xref: /openbmc/linux/drivers/nvme/target/core.c (revision c24c57a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		/* FALLTHRU */
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	struct nvmet_ns *ns;
119 
120 	if (list_empty(&subsys->namespaces))
121 		return 0;
122 
123 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124 	return ns->nsid;
125 }
126 
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131 
132 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
133 {
134 	struct nvmet_req *req;
135 
136 	while (1) {
137 		mutex_lock(&ctrl->lock);
138 		if (!ctrl->nr_async_event_cmds) {
139 			mutex_unlock(&ctrl->lock);
140 			return;
141 		}
142 
143 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144 		mutex_unlock(&ctrl->lock);
145 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146 	}
147 }
148 
149 static void nvmet_async_event_work(struct work_struct *work)
150 {
151 	struct nvmet_ctrl *ctrl =
152 		container_of(work, struct nvmet_ctrl, async_event_work);
153 	struct nvmet_async_event *aen;
154 	struct nvmet_req *req;
155 
156 	while (1) {
157 		mutex_lock(&ctrl->lock);
158 		aen = list_first_entry_or_null(&ctrl->async_events,
159 				struct nvmet_async_event, entry);
160 		if (!aen || !ctrl->nr_async_event_cmds) {
161 			mutex_unlock(&ctrl->lock);
162 			return;
163 		}
164 
165 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
166 		nvmet_set_result(req, nvmet_async_event_result(aen));
167 
168 		list_del(&aen->entry);
169 		kfree(aen);
170 
171 		mutex_unlock(&ctrl->lock);
172 		nvmet_req_complete(req, 0);
173 	}
174 }
175 
176 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
177 		u8 event_info, u8 log_page)
178 {
179 	struct nvmet_async_event *aen;
180 
181 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
182 	if (!aen)
183 		return;
184 
185 	aen->event_type = event_type;
186 	aen->event_info = event_info;
187 	aen->log_page = log_page;
188 
189 	mutex_lock(&ctrl->lock);
190 	list_add_tail(&aen->entry, &ctrl->async_events);
191 	mutex_unlock(&ctrl->lock);
192 
193 	schedule_work(&ctrl->async_event_work);
194 }
195 
196 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
197 {
198 	u32 i;
199 
200 	mutex_lock(&ctrl->lock);
201 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
202 		goto out_unlock;
203 
204 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
205 		if (ctrl->changed_ns_list[i] == nsid)
206 			goto out_unlock;
207 	}
208 
209 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
210 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
211 		ctrl->nr_changed_ns = U32_MAX;
212 		goto out_unlock;
213 	}
214 
215 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
216 out_unlock:
217 	mutex_unlock(&ctrl->lock);
218 }
219 
220 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
221 {
222 	struct nvmet_ctrl *ctrl;
223 
224 	lockdep_assert_held(&subsys->lock);
225 
226 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
227 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
228 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
229 			continue;
230 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
231 				NVME_AER_NOTICE_NS_CHANGED,
232 				NVME_LOG_CHANGED_NS);
233 	}
234 }
235 
236 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
237 		struct nvmet_port *port)
238 {
239 	struct nvmet_ctrl *ctrl;
240 
241 	mutex_lock(&subsys->lock);
242 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
243 		if (port && ctrl->port != port)
244 			continue;
245 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
246 			continue;
247 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
248 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
249 	}
250 	mutex_unlock(&subsys->lock);
251 }
252 
253 void nvmet_port_send_ana_event(struct nvmet_port *port)
254 {
255 	struct nvmet_subsys_link *p;
256 
257 	down_read(&nvmet_config_sem);
258 	list_for_each_entry(p, &port->subsystems, entry)
259 		nvmet_send_ana_event(p->subsys, port);
260 	up_read(&nvmet_config_sem);
261 }
262 
263 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
264 {
265 	int ret = 0;
266 
267 	down_write(&nvmet_config_sem);
268 	if (nvmet_transports[ops->type])
269 		ret = -EINVAL;
270 	else
271 		nvmet_transports[ops->type] = ops;
272 	up_write(&nvmet_config_sem);
273 
274 	return ret;
275 }
276 EXPORT_SYMBOL_GPL(nvmet_register_transport);
277 
278 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	down_write(&nvmet_config_sem);
281 	nvmet_transports[ops->type] = NULL;
282 	up_write(&nvmet_config_sem);
283 }
284 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
285 
286 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
287 {
288 	struct nvmet_ctrl *ctrl;
289 
290 	mutex_lock(&subsys->lock);
291 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
292 		if (ctrl->port == port)
293 			ctrl->ops->delete_ctrl(ctrl);
294 	}
295 	mutex_unlock(&subsys->lock);
296 }
297 
298 int nvmet_enable_port(struct nvmet_port *port)
299 {
300 	const struct nvmet_fabrics_ops *ops;
301 	int ret;
302 
303 	lockdep_assert_held(&nvmet_config_sem);
304 
305 	ops = nvmet_transports[port->disc_addr.trtype];
306 	if (!ops) {
307 		up_write(&nvmet_config_sem);
308 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
309 		down_write(&nvmet_config_sem);
310 		ops = nvmet_transports[port->disc_addr.trtype];
311 		if (!ops) {
312 			pr_err("transport type %d not supported\n",
313 				port->disc_addr.trtype);
314 			return -EINVAL;
315 		}
316 	}
317 
318 	if (!try_module_get(ops->owner))
319 		return -EINVAL;
320 
321 	ret = ops->add_port(port);
322 	if (ret) {
323 		module_put(ops->owner);
324 		return ret;
325 	}
326 
327 	/* If the transport didn't set inline_data_size, then disable it. */
328 	if (port->inline_data_size < 0)
329 		port->inline_data_size = 0;
330 
331 	port->enabled = true;
332 	port->tr_ops = ops;
333 	return 0;
334 }
335 
336 void nvmet_disable_port(struct nvmet_port *port)
337 {
338 	const struct nvmet_fabrics_ops *ops;
339 
340 	lockdep_assert_held(&nvmet_config_sem);
341 
342 	port->enabled = false;
343 	port->tr_ops = NULL;
344 
345 	ops = nvmet_transports[port->disc_addr.trtype];
346 	ops->remove_port(port);
347 	module_put(ops->owner);
348 }
349 
350 static void nvmet_keep_alive_timer(struct work_struct *work)
351 {
352 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
353 			struct nvmet_ctrl, ka_work);
354 	bool cmd_seen = ctrl->cmd_seen;
355 
356 	ctrl->cmd_seen = false;
357 	if (cmd_seen) {
358 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
359 			ctrl->cntlid);
360 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
361 		return;
362 	}
363 
364 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
365 		ctrl->cntlid, ctrl->kato);
366 
367 	nvmet_ctrl_fatal_error(ctrl);
368 }
369 
370 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
371 {
372 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
373 		ctrl->cntlid, ctrl->kato);
374 
375 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
376 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
377 }
378 
379 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
380 {
381 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
382 
383 	cancel_delayed_work_sync(&ctrl->ka_work);
384 }
385 
386 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
387 		__le32 nsid)
388 {
389 	struct nvmet_ns *ns;
390 
391 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
392 		if (ns->nsid == le32_to_cpu(nsid))
393 			return ns;
394 	}
395 
396 	return NULL;
397 }
398 
399 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
400 {
401 	struct nvmet_ns *ns;
402 
403 	rcu_read_lock();
404 	ns = __nvmet_find_namespace(ctrl, nsid);
405 	if (ns)
406 		percpu_ref_get(&ns->ref);
407 	rcu_read_unlock();
408 
409 	return ns;
410 }
411 
412 static void nvmet_destroy_namespace(struct percpu_ref *ref)
413 {
414 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
415 
416 	complete(&ns->disable_done);
417 }
418 
419 void nvmet_put_namespace(struct nvmet_ns *ns)
420 {
421 	percpu_ref_put(&ns->ref);
422 }
423 
424 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
425 {
426 	nvmet_bdev_ns_disable(ns);
427 	nvmet_file_ns_disable(ns);
428 }
429 
430 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
431 {
432 	int ret;
433 	struct pci_dev *p2p_dev;
434 
435 	if (!ns->use_p2pmem)
436 		return 0;
437 
438 	if (!ns->bdev) {
439 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
440 		return -EINVAL;
441 	}
442 
443 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
444 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
445 		       ns->device_path);
446 		return -EINVAL;
447 	}
448 
449 	if (ns->p2p_dev) {
450 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
451 		if (ret < 0)
452 			return -EINVAL;
453 	} else {
454 		/*
455 		 * Right now we just check that there is p2pmem available so
456 		 * we can report an error to the user right away if there
457 		 * is not. We'll find the actual device to use once we
458 		 * setup the controller when the port's device is available.
459 		 */
460 
461 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
462 		if (!p2p_dev) {
463 			pr_err("no peer-to-peer memory is available for %s\n",
464 			       ns->device_path);
465 			return -EINVAL;
466 		}
467 
468 		pci_dev_put(p2p_dev);
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  * Note: ctrl->subsys->lock should be held when calling this function
476  */
477 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
478 				    struct nvmet_ns *ns)
479 {
480 	struct device *clients[2];
481 	struct pci_dev *p2p_dev;
482 	int ret;
483 
484 	if (!ctrl->p2p_client || !ns->use_p2pmem)
485 		return;
486 
487 	if (ns->p2p_dev) {
488 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
489 		if (ret < 0)
490 			return;
491 
492 		p2p_dev = pci_dev_get(ns->p2p_dev);
493 	} else {
494 		clients[0] = ctrl->p2p_client;
495 		clients[1] = nvmet_ns_dev(ns);
496 
497 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
498 		if (!p2p_dev) {
499 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
500 			       dev_name(ctrl->p2p_client), ns->device_path);
501 			return;
502 		}
503 	}
504 
505 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
506 	if (ret < 0)
507 		pci_dev_put(p2p_dev);
508 
509 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
510 		ns->nsid);
511 }
512 
513 int nvmet_ns_enable(struct nvmet_ns *ns)
514 {
515 	struct nvmet_subsys *subsys = ns->subsys;
516 	struct nvmet_ctrl *ctrl;
517 	int ret;
518 
519 	mutex_lock(&subsys->lock);
520 	ret = 0;
521 	if (ns->enabled)
522 		goto out_unlock;
523 
524 	ret = -EMFILE;
525 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
526 		goto out_unlock;
527 
528 	ret = nvmet_bdev_ns_enable(ns);
529 	if (ret == -ENOTBLK)
530 		ret = nvmet_file_ns_enable(ns);
531 	if (ret)
532 		goto out_unlock;
533 
534 	ret = nvmet_p2pmem_ns_enable(ns);
535 	if (ret)
536 		goto out_dev_disable;
537 
538 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
539 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
540 
541 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
542 				0, GFP_KERNEL);
543 	if (ret)
544 		goto out_dev_put;
545 
546 	if (ns->nsid > subsys->max_nsid)
547 		subsys->max_nsid = ns->nsid;
548 
549 	/*
550 	 * The namespaces list needs to be sorted to simplify the implementation
551 	 * of the Identify Namepace List subcommand.
552 	 */
553 	if (list_empty(&subsys->namespaces)) {
554 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
555 	} else {
556 		struct nvmet_ns *old;
557 
558 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
559 			BUG_ON(ns->nsid == old->nsid);
560 			if (ns->nsid < old->nsid)
561 				break;
562 		}
563 
564 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
565 	}
566 	subsys->nr_namespaces++;
567 
568 	nvmet_ns_changed(subsys, ns->nsid);
569 	ns->enabled = true;
570 	ret = 0;
571 out_unlock:
572 	mutex_unlock(&subsys->lock);
573 	return ret;
574 out_dev_put:
575 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
576 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
577 out_dev_disable:
578 	nvmet_ns_dev_disable(ns);
579 	goto out_unlock;
580 }
581 
582 void nvmet_ns_disable(struct nvmet_ns *ns)
583 {
584 	struct nvmet_subsys *subsys = ns->subsys;
585 	struct nvmet_ctrl *ctrl;
586 
587 	mutex_lock(&subsys->lock);
588 	if (!ns->enabled)
589 		goto out_unlock;
590 
591 	ns->enabled = false;
592 	list_del_rcu(&ns->dev_link);
593 	if (ns->nsid == subsys->max_nsid)
594 		subsys->max_nsid = nvmet_max_nsid(subsys);
595 
596 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
597 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
598 
599 	mutex_unlock(&subsys->lock);
600 
601 	/*
602 	 * Now that we removed the namespaces from the lookup list, we
603 	 * can kill the per_cpu ref and wait for any remaining references
604 	 * to be dropped, as well as a RCU grace period for anyone only
605 	 * using the namepace under rcu_read_lock().  Note that we can't
606 	 * use call_rcu here as we need to ensure the namespaces have
607 	 * been fully destroyed before unloading the module.
608 	 */
609 	percpu_ref_kill(&ns->ref);
610 	synchronize_rcu();
611 	wait_for_completion(&ns->disable_done);
612 	percpu_ref_exit(&ns->ref);
613 
614 	mutex_lock(&subsys->lock);
615 
616 	subsys->nr_namespaces--;
617 	nvmet_ns_changed(subsys, ns->nsid);
618 	nvmet_ns_dev_disable(ns);
619 out_unlock:
620 	mutex_unlock(&subsys->lock);
621 }
622 
623 void nvmet_ns_free(struct nvmet_ns *ns)
624 {
625 	nvmet_ns_disable(ns);
626 
627 	down_write(&nvmet_ana_sem);
628 	nvmet_ana_group_enabled[ns->anagrpid]--;
629 	up_write(&nvmet_ana_sem);
630 
631 	kfree(ns->device_path);
632 	kfree(ns);
633 }
634 
635 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
636 {
637 	struct nvmet_ns *ns;
638 
639 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
640 	if (!ns)
641 		return NULL;
642 
643 	INIT_LIST_HEAD(&ns->dev_link);
644 	init_completion(&ns->disable_done);
645 
646 	ns->nsid = nsid;
647 	ns->subsys = subsys;
648 
649 	down_write(&nvmet_ana_sem);
650 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
651 	nvmet_ana_group_enabled[ns->anagrpid]++;
652 	up_write(&nvmet_ana_sem);
653 
654 	uuid_gen(&ns->uuid);
655 	ns->buffered_io = false;
656 
657 	return ns;
658 }
659 
660 static void nvmet_update_sq_head(struct nvmet_req *req)
661 {
662 	if (req->sq->size) {
663 		u32 old_sqhd, new_sqhd;
664 
665 		do {
666 			old_sqhd = req->sq->sqhd;
667 			new_sqhd = (old_sqhd + 1) % req->sq->size;
668 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
669 					old_sqhd);
670 	}
671 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
672 }
673 
674 static void nvmet_set_error(struct nvmet_req *req, u16 status)
675 {
676 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
677 	struct nvme_error_slot *new_error_slot;
678 	unsigned long flags;
679 
680 	req->cqe->status = cpu_to_le16(status << 1);
681 
682 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
683 		return;
684 
685 	spin_lock_irqsave(&ctrl->error_lock, flags);
686 	ctrl->err_counter++;
687 	new_error_slot =
688 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
689 
690 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
691 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
692 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
693 	new_error_slot->status_field = cpu_to_le16(status << 1);
694 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
695 	new_error_slot->lba = cpu_to_le64(req->error_slba);
696 	new_error_slot->nsid = req->cmd->common.nsid;
697 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
698 
699 	/* set the more bit for this request */
700 	req->cqe->status |= cpu_to_le16(1 << 14);
701 }
702 
703 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
704 {
705 	if (!req->sq->sqhd_disabled)
706 		nvmet_update_sq_head(req);
707 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
708 	req->cqe->command_id = req->cmd->common.command_id;
709 
710 	if (unlikely(status))
711 		nvmet_set_error(req, status);
712 
713 	trace_nvmet_req_complete(req);
714 
715 	if (req->ns)
716 		nvmet_put_namespace(req->ns);
717 	req->ops->queue_response(req);
718 }
719 
720 void nvmet_req_complete(struct nvmet_req *req, u16 status)
721 {
722 	__nvmet_req_complete(req, status);
723 	percpu_ref_put(&req->sq->ref);
724 }
725 EXPORT_SYMBOL_GPL(nvmet_req_complete);
726 
727 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
728 		u16 qid, u16 size)
729 {
730 	cq->qid = qid;
731 	cq->size = size;
732 
733 	ctrl->cqs[qid] = cq;
734 }
735 
736 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
737 		u16 qid, u16 size)
738 {
739 	sq->sqhd = 0;
740 	sq->qid = qid;
741 	sq->size = size;
742 
743 	ctrl->sqs[qid] = sq;
744 }
745 
746 static void nvmet_confirm_sq(struct percpu_ref *ref)
747 {
748 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
749 
750 	complete(&sq->confirm_done);
751 }
752 
753 void nvmet_sq_destroy(struct nvmet_sq *sq)
754 {
755 	/*
756 	 * If this is the admin queue, complete all AERs so that our
757 	 * queue doesn't have outstanding requests on it.
758 	 */
759 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
760 		nvmet_async_events_free(sq->ctrl);
761 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
762 	wait_for_completion(&sq->confirm_done);
763 	wait_for_completion(&sq->free_done);
764 	percpu_ref_exit(&sq->ref);
765 
766 	if (sq->ctrl) {
767 		nvmet_ctrl_put(sq->ctrl);
768 		sq->ctrl = NULL; /* allows reusing the queue later */
769 	}
770 }
771 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
772 
773 static void nvmet_sq_free(struct percpu_ref *ref)
774 {
775 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
776 
777 	complete(&sq->free_done);
778 }
779 
780 int nvmet_sq_init(struct nvmet_sq *sq)
781 {
782 	int ret;
783 
784 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
785 	if (ret) {
786 		pr_err("percpu_ref init failed!\n");
787 		return ret;
788 	}
789 	init_completion(&sq->free_done);
790 	init_completion(&sq->confirm_done);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(nvmet_sq_init);
795 
796 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
797 		struct nvmet_ns *ns)
798 {
799 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
800 
801 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
802 		return NVME_SC_ANA_INACCESSIBLE;
803 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
804 		return NVME_SC_ANA_PERSISTENT_LOSS;
805 	if (unlikely(state == NVME_ANA_CHANGE))
806 		return NVME_SC_ANA_TRANSITION;
807 	return 0;
808 }
809 
810 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
811 {
812 	if (unlikely(req->ns->readonly)) {
813 		switch (req->cmd->common.opcode) {
814 		case nvme_cmd_read:
815 		case nvme_cmd_flush:
816 			break;
817 		default:
818 			return NVME_SC_NS_WRITE_PROTECTED;
819 		}
820 	}
821 
822 	return 0;
823 }
824 
825 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
826 {
827 	struct nvme_command *cmd = req->cmd;
828 	u16 ret;
829 
830 	ret = nvmet_check_ctrl_status(req, cmd);
831 	if (unlikely(ret))
832 		return ret;
833 
834 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
835 	if (unlikely(!req->ns)) {
836 		req->error_loc = offsetof(struct nvme_common_command, nsid);
837 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
838 	}
839 	ret = nvmet_check_ana_state(req->port, req->ns);
840 	if (unlikely(ret)) {
841 		req->error_loc = offsetof(struct nvme_common_command, nsid);
842 		return ret;
843 	}
844 	ret = nvmet_io_cmd_check_access(req);
845 	if (unlikely(ret)) {
846 		req->error_loc = offsetof(struct nvme_common_command, nsid);
847 		return ret;
848 	}
849 
850 	if (req->ns->file)
851 		return nvmet_file_parse_io_cmd(req);
852 	else
853 		return nvmet_bdev_parse_io_cmd(req);
854 }
855 
856 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
857 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
858 {
859 	u8 flags = req->cmd->common.flags;
860 	u16 status;
861 
862 	req->cq = cq;
863 	req->sq = sq;
864 	req->ops = ops;
865 	req->sg = NULL;
866 	req->sg_cnt = 0;
867 	req->transfer_len = 0;
868 	req->cqe->status = 0;
869 	req->cqe->sq_head = 0;
870 	req->ns = NULL;
871 	req->error_loc = NVMET_NO_ERROR_LOC;
872 	req->error_slba = 0;
873 
874 	trace_nvmet_req_init(req, req->cmd);
875 
876 	/* no support for fused commands yet */
877 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
878 		req->error_loc = offsetof(struct nvme_common_command, flags);
879 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
880 		goto fail;
881 	}
882 
883 	/*
884 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
885 	 * contains an address of a single contiguous physical buffer that is
886 	 * byte aligned.
887 	 */
888 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
889 		req->error_loc = offsetof(struct nvme_common_command, flags);
890 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
891 		goto fail;
892 	}
893 
894 	if (unlikely(!req->sq->ctrl))
895 		/* will return an error for any non-connect command: */
896 		status = nvmet_parse_connect_cmd(req);
897 	else if (likely(req->sq->qid != 0))
898 		status = nvmet_parse_io_cmd(req);
899 	else
900 		status = nvmet_parse_admin_cmd(req);
901 
902 	if (status)
903 		goto fail;
904 
905 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
906 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
907 		goto fail;
908 	}
909 
910 	if (sq->ctrl)
911 		sq->ctrl->cmd_seen = true;
912 
913 	return true;
914 
915 fail:
916 	__nvmet_req_complete(req, status);
917 	return false;
918 }
919 EXPORT_SYMBOL_GPL(nvmet_req_init);
920 
921 void nvmet_req_uninit(struct nvmet_req *req)
922 {
923 	percpu_ref_put(&req->sq->ref);
924 	if (req->ns)
925 		nvmet_put_namespace(req->ns);
926 }
927 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
928 
929 bool nvmet_check_data_len(struct nvmet_req *req, size_t data_len)
930 {
931 	if (unlikely(data_len != req->transfer_len)) {
932 		req->error_loc = offsetof(struct nvme_common_command, dptr);
933 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
934 		return false;
935 	}
936 
937 	return true;
938 }
939 EXPORT_SYMBOL_GPL(nvmet_check_data_len);
940 
941 int nvmet_req_alloc_sgl(struct nvmet_req *req)
942 {
943 	struct pci_dev *p2p_dev = NULL;
944 
945 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
946 		if (req->sq->ctrl && req->ns)
947 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
948 						    req->ns->nsid);
949 
950 		req->p2p_dev = NULL;
951 		if (req->sq->qid && p2p_dev) {
952 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
953 						       req->transfer_len);
954 			if (req->sg) {
955 				req->p2p_dev = p2p_dev;
956 				return 0;
957 			}
958 		}
959 
960 		/*
961 		 * If no P2P memory was available we fallback to using
962 		 * regular memory
963 		 */
964 	}
965 
966 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
967 	if (unlikely(!req->sg))
968 		return -ENOMEM;
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
973 
974 void nvmet_req_free_sgl(struct nvmet_req *req)
975 {
976 	if (req->p2p_dev)
977 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
978 	else
979 		sgl_free(req->sg);
980 
981 	req->sg = NULL;
982 	req->sg_cnt = 0;
983 }
984 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
985 
986 static inline bool nvmet_cc_en(u32 cc)
987 {
988 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
989 }
990 
991 static inline u8 nvmet_cc_css(u32 cc)
992 {
993 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
994 }
995 
996 static inline u8 nvmet_cc_mps(u32 cc)
997 {
998 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
999 }
1000 
1001 static inline u8 nvmet_cc_ams(u32 cc)
1002 {
1003 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1004 }
1005 
1006 static inline u8 nvmet_cc_shn(u32 cc)
1007 {
1008 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1009 }
1010 
1011 static inline u8 nvmet_cc_iosqes(u32 cc)
1012 {
1013 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1014 }
1015 
1016 static inline u8 nvmet_cc_iocqes(u32 cc)
1017 {
1018 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1019 }
1020 
1021 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1022 {
1023 	lockdep_assert_held(&ctrl->lock);
1024 
1025 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1026 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1027 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1028 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1029 	    nvmet_cc_css(ctrl->cc) != 0) {
1030 		ctrl->csts = NVME_CSTS_CFS;
1031 		return;
1032 	}
1033 
1034 	ctrl->csts = NVME_CSTS_RDY;
1035 
1036 	/*
1037 	 * Controllers that are not yet enabled should not really enforce the
1038 	 * keep alive timeout, but we still want to track a timeout and cleanup
1039 	 * in case a host died before it enabled the controller.  Hence, simply
1040 	 * reset the keep alive timer when the controller is enabled.
1041 	 */
1042 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1043 }
1044 
1045 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1046 {
1047 	lockdep_assert_held(&ctrl->lock);
1048 
1049 	/* XXX: tear down queues? */
1050 	ctrl->csts &= ~NVME_CSTS_RDY;
1051 	ctrl->cc = 0;
1052 }
1053 
1054 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1055 {
1056 	u32 old;
1057 
1058 	mutex_lock(&ctrl->lock);
1059 	old = ctrl->cc;
1060 	ctrl->cc = new;
1061 
1062 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1063 		nvmet_start_ctrl(ctrl);
1064 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1065 		nvmet_clear_ctrl(ctrl);
1066 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1067 		nvmet_clear_ctrl(ctrl);
1068 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1069 	}
1070 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1071 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1072 	mutex_unlock(&ctrl->lock);
1073 }
1074 
1075 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1076 {
1077 	/* command sets supported: NVMe command set: */
1078 	ctrl->cap = (1ULL << 37);
1079 	/* CC.EN timeout in 500msec units: */
1080 	ctrl->cap |= (15ULL << 24);
1081 	/* maximum queue entries supported: */
1082 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1083 }
1084 
1085 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1086 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1087 {
1088 	struct nvmet_subsys *subsys;
1089 	struct nvmet_ctrl *ctrl;
1090 	u16 status = 0;
1091 
1092 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1093 	if (!subsys) {
1094 		pr_warn("connect request for invalid subsystem %s!\n",
1095 			subsysnqn);
1096 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1097 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1098 	}
1099 
1100 	mutex_lock(&subsys->lock);
1101 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1102 		if (ctrl->cntlid == cntlid) {
1103 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1104 				pr_warn("hostnqn mismatch.\n");
1105 				continue;
1106 			}
1107 			if (!kref_get_unless_zero(&ctrl->ref))
1108 				continue;
1109 
1110 			*ret = ctrl;
1111 			goto out;
1112 		}
1113 	}
1114 
1115 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1116 		cntlid, subsysnqn, hostnqn);
1117 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1118 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1119 
1120 out:
1121 	mutex_unlock(&subsys->lock);
1122 	nvmet_subsys_put(subsys);
1123 	return status;
1124 }
1125 
1126 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1127 {
1128 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1129 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1130 		       cmd->common.opcode, req->sq->qid);
1131 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1132 	}
1133 
1134 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1135 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1136 		       cmd->common.opcode, req->sq->qid);
1137 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1138 	}
1139 	return 0;
1140 }
1141 
1142 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1143 {
1144 	struct nvmet_host_link *p;
1145 
1146 	lockdep_assert_held(&nvmet_config_sem);
1147 
1148 	if (subsys->allow_any_host)
1149 		return true;
1150 
1151 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1152 		return true;
1153 
1154 	list_for_each_entry(p, &subsys->hosts, entry) {
1155 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1156 			return true;
1157 	}
1158 
1159 	return false;
1160 }
1161 
1162 /*
1163  * Note: ctrl->subsys->lock should be held when calling this function
1164  */
1165 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1166 		struct nvmet_req *req)
1167 {
1168 	struct nvmet_ns *ns;
1169 
1170 	if (!req->p2p_client)
1171 		return;
1172 
1173 	ctrl->p2p_client = get_device(req->p2p_client);
1174 
1175 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1176 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1177 }
1178 
1179 /*
1180  * Note: ctrl->subsys->lock should be held when calling this function
1181  */
1182 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1183 {
1184 	struct radix_tree_iter iter;
1185 	void __rcu **slot;
1186 
1187 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1188 		pci_dev_put(radix_tree_deref_slot(slot));
1189 
1190 	put_device(ctrl->p2p_client);
1191 }
1192 
1193 static void nvmet_fatal_error_handler(struct work_struct *work)
1194 {
1195 	struct nvmet_ctrl *ctrl =
1196 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1197 
1198 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1199 	ctrl->ops->delete_ctrl(ctrl);
1200 }
1201 
1202 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1203 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1204 {
1205 	struct nvmet_subsys *subsys;
1206 	struct nvmet_ctrl *ctrl;
1207 	int ret;
1208 	u16 status;
1209 
1210 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1211 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1212 	if (!subsys) {
1213 		pr_warn("connect request for invalid subsystem %s!\n",
1214 			subsysnqn);
1215 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1216 		goto out;
1217 	}
1218 
1219 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1220 	down_read(&nvmet_config_sem);
1221 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1222 		pr_info("connect by host %s for subsystem %s not allowed\n",
1223 			hostnqn, subsysnqn);
1224 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1225 		up_read(&nvmet_config_sem);
1226 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1227 		goto out_put_subsystem;
1228 	}
1229 	up_read(&nvmet_config_sem);
1230 
1231 	status = NVME_SC_INTERNAL;
1232 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1233 	if (!ctrl)
1234 		goto out_put_subsystem;
1235 	mutex_init(&ctrl->lock);
1236 
1237 	nvmet_init_cap(ctrl);
1238 
1239 	ctrl->port = req->port;
1240 
1241 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1242 	INIT_LIST_HEAD(&ctrl->async_events);
1243 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1244 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1245 
1246 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1247 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1248 
1249 	kref_init(&ctrl->ref);
1250 	ctrl->subsys = subsys;
1251 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1252 
1253 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1254 			sizeof(__le32), GFP_KERNEL);
1255 	if (!ctrl->changed_ns_list)
1256 		goto out_free_ctrl;
1257 
1258 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1259 			sizeof(struct nvmet_cq *),
1260 			GFP_KERNEL);
1261 	if (!ctrl->cqs)
1262 		goto out_free_changed_ns_list;
1263 
1264 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1265 			sizeof(struct nvmet_sq *),
1266 			GFP_KERNEL);
1267 	if (!ctrl->sqs)
1268 		goto out_free_cqs;
1269 
1270 	ret = ida_simple_get(&cntlid_ida,
1271 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1272 			     GFP_KERNEL);
1273 	if (ret < 0) {
1274 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1275 		goto out_free_sqs;
1276 	}
1277 	ctrl->cntlid = ret;
1278 
1279 	ctrl->ops = req->ops;
1280 
1281 	/*
1282 	 * Discovery controllers may use some arbitrary high value
1283 	 * in order to cleanup stale discovery sessions
1284 	 */
1285 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1286 		kato = NVMET_DISC_KATO_MS;
1287 
1288 	/* keep-alive timeout in seconds */
1289 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1290 
1291 	ctrl->err_counter = 0;
1292 	spin_lock_init(&ctrl->error_lock);
1293 
1294 	nvmet_start_keep_alive_timer(ctrl);
1295 
1296 	mutex_lock(&subsys->lock);
1297 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1298 	nvmet_setup_p2p_ns_map(ctrl, req);
1299 	mutex_unlock(&subsys->lock);
1300 
1301 	*ctrlp = ctrl;
1302 	return 0;
1303 
1304 out_free_sqs:
1305 	kfree(ctrl->sqs);
1306 out_free_cqs:
1307 	kfree(ctrl->cqs);
1308 out_free_changed_ns_list:
1309 	kfree(ctrl->changed_ns_list);
1310 out_free_ctrl:
1311 	kfree(ctrl);
1312 out_put_subsystem:
1313 	nvmet_subsys_put(subsys);
1314 out:
1315 	return status;
1316 }
1317 
1318 static void nvmet_ctrl_free(struct kref *ref)
1319 {
1320 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1321 	struct nvmet_subsys *subsys = ctrl->subsys;
1322 
1323 	mutex_lock(&subsys->lock);
1324 	nvmet_release_p2p_ns_map(ctrl);
1325 	list_del(&ctrl->subsys_entry);
1326 	mutex_unlock(&subsys->lock);
1327 
1328 	nvmet_stop_keep_alive_timer(ctrl);
1329 
1330 	flush_work(&ctrl->async_event_work);
1331 	cancel_work_sync(&ctrl->fatal_err_work);
1332 
1333 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1334 
1335 	kfree(ctrl->sqs);
1336 	kfree(ctrl->cqs);
1337 	kfree(ctrl->changed_ns_list);
1338 	kfree(ctrl);
1339 
1340 	nvmet_subsys_put(subsys);
1341 }
1342 
1343 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1344 {
1345 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1346 }
1347 
1348 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1349 {
1350 	mutex_lock(&ctrl->lock);
1351 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1352 		ctrl->csts |= NVME_CSTS_CFS;
1353 		schedule_work(&ctrl->fatal_err_work);
1354 	}
1355 	mutex_unlock(&ctrl->lock);
1356 }
1357 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1358 
1359 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1360 		const char *subsysnqn)
1361 {
1362 	struct nvmet_subsys_link *p;
1363 
1364 	if (!port)
1365 		return NULL;
1366 
1367 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1368 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1369 			return NULL;
1370 		return nvmet_disc_subsys;
1371 	}
1372 
1373 	down_read(&nvmet_config_sem);
1374 	list_for_each_entry(p, &port->subsystems, entry) {
1375 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1376 				NVMF_NQN_SIZE)) {
1377 			if (!kref_get_unless_zero(&p->subsys->ref))
1378 				break;
1379 			up_read(&nvmet_config_sem);
1380 			return p->subsys;
1381 		}
1382 	}
1383 	up_read(&nvmet_config_sem);
1384 	return NULL;
1385 }
1386 
1387 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1388 		enum nvme_subsys_type type)
1389 {
1390 	struct nvmet_subsys *subsys;
1391 
1392 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1393 	if (!subsys)
1394 		return ERR_PTR(-ENOMEM);
1395 
1396 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1397 	/* generate a random serial number as our controllers are ephemeral: */
1398 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1399 
1400 	switch (type) {
1401 	case NVME_NQN_NVME:
1402 		subsys->max_qid = NVMET_NR_QUEUES;
1403 		break;
1404 	case NVME_NQN_DISC:
1405 		subsys->max_qid = 0;
1406 		break;
1407 	default:
1408 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1409 		kfree(subsys);
1410 		return ERR_PTR(-EINVAL);
1411 	}
1412 	subsys->type = type;
1413 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1414 			GFP_KERNEL);
1415 	if (!subsys->subsysnqn) {
1416 		kfree(subsys);
1417 		return ERR_PTR(-ENOMEM);
1418 	}
1419 
1420 	kref_init(&subsys->ref);
1421 
1422 	mutex_init(&subsys->lock);
1423 	INIT_LIST_HEAD(&subsys->namespaces);
1424 	INIT_LIST_HEAD(&subsys->ctrls);
1425 	INIT_LIST_HEAD(&subsys->hosts);
1426 
1427 	return subsys;
1428 }
1429 
1430 static void nvmet_subsys_free(struct kref *ref)
1431 {
1432 	struct nvmet_subsys *subsys =
1433 		container_of(ref, struct nvmet_subsys, ref);
1434 
1435 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1436 
1437 	kfree(subsys->subsysnqn);
1438 	kfree(subsys);
1439 }
1440 
1441 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1442 {
1443 	struct nvmet_ctrl *ctrl;
1444 
1445 	mutex_lock(&subsys->lock);
1446 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1447 		ctrl->ops->delete_ctrl(ctrl);
1448 	mutex_unlock(&subsys->lock);
1449 }
1450 
1451 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1452 {
1453 	kref_put(&subsys->ref, nvmet_subsys_free);
1454 }
1455 
1456 static int __init nvmet_init(void)
1457 {
1458 	int error;
1459 
1460 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1461 
1462 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1463 			WQ_MEM_RECLAIM, 0);
1464 	if (!buffered_io_wq) {
1465 		error = -ENOMEM;
1466 		goto out;
1467 	}
1468 
1469 	error = nvmet_init_discovery();
1470 	if (error)
1471 		goto out_free_work_queue;
1472 
1473 	error = nvmet_init_configfs();
1474 	if (error)
1475 		goto out_exit_discovery;
1476 	return 0;
1477 
1478 out_exit_discovery:
1479 	nvmet_exit_discovery();
1480 out_free_work_queue:
1481 	destroy_workqueue(buffered_io_wq);
1482 out:
1483 	return error;
1484 }
1485 
1486 static void __exit nvmet_exit(void)
1487 {
1488 	nvmet_exit_configfs();
1489 	nvmet_exit_discovery();
1490 	ida_destroy(&cntlid_ida);
1491 	destroy_workqueue(buffered_io_wq);
1492 
1493 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1494 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1495 }
1496 
1497 module_init(nvmet_init);
1498 module_exit(nvmet_exit);
1499 
1500 MODULE_LICENSE("GPL v2");
1501