461 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1462 return NULL; 1463 return nvmet_disc_subsys; 1464 } 1465 1466 down_read(&nvmet_config_sem); 1467 list_for_each_entry(p, &port->subsystems, entry) { 1468 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1469 NVMF_NQN_SIZE)) { 1470 if (!kref_get_unless_zero(&p->subsys->ref)) 1471 break; 1472 up_read(&nvmet_config_sem); 1473 return p->subsys; 1474 } 1475 } 1476 up_read(&nvmet_config_sem); 1477 return NULL; 1478 } 1479 1480 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1481 enum nvme_subsys_type type) 1482 { 1483 struct nvmet_subsys *subsys; 1484 1485 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1486 if (!subsys) 1487 return ERR_PTR(-ENOMEM); 1488 1489 subsys->ver = NVMET_DEFAULT_VS; 1490 /* generate a random serial number as our controllers are ephemeral: */ 1491 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1492 1493 switch (type) { 1494 case NVME_NQN_NVME: 1495 subsys->max_qid = NVMET_NR_QUEUES; 1496 break; 1497 case NVME_NQN_DISC: 1498 subsys->max_qid = 0; 1499 break; 1500 default: 1501 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1502 kfree(subsys); 1503 return ERR_PTR(-EINVAL); 1504 } 1505 subsys->type = type; 1506 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1507 GFP_KERNEL); 1508 if (!subsys->subsysnqn) { 1509 kfree(subsys); 1510 return ERR_PTR(-ENOMEM); 1511 } 1512 subsys->cntlid_min = NVME_CNTLID_MIN; 1513 subsys->cntlid_max = NVME_CNTLID_MAX; 1514 kref_init(&subsys->ref); 1515 1516 mutex_init(&subsys->lock); 1517 xa_init(&subsys->namespaces); 1518 INIT_LIST_HEAD(&subsys->ctrls); 1519 INIT_LIST_HEAD(&subsys->hosts); 1520 1521 return subsys; 1522 } 1523 1524 static void nvmet_subsys_free(struct kref *ref) 1525 { 1526 struct nvmet_subsys *subsys = 1527 container_of(ref, struct nvmet_subsys, ref); 1528 1529 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1530 1531 xa_destroy(&subsys->namespaces); 1532 nvmet_passthru_subsys_free(subsys); 1533 1534 kfree(subsys->subsysnqn); 1535 kfree(subsys->model_number); 1536 kfree(subsys); 1537 } 1538 1539 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1540 { 1541 struct nvmet_ctrl *ctrl; 1542 1543 mutex_lock(&subsys->lock); 1544 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1545 ctrl->ops->delete_ctrl(ctrl); 1546 mutex_unlock(&subsys->lock); 1547 } 1548 1549 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1550 { 1551 kref_put(&subsys->ref, nvmet_subsys_free); 1552 } 1553 1554 static int __init nvmet_init(void) 1555 { 1556 int error; 1557 1558 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1559 1560 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1561 WQ_MEM_RECLAIM, 0); 1562 if (!buffered_io_wq) { 1563 error = -ENOMEM; 1564 goto out; 1565 } 1566 1567 error = nvmet_init_discovery(); 1568 if (error) 1569 goto out_free_work_queue; 1570 1571 error = nvmet_init_configfs(); 1572 if (error) 1573 goto out_exit_discovery; 1574 return 0; 1575 1576 out_exit_discovery: 1577 nvmet_exit_discovery(); 1578 out_free_work_queue: 1579 destroy_workqueue(buffered_io_wq); 1580 out: 1581 return error; 1582 } 1583 1584 static void __exit nvmet_exit(void) 1585 { 1586 nvmet_exit_configfs(); 1587 nvmet_exit_discovery(); 1588 ida_destroy(&cntlid_ida); 1589 destroy_workqueue(buffered_io_wq); 1590 1591 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1592 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1593 } 1594 1595 module_init(nvmet_init); 1596 module_exit(nvmet_exit); 1597 1598 MODULE_LICENSE("GPL v2"); 1599