1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 20 struct kmem_cache *nvmet_bvec_cache; 21 struct workqueue_struct *buffered_io_wq; 22 struct workqueue_struct *zbd_wq; 23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 24 static DEFINE_IDA(cntlid_ida); 25 26 struct workqueue_struct *nvmet_wq; 27 EXPORT_SYMBOL_GPL(nvmet_wq); 28 29 /* 30 * This read/write semaphore is used to synchronize access to configuration 31 * information on a target system that will result in discovery log page 32 * information change for at least one host. 33 * The full list of resources to protected by this semaphore is: 34 * 35 * - subsystems list 36 * - per-subsystem allowed hosts list 37 * - allow_any_host subsystem attribute 38 * - nvmet_genctr 39 * - the nvmet_transports array 40 * 41 * When updating any of those lists/structures write lock should be obtained, 42 * while when reading (popolating discovery log page or checking host-subsystem 43 * link) read lock is obtained to allow concurrent reads. 44 */ 45 DECLARE_RWSEM(nvmet_config_sem); 46 47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 48 u64 nvmet_ana_chgcnt; 49 DECLARE_RWSEM(nvmet_ana_sem); 50 51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 52 { 53 switch (errno) { 54 case 0: 55 return NVME_SC_SUCCESS; 56 case -ENOSPC: 57 req->error_loc = offsetof(struct nvme_rw_command, length); 58 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 59 case -EREMOTEIO: 60 req->error_loc = offsetof(struct nvme_rw_command, slba); 61 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 62 case -EOPNOTSUPP: 63 req->error_loc = offsetof(struct nvme_common_command, opcode); 64 switch (req->cmd->common.opcode) { 65 case nvme_cmd_dsm: 66 case nvme_cmd_write_zeroes: 67 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 68 default: 69 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 70 } 71 break; 72 case -ENODATA: 73 req->error_loc = offsetof(struct nvme_rw_command, nsid); 74 return NVME_SC_ACCESS_DENIED; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 return NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 } 82 83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 84 { 85 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 86 req->sq->qid); 87 88 req->error_loc = offsetof(struct nvme_common_command, opcode); 89 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 90 } 91 92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 93 const char *subsysnqn); 94 95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 96 size_t len) 97 { 98 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 99 req->error_loc = offsetof(struct nvme_common_command, dptr); 100 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 101 } 102 return 0; 103 } 104 105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 106 { 107 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 108 req->error_loc = offsetof(struct nvme_common_command, dptr); 109 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 110 } 111 return 0; 112 } 113 114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 115 { 116 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 117 req->error_loc = offsetof(struct nvme_common_command, dptr); 118 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 119 } 120 return 0; 121 } 122 123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 124 { 125 struct nvmet_ns *cur; 126 unsigned long idx; 127 u32 nsid = 0; 128 129 xa_for_each(&subsys->namespaces, idx, cur) 130 nsid = cur->nsid; 131 132 return nsid; 133 } 134 135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 136 { 137 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 138 } 139 140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 141 { 142 struct nvmet_req *req; 143 144 mutex_lock(&ctrl->lock); 145 while (ctrl->nr_async_event_cmds) { 146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 147 mutex_unlock(&ctrl->lock); 148 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 149 mutex_lock(&ctrl->lock); 150 } 151 mutex_unlock(&ctrl->lock); 152 } 153 154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 155 { 156 struct nvmet_async_event *aen; 157 struct nvmet_req *req; 158 159 mutex_lock(&ctrl->lock); 160 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 161 aen = list_first_entry(&ctrl->async_events, 162 struct nvmet_async_event, entry); 163 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 164 nvmet_set_result(req, nvmet_async_event_result(aen)); 165 166 list_del(&aen->entry); 167 kfree(aen); 168 169 mutex_unlock(&ctrl->lock); 170 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 171 nvmet_req_complete(req, 0); 172 mutex_lock(&ctrl->lock); 173 } 174 mutex_unlock(&ctrl->lock); 175 } 176 177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 178 { 179 struct nvmet_async_event *aen, *tmp; 180 181 mutex_lock(&ctrl->lock); 182 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 183 list_del(&aen->entry); 184 kfree(aen); 185 } 186 mutex_unlock(&ctrl->lock); 187 } 188 189 static void nvmet_async_event_work(struct work_struct *work) 190 { 191 struct nvmet_ctrl *ctrl = 192 container_of(work, struct nvmet_ctrl, async_event_work); 193 194 nvmet_async_events_process(ctrl); 195 } 196 197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 198 u8 event_info, u8 log_page) 199 { 200 struct nvmet_async_event *aen; 201 202 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 203 if (!aen) 204 return; 205 206 aen->event_type = event_type; 207 aen->event_info = event_info; 208 aen->log_page = log_page; 209 210 mutex_lock(&ctrl->lock); 211 list_add_tail(&aen->entry, &ctrl->async_events); 212 mutex_unlock(&ctrl->lock); 213 214 queue_work(nvmet_wq, &ctrl->async_event_work); 215 } 216 217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 218 { 219 u32 i; 220 221 mutex_lock(&ctrl->lock); 222 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 223 goto out_unlock; 224 225 for (i = 0; i < ctrl->nr_changed_ns; i++) { 226 if (ctrl->changed_ns_list[i] == nsid) 227 goto out_unlock; 228 } 229 230 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 231 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 232 ctrl->nr_changed_ns = U32_MAX; 233 goto out_unlock; 234 } 235 236 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 237 out_unlock: 238 mutex_unlock(&ctrl->lock); 239 } 240 241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 242 { 243 struct nvmet_ctrl *ctrl; 244 245 lockdep_assert_held(&subsys->lock); 246 247 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 248 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 249 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 250 continue; 251 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 252 NVME_AER_NOTICE_NS_CHANGED, 253 NVME_LOG_CHANGED_NS); 254 } 255 } 256 257 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 258 struct nvmet_port *port) 259 { 260 struct nvmet_ctrl *ctrl; 261 262 mutex_lock(&subsys->lock); 263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 264 if (port && ctrl->port != port) 265 continue; 266 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 267 continue; 268 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 269 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 270 } 271 mutex_unlock(&subsys->lock); 272 } 273 274 void nvmet_port_send_ana_event(struct nvmet_port *port) 275 { 276 struct nvmet_subsys_link *p; 277 278 down_read(&nvmet_config_sem); 279 list_for_each_entry(p, &port->subsystems, entry) 280 nvmet_send_ana_event(p->subsys, port); 281 up_read(&nvmet_config_sem); 282 } 283 284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 285 { 286 int ret = 0; 287 288 down_write(&nvmet_config_sem); 289 if (nvmet_transports[ops->type]) 290 ret = -EINVAL; 291 else 292 nvmet_transports[ops->type] = ops; 293 up_write(&nvmet_config_sem); 294 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(nvmet_register_transport); 298 299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 300 { 301 down_write(&nvmet_config_sem); 302 nvmet_transports[ops->type] = NULL; 303 up_write(&nvmet_config_sem); 304 } 305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 306 307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 308 { 309 struct nvmet_ctrl *ctrl; 310 311 mutex_lock(&subsys->lock); 312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 313 if (ctrl->port == port) 314 ctrl->ops->delete_ctrl(ctrl); 315 } 316 mutex_unlock(&subsys->lock); 317 } 318 319 int nvmet_enable_port(struct nvmet_port *port) 320 { 321 const struct nvmet_fabrics_ops *ops; 322 int ret; 323 324 lockdep_assert_held(&nvmet_config_sem); 325 326 ops = nvmet_transports[port->disc_addr.trtype]; 327 if (!ops) { 328 up_write(&nvmet_config_sem); 329 request_module("nvmet-transport-%d", port->disc_addr.trtype); 330 down_write(&nvmet_config_sem); 331 ops = nvmet_transports[port->disc_addr.trtype]; 332 if (!ops) { 333 pr_err("transport type %d not supported\n", 334 port->disc_addr.trtype); 335 return -EINVAL; 336 } 337 } 338 339 if (!try_module_get(ops->owner)) 340 return -EINVAL; 341 342 /* 343 * If the user requested PI support and the transport isn't pi capable, 344 * don't enable the port. 345 */ 346 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 347 pr_err("T10-PI is not supported by transport type %d\n", 348 port->disc_addr.trtype); 349 ret = -EINVAL; 350 goto out_put; 351 } 352 353 ret = ops->add_port(port); 354 if (ret) 355 goto out_put; 356 357 /* If the transport didn't set inline_data_size, then disable it. */ 358 if (port->inline_data_size < 0) 359 port->inline_data_size = 0; 360 361 port->enabled = true; 362 port->tr_ops = ops; 363 return 0; 364 365 out_put: 366 module_put(ops->owner); 367 return ret; 368 } 369 370 void nvmet_disable_port(struct nvmet_port *port) 371 { 372 const struct nvmet_fabrics_ops *ops; 373 374 lockdep_assert_held(&nvmet_config_sem); 375 376 port->enabled = false; 377 port->tr_ops = NULL; 378 379 ops = nvmet_transports[port->disc_addr.trtype]; 380 ops->remove_port(port); 381 module_put(ops->owner); 382 } 383 384 static void nvmet_keep_alive_timer(struct work_struct *work) 385 { 386 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 387 struct nvmet_ctrl, ka_work); 388 bool reset_tbkas = ctrl->reset_tbkas; 389 390 ctrl->reset_tbkas = false; 391 if (reset_tbkas) { 392 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 393 ctrl->cntlid); 394 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 395 return; 396 } 397 398 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 399 ctrl->cntlid, ctrl->kato); 400 401 nvmet_ctrl_fatal_error(ctrl); 402 } 403 404 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 405 { 406 if (unlikely(ctrl->kato == 0)) 407 return; 408 409 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 410 ctrl->cntlid, ctrl->kato); 411 412 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 413 } 414 415 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 416 { 417 if (unlikely(ctrl->kato == 0)) 418 return; 419 420 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 421 422 cancel_delayed_work_sync(&ctrl->ka_work); 423 } 424 425 u16 nvmet_req_find_ns(struct nvmet_req *req) 426 { 427 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 428 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 429 430 req->ns = xa_load(&subsys->namespaces, nsid); 431 if (unlikely(!req->ns)) { 432 req->error_loc = offsetof(struct nvme_common_command, nsid); 433 if (nvmet_subsys_nsid_exists(subsys, nsid)) 434 return NVME_SC_INTERNAL_PATH_ERROR; 435 return NVME_SC_INVALID_NS | NVME_SC_DNR; 436 } 437 438 percpu_ref_get(&req->ns->ref); 439 return NVME_SC_SUCCESS; 440 } 441 442 static void nvmet_destroy_namespace(struct percpu_ref *ref) 443 { 444 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 445 446 complete(&ns->disable_done); 447 } 448 449 void nvmet_put_namespace(struct nvmet_ns *ns) 450 { 451 percpu_ref_put(&ns->ref); 452 } 453 454 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 455 { 456 nvmet_bdev_ns_disable(ns); 457 nvmet_file_ns_disable(ns); 458 } 459 460 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 461 { 462 int ret; 463 struct pci_dev *p2p_dev; 464 465 if (!ns->use_p2pmem) 466 return 0; 467 468 if (!ns->bdev) { 469 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 470 return -EINVAL; 471 } 472 473 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 474 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 475 ns->device_path); 476 return -EINVAL; 477 } 478 479 if (ns->p2p_dev) { 480 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 481 if (ret < 0) 482 return -EINVAL; 483 } else { 484 /* 485 * Right now we just check that there is p2pmem available so 486 * we can report an error to the user right away if there 487 * is not. We'll find the actual device to use once we 488 * setup the controller when the port's device is available. 489 */ 490 491 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 492 if (!p2p_dev) { 493 pr_err("no peer-to-peer memory is available for %s\n", 494 ns->device_path); 495 return -EINVAL; 496 } 497 498 pci_dev_put(p2p_dev); 499 } 500 501 return 0; 502 } 503 504 /* 505 * Note: ctrl->subsys->lock should be held when calling this function 506 */ 507 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 508 struct nvmet_ns *ns) 509 { 510 struct device *clients[2]; 511 struct pci_dev *p2p_dev; 512 int ret; 513 514 if (!ctrl->p2p_client || !ns->use_p2pmem) 515 return; 516 517 if (ns->p2p_dev) { 518 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 519 if (ret < 0) 520 return; 521 522 p2p_dev = pci_dev_get(ns->p2p_dev); 523 } else { 524 clients[0] = ctrl->p2p_client; 525 clients[1] = nvmet_ns_dev(ns); 526 527 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 528 if (!p2p_dev) { 529 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 530 dev_name(ctrl->p2p_client), ns->device_path); 531 return; 532 } 533 } 534 535 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 536 if (ret < 0) 537 pci_dev_put(p2p_dev); 538 539 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 540 ns->nsid); 541 } 542 543 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 544 { 545 loff_t oldsize = ns->size; 546 547 if (ns->bdev) 548 nvmet_bdev_ns_revalidate(ns); 549 else 550 nvmet_file_ns_revalidate(ns); 551 552 return oldsize != ns->size; 553 } 554 555 int nvmet_ns_enable(struct nvmet_ns *ns) 556 { 557 struct nvmet_subsys *subsys = ns->subsys; 558 struct nvmet_ctrl *ctrl; 559 int ret; 560 561 mutex_lock(&subsys->lock); 562 ret = 0; 563 564 if (nvmet_is_passthru_subsys(subsys)) { 565 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 566 goto out_unlock; 567 } 568 569 if (ns->enabled) 570 goto out_unlock; 571 572 ret = -EMFILE; 573 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 574 goto out_unlock; 575 576 ret = nvmet_bdev_ns_enable(ns); 577 if (ret == -ENOTBLK) 578 ret = nvmet_file_ns_enable(ns); 579 if (ret) 580 goto out_unlock; 581 582 ret = nvmet_p2pmem_ns_enable(ns); 583 if (ret) 584 goto out_dev_disable; 585 586 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 587 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 588 589 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 590 0, GFP_KERNEL); 591 if (ret) 592 goto out_dev_put; 593 594 if (ns->nsid > subsys->max_nsid) 595 subsys->max_nsid = ns->nsid; 596 597 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 598 if (ret) 599 goto out_restore_subsys_maxnsid; 600 601 subsys->nr_namespaces++; 602 603 nvmet_ns_changed(subsys, ns->nsid); 604 ns->enabled = true; 605 ret = 0; 606 out_unlock: 607 mutex_unlock(&subsys->lock); 608 return ret; 609 610 out_restore_subsys_maxnsid: 611 subsys->max_nsid = nvmet_max_nsid(subsys); 612 percpu_ref_exit(&ns->ref); 613 out_dev_put: 614 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 615 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 616 out_dev_disable: 617 nvmet_ns_dev_disable(ns); 618 goto out_unlock; 619 } 620 621 void nvmet_ns_disable(struct nvmet_ns *ns) 622 { 623 struct nvmet_subsys *subsys = ns->subsys; 624 struct nvmet_ctrl *ctrl; 625 626 mutex_lock(&subsys->lock); 627 if (!ns->enabled) 628 goto out_unlock; 629 630 ns->enabled = false; 631 xa_erase(&ns->subsys->namespaces, ns->nsid); 632 if (ns->nsid == subsys->max_nsid) 633 subsys->max_nsid = nvmet_max_nsid(subsys); 634 635 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 636 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 637 638 mutex_unlock(&subsys->lock); 639 640 /* 641 * Now that we removed the namespaces from the lookup list, we 642 * can kill the per_cpu ref and wait for any remaining references 643 * to be dropped, as well as a RCU grace period for anyone only 644 * using the namepace under rcu_read_lock(). Note that we can't 645 * use call_rcu here as we need to ensure the namespaces have 646 * been fully destroyed before unloading the module. 647 */ 648 percpu_ref_kill(&ns->ref); 649 synchronize_rcu(); 650 wait_for_completion(&ns->disable_done); 651 percpu_ref_exit(&ns->ref); 652 653 mutex_lock(&subsys->lock); 654 655 subsys->nr_namespaces--; 656 nvmet_ns_changed(subsys, ns->nsid); 657 nvmet_ns_dev_disable(ns); 658 out_unlock: 659 mutex_unlock(&subsys->lock); 660 } 661 662 void nvmet_ns_free(struct nvmet_ns *ns) 663 { 664 nvmet_ns_disable(ns); 665 666 down_write(&nvmet_ana_sem); 667 nvmet_ana_group_enabled[ns->anagrpid]--; 668 up_write(&nvmet_ana_sem); 669 670 kfree(ns->device_path); 671 kfree(ns); 672 } 673 674 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 675 { 676 struct nvmet_ns *ns; 677 678 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 679 if (!ns) 680 return NULL; 681 682 init_completion(&ns->disable_done); 683 684 ns->nsid = nsid; 685 ns->subsys = subsys; 686 687 down_write(&nvmet_ana_sem); 688 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 689 nvmet_ana_group_enabled[ns->anagrpid]++; 690 up_write(&nvmet_ana_sem); 691 692 uuid_gen(&ns->uuid); 693 ns->buffered_io = false; 694 ns->csi = NVME_CSI_NVM; 695 696 return ns; 697 } 698 699 static void nvmet_update_sq_head(struct nvmet_req *req) 700 { 701 if (req->sq->size) { 702 u32 old_sqhd, new_sqhd; 703 704 old_sqhd = READ_ONCE(req->sq->sqhd); 705 do { 706 new_sqhd = (old_sqhd + 1) % req->sq->size; 707 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 708 } 709 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 710 } 711 712 static void nvmet_set_error(struct nvmet_req *req, u16 status) 713 { 714 struct nvmet_ctrl *ctrl = req->sq->ctrl; 715 struct nvme_error_slot *new_error_slot; 716 unsigned long flags; 717 718 req->cqe->status = cpu_to_le16(status << 1); 719 720 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 721 return; 722 723 spin_lock_irqsave(&ctrl->error_lock, flags); 724 ctrl->err_counter++; 725 new_error_slot = 726 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 727 728 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 729 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 730 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 731 new_error_slot->status_field = cpu_to_le16(status << 1); 732 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 733 new_error_slot->lba = cpu_to_le64(req->error_slba); 734 new_error_slot->nsid = req->cmd->common.nsid; 735 spin_unlock_irqrestore(&ctrl->error_lock, flags); 736 737 /* set the more bit for this request */ 738 req->cqe->status |= cpu_to_le16(1 << 14); 739 } 740 741 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 742 { 743 struct nvmet_ns *ns = req->ns; 744 745 if (!req->sq->sqhd_disabled) 746 nvmet_update_sq_head(req); 747 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 748 req->cqe->command_id = req->cmd->common.command_id; 749 750 if (unlikely(status)) 751 nvmet_set_error(req, status); 752 753 trace_nvmet_req_complete(req); 754 755 req->ops->queue_response(req); 756 if (ns) 757 nvmet_put_namespace(ns); 758 } 759 760 void nvmet_req_complete(struct nvmet_req *req, u16 status) 761 { 762 struct nvmet_sq *sq = req->sq; 763 764 __nvmet_req_complete(req, status); 765 percpu_ref_put(&sq->ref); 766 } 767 EXPORT_SYMBOL_GPL(nvmet_req_complete); 768 769 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 770 u16 qid, u16 size) 771 { 772 cq->qid = qid; 773 cq->size = size; 774 } 775 776 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 777 u16 qid, u16 size) 778 { 779 sq->sqhd = 0; 780 sq->qid = qid; 781 sq->size = size; 782 783 ctrl->sqs[qid] = sq; 784 } 785 786 static void nvmet_confirm_sq(struct percpu_ref *ref) 787 { 788 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 789 790 complete(&sq->confirm_done); 791 } 792 793 void nvmet_sq_destroy(struct nvmet_sq *sq) 794 { 795 struct nvmet_ctrl *ctrl = sq->ctrl; 796 797 /* 798 * If this is the admin queue, complete all AERs so that our 799 * queue doesn't have outstanding requests on it. 800 */ 801 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 802 nvmet_async_events_failall(ctrl); 803 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 804 wait_for_completion(&sq->confirm_done); 805 wait_for_completion(&sq->free_done); 806 percpu_ref_exit(&sq->ref); 807 nvmet_auth_sq_free(sq); 808 809 /* 810 * we must reference the ctrl again after waiting for inflight IO 811 * to complete. Because admin connect may have sneaked in after we 812 * store sq->ctrl locally, but before we killed the percpu_ref. the 813 * admin connect allocates and assigns sq->ctrl, which now needs a 814 * final ref put, as this ctrl is going away. 815 */ 816 ctrl = sq->ctrl; 817 818 if (ctrl) { 819 /* 820 * The teardown flow may take some time, and the host may not 821 * send us keep-alive during this period, hence reset the 822 * traffic based keep-alive timer so we don't trigger a 823 * controller teardown as a result of a keep-alive expiration. 824 */ 825 ctrl->reset_tbkas = true; 826 sq->ctrl->sqs[sq->qid] = NULL; 827 nvmet_ctrl_put(ctrl); 828 sq->ctrl = NULL; /* allows reusing the queue later */ 829 } 830 } 831 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 832 833 static void nvmet_sq_free(struct percpu_ref *ref) 834 { 835 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 836 837 complete(&sq->free_done); 838 } 839 840 int nvmet_sq_init(struct nvmet_sq *sq) 841 { 842 int ret; 843 844 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 845 if (ret) { 846 pr_err("percpu_ref init failed!\n"); 847 return ret; 848 } 849 init_completion(&sq->free_done); 850 init_completion(&sq->confirm_done); 851 nvmet_auth_sq_init(sq); 852 853 return 0; 854 } 855 EXPORT_SYMBOL_GPL(nvmet_sq_init); 856 857 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 858 struct nvmet_ns *ns) 859 { 860 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 861 862 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 863 return NVME_SC_ANA_INACCESSIBLE; 864 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 865 return NVME_SC_ANA_PERSISTENT_LOSS; 866 if (unlikely(state == NVME_ANA_CHANGE)) 867 return NVME_SC_ANA_TRANSITION; 868 return 0; 869 } 870 871 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 872 { 873 if (unlikely(req->ns->readonly)) { 874 switch (req->cmd->common.opcode) { 875 case nvme_cmd_read: 876 case nvme_cmd_flush: 877 break; 878 default: 879 return NVME_SC_NS_WRITE_PROTECTED; 880 } 881 } 882 883 return 0; 884 } 885 886 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 887 { 888 struct nvme_command *cmd = req->cmd; 889 u16 ret; 890 891 if (nvme_is_fabrics(cmd)) 892 return nvmet_parse_fabrics_io_cmd(req); 893 894 if (unlikely(!nvmet_check_auth_status(req))) 895 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 896 897 ret = nvmet_check_ctrl_status(req); 898 if (unlikely(ret)) 899 return ret; 900 901 if (nvmet_is_passthru_req(req)) 902 return nvmet_parse_passthru_io_cmd(req); 903 904 ret = nvmet_req_find_ns(req); 905 if (unlikely(ret)) 906 return ret; 907 908 ret = nvmet_check_ana_state(req->port, req->ns); 909 if (unlikely(ret)) { 910 req->error_loc = offsetof(struct nvme_common_command, nsid); 911 return ret; 912 } 913 ret = nvmet_io_cmd_check_access(req); 914 if (unlikely(ret)) { 915 req->error_loc = offsetof(struct nvme_common_command, nsid); 916 return ret; 917 } 918 919 switch (req->ns->csi) { 920 case NVME_CSI_NVM: 921 if (req->ns->file) 922 return nvmet_file_parse_io_cmd(req); 923 return nvmet_bdev_parse_io_cmd(req); 924 case NVME_CSI_ZNS: 925 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 926 return nvmet_bdev_zns_parse_io_cmd(req); 927 return NVME_SC_INVALID_IO_CMD_SET; 928 default: 929 return NVME_SC_INVALID_IO_CMD_SET; 930 } 931 } 932 933 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 934 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 935 { 936 u8 flags = req->cmd->common.flags; 937 u16 status; 938 939 req->cq = cq; 940 req->sq = sq; 941 req->ops = ops; 942 req->sg = NULL; 943 req->metadata_sg = NULL; 944 req->sg_cnt = 0; 945 req->metadata_sg_cnt = 0; 946 req->transfer_len = 0; 947 req->metadata_len = 0; 948 req->cqe->result.u64 = 0; 949 req->cqe->status = 0; 950 req->cqe->sq_head = 0; 951 req->ns = NULL; 952 req->error_loc = NVMET_NO_ERROR_LOC; 953 req->error_slba = 0; 954 955 /* no support for fused commands yet */ 956 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 957 req->error_loc = offsetof(struct nvme_common_command, flags); 958 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 959 goto fail; 960 } 961 962 /* 963 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 964 * contains an address of a single contiguous physical buffer that is 965 * byte aligned. 966 */ 967 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 968 req->error_loc = offsetof(struct nvme_common_command, flags); 969 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 970 goto fail; 971 } 972 973 if (unlikely(!req->sq->ctrl)) 974 /* will return an error for any non-connect command: */ 975 status = nvmet_parse_connect_cmd(req); 976 else if (likely(req->sq->qid != 0)) 977 status = nvmet_parse_io_cmd(req); 978 else 979 status = nvmet_parse_admin_cmd(req); 980 981 if (status) 982 goto fail; 983 984 trace_nvmet_req_init(req, req->cmd); 985 986 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 987 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 988 goto fail; 989 } 990 991 if (sq->ctrl) 992 sq->ctrl->reset_tbkas = true; 993 994 return true; 995 996 fail: 997 __nvmet_req_complete(req, status); 998 return false; 999 } 1000 EXPORT_SYMBOL_GPL(nvmet_req_init); 1001 1002 void nvmet_req_uninit(struct nvmet_req *req) 1003 { 1004 percpu_ref_put(&req->sq->ref); 1005 if (req->ns) 1006 nvmet_put_namespace(req->ns); 1007 } 1008 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 1009 1010 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1011 { 1012 if (unlikely(len != req->transfer_len)) { 1013 req->error_loc = offsetof(struct nvme_common_command, dptr); 1014 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1015 return false; 1016 } 1017 1018 return true; 1019 } 1020 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1021 1022 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1023 { 1024 if (unlikely(data_len > req->transfer_len)) { 1025 req->error_loc = offsetof(struct nvme_common_command, dptr); 1026 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1027 return false; 1028 } 1029 1030 return true; 1031 } 1032 1033 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1034 { 1035 return req->transfer_len - req->metadata_len; 1036 } 1037 1038 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1039 struct nvmet_req *req) 1040 { 1041 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1042 nvmet_data_transfer_len(req)); 1043 if (!req->sg) 1044 goto out_err; 1045 1046 if (req->metadata_len) { 1047 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1048 &req->metadata_sg_cnt, req->metadata_len); 1049 if (!req->metadata_sg) 1050 goto out_free_sg; 1051 } 1052 1053 req->p2p_dev = p2p_dev; 1054 1055 return 0; 1056 out_free_sg: 1057 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1058 out_err: 1059 return -ENOMEM; 1060 } 1061 1062 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1063 { 1064 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1065 !req->sq->ctrl || !req->sq->qid || !req->ns) 1066 return NULL; 1067 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1068 } 1069 1070 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1071 { 1072 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1073 1074 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1075 return 0; 1076 1077 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1078 &req->sg_cnt); 1079 if (unlikely(!req->sg)) 1080 goto out; 1081 1082 if (req->metadata_len) { 1083 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1084 &req->metadata_sg_cnt); 1085 if (unlikely(!req->metadata_sg)) 1086 goto out_free; 1087 } 1088 1089 return 0; 1090 out_free: 1091 sgl_free(req->sg); 1092 out: 1093 return -ENOMEM; 1094 } 1095 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1096 1097 void nvmet_req_free_sgls(struct nvmet_req *req) 1098 { 1099 if (req->p2p_dev) { 1100 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1101 if (req->metadata_sg) 1102 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1103 req->p2p_dev = NULL; 1104 } else { 1105 sgl_free(req->sg); 1106 if (req->metadata_sg) 1107 sgl_free(req->metadata_sg); 1108 } 1109 1110 req->sg = NULL; 1111 req->metadata_sg = NULL; 1112 req->sg_cnt = 0; 1113 req->metadata_sg_cnt = 0; 1114 } 1115 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1116 1117 static inline bool nvmet_cc_en(u32 cc) 1118 { 1119 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1120 } 1121 1122 static inline u8 nvmet_cc_css(u32 cc) 1123 { 1124 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1125 } 1126 1127 static inline u8 nvmet_cc_mps(u32 cc) 1128 { 1129 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1130 } 1131 1132 static inline u8 nvmet_cc_ams(u32 cc) 1133 { 1134 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1135 } 1136 1137 static inline u8 nvmet_cc_shn(u32 cc) 1138 { 1139 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1140 } 1141 1142 static inline u8 nvmet_cc_iosqes(u32 cc) 1143 { 1144 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1145 } 1146 1147 static inline u8 nvmet_cc_iocqes(u32 cc) 1148 { 1149 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1150 } 1151 1152 static inline bool nvmet_css_supported(u8 cc_css) 1153 { 1154 switch (cc_css << NVME_CC_CSS_SHIFT) { 1155 case NVME_CC_CSS_NVM: 1156 case NVME_CC_CSS_CSI: 1157 return true; 1158 default: 1159 return false; 1160 } 1161 } 1162 1163 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1164 { 1165 lockdep_assert_held(&ctrl->lock); 1166 1167 /* 1168 * Only I/O controllers should verify iosqes,iocqes. 1169 * Strictly speaking, the spec says a discovery controller 1170 * should verify iosqes,iocqes are zeroed, however that 1171 * would break backwards compatibility, so don't enforce it. 1172 */ 1173 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1174 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1175 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1176 ctrl->csts = NVME_CSTS_CFS; 1177 return; 1178 } 1179 1180 if (nvmet_cc_mps(ctrl->cc) != 0 || 1181 nvmet_cc_ams(ctrl->cc) != 0 || 1182 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1183 ctrl->csts = NVME_CSTS_CFS; 1184 return; 1185 } 1186 1187 ctrl->csts = NVME_CSTS_RDY; 1188 1189 /* 1190 * Controllers that are not yet enabled should not really enforce the 1191 * keep alive timeout, but we still want to track a timeout and cleanup 1192 * in case a host died before it enabled the controller. Hence, simply 1193 * reset the keep alive timer when the controller is enabled. 1194 */ 1195 if (ctrl->kato) 1196 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1197 } 1198 1199 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1200 { 1201 lockdep_assert_held(&ctrl->lock); 1202 1203 /* XXX: tear down queues? */ 1204 ctrl->csts &= ~NVME_CSTS_RDY; 1205 ctrl->cc = 0; 1206 } 1207 1208 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1209 { 1210 u32 old; 1211 1212 mutex_lock(&ctrl->lock); 1213 old = ctrl->cc; 1214 ctrl->cc = new; 1215 1216 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1217 nvmet_start_ctrl(ctrl); 1218 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1219 nvmet_clear_ctrl(ctrl); 1220 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1221 nvmet_clear_ctrl(ctrl); 1222 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1223 } 1224 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1225 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1226 mutex_unlock(&ctrl->lock); 1227 } 1228 1229 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1230 { 1231 /* command sets supported: NVMe command set: */ 1232 ctrl->cap = (1ULL << 37); 1233 /* Controller supports one or more I/O Command Sets */ 1234 ctrl->cap |= (1ULL << 43); 1235 /* CC.EN timeout in 500msec units: */ 1236 ctrl->cap |= (15ULL << 24); 1237 /* maximum queue entries supported: */ 1238 if (ctrl->ops->get_max_queue_size) 1239 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1; 1240 else 1241 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1242 1243 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1244 nvmet_passthrough_override_cap(ctrl); 1245 } 1246 1247 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1248 const char *hostnqn, u16 cntlid, 1249 struct nvmet_req *req) 1250 { 1251 struct nvmet_ctrl *ctrl = NULL; 1252 struct nvmet_subsys *subsys; 1253 1254 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1255 if (!subsys) { 1256 pr_warn("connect request for invalid subsystem %s!\n", 1257 subsysnqn); 1258 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1259 goto out; 1260 } 1261 1262 mutex_lock(&subsys->lock); 1263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1264 if (ctrl->cntlid == cntlid) { 1265 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1266 pr_warn("hostnqn mismatch.\n"); 1267 continue; 1268 } 1269 if (!kref_get_unless_zero(&ctrl->ref)) 1270 continue; 1271 1272 /* ctrl found */ 1273 goto found; 1274 } 1275 } 1276 1277 ctrl = NULL; /* ctrl not found */ 1278 pr_warn("could not find controller %d for subsys %s / host %s\n", 1279 cntlid, subsysnqn, hostnqn); 1280 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1281 1282 found: 1283 mutex_unlock(&subsys->lock); 1284 nvmet_subsys_put(subsys); 1285 out: 1286 return ctrl; 1287 } 1288 1289 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1290 { 1291 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1292 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1293 req->cmd->common.opcode, req->sq->qid); 1294 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1295 } 1296 1297 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1298 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1299 req->cmd->common.opcode, req->sq->qid); 1300 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1301 } 1302 1303 if (unlikely(!nvmet_check_auth_status(req))) { 1304 pr_warn("qid %d not authenticated\n", req->sq->qid); 1305 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 1306 } 1307 return 0; 1308 } 1309 1310 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1311 { 1312 struct nvmet_host_link *p; 1313 1314 lockdep_assert_held(&nvmet_config_sem); 1315 1316 if (subsys->allow_any_host) 1317 return true; 1318 1319 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1320 return true; 1321 1322 list_for_each_entry(p, &subsys->hosts, entry) { 1323 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1324 return true; 1325 } 1326 1327 return false; 1328 } 1329 1330 /* 1331 * Note: ctrl->subsys->lock should be held when calling this function 1332 */ 1333 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1334 struct nvmet_req *req) 1335 { 1336 struct nvmet_ns *ns; 1337 unsigned long idx; 1338 1339 if (!req->p2p_client) 1340 return; 1341 1342 ctrl->p2p_client = get_device(req->p2p_client); 1343 1344 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1345 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1346 } 1347 1348 /* 1349 * Note: ctrl->subsys->lock should be held when calling this function 1350 */ 1351 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1352 { 1353 struct radix_tree_iter iter; 1354 void __rcu **slot; 1355 1356 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1357 pci_dev_put(radix_tree_deref_slot(slot)); 1358 1359 put_device(ctrl->p2p_client); 1360 } 1361 1362 static void nvmet_fatal_error_handler(struct work_struct *work) 1363 { 1364 struct nvmet_ctrl *ctrl = 1365 container_of(work, struct nvmet_ctrl, fatal_err_work); 1366 1367 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1368 ctrl->ops->delete_ctrl(ctrl); 1369 } 1370 1371 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1372 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1373 { 1374 struct nvmet_subsys *subsys; 1375 struct nvmet_ctrl *ctrl; 1376 int ret; 1377 u16 status; 1378 1379 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1380 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1381 if (!subsys) { 1382 pr_warn("connect request for invalid subsystem %s!\n", 1383 subsysnqn); 1384 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1385 req->error_loc = offsetof(struct nvme_common_command, dptr); 1386 goto out; 1387 } 1388 1389 down_read(&nvmet_config_sem); 1390 if (!nvmet_host_allowed(subsys, hostnqn)) { 1391 pr_info("connect by host %s for subsystem %s not allowed\n", 1392 hostnqn, subsysnqn); 1393 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1394 up_read(&nvmet_config_sem); 1395 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1396 req->error_loc = offsetof(struct nvme_common_command, dptr); 1397 goto out_put_subsystem; 1398 } 1399 up_read(&nvmet_config_sem); 1400 1401 status = NVME_SC_INTERNAL; 1402 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1403 if (!ctrl) 1404 goto out_put_subsystem; 1405 mutex_init(&ctrl->lock); 1406 1407 ctrl->port = req->port; 1408 ctrl->ops = req->ops; 1409 1410 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1411 /* By default, set loop targets to clear IDS by default */ 1412 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1413 subsys->clear_ids = 1; 1414 #endif 1415 1416 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1417 INIT_LIST_HEAD(&ctrl->async_events); 1418 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1419 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1420 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1421 1422 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1423 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1424 1425 kref_init(&ctrl->ref); 1426 ctrl->subsys = subsys; 1427 nvmet_init_cap(ctrl); 1428 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1429 1430 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1431 sizeof(__le32), GFP_KERNEL); 1432 if (!ctrl->changed_ns_list) 1433 goto out_free_ctrl; 1434 1435 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1436 sizeof(struct nvmet_sq *), 1437 GFP_KERNEL); 1438 if (!ctrl->sqs) 1439 goto out_free_changed_ns_list; 1440 1441 if (subsys->cntlid_min > subsys->cntlid_max) 1442 goto out_free_sqs; 1443 1444 ret = ida_alloc_range(&cntlid_ida, 1445 subsys->cntlid_min, subsys->cntlid_max, 1446 GFP_KERNEL); 1447 if (ret < 0) { 1448 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1449 goto out_free_sqs; 1450 } 1451 ctrl->cntlid = ret; 1452 1453 /* 1454 * Discovery controllers may use some arbitrary high value 1455 * in order to cleanup stale discovery sessions 1456 */ 1457 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1458 kato = NVMET_DISC_KATO_MS; 1459 1460 /* keep-alive timeout in seconds */ 1461 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1462 1463 ctrl->err_counter = 0; 1464 spin_lock_init(&ctrl->error_lock); 1465 1466 nvmet_start_keep_alive_timer(ctrl); 1467 1468 mutex_lock(&subsys->lock); 1469 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1470 nvmet_setup_p2p_ns_map(ctrl, req); 1471 mutex_unlock(&subsys->lock); 1472 1473 *ctrlp = ctrl; 1474 return 0; 1475 1476 out_free_sqs: 1477 kfree(ctrl->sqs); 1478 out_free_changed_ns_list: 1479 kfree(ctrl->changed_ns_list); 1480 out_free_ctrl: 1481 kfree(ctrl); 1482 out_put_subsystem: 1483 nvmet_subsys_put(subsys); 1484 out: 1485 return status; 1486 } 1487 1488 static void nvmet_ctrl_free(struct kref *ref) 1489 { 1490 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1491 struct nvmet_subsys *subsys = ctrl->subsys; 1492 1493 mutex_lock(&subsys->lock); 1494 nvmet_release_p2p_ns_map(ctrl); 1495 list_del(&ctrl->subsys_entry); 1496 mutex_unlock(&subsys->lock); 1497 1498 nvmet_stop_keep_alive_timer(ctrl); 1499 1500 flush_work(&ctrl->async_event_work); 1501 cancel_work_sync(&ctrl->fatal_err_work); 1502 1503 nvmet_destroy_auth(ctrl); 1504 1505 ida_free(&cntlid_ida, ctrl->cntlid); 1506 1507 nvmet_async_events_free(ctrl); 1508 kfree(ctrl->sqs); 1509 kfree(ctrl->changed_ns_list); 1510 kfree(ctrl); 1511 1512 nvmet_subsys_put(subsys); 1513 } 1514 1515 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1516 { 1517 kref_put(&ctrl->ref, nvmet_ctrl_free); 1518 } 1519 1520 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1521 { 1522 mutex_lock(&ctrl->lock); 1523 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1524 ctrl->csts |= NVME_CSTS_CFS; 1525 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1526 } 1527 mutex_unlock(&ctrl->lock); 1528 } 1529 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1530 1531 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1532 const char *subsysnqn) 1533 { 1534 struct nvmet_subsys_link *p; 1535 1536 if (!port) 1537 return NULL; 1538 1539 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1540 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1541 return NULL; 1542 return nvmet_disc_subsys; 1543 } 1544 1545 down_read(&nvmet_config_sem); 1546 list_for_each_entry(p, &port->subsystems, entry) { 1547 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1548 NVMF_NQN_SIZE)) { 1549 if (!kref_get_unless_zero(&p->subsys->ref)) 1550 break; 1551 up_read(&nvmet_config_sem); 1552 return p->subsys; 1553 } 1554 } 1555 up_read(&nvmet_config_sem); 1556 return NULL; 1557 } 1558 1559 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1560 enum nvme_subsys_type type) 1561 { 1562 struct nvmet_subsys *subsys; 1563 char serial[NVMET_SN_MAX_SIZE / 2]; 1564 int ret; 1565 1566 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1567 if (!subsys) 1568 return ERR_PTR(-ENOMEM); 1569 1570 subsys->ver = NVMET_DEFAULT_VS; 1571 /* generate a random serial number as our controllers are ephemeral: */ 1572 get_random_bytes(&serial, sizeof(serial)); 1573 bin2hex(subsys->serial, &serial, sizeof(serial)); 1574 1575 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1576 if (!subsys->model_number) { 1577 ret = -ENOMEM; 1578 goto free_subsys; 1579 } 1580 1581 subsys->ieee_oui = 0; 1582 1583 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1584 if (!subsys->firmware_rev) { 1585 ret = -ENOMEM; 1586 goto free_mn; 1587 } 1588 1589 switch (type) { 1590 case NVME_NQN_NVME: 1591 subsys->max_qid = NVMET_NR_QUEUES; 1592 break; 1593 case NVME_NQN_DISC: 1594 case NVME_NQN_CURR: 1595 subsys->max_qid = 0; 1596 break; 1597 default: 1598 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1599 ret = -EINVAL; 1600 goto free_fr; 1601 } 1602 subsys->type = type; 1603 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1604 GFP_KERNEL); 1605 if (!subsys->subsysnqn) { 1606 ret = -ENOMEM; 1607 goto free_fr; 1608 } 1609 subsys->cntlid_min = NVME_CNTLID_MIN; 1610 subsys->cntlid_max = NVME_CNTLID_MAX; 1611 kref_init(&subsys->ref); 1612 1613 mutex_init(&subsys->lock); 1614 xa_init(&subsys->namespaces); 1615 INIT_LIST_HEAD(&subsys->ctrls); 1616 INIT_LIST_HEAD(&subsys->hosts); 1617 1618 return subsys; 1619 1620 free_fr: 1621 kfree(subsys->firmware_rev); 1622 free_mn: 1623 kfree(subsys->model_number); 1624 free_subsys: 1625 kfree(subsys); 1626 return ERR_PTR(ret); 1627 } 1628 1629 static void nvmet_subsys_free(struct kref *ref) 1630 { 1631 struct nvmet_subsys *subsys = 1632 container_of(ref, struct nvmet_subsys, ref); 1633 1634 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1635 1636 xa_destroy(&subsys->namespaces); 1637 nvmet_passthru_subsys_free(subsys); 1638 1639 kfree(subsys->subsysnqn); 1640 kfree(subsys->model_number); 1641 kfree(subsys->firmware_rev); 1642 kfree(subsys); 1643 } 1644 1645 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1646 { 1647 struct nvmet_ctrl *ctrl; 1648 1649 mutex_lock(&subsys->lock); 1650 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1651 ctrl->ops->delete_ctrl(ctrl); 1652 mutex_unlock(&subsys->lock); 1653 } 1654 1655 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1656 { 1657 kref_put(&subsys->ref, nvmet_subsys_free); 1658 } 1659 1660 static int __init nvmet_init(void) 1661 { 1662 int error = -ENOMEM; 1663 1664 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1665 1666 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1667 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1668 SLAB_HWCACHE_ALIGN, NULL); 1669 if (!nvmet_bvec_cache) 1670 return -ENOMEM; 1671 1672 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1673 if (!zbd_wq) 1674 goto out_destroy_bvec_cache; 1675 1676 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1677 WQ_MEM_RECLAIM, 0); 1678 if (!buffered_io_wq) 1679 goto out_free_zbd_work_queue; 1680 1681 nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0); 1682 if (!nvmet_wq) 1683 goto out_free_buffered_work_queue; 1684 1685 error = nvmet_init_discovery(); 1686 if (error) 1687 goto out_free_nvmet_work_queue; 1688 1689 error = nvmet_init_configfs(); 1690 if (error) 1691 goto out_exit_discovery; 1692 return 0; 1693 1694 out_exit_discovery: 1695 nvmet_exit_discovery(); 1696 out_free_nvmet_work_queue: 1697 destroy_workqueue(nvmet_wq); 1698 out_free_buffered_work_queue: 1699 destroy_workqueue(buffered_io_wq); 1700 out_free_zbd_work_queue: 1701 destroy_workqueue(zbd_wq); 1702 out_destroy_bvec_cache: 1703 kmem_cache_destroy(nvmet_bvec_cache); 1704 return error; 1705 } 1706 1707 static void __exit nvmet_exit(void) 1708 { 1709 nvmet_exit_configfs(); 1710 nvmet_exit_discovery(); 1711 ida_destroy(&cntlid_ida); 1712 destroy_workqueue(nvmet_wq); 1713 destroy_workqueue(buffered_io_wq); 1714 destroy_workqueue(zbd_wq); 1715 kmem_cache_destroy(nvmet_bvec_cache); 1716 1717 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1718 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1719 } 1720 1721 module_init(nvmet_init); 1722 module_exit(nvmet_exit); 1723 1724 MODULE_LICENSE("GPL v2"); 1725