xref: /openbmc/linux/drivers/nvme/target/core.c (revision d4295e12)
1 /*
2  * Common code for the NVMe target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
18 #include <linux/pci-p2pdma.h>
19 
20 #include "nvmet.h"
21 
22 struct workqueue_struct *buffered_io_wq;
23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24 static DEFINE_IDA(cntlid_ida);
25 
26 /*
27  * This read/write semaphore is used to synchronize access to configuration
28  * information on a target system that will result in discovery log page
29  * information change for at least one host.
30  * The full list of resources to protected by this semaphore is:
31  *
32  *  - subsystems list
33  *  - per-subsystem allowed hosts list
34  *  - allow_any_host subsystem attribute
35  *  - nvmet_genctr
36  *  - the nvmet_transports array
37  *
38  * When updating any of those lists/structures write lock should be obtained,
39  * while when reading (popolating discovery log page or checking host-subsystem
40  * link) read lock is obtained to allow concurrent reads.
41  */
42 DECLARE_RWSEM(nvmet_config_sem);
43 
44 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
45 u64 nvmet_ana_chgcnt;
46 DECLARE_RWSEM(nvmet_ana_sem);
47 
48 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
49 		const char *subsysnqn);
50 
51 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
52 		size_t len)
53 {
54 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
55 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
56 	return 0;
57 }
58 
59 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
60 {
61 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
62 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
63 	return 0;
64 }
65 
66 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
67 {
68 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len)
69 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
70 	return 0;
71 }
72 
73 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
74 {
75 	struct nvmet_ns *ns;
76 
77 	if (list_empty(&subsys->namespaces))
78 		return 0;
79 
80 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
81 	return ns->nsid;
82 }
83 
84 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
85 {
86 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
87 }
88 
89 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
90 {
91 	struct nvmet_req *req;
92 
93 	while (1) {
94 		mutex_lock(&ctrl->lock);
95 		if (!ctrl->nr_async_event_cmds) {
96 			mutex_unlock(&ctrl->lock);
97 			return;
98 		}
99 
100 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
101 		mutex_unlock(&ctrl->lock);
102 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
103 	}
104 }
105 
106 static void nvmet_async_event_work(struct work_struct *work)
107 {
108 	struct nvmet_ctrl *ctrl =
109 		container_of(work, struct nvmet_ctrl, async_event_work);
110 	struct nvmet_async_event *aen;
111 	struct nvmet_req *req;
112 
113 	while (1) {
114 		mutex_lock(&ctrl->lock);
115 		aen = list_first_entry_or_null(&ctrl->async_events,
116 				struct nvmet_async_event, entry);
117 		if (!aen || !ctrl->nr_async_event_cmds) {
118 			mutex_unlock(&ctrl->lock);
119 			return;
120 		}
121 
122 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
123 		nvmet_set_result(req, nvmet_async_event_result(aen));
124 
125 		list_del(&aen->entry);
126 		kfree(aen);
127 
128 		mutex_unlock(&ctrl->lock);
129 		nvmet_req_complete(req, 0);
130 	}
131 }
132 
133 static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
134 		u8 event_info, u8 log_page)
135 {
136 	struct nvmet_async_event *aen;
137 
138 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
139 	if (!aen)
140 		return;
141 
142 	aen->event_type = event_type;
143 	aen->event_info = event_info;
144 	aen->log_page = log_page;
145 
146 	mutex_lock(&ctrl->lock);
147 	list_add_tail(&aen->entry, &ctrl->async_events);
148 	mutex_unlock(&ctrl->lock);
149 
150 	schedule_work(&ctrl->async_event_work);
151 }
152 
153 static bool nvmet_aen_disabled(struct nvmet_ctrl *ctrl, u32 aen)
154 {
155 	if (!(READ_ONCE(ctrl->aen_enabled) & aen))
156 		return true;
157 	return test_and_set_bit(aen, &ctrl->aen_masked);
158 }
159 
160 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
161 {
162 	u32 i;
163 
164 	mutex_lock(&ctrl->lock);
165 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
166 		goto out_unlock;
167 
168 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
169 		if (ctrl->changed_ns_list[i] == nsid)
170 			goto out_unlock;
171 	}
172 
173 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
174 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
175 		ctrl->nr_changed_ns = U32_MAX;
176 		goto out_unlock;
177 	}
178 
179 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
180 out_unlock:
181 	mutex_unlock(&ctrl->lock);
182 }
183 
184 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
185 {
186 	struct nvmet_ctrl *ctrl;
187 
188 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
189 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
190 		if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_NS_ATTR))
191 			continue;
192 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
193 				NVME_AER_NOTICE_NS_CHANGED,
194 				NVME_LOG_CHANGED_NS);
195 	}
196 }
197 
198 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
199 		struct nvmet_port *port)
200 {
201 	struct nvmet_ctrl *ctrl;
202 
203 	mutex_lock(&subsys->lock);
204 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
205 		if (port && ctrl->port != port)
206 			continue;
207 		if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_ANA_CHANGE))
208 			continue;
209 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
210 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
211 	}
212 	mutex_unlock(&subsys->lock);
213 }
214 
215 void nvmet_port_send_ana_event(struct nvmet_port *port)
216 {
217 	struct nvmet_subsys_link *p;
218 
219 	down_read(&nvmet_config_sem);
220 	list_for_each_entry(p, &port->subsystems, entry)
221 		nvmet_send_ana_event(p->subsys, port);
222 	up_read(&nvmet_config_sem);
223 }
224 
225 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
226 {
227 	int ret = 0;
228 
229 	down_write(&nvmet_config_sem);
230 	if (nvmet_transports[ops->type])
231 		ret = -EINVAL;
232 	else
233 		nvmet_transports[ops->type] = ops;
234 	up_write(&nvmet_config_sem);
235 
236 	return ret;
237 }
238 EXPORT_SYMBOL_GPL(nvmet_register_transport);
239 
240 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
241 {
242 	down_write(&nvmet_config_sem);
243 	nvmet_transports[ops->type] = NULL;
244 	up_write(&nvmet_config_sem);
245 }
246 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
247 
248 int nvmet_enable_port(struct nvmet_port *port)
249 {
250 	const struct nvmet_fabrics_ops *ops;
251 	int ret;
252 
253 	lockdep_assert_held(&nvmet_config_sem);
254 
255 	ops = nvmet_transports[port->disc_addr.trtype];
256 	if (!ops) {
257 		up_write(&nvmet_config_sem);
258 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
259 		down_write(&nvmet_config_sem);
260 		ops = nvmet_transports[port->disc_addr.trtype];
261 		if (!ops) {
262 			pr_err("transport type %d not supported\n",
263 				port->disc_addr.trtype);
264 			return -EINVAL;
265 		}
266 	}
267 
268 	if (!try_module_get(ops->owner))
269 		return -EINVAL;
270 
271 	ret = ops->add_port(port);
272 	if (ret) {
273 		module_put(ops->owner);
274 		return ret;
275 	}
276 
277 	/* If the transport didn't set inline_data_size, then disable it. */
278 	if (port->inline_data_size < 0)
279 		port->inline_data_size = 0;
280 
281 	port->enabled = true;
282 	return 0;
283 }
284 
285 void nvmet_disable_port(struct nvmet_port *port)
286 {
287 	const struct nvmet_fabrics_ops *ops;
288 
289 	lockdep_assert_held(&nvmet_config_sem);
290 
291 	port->enabled = false;
292 
293 	ops = nvmet_transports[port->disc_addr.trtype];
294 	ops->remove_port(port);
295 	module_put(ops->owner);
296 }
297 
298 static void nvmet_keep_alive_timer(struct work_struct *work)
299 {
300 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
301 			struct nvmet_ctrl, ka_work);
302 
303 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
304 		ctrl->cntlid, ctrl->kato);
305 
306 	nvmet_ctrl_fatal_error(ctrl);
307 }
308 
309 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
310 {
311 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
312 		ctrl->cntlid, ctrl->kato);
313 
314 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
315 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
316 }
317 
318 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
319 {
320 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
321 
322 	cancel_delayed_work_sync(&ctrl->ka_work);
323 }
324 
325 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
326 		__le32 nsid)
327 {
328 	struct nvmet_ns *ns;
329 
330 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
331 		if (ns->nsid == le32_to_cpu(nsid))
332 			return ns;
333 	}
334 
335 	return NULL;
336 }
337 
338 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
339 {
340 	struct nvmet_ns *ns;
341 
342 	rcu_read_lock();
343 	ns = __nvmet_find_namespace(ctrl, nsid);
344 	if (ns)
345 		percpu_ref_get(&ns->ref);
346 	rcu_read_unlock();
347 
348 	return ns;
349 }
350 
351 static void nvmet_destroy_namespace(struct percpu_ref *ref)
352 {
353 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
354 
355 	complete(&ns->disable_done);
356 }
357 
358 void nvmet_put_namespace(struct nvmet_ns *ns)
359 {
360 	percpu_ref_put(&ns->ref);
361 }
362 
363 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
364 {
365 	nvmet_bdev_ns_disable(ns);
366 	nvmet_file_ns_disable(ns);
367 }
368 
369 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
370 {
371 	int ret;
372 	struct pci_dev *p2p_dev;
373 
374 	if (!ns->use_p2pmem)
375 		return 0;
376 
377 	if (!ns->bdev) {
378 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
379 		return -EINVAL;
380 	}
381 
382 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
383 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
384 		       ns->device_path);
385 		return -EINVAL;
386 	}
387 
388 	if (ns->p2p_dev) {
389 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
390 		if (ret < 0)
391 			return -EINVAL;
392 	} else {
393 		/*
394 		 * Right now we just check that there is p2pmem available so
395 		 * we can report an error to the user right away if there
396 		 * is not. We'll find the actual device to use once we
397 		 * setup the controller when the port's device is available.
398 		 */
399 
400 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
401 		if (!p2p_dev) {
402 			pr_err("no peer-to-peer memory is available for %s\n",
403 			       ns->device_path);
404 			return -EINVAL;
405 		}
406 
407 		pci_dev_put(p2p_dev);
408 	}
409 
410 	return 0;
411 }
412 
413 /*
414  * Note: ctrl->subsys->lock should be held when calling this function
415  */
416 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
417 				    struct nvmet_ns *ns)
418 {
419 	struct device *clients[2];
420 	struct pci_dev *p2p_dev;
421 	int ret;
422 
423 	if (!ctrl->p2p_client || !ns->use_p2pmem)
424 		return;
425 
426 	if (ns->p2p_dev) {
427 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
428 		if (ret < 0)
429 			return;
430 
431 		p2p_dev = pci_dev_get(ns->p2p_dev);
432 	} else {
433 		clients[0] = ctrl->p2p_client;
434 		clients[1] = nvmet_ns_dev(ns);
435 
436 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
437 		if (!p2p_dev) {
438 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
439 			       dev_name(ctrl->p2p_client), ns->device_path);
440 			return;
441 		}
442 	}
443 
444 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
445 	if (ret < 0)
446 		pci_dev_put(p2p_dev);
447 
448 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
449 		ns->nsid);
450 }
451 
452 int nvmet_ns_enable(struct nvmet_ns *ns)
453 {
454 	struct nvmet_subsys *subsys = ns->subsys;
455 	struct nvmet_ctrl *ctrl;
456 	int ret;
457 
458 	mutex_lock(&subsys->lock);
459 	ret = -EMFILE;
460 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
461 		goto out_unlock;
462 	ret = 0;
463 	if (ns->enabled)
464 		goto out_unlock;
465 
466 	ret = nvmet_bdev_ns_enable(ns);
467 	if (ret == -ENOTBLK)
468 		ret = nvmet_file_ns_enable(ns);
469 	if (ret)
470 		goto out_unlock;
471 
472 	ret = nvmet_p2pmem_ns_enable(ns);
473 	if (ret)
474 		goto out_unlock;
475 
476 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
477 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
478 
479 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
480 				0, GFP_KERNEL);
481 	if (ret)
482 		goto out_dev_put;
483 
484 	if (ns->nsid > subsys->max_nsid)
485 		subsys->max_nsid = ns->nsid;
486 
487 	/*
488 	 * The namespaces list needs to be sorted to simplify the implementation
489 	 * of the Identify Namepace List subcommand.
490 	 */
491 	if (list_empty(&subsys->namespaces)) {
492 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
493 	} else {
494 		struct nvmet_ns *old;
495 
496 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
497 			BUG_ON(ns->nsid == old->nsid);
498 			if (ns->nsid < old->nsid)
499 				break;
500 		}
501 
502 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
503 	}
504 	subsys->nr_namespaces++;
505 
506 	nvmet_ns_changed(subsys, ns->nsid);
507 	ns->enabled = true;
508 	ret = 0;
509 out_unlock:
510 	mutex_unlock(&subsys->lock);
511 	return ret;
512 out_dev_put:
513 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
514 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
515 
516 	nvmet_ns_dev_disable(ns);
517 	goto out_unlock;
518 }
519 
520 void nvmet_ns_disable(struct nvmet_ns *ns)
521 {
522 	struct nvmet_subsys *subsys = ns->subsys;
523 	struct nvmet_ctrl *ctrl;
524 
525 	mutex_lock(&subsys->lock);
526 	if (!ns->enabled)
527 		goto out_unlock;
528 
529 	ns->enabled = false;
530 	list_del_rcu(&ns->dev_link);
531 	if (ns->nsid == subsys->max_nsid)
532 		subsys->max_nsid = nvmet_max_nsid(subsys);
533 
534 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
535 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
536 
537 	mutex_unlock(&subsys->lock);
538 
539 	/*
540 	 * Now that we removed the namespaces from the lookup list, we
541 	 * can kill the per_cpu ref and wait for any remaining references
542 	 * to be dropped, as well as a RCU grace period for anyone only
543 	 * using the namepace under rcu_read_lock().  Note that we can't
544 	 * use call_rcu here as we need to ensure the namespaces have
545 	 * been fully destroyed before unloading the module.
546 	 */
547 	percpu_ref_kill(&ns->ref);
548 	synchronize_rcu();
549 	wait_for_completion(&ns->disable_done);
550 	percpu_ref_exit(&ns->ref);
551 
552 	mutex_lock(&subsys->lock);
553 
554 	subsys->nr_namespaces--;
555 	nvmet_ns_changed(subsys, ns->nsid);
556 	nvmet_ns_dev_disable(ns);
557 out_unlock:
558 	mutex_unlock(&subsys->lock);
559 }
560 
561 void nvmet_ns_free(struct nvmet_ns *ns)
562 {
563 	nvmet_ns_disable(ns);
564 
565 	down_write(&nvmet_ana_sem);
566 	nvmet_ana_group_enabled[ns->anagrpid]--;
567 	up_write(&nvmet_ana_sem);
568 
569 	kfree(ns->device_path);
570 	kfree(ns);
571 }
572 
573 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
574 {
575 	struct nvmet_ns *ns;
576 
577 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
578 	if (!ns)
579 		return NULL;
580 
581 	INIT_LIST_HEAD(&ns->dev_link);
582 	init_completion(&ns->disable_done);
583 
584 	ns->nsid = nsid;
585 	ns->subsys = subsys;
586 
587 	down_write(&nvmet_ana_sem);
588 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
589 	nvmet_ana_group_enabled[ns->anagrpid]++;
590 	up_write(&nvmet_ana_sem);
591 
592 	uuid_gen(&ns->uuid);
593 	ns->buffered_io = false;
594 
595 	return ns;
596 }
597 
598 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
599 {
600 	u32 old_sqhd, new_sqhd;
601 	u16 sqhd;
602 
603 	if (status)
604 		nvmet_set_status(req, status);
605 
606 	if (req->sq->size) {
607 		do {
608 			old_sqhd = req->sq->sqhd;
609 			new_sqhd = (old_sqhd + 1) % req->sq->size;
610 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
611 					old_sqhd);
612 	}
613 	sqhd = req->sq->sqhd & 0x0000FFFF;
614 	req->rsp->sq_head = cpu_to_le16(sqhd);
615 	req->rsp->sq_id = cpu_to_le16(req->sq->qid);
616 	req->rsp->command_id = req->cmd->common.command_id;
617 
618 	if (req->ns)
619 		nvmet_put_namespace(req->ns);
620 	req->ops->queue_response(req);
621 }
622 
623 void nvmet_req_complete(struct nvmet_req *req, u16 status)
624 {
625 	__nvmet_req_complete(req, status);
626 	percpu_ref_put(&req->sq->ref);
627 }
628 EXPORT_SYMBOL_GPL(nvmet_req_complete);
629 
630 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
631 		u16 qid, u16 size)
632 {
633 	cq->qid = qid;
634 	cq->size = size;
635 
636 	ctrl->cqs[qid] = cq;
637 }
638 
639 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
640 		u16 qid, u16 size)
641 {
642 	sq->sqhd = 0;
643 	sq->qid = qid;
644 	sq->size = size;
645 
646 	ctrl->sqs[qid] = sq;
647 }
648 
649 static void nvmet_confirm_sq(struct percpu_ref *ref)
650 {
651 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
652 
653 	complete(&sq->confirm_done);
654 }
655 
656 void nvmet_sq_destroy(struct nvmet_sq *sq)
657 {
658 	/*
659 	 * If this is the admin queue, complete all AERs so that our
660 	 * queue doesn't have outstanding requests on it.
661 	 */
662 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
663 		nvmet_async_events_free(sq->ctrl);
664 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
665 	wait_for_completion(&sq->confirm_done);
666 	wait_for_completion(&sq->free_done);
667 	percpu_ref_exit(&sq->ref);
668 
669 	if (sq->ctrl) {
670 		nvmet_ctrl_put(sq->ctrl);
671 		sq->ctrl = NULL; /* allows reusing the queue later */
672 	}
673 }
674 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
675 
676 static void nvmet_sq_free(struct percpu_ref *ref)
677 {
678 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
679 
680 	complete(&sq->free_done);
681 }
682 
683 int nvmet_sq_init(struct nvmet_sq *sq)
684 {
685 	int ret;
686 
687 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
688 	if (ret) {
689 		pr_err("percpu_ref init failed!\n");
690 		return ret;
691 	}
692 	init_completion(&sq->free_done);
693 	init_completion(&sq->confirm_done);
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(nvmet_sq_init);
698 
699 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
700 		struct nvmet_ns *ns)
701 {
702 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
703 
704 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
705 		return NVME_SC_ANA_INACCESSIBLE;
706 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
707 		return NVME_SC_ANA_PERSISTENT_LOSS;
708 	if (unlikely(state == NVME_ANA_CHANGE))
709 		return NVME_SC_ANA_TRANSITION;
710 	return 0;
711 }
712 
713 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
714 {
715 	if (unlikely(req->ns->readonly)) {
716 		switch (req->cmd->common.opcode) {
717 		case nvme_cmd_read:
718 		case nvme_cmd_flush:
719 			break;
720 		default:
721 			return NVME_SC_NS_WRITE_PROTECTED;
722 		}
723 	}
724 
725 	return 0;
726 }
727 
728 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
729 {
730 	struct nvme_command *cmd = req->cmd;
731 	u16 ret;
732 
733 	ret = nvmet_check_ctrl_status(req, cmd);
734 	if (unlikely(ret))
735 		return ret;
736 
737 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
738 	if (unlikely(!req->ns))
739 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
740 	ret = nvmet_check_ana_state(req->port, req->ns);
741 	if (unlikely(ret))
742 		return ret;
743 	ret = nvmet_io_cmd_check_access(req);
744 	if (unlikely(ret))
745 		return ret;
746 
747 	if (req->ns->file)
748 		return nvmet_file_parse_io_cmd(req);
749 	else
750 		return nvmet_bdev_parse_io_cmd(req);
751 }
752 
753 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
754 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
755 {
756 	u8 flags = req->cmd->common.flags;
757 	u16 status;
758 
759 	req->cq = cq;
760 	req->sq = sq;
761 	req->ops = ops;
762 	req->sg = NULL;
763 	req->sg_cnt = 0;
764 	req->transfer_len = 0;
765 	req->rsp->status = 0;
766 	req->ns = NULL;
767 
768 	/* no support for fused commands yet */
769 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
770 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
771 		goto fail;
772 	}
773 
774 	/*
775 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
776 	 * contains an address of a single contiguous physical buffer that is
777 	 * byte aligned.
778 	 */
779 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
780 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
781 		goto fail;
782 	}
783 
784 	if (unlikely(!req->sq->ctrl))
785 		/* will return an error for any Non-connect command: */
786 		status = nvmet_parse_connect_cmd(req);
787 	else if (likely(req->sq->qid != 0))
788 		status = nvmet_parse_io_cmd(req);
789 	else if (req->cmd->common.opcode == nvme_fabrics_command)
790 		status = nvmet_parse_fabrics_cmd(req);
791 	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
792 		status = nvmet_parse_discovery_cmd(req);
793 	else
794 		status = nvmet_parse_admin_cmd(req);
795 
796 	if (status)
797 		goto fail;
798 
799 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
800 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
801 		goto fail;
802 	}
803 
804 	return true;
805 
806 fail:
807 	__nvmet_req_complete(req, status);
808 	return false;
809 }
810 EXPORT_SYMBOL_GPL(nvmet_req_init);
811 
812 void nvmet_req_uninit(struct nvmet_req *req)
813 {
814 	percpu_ref_put(&req->sq->ref);
815 	if (req->ns)
816 		nvmet_put_namespace(req->ns);
817 }
818 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
819 
820 void nvmet_req_execute(struct nvmet_req *req)
821 {
822 	if (unlikely(req->data_len != req->transfer_len))
823 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
824 	else
825 		req->execute(req);
826 }
827 EXPORT_SYMBOL_GPL(nvmet_req_execute);
828 
829 int nvmet_req_alloc_sgl(struct nvmet_req *req)
830 {
831 	struct pci_dev *p2p_dev = NULL;
832 
833 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
834 		if (req->sq->ctrl && req->ns)
835 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
836 						    req->ns->nsid);
837 
838 		req->p2p_dev = NULL;
839 		if (req->sq->qid && p2p_dev) {
840 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
841 						       req->transfer_len);
842 			if (req->sg) {
843 				req->p2p_dev = p2p_dev;
844 				return 0;
845 			}
846 		}
847 
848 		/*
849 		 * If no P2P memory was available we fallback to using
850 		 * regular memory
851 		 */
852 	}
853 
854 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
855 	if (!req->sg)
856 		return -ENOMEM;
857 
858 	return 0;
859 }
860 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
861 
862 void nvmet_req_free_sgl(struct nvmet_req *req)
863 {
864 	if (req->p2p_dev)
865 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
866 	else
867 		sgl_free(req->sg);
868 
869 	req->sg = NULL;
870 	req->sg_cnt = 0;
871 }
872 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
873 
874 static inline bool nvmet_cc_en(u32 cc)
875 {
876 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
877 }
878 
879 static inline u8 nvmet_cc_css(u32 cc)
880 {
881 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
882 }
883 
884 static inline u8 nvmet_cc_mps(u32 cc)
885 {
886 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
887 }
888 
889 static inline u8 nvmet_cc_ams(u32 cc)
890 {
891 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
892 }
893 
894 static inline u8 nvmet_cc_shn(u32 cc)
895 {
896 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
897 }
898 
899 static inline u8 nvmet_cc_iosqes(u32 cc)
900 {
901 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
902 }
903 
904 static inline u8 nvmet_cc_iocqes(u32 cc)
905 {
906 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
907 }
908 
909 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
910 {
911 	lockdep_assert_held(&ctrl->lock);
912 
913 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
914 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
915 	    nvmet_cc_mps(ctrl->cc) != 0 ||
916 	    nvmet_cc_ams(ctrl->cc) != 0 ||
917 	    nvmet_cc_css(ctrl->cc) != 0) {
918 		ctrl->csts = NVME_CSTS_CFS;
919 		return;
920 	}
921 
922 	ctrl->csts = NVME_CSTS_RDY;
923 
924 	/*
925 	 * Controllers that are not yet enabled should not really enforce the
926 	 * keep alive timeout, but we still want to track a timeout and cleanup
927 	 * in case a host died before it enabled the controller.  Hence, simply
928 	 * reset the keep alive timer when the controller is enabled.
929 	 */
930 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
931 }
932 
933 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
934 {
935 	lockdep_assert_held(&ctrl->lock);
936 
937 	/* XXX: tear down queues? */
938 	ctrl->csts &= ~NVME_CSTS_RDY;
939 	ctrl->cc = 0;
940 }
941 
942 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
943 {
944 	u32 old;
945 
946 	mutex_lock(&ctrl->lock);
947 	old = ctrl->cc;
948 	ctrl->cc = new;
949 
950 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
951 		nvmet_start_ctrl(ctrl);
952 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
953 		nvmet_clear_ctrl(ctrl);
954 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
955 		nvmet_clear_ctrl(ctrl);
956 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
957 	}
958 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
959 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
960 	mutex_unlock(&ctrl->lock);
961 }
962 
963 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
964 {
965 	/* command sets supported: NVMe command set: */
966 	ctrl->cap = (1ULL << 37);
967 	/* CC.EN timeout in 500msec units: */
968 	ctrl->cap |= (15ULL << 24);
969 	/* maximum queue entries supported: */
970 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
971 }
972 
973 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
974 		struct nvmet_req *req, struct nvmet_ctrl **ret)
975 {
976 	struct nvmet_subsys *subsys;
977 	struct nvmet_ctrl *ctrl;
978 	u16 status = 0;
979 
980 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
981 	if (!subsys) {
982 		pr_warn("connect request for invalid subsystem %s!\n",
983 			subsysnqn);
984 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
985 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
986 	}
987 
988 	mutex_lock(&subsys->lock);
989 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
990 		if (ctrl->cntlid == cntlid) {
991 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
992 				pr_warn("hostnqn mismatch.\n");
993 				continue;
994 			}
995 			if (!kref_get_unless_zero(&ctrl->ref))
996 				continue;
997 
998 			*ret = ctrl;
999 			goto out;
1000 		}
1001 	}
1002 
1003 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1004 		cntlid, subsysnqn, hostnqn);
1005 	req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1006 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1007 
1008 out:
1009 	mutex_unlock(&subsys->lock);
1010 	nvmet_subsys_put(subsys);
1011 	return status;
1012 }
1013 
1014 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1015 {
1016 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1017 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1018 		       cmd->common.opcode, req->sq->qid);
1019 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1020 	}
1021 
1022 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1023 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1024 		       cmd->common.opcode, req->sq->qid);
1025 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
1031 		const char *hostnqn)
1032 {
1033 	struct nvmet_host_link *p;
1034 
1035 	if (subsys->allow_any_host)
1036 		return true;
1037 
1038 	list_for_each_entry(p, &subsys->hosts, entry) {
1039 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1040 			return true;
1041 	}
1042 
1043 	return false;
1044 }
1045 
1046 static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
1047 		const char *hostnqn)
1048 {
1049 	struct nvmet_subsys_link *s;
1050 
1051 	list_for_each_entry(s, &req->port->subsystems, entry) {
1052 		if (__nvmet_host_allowed(s->subsys, hostnqn))
1053 			return true;
1054 	}
1055 
1056 	return false;
1057 }
1058 
1059 bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
1060 		const char *hostnqn)
1061 {
1062 	lockdep_assert_held(&nvmet_config_sem);
1063 
1064 	if (subsys->type == NVME_NQN_DISC)
1065 		return nvmet_host_discovery_allowed(req, hostnqn);
1066 	else
1067 		return __nvmet_host_allowed(subsys, hostnqn);
1068 }
1069 
1070 /*
1071  * Note: ctrl->subsys->lock should be held when calling this function
1072  */
1073 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1074 		struct nvmet_req *req)
1075 {
1076 	struct nvmet_ns *ns;
1077 
1078 	if (!req->p2p_client)
1079 		return;
1080 
1081 	ctrl->p2p_client = get_device(req->p2p_client);
1082 
1083 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1084 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1085 }
1086 
1087 /*
1088  * Note: ctrl->subsys->lock should be held when calling this function
1089  */
1090 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1091 {
1092 	struct radix_tree_iter iter;
1093 	void __rcu **slot;
1094 
1095 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1096 		pci_dev_put(radix_tree_deref_slot(slot));
1097 
1098 	put_device(ctrl->p2p_client);
1099 }
1100 
1101 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1102 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1103 {
1104 	struct nvmet_subsys *subsys;
1105 	struct nvmet_ctrl *ctrl;
1106 	int ret;
1107 	u16 status;
1108 
1109 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1110 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1111 	if (!subsys) {
1112 		pr_warn("connect request for invalid subsystem %s!\n",
1113 			subsysnqn);
1114 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1115 		goto out;
1116 	}
1117 
1118 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1119 	down_read(&nvmet_config_sem);
1120 	if (!nvmet_host_allowed(req, subsys, hostnqn)) {
1121 		pr_info("connect by host %s for subsystem %s not allowed\n",
1122 			hostnqn, subsysnqn);
1123 		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1124 		up_read(&nvmet_config_sem);
1125 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1126 		goto out_put_subsystem;
1127 	}
1128 	up_read(&nvmet_config_sem);
1129 
1130 	status = NVME_SC_INTERNAL;
1131 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1132 	if (!ctrl)
1133 		goto out_put_subsystem;
1134 	mutex_init(&ctrl->lock);
1135 
1136 	nvmet_init_cap(ctrl);
1137 
1138 	ctrl->port = req->port;
1139 
1140 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1141 	INIT_LIST_HEAD(&ctrl->async_events);
1142 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1143 
1144 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1145 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1146 
1147 	kref_init(&ctrl->ref);
1148 	ctrl->subsys = subsys;
1149 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1150 
1151 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1152 			sizeof(__le32), GFP_KERNEL);
1153 	if (!ctrl->changed_ns_list)
1154 		goto out_free_ctrl;
1155 
1156 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1157 			sizeof(struct nvmet_cq *),
1158 			GFP_KERNEL);
1159 	if (!ctrl->cqs)
1160 		goto out_free_changed_ns_list;
1161 
1162 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1163 			sizeof(struct nvmet_sq *),
1164 			GFP_KERNEL);
1165 	if (!ctrl->sqs)
1166 		goto out_free_cqs;
1167 
1168 	ret = ida_simple_get(&cntlid_ida,
1169 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1170 			     GFP_KERNEL);
1171 	if (ret < 0) {
1172 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1173 		goto out_free_sqs;
1174 	}
1175 	ctrl->cntlid = ret;
1176 
1177 	ctrl->ops = req->ops;
1178 	if (ctrl->subsys->type == NVME_NQN_DISC) {
1179 		/* Don't accept keep-alive timeout for discovery controllers */
1180 		if (kato) {
1181 			status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
1182 			goto out_remove_ida;
1183 		}
1184 
1185 		/*
1186 		 * Discovery controllers use some arbitrary high value in order
1187 		 * to cleanup stale discovery sessions
1188 		 *
1189 		 * From the latest base diff RC:
1190 		 * "The Keep Alive command is not supported by
1191 		 * Discovery controllers. A transport may specify a
1192 		 * fixed Discovery controller activity timeout value
1193 		 * (e.g., 2 minutes).  If no commands are received
1194 		 * by a Discovery controller within that time
1195 		 * period, the controller may perform the
1196 		 * actions for Keep Alive Timer expiration".
1197 		 */
1198 		ctrl->kato = NVMET_DISC_KATO;
1199 	} else {
1200 		/* keep-alive timeout in seconds */
1201 		ctrl->kato = DIV_ROUND_UP(kato, 1000);
1202 	}
1203 	nvmet_start_keep_alive_timer(ctrl);
1204 
1205 	mutex_lock(&subsys->lock);
1206 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1207 	nvmet_setup_p2p_ns_map(ctrl, req);
1208 	mutex_unlock(&subsys->lock);
1209 
1210 	*ctrlp = ctrl;
1211 	return 0;
1212 
1213 out_remove_ida:
1214 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1215 out_free_sqs:
1216 	kfree(ctrl->sqs);
1217 out_free_cqs:
1218 	kfree(ctrl->cqs);
1219 out_free_changed_ns_list:
1220 	kfree(ctrl->changed_ns_list);
1221 out_free_ctrl:
1222 	kfree(ctrl);
1223 out_put_subsystem:
1224 	nvmet_subsys_put(subsys);
1225 out:
1226 	return status;
1227 }
1228 
1229 static void nvmet_ctrl_free(struct kref *ref)
1230 {
1231 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1232 	struct nvmet_subsys *subsys = ctrl->subsys;
1233 
1234 	mutex_lock(&subsys->lock);
1235 	nvmet_release_p2p_ns_map(ctrl);
1236 	list_del(&ctrl->subsys_entry);
1237 	mutex_unlock(&subsys->lock);
1238 
1239 	nvmet_stop_keep_alive_timer(ctrl);
1240 
1241 	flush_work(&ctrl->async_event_work);
1242 	cancel_work_sync(&ctrl->fatal_err_work);
1243 
1244 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1245 
1246 	kfree(ctrl->sqs);
1247 	kfree(ctrl->cqs);
1248 	kfree(ctrl->changed_ns_list);
1249 	kfree(ctrl);
1250 
1251 	nvmet_subsys_put(subsys);
1252 }
1253 
1254 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1255 {
1256 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1257 }
1258 
1259 static void nvmet_fatal_error_handler(struct work_struct *work)
1260 {
1261 	struct nvmet_ctrl *ctrl =
1262 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1263 
1264 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1265 	ctrl->ops->delete_ctrl(ctrl);
1266 }
1267 
1268 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1269 {
1270 	mutex_lock(&ctrl->lock);
1271 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1272 		ctrl->csts |= NVME_CSTS_CFS;
1273 		INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1274 		schedule_work(&ctrl->fatal_err_work);
1275 	}
1276 	mutex_unlock(&ctrl->lock);
1277 }
1278 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1279 
1280 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1281 		const char *subsysnqn)
1282 {
1283 	struct nvmet_subsys_link *p;
1284 
1285 	if (!port)
1286 		return NULL;
1287 
1288 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1289 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1290 			return NULL;
1291 		return nvmet_disc_subsys;
1292 	}
1293 
1294 	down_read(&nvmet_config_sem);
1295 	list_for_each_entry(p, &port->subsystems, entry) {
1296 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1297 				NVMF_NQN_SIZE)) {
1298 			if (!kref_get_unless_zero(&p->subsys->ref))
1299 				break;
1300 			up_read(&nvmet_config_sem);
1301 			return p->subsys;
1302 		}
1303 	}
1304 	up_read(&nvmet_config_sem);
1305 	return NULL;
1306 }
1307 
1308 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1309 		enum nvme_subsys_type type)
1310 {
1311 	struct nvmet_subsys *subsys;
1312 
1313 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1314 	if (!subsys)
1315 		return NULL;
1316 
1317 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1318 	/* generate a random serial number as our controllers are ephemeral: */
1319 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1320 
1321 	switch (type) {
1322 	case NVME_NQN_NVME:
1323 		subsys->max_qid = NVMET_NR_QUEUES;
1324 		break;
1325 	case NVME_NQN_DISC:
1326 		subsys->max_qid = 0;
1327 		break;
1328 	default:
1329 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1330 		kfree(subsys);
1331 		return NULL;
1332 	}
1333 	subsys->type = type;
1334 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1335 			GFP_KERNEL);
1336 	if (!subsys->subsysnqn) {
1337 		kfree(subsys);
1338 		return NULL;
1339 	}
1340 
1341 	kref_init(&subsys->ref);
1342 
1343 	mutex_init(&subsys->lock);
1344 	INIT_LIST_HEAD(&subsys->namespaces);
1345 	INIT_LIST_HEAD(&subsys->ctrls);
1346 	INIT_LIST_HEAD(&subsys->hosts);
1347 
1348 	return subsys;
1349 }
1350 
1351 static void nvmet_subsys_free(struct kref *ref)
1352 {
1353 	struct nvmet_subsys *subsys =
1354 		container_of(ref, struct nvmet_subsys, ref);
1355 
1356 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1357 
1358 	kfree(subsys->subsysnqn);
1359 	kfree(subsys);
1360 }
1361 
1362 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1363 {
1364 	struct nvmet_ctrl *ctrl;
1365 
1366 	mutex_lock(&subsys->lock);
1367 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1368 		ctrl->ops->delete_ctrl(ctrl);
1369 	mutex_unlock(&subsys->lock);
1370 }
1371 
1372 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1373 {
1374 	kref_put(&subsys->ref, nvmet_subsys_free);
1375 }
1376 
1377 static int __init nvmet_init(void)
1378 {
1379 	int error;
1380 
1381 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1382 
1383 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1384 			WQ_MEM_RECLAIM, 0);
1385 	if (!buffered_io_wq) {
1386 		error = -ENOMEM;
1387 		goto out;
1388 	}
1389 
1390 	error = nvmet_init_discovery();
1391 	if (error)
1392 		goto out_free_work_queue;
1393 
1394 	error = nvmet_init_configfs();
1395 	if (error)
1396 		goto out_exit_discovery;
1397 	return 0;
1398 
1399 out_exit_discovery:
1400 	nvmet_exit_discovery();
1401 out_free_work_queue:
1402 	destroy_workqueue(buffered_io_wq);
1403 out:
1404 	return error;
1405 }
1406 
1407 static void __exit nvmet_exit(void)
1408 {
1409 	nvmet_exit_configfs();
1410 	nvmet_exit_discovery();
1411 	ida_destroy(&cntlid_ida);
1412 	destroy_workqueue(buffered_io_wq);
1413 
1414 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1415 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1416 }
1417 
1418 module_init(nvmet_init);
1419 module_exit(nvmet_exit);
1420 
1421 MODULE_LICENSE("GPL v2");
1422