xref: /openbmc/linux/drivers/nvme/target/core.c (revision be80507d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21 
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39 
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43 
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 	u16 status;
47 
48 	switch (errno) {
49 	case 0:
50 		status = NVME_SC_SUCCESS;
51 		break;
52 	case -ENOSPC:
53 		req->error_loc = offsetof(struct nvme_rw_command, length);
54 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 		break;
56 	case -EREMOTEIO:
57 		req->error_loc = offsetof(struct nvme_rw_command, slba);
58 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 		break;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 			break;
67 		default:
68 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 		}
70 		break;
71 	case -ENODATA:
72 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 		status = NVME_SC_ACCESS_DENIED;
74 		break;
75 	case -EIO:
76 		/* FALLTHRU */
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 
82 	return status;
83 }
84 
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 		const char *subsysnqn);
87 
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 		size_t len)
90 {
91 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 		req->error_loc = offsetof(struct nvme_common_command, dptr);
93 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 	}
95 	return 0;
96 }
97 
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 		req->error_loc = offsetof(struct nvme_common_command, dptr);
102 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 	}
104 	return 0;
105 }
106 
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 		req->error_loc = offsetof(struct nvme_common_command, dptr);
111 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 	}
113 	return 0;
114 }
115 
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 	struct nvmet_ns *ns;
119 
120 	if (list_empty(&subsys->namespaces))
121 		return 0;
122 
123 	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124 	return ns->nsid;
125 }
126 
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131 
132 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
133 {
134 	struct nvmet_req *req;
135 
136 	while (1) {
137 		mutex_lock(&ctrl->lock);
138 		if (!ctrl->nr_async_event_cmds) {
139 			mutex_unlock(&ctrl->lock);
140 			return;
141 		}
142 
143 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144 		mutex_unlock(&ctrl->lock);
145 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146 	}
147 }
148 
149 static void nvmet_async_event_work(struct work_struct *work)
150 {
151 	struct nvmet_ctrl *ctrl =
152 		container_of(work, struct nvmet_ctrl, async_event_work);
153 	struct nvmet_async_event *aen;
154 	struct nvmet_req *req;
155 
156 	while (1) {
157 		mutex_lock(&ctrl->lock);
158 		aen = list_first_entry_or_null(&ctrl->async_events,
159 				struct nvmet_async_event, entry);
160 		if (!aen || !ctrl->nr_async_event_cmds) {
161 			mutex_unlock(&ctrl->lock);
162 			return;
163 		}
164 
165 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
166 		nvmet_set_result(req, nvmet_async_event_result(aen));
167 
168 		list_del(&aen->entry);
169 		kfree(aen);
170 
171 		mutex_unlock(&ctrl->lock);
172 		nvmet_req_complete(req, 0);
173 	}
174 }
175 
176 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
177 		u8 event_info, u8 log_page)
178 {
179 	struct nvmet_async_event *aen;
180 
181 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
182 	if (!aen)
183 		return;
184 
185 	aen->event_type = event_type;
186 	aen->event_info = event_info;
187 	aen->log_page = log_page;
188 
189 	mutex_lock(&ctrl->lock);
190 	list_add_tail(&aen->entry, &ctrl->async_events);
191 	mutex_unlock(&ctrl->lock);
192 
193 	schedule_work(&ctrl->async_event_work);
194 }
195 
196 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
197 {
198 	u32 i;
199 
200 	mutex_lock(&ctrl->lock);
201 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
202 		goto out_unlock;
203 
204 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
205 		if (ctrl->changed_ns_list[i] == nsid)
206 			goto out_unlock;
207 	}
208 
209 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
210 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
211 		ctrl->nr_changed_ns = U32_MAX;
212 		goto out_unlock;
213 	}
214 
215 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
216 out_unlock:
217 	mutex_unlock(&ctrl->lock);
218 }
219 
220 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
221 {
222 	struct nvmet_ctrl *ctrl;
223 
224 	lockdep_assert_held(&subsys->lock);
225 
226 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
227 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
228 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
229 			continue;
230 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
231 				NVME_AER_NOTICE_NS_CHANGED,
232 				NVME_LOG_CHANGED_NS);
233 	}
234 }
235 
236 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
237 		struct nvmet_port *port)
238 {
239 	struct nvmet_ctrl *ctrl;
240 
241 	mutex_lock(&subsys->lock);
242 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
243 		if (port && ctrl->port != port)
244 			continue;
245 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
246 			continue;
247 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
248 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
249 	}
250 	mutex_unlock(&subsys->lock);
251 }
252 
253 void nvmet_port_send_ana_event(struct nvmet_port *port)
254 {
255 	struct nvmet_subsys_link *p;
256 
257 	down_read(&nvmet_config_sem);
258 	list_for_each_entry(p, &port->subsystems, entry)
259 		nvmet_send_ana_event(p->subsys, port);
260 	up_read(&nvmet_config_sem);
261 }
262 
263 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
264 {
265 	int ret = 0;
266 
267 	down_write(&nvmet_config_sem);
268 	if (nvmet_transports[ops->type])
269 		ret = -EINVAL;
270 	else
271 		nvmet_transports[ops->type] = ops;
272 	up_write(&nvmet_config_sem);
273 
274 	return ret;
275 }
276 EXPORT_SYMBOL_GPL(nvmet_register_transport);
277 
278 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	down_write(&nvmet_config_sem);
281 	nvmet_transports[ops->type] = NULL;
282 	up_write(&nvmet_config_sem);
283 }
284 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
285 
286 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
287 {
288 	struct nvmet_ctrl *ctrl;
289 
290 	mutex_lock(&subsys->lock);
291 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
292 		if (ctrl->port == port)
293 			ctrl->ops->delete_ctrl(ctrl);
294 	}
295 	mutex_unlock(&subsys->lock);
296 }
297 
298 int nvmet_enable_port(struct nvmet_port *port)
299 {
300 	const struct nvmet_fabrics_ops *ops;
301 	int ret;
302 
303 	lockdep_assert_held(&nvmet_config_sem);
304 
305 	ops = nvmet_transports[port->disc_addr.trtype];
306 	if (!ops) {
307 		up_write(&nvmet_config_sem);
308 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
309 		down_write(&nvmet_config_sem);
310 		ops = nvmet_transports[port->disc_addr.trtype];
311 		if (!ops) {
312 			pr_err("transport type %d not supported\n",
313 				port->disc_addr.trtype);
314 			return -EINVAL;
315 		}
316 	}
317 
318 	if (!try_module_get(ops->owner))
319 		return -EINVAL;
320 
321 	ret = ops->add_port(port);
322 	if (ret) {
323 		module_put(ops->owner);
324 		return ret;
325 	}
326 
327 	/* If the transport didn't set inline_data_size, then disable it. */
328 	if (port->inline_data_size < 0)
329 		port->inline_data_size = 0;
330 
331 	port->enabled = true;
332 	port->tr_ops = ops;
333 	return 0;
334 }
335 
336 void nvmet_disable_port(struct nvmet_port *port)
337 {
338 	const struct nvmet_fabrics_ops *ops;
339 
340 	lockdep_assert_held(&nvmet_config_sem);
341 
342 	port->enabled = false;
343 	port->tr_ops = NULL;
344 
345 	ops = nvmet_transports[port->disc_addr.trtype];
346 	ops->remove_port(port);
347 	module_put(ops->owner);
348 }
349 
350 static void nvmet_keep_alive_timer(struct work_struct *work)
351 {
352 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
353 			struct nvmet_ctrl, ka_work);
354 	bool cmd_seen = ctrl->cmd_seen;
355 
356 	ctrl->cmd_seen = false;
357 	if (cmd_seen) {
358 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
359 			ctrl->cntlid);
360 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
361 		return;
362 	}
363 
364 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
365 		ctrl->cntlid, ctrl->kato);
366 
367 	nvmet_ctrl_fatal_error(ctrl);
368 }
369 
370 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
371 {
372 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
373 		ctrl->cntlid, ctrl->kato);
374 
375 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
376 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
377 }
378 
379 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
380 {
381 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
382 
383 	cancel_delayed_work_sync(&ctrl->ka_work);
384 }
385 
386 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
387 		__le32 nsid)
388 {
389 	struct nvmet_ns *ns;
390 
391 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
392 		if (ns->nsid == le32_to_cpu(nsid))
393 			return ns;
394 	}
395 
396 	return NULL;
397 }
398 
399 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
400 {
401 	struct nvmet_ns *ns;
402 
403 	rcu_read_lock();
404 	ns = __nvmet_find_namespace(ctrl, nsid);
405 	if (ns)
406 		percpu_ref_get(&ns->ref);
407 	rcu_read_unlock();
408 
409 	return ns;
410 }
411 
412 static void nvmet_destroy_namespace(struct percpu_ref *ref)
413 {
414 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
415 
416 	complete(&ns->disable_done);
417 }
418 
419 void nvmet_put_namespace(struct nvmet_ns *ns)
420 {
421 	percpu_ref_put(&ns->ref);
422 }
423 
424 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
425 {
426 	nvmet_bdev_ns_disable(ns);
427 	nvmet_file_ns_disable(ns);
428 }
429 
430 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
431 {
432 	int ret;
433 	struct pci_dev *p2p_dev;
434 
435 	if (!ns->use_p2pmem)
436 		return 0;
437 
438 	if (!ns->bdev) {
439 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
440 		return -EINVAL;
441 	}
442 
443 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
444 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
445 		       ns->device_path);
446 		return -EINVAL;
447 	}
448 
449 	if (ns->p2p_dev) {
450 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
451 		if (ret < 0)
452 			return -EINVAL;
453 	} else {
454 		/*
455 		 * Right now we just check that there is p2pmem available so
456 		 * we can report an error to the user right away if there
457 		 * is not. We'll find the actual device to use once we
458 		 * setup the controller when the port's device is available.
459 		 */
460 
461 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
462 		if (!p2p_dev) {
463 			pr_err("no peer-to-peer memory is available for %s\n",
464 			       ns->device_path);
465 			return -EINVAL;
466 		}
467 
468 		pci_dev_put(p2p_dev);
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  * Note: ctrl->subsys->lock should be held when calling this function
476  */
477 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
478 				    struct nvmet_ns *ns)
479 {
480 	struct device *clients[2];
481 	struct pci_dev *p2p_dev;
482 	int ret;
483 
484 	if (!ctrl->p2p_client || !ns->use_p2pmem)
485 		return;
486 
487 	if (ns->p2p_dev) {
488 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
489 		if (ret < 0)
490 			return;
491 
492 		p2p_dev = pci_dev_get(ns->p2p_dev);
493 	} else {
494 		clients[0] = ctrl->p2p_client;
495 		clients[1] = nvmet_ns_dev(ns);
496 
497 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
498 		if (!p2p_dev) {
499 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
500 			       dev_name(ctrl->p2p_client), ns->device_path);
501 			return;
502 		}
503 	}
504 
505 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
506 	if (ret < 0)
507 		pci_dev_put(p2p_dev);
508 
509 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
510 		ns->nsid);
511 }
512 
513 int nvmet_ns_enable(struct nvmet_ns *ns)
514 {
515 	struct nvmet_subsys *subsys = ns->subsys;
516 	struct nvmet_ctrl *ctrl;
517 	int ret;
518 
519 	mutex_lock(&subsys->lock);
520 	ret = 0;
521 	if (ns->enabled)
522 		goto out_unlock;
523 
524 	ret = -EMFILE;
525 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
526 		goto out_unlock;
527 
528 	ret = nvmet_bdev_ns_enable(ns);
529 	if (ret == -ENOTBLK)
530 		ret = nvmet_file_ns_enable(ns);
531 	if (ret)
532 		goto out_unlock;
533 
534 	ret = nvmet_p2pmem_ns_enable(ns);
535 	if (ret)
536 		goto out_dev_disable;
537 
538 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
539 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
540 
541 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
542 				0, GFP_KERNEL);
543 	if (ret)
544 		goto out_dev_put;
545 
546 	if (ns->nsid > subsys->max_nsid)
547 		subsys->max_nsid = ns->nsid;
548 
549 	/*
550 	 * The namespaces list needs to be sorted to simplify the implementation
551 	 * of the Identify Namepace List subcommand.
552 	 */
553 	if (list_empty(&subsys->namespaces)) {
554 		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
555 	} else {
556 		struct nvmet_ns *old;
557 
558 		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
559 			BUG_ON(ns->nsid == old->nsid);
560 			if (ns->nsid < old->nsid)
561 				break;
562 		}
563 
564 		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
565 	}
566 	subsys->nr_namespaces++;
567 
568 	nvmet_ns_changed(subsys, ns->nsid);
569 	ns->enabled = true;
570 	ret = 0;
571 out_unlock:
572 	mutex_unlock(&subsys->lock);
573 	return ret;
574 out_dev_put:
575 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
576 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
577 out_dev_disable:
578 	nvmet_ns_dev_disable(ns);
579 	goto out_unlock;
580 }
581 
582 void nvmet_ns_disable(struct nvmet_ns *ns)
583 {
584 	struct nvmet_subsys *subsys = ns->subsys;
585 	struct nvmet_ctrl *ctrl;
586 
587 	mutex_lock(&subsys->lock);
588 	if (!ns->enabled)
589 		goto out_unlock;
590 
591 	ns->enabled = false;
592 	list_del_rcu(&ns->dev_link);
593 	if (ns->nsid == subsys->max_nsid)
594 		subsys->max_nsid = nvmet_max_nsid(subsys);
595 
596 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
597 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
598 
599 	mutex_unlock(&subsys->lock);
600 
601 	/*
602 	 * Now that we removed the namespaces from the lookup list, we
603 	 * can kill the per_cpu ref and wait for any remaining references
604 	 * to be dropped, as well as a RCU grace period for anyone only
605 	 * using the namepace under rcu_read_lock().  Note that we can't
606 	 * use call_rcu here as we need to ensure the namespaces have
607 	 * been fully destroyed before unloading the module.
608 	 */
609 	percpu_ref_kill(&ns->ref);
610 	synchronize_rcu();
611 	wait_for_completion(&ns->disable_done);
612 	percpu_ref_exit(&ns->ref);
613 
614 	mutex_lock(&subsys->lock);
615 
616 	subsys->nr_namespaces--;
617 	nvmet_ns_changed(subsys, ns->nsid);
618 	nvmet_ns_dev_disable(ns);
619 out_unlock:
620 	mutex_unlock(&subsys->lock);
621 }
622 
623 void nvmet_ns_free(struct nvmet_ns *ns)
624 {
625 	nvmet_ns_disable(ns);
626 
627 	down_write(&nvmet_ana_sem);
628 	nvmet_ana_group_enabled[ns->anagrpid]--;
629 	up_write(&nvmet_ana_sem);
630 
631 	kfree(ns->device_path);
632 	kfree(ns);
633 }
634 
635 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
636 {
637 	struct nvmet_ns *ns;
638 
639 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
640 	if (!ns)
641 		return NULL;
642 
643 	INIT_LIST_HEAD(&ns->dev_link);
644 	init_completion(&ns->disable_done);
645 
646 	ns->nsid = nsid;
647 	ns->subsys = subsys;
648 
649 	down_write(&nvmet_ana_sem);
650 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
651 	nvmet_ana_group_enabled[ns->anagrpid]++;
652 	up_write(&nvmet_ana_sem);
653 
654 	uuid_gen(&ns->uuid);
655 	ns->buffered_io = false;
656 
657 	return ns;
658 }
659 
660 static void nvmet_update_sq_head(struct nvmet_req *req)
661 {
662 	if (req->sq->size) {
663 		u32 old_sqhd, new_sqhd;
664 
665 		do {
666 			old_sqhd = req->sq->sqhd;
667 			new_sqhd = (old_sqhd + 1) % req->sq->size;
668 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
669 					old_sqhd);
670 	}
671 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
672 }
673 
674 static void nvmet_set_error(struct nvmet_req *req, u16 status)
675 {
676 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
677 	struct nvme_error_slot *new_error_slot;
678 	unsigned long flags;
679 
680 	req->cqe->status = cpu_to_le16(status << 1);
681 
682 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
683 		return;
684 
685 	spin_lock_irqsave(&ctrl->error_lock, flags);
686 	ctrl->err_counter++;
687 	new_error_slot =
688 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
689 
690 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
691 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
692 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
693 	new_error_slot->status_field = cpu_to_le16(status << 1);
694 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
695 	new_error_slot->lba = cpu_to_le64(req->error_slba);
696 	new_error_slot->nsid = req->cmd->common.nsid;
697 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
698 
699 	/* set the more bit for this request */
700 	req->cqe->status |= cpu_to_le16(1 << 14);
701 }
702 
703 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
704 {
705 	if (!req->sq->sqhd_disabled)
706 		nvmet_update_sq_head(req);
707 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
708 	req->cqe->command_id = req->cmd->common.command_id;
709 
710 	if (unlikely(status))
711 		nvmet_set_error(req, status);
712 
713 	trace_nvmet_req_complete(req);
714 
715 	if (req->ns)
716 		nvmet_put_namespace(req->ns);
717 	req->ops->queue_response(req);
718 }
719 
720 void nvmet_req_complete(struct nvmet_req *req, u16 status)
721 {
722 	__nvmet_req_complete(req, status);
723 	percpu_ref_put(&req->sq->ref);
724 }
725 EXPORT_SYMBOL_GPL(nvmet_req_complete);
726 
727 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
728 		u16 qid, u16 size)
729 {
730 	cq->qid = qid;
731 	cq->size = size;
732 
733 	ctrl->cqs[qid] = cq;
734 }
735 
736 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
737 		u16 qid, u16 size)
738 {
739 	sq->sqhd = 0;
740 	sq->qid = qid;
741 	sq->size = size;
742 
743 	ctrl->sqs[qid] = sq;
744 }
745 
746 static void nvmet_confirm_sq(struct percpu_ref *ref)
747 {
748 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
749 
750 	complete(&sq->confirm_done);
751 }
752 
753 void nvmet_sq_destroy(struct nvmet_sq *sq)
754 {
755 	/*
756 	 * If this is the admin queue, complete all AERs so that our
757 	 * queue doesn't have outstanding requests on it.
758 	 */
759 	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
760 		nvmet_async_events_free(sq->ctrl);
761 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
762 	wait_for_completion(&sq->confirm_done);
763 	wait_for_completion(&sq->free_done);
764 	percpu_ref_exit(&sq->ref);
765 
766 	if (sq->ctrl) {
767 		nvmet_ctrl_put(sq->ctrl);
768 		sq->ctrl = NULL; /* allows reusing the queue later */
769 	}
770 }
771 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
772 
773 static void nvmet_sq_free(struct percpu_ref *ref)
774 {
775 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
776 
777 	complete(&sq->free_done);
778 }
779 
780 int nvmet_sq_init(struct nvmet_sq *sq)
781 {
782 	int ret;
783 
784 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
785 	if (ret) {
786 		pr_err("percpu_ref init failed!\n");
787 		return ret;
788 	}
789 	init_completion(&sq->free_done);
790 	init_completion(&sq->confirm_done);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(nvmet_sq_init);
795 
796 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
797 		struct nvmet_ns *ns)
798 {
799 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
800 
801 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
802 		return NVME_SC_ANA_INACCESSIBLE;
803 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
804 		return NVME_SC_ANA_PERSISTENT_LOSS;
805 	if (unlikely(state == NVME_ANA_CHANGE))
806 		return NVME_SC_ANA_TRANSITION;
807 	return 0;
808 }
809 
810 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
811 {
812 	if (unlikely(req->ns->readonly)) {
813 		switch (req->cmd->common.opcode) {
814 		case nvme_cmd_read:
815 		case nvme_cmd_flush:
816 			break;
817 		default:
818 			return NVME_SC_NS_WRITE_PROTECTED;
819 		}
820 	}
821 
822 	return 0;
823 }
824 
825 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
826 {
827 	struct nvme_command *cmd = req->cmd;
828 	u16 ret;
829 
830 	ret = nvmet_check_ctrl_status(req, cmd);
831 	if (unlikely(ret))
832 		return ret;
833 
834 	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
835 	if (unlikely(!req->ns)) {
836 		req->error_loc = offsetof(struct nvme_common_command, nsid);
837 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
838 	}
839 	ret = nvmet_check_ana_state(req->port, req->ns);
840 	if (unlikely(ret)) {
841 		req->error_loc = offsetof(struct nvme_common_command, nsid);
842 		return ret;
843 	}
844 	ret = nvmet_io_cmd_check_access(req);
845 	if (unlikely(ret)) {
846 		req->error_loc = offsetof(struct nvme_common_command, nsid);
847 		return ret;
848 	}
849 
850 	if (req->ns->file)
851 		return nvmet_file_parse_io_cmd(req);
852 	else
853 		return nvmet_bdev_parse_io_cmd(req);
854 }
855 
856 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
857 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
858 {
859 	u8 flags = req->cmd->common.flags;
860 	u16 status;
861 
862 	req->cq = cq;
863 	req->sq = sq;
864 	req->ops = ops;
865 	req->sg = NULL;
866 	req->sg_cnt = 0;
867 	req->transfer_len = 0;
868 	req->cqe->status = 0;
869 	req->cqe->sq_head = 0;
870 	req->ns = NULL;
871 	req->error_loc = NVMET_NO_ERROR_LOC;
872 	req->error_slba = 0;
873 
874 	trace_nvmet_req_init(req, req->cmd);
875 
876 	/* no support for fused commands yet */
877 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
878 		req->error_loc = offsetof(struct nvme_common_command, flags);
879 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
880 		goto fail;
881 	}
882 
883 	/*
884 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
885 	 * contains an address of a single contiguous physical buffer that is
886 	 * byte aligned.
887 	 */
888 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
889 		req->error_loc = offsetof(struct nvme_common_command, flags);
890 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
891 		goto fail;
892 	}
893 
894 	if (unlikely(!req->sq->ctrl))
895 		/* will return an error for any Non-connect command: */
896 		status = nvmet_parse_connect_cmd(req);
897 	else if (likely(req->sq->qid != 0))
898 		status = nvmet_parse_io_cmd(req);
899 	else if (nvme_is_fabrics(req->cmd))
900 		status = nvmet_parse_fabrics_cmd(req);
901 	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
902 		status = nvmet_parse_discovery_cmd(req);
903 	else
904 		status = nvmet_parse_admin_cmd(req);
905 
906 	if (status)
907 		goto fail;
908 
909 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
910 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
911 		goto fail;
912 	}
913 
914 	if (sq->ctrl)
915 		sq->ctrl->cmd_seen = true;
916 
917 	return true;
918 
919 fail:
920 	__nvmet_req_complete(req, status);
921 	return false;
922 }
923 EXPORT_SYMBOL_GPL(nvmet_req_init);
924 
925 void nvmet_req_uninit(struct nvmet_req *req)
926 {
927 	percpu_ref_put(&req->sq->ref);
928 	if (req->ns)
929 		nvmet_put_namespace(req->ns);
930 }
931 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
932 
933 void nvmet_req_execute(struct nvmet_req *req)
934 {
935 	if (unlikely(req->data_len != req->transfer_len)) {
936 		req->error_loc = offsetof(struct nvme_common_command, dptr);
937 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
938 	} else
939 		req->execute(req);
940 }
941 EXPORT_SYMBOL_GPL(nvmet_req_execute);
942 
943 int nvmet_req_alloc_sgl(struct nvmet_req *req)
944 {
945 	struct pci_dev *p2p_dev = NULL;
946 
947 	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
948 		if (req->sq->ctrl && req->ns)
949 			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
950 						    req->ns->nsid);
951 
952 		req->p2p_dev = NULL;
953 		if (req->sq->qid && p2p_dev) {
954 			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
955 						       req->transfer_len);
956 			if (req->sg) {
957 				req->p2p_dev = p2p_dev;
958 				return 0;
959 			}
960 		}
961 
962 		/*
963 		 * If no P2P memory was available we fallback to using
964 		 * regular memory
965 		 */
966 	}
967 
968 	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
969 	if (!req->sg)
970 		return -ENOMEM;
971 
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
975 
976 void nvmet_req_free_sgl(struct nvmet_req *req)
977 {
978 	if (req->p2p_dev)
979 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
980 	else
981 		sgl_free(req->sg);
982 
983 	req->sg = NULL;
984 	req->sg_cnt = 0;
985 }
986 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
987 
988 static inline bool nvmet_cc_en(u32 cc)
989 {
990 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
991 }
992 
993 static inline u8 nvmet_cc_css(u32 cc)
994 {
995 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
996 }
997 
998 static inline u8 nvmet_cc_mps(u32 cc)
999 {
1000 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1001 }
1002 
1003 static inline u8 nvmet_cc_ams(u32 cc)
1004 {
1005 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1006 }
1007 
1008 static inline u8 nvmet_cc_shn(u32 cc)
1009 {
1010 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1011 }
1012 
1013 static inline u8 nvmet_cc_iosqes(u32 cc)
1014 {
1015 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1016 }
1017 
1018 static inline u8 nvmet_cc_iocqes(u32 cc)
1019 {
1020 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1021 }
1022 
1023 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1024 {
1025 	lockdep_assert_held(&ctrl->lock);
1026 
1027 	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1028 	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1029 	    nvmet_cc_mps(ctrl->cc) != 0 ||
1030 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1031 	    nvmet_cc_css(ctrl->cc) != 0) {
1032 		ctrl->csts = NVME_CSTS_CFS;
1033 		return;
1034 	}
1035 
1036 	ctrl->csts = NVME_CSTS_RDY;
1037 
1038 	/*
1039 	 * Controllers that are not yet enabled should not really enforce the
1040 	 * keep alive timeout, but we still want to track a timeout and cleanup
1041 	 * in case a host died before it enabled the controller.  Hence, simply
1042 	 * reset the keep alive timer when the controller is enabled.
1043 	 */
1044 	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1045 }
1046 
1047 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1048 {
1049 	lockdep_assert_held(&ctrl->lock);
1050 
1051 	/* XXX: tear down queues? */
1052 	ctrl->csts &= ~NVME_CSTS_RDY;
1053 	ctrl->cc = 0;
1054 }
1055 
1056 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1057 {
1058 	u32 old;
1059 
1060 	mutex_lock(&ctrl->lock);
1061 	old = ctrl->cc;
1062 	ctrl->cc = new;
1063 
1064 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1065 		nvmet_start_ctrl(ctrl);
1066 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1067 		nvmet_clear_ctrl(ctrl);
1068 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1069 		nvmet_clear_ctrl(ctrl);
1070 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1071 	}
1072 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1073 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1074 	mutex_unlock(&ctrl->lock);
1075 }
1076 
1077 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1078 {
1079 	/* command sets supported: NVMe command set: */
1080 	ctrl->cap = (1ULL << 37);
1081 	/* CC.EN timeout in 500msec units: */
1082 	ctrl->cap |= (15ULL << 24);
1083 	/* maximum queue entries supported: */
1084 	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1085 }
1086 
1087 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1088 		struct nvmet_req *req, struct nvmet_ctrl **ret)
1089 {
1090 	struct nvmet_subsys *subsys;
1091 	struct nvmet_ctrl *ctrl;
1092 	u16 status = 0;
1093 
1094 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1095 	if (!subsys) {
1096 		pr_warn("connect request for invalid subsystem %s!\n",
1097 			subsysnqn);
1098 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1099 		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1100 	}
1101 
1102 	mutex_lock(&subsys->lock);
1103 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1104 		if (ctrl->cntlid == cntlid) {
1105 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1106 				pr_warn("hostnqn mismatch.\n");
1107 				continue;
1108 			}
1109 			if (!kref_get_unless_zero(&ctrl->ref))
1110 				continue;
1111 
1112 			*ret = ctrl;
1113 			goto out;
1114 		}
1115 	}
1116 
1117 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1118 		cntlid, subsysnqn, hostnqn);
1119 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1120 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1121 
1122 out:
1123 	mutex_unlock(&subsys->lock);
1124 	nvmet_subsys_put(subsys);
1125 	return status;
1126 }
1127 
1128 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1129 {
1130 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1131 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1132 		       cmd->common.opcode, req->sq->qid);
1133 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1134 	}
1135 
1136 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1137 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1138 		       cmd->common.opcode, req->sq->qid);
1139 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1140 	}
1141 	return 0;
1142 }
1143 
1144 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1145 {
1146 	struct nvmet_host_link *p;
1147 
1148 	lockdep_assert_held(&nvmet_config_sem);
1149 
1150 	if (subsys->allow_any_host)
1151 		return true;
1152 
1153 	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1154 		return true;
1155 
1156 	list_for_each_entry(p, &subsys->hosts, entry) {
1157 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1158 			return true;
1159 	}
1160 
1161 	return false;
1162 }
1163 
1164 /*
1165  * Note: ctrl->subsys->lock should be held when calling this function
1166  */
1167 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1168 		struct nvmet_req *req)
1169 {
1170 	struct nvmet_ns *ns;
1171 
1172 	if (!req->p2p_client)
1173 		return;
1174 
1175 	ctrl->p2p_client = get_device(req->p2p_client);
1176 
1177 	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1178 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1179 }
1180 
1181 /*
1182  * Note: ctrl->subsys->lock should be held when calling this function
1183  */
1184 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1185 {
1186 	struct radix_tree_iter iter;
1187 	void __rcu **slot;
1188 
1189 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1190 		pci_dev_put(radix_tree_deref_slot(slot));
1191 
1192 	put_device(ctrl->p2p_client);
1193 }
1194 
1195 static void nvmet_fatal_error_handler(struct work_struct *work)
1196 {
1197 	struct nvmet_ctrl *ctrl =
1198 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1199 
1200 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1201 	ctrl->ops->delete_ctrl(ctrl);
1202 }
1203 
1204 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1205 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1206 {
1207 	struct nvmet_subsys *subsys;
1208 	struct nvmet_ctrl *ctrl;
1209 	int ret;
1210 	u16 status;
1211 
1212 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1213 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1214 	if (!subsys) {
1215 		pr_warn("connect request for invalid subsystem %s!\n",
1216 			subsysnqn);
1217 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1218 		goto out;
1219 	}
1220 
1221 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1222 	down_read(&nvmet_config_sem);
1223 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1224 		pr_info("connect by host %s for subsystem %s not allowed\n",
1225 			hostnqn, subsysnqn);
1226 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1227 		up_read(&nvmet_config_sem);
1228 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1229 		goto out_put_subsystem;
1230 	}
1231 	up_read(&nvmet_config_sem);
1232 
1233 	status = NVME_SC_INTERNAL;
1234 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1235 	if (!ctrl)
1236 		goto out_put_subsystem;
1237 	mutex_init(&ctrl->lock);
1238 
1239 	nvmet_init_cap(ctrl);
1240 
1241 	ctrl->port = req->port;
1242 
1243 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1244 	INIT_LIST_HEAD(&ctrl->async_events);
1245 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1246 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1247 
1248 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1249 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1250 
1251 	kref_init(&ctrl->ref);
1252 	ctrl->subsys = subsys;
1253 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1254 
1255 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1256 			sizeof(__le32), GFP_KERNEL);
1257 	if (!ctrl->changed_ns_list)
1258 		goto out_free_ctrl;
1259 
1260 	ctrl->cqs = kcalloc(subsys->max_qid + 1,
1261 			sizeof(struct nvmet_cq *),
1262 			GFP_KERNEL);
1263 	if (!ctrl->cqs)
1264 		goto out_free_changed_ns_list;
1265 
1266 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1267 			sizeof(struct nvmet_sq *),
1268 			GFP_KERNEL);
1269 	if (!ctrl->sqs)
1270 		goto out_free_cqs;
1271 
1272 	ret = ida_simple_get(&cntlid_ida,
1273 			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1274 			     GFP_KERNEL);
1275 	if (ret < 0) {
1276 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1277 		goto out_free_sqs;
1278 	}
1279 	ctrl->cntlid = ret;
1280 
1281 	ctrl->ops = req->ops;
1282 
1283 	/*
1284 	 * Discovery controllers may use some arbitrary high value
1285 	 * in order to cleanup stale discovery sessions
1286 	 */
1287 	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1288 		kato = NVMET_DISC_KATO_MS;
1289 
1290 	/* keep-alive timeout in seconds */
1291 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1292 
1293 	ctrl->err_counter = 0;
1294 	spin_lock_init(&ctrl->error_lock);
1295 
1296 	nvmet_start_keep_alive_timer(ctrl);
1297 
1298 	mutex_lock(&subsys->lock);
1299 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1300 	nvmet_setup_p2p_ns_map(ctrl, req);
1301 	mutex_unlock(&subsys->lock);
1302 
1303 	*ctrlp = ctrl;
1304 	return 0;
1305 
1306 out_free_sqs:
1307 	kfree(ctrl->sqs);
1308 out_free_cqs:
1309 	kfree(ctrl->cqs);
1310 out_free_changed_ns_list:
1311 	kfree(ctrl->changed_ns_list);
1312 out_free_ctrl:
1313 	kfree(ctrl);
1314 out_put_subsystem:
1315 	nvmet_subsys_put(subsys);
1316 out:
1317 	return status;
1318 }
1319 
1320 static void nvmet_ctrl_free(struct kref *ref)
1321 {
1322 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1323 	struct nvmet_subsys *subsys = ctrl->subsys;
1324 
1325 	mutex_lock(&subsys->lock);
1326 	nvmet_release_p2p_ns_map(ctrl);
1327 	list_del(&ctrl->subsys_entry);
1328 	mutex_unlock(&subsys->lock);
1329 
1330 	nvmet_stop_keep_alive_timer(ctrl);
1331 
1332 	flush_work(&ctrl->async_event_work);
1333 	cancel_work_sync(&ctrl->fatal_err_work);
1334 
1335 	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1336 
1337 	kfree(ctrl->sqs);
1338 	kfree(ctrl->cqs);
1339 	kfree(ctrl->changed_ns_list);
1340 	kfree(ctrl);
1341 
1342 	nvmet_subsys_put(subsys);
1343 }
1344 
1345 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1346 {
1347 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1348 }
1349 
1350 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1351 {
1352 	mutex_lock(&ctrl->lock);
1353 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1354 		ctrl->csts |= NVME_CSTS_CFS;
1355 		schedule_work(&ctrl->fatal_err_work);
1356 	}
1357 	mutex_unlock(&ctrl->lock);
1358 }
1359 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1360 
1361 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1362 		const char *subsysnqn)
1363 {
1364 	struct nvmet_subsys_link *p;
1365 
1366 	if (!port)
1367 		return NULL;
1368 
1369 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1370 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1371 			return NULL;
1372 		return nvmet_disc_subsys;
1373 	}
1374 
1375 	down_read(&nvmet_config_sem);
1376 	list_for_each_entry(p, &port->subsystems, entry) {
1377 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1378 				NVMF_NQN_SIZE)) {
1379 			if (!kref_get_unless_zero(&p->subsys->ref))
1380 				break;
1381 			up_read(&nvmet_config_sem);
1382 			return p->subsys;
1383 		}
1384 	}
1385 	up_read(&nvmet_config_sem);
1386 	return NULL;
1387 }
1388 
1389 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1390 		enum nvme_subsys_type type)
1391 {
1392 	struct nvmet_subsys *subsys;
1393 
1394 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1395 	if (!subsys)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1399 	/* generate a random serial number as our controllers are ephemeral: */
1400 	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1401 
1402 	switch (type) {
1403 	case NVME_NQN_NVME:
1404 		subsys->max_qid = NVMET_NR_QUEUES;
1405 		break;
1406 	case NVME_NQN_DISC:
1407 		subsys->max_qid = 0;
1408 		break;
1409 	default:
1410 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1411 		kfree(subsys);
1412 		return ERR_PTR(-EINVAL);
1413 	}
1414 	subsys->type = type;
1415 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1416 			GFP_KERNEL);
1417 	if (!subsys->subsysnqn) {
1418 		kfree(subsys);
1419 		return ERR_PTR(-ENOMEM);
1420 	}
1421 
1422 	kref_init(&subsys->ref);
1423 
1424 	mutex_init(&subsys->lock);
1425 	INIT_LIST_HEAD(&subsys->namespaces);
1426 	INIT_LIST_HEAD(&subsys->ctrls);
1427 	INIT_LIST_HEAD(&subsys->hosts);
1428 
1429 	return subsys;
1430 }
1431 
1432 static void nvmet_subsys_free(struct kref *ref)
1433 {
1434 	struct nvmet_subsys *subsys =
1435 		container_of(ref, struct nvmet_subsys, ref);
1436 
1437 	WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1438 
1439 	kfree(subsys->subsysnqn);
1440 	kfree(subsys);
1441 }
1442 
1443 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1444 {
1445 	struct nvmet_ctrl *ctrl;
1446 
1447 	mutex_lock(&subsys->lock);
1448 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1449 		ctrl->ops->delete_ctrl(ctrl);
1450 	mutex_unlock(&subsys->lock);
1451 }
1452 
1453 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1454 {
1455 	kref_put(&subsys->ref, nvmet_subsys_free);
1456 }
1457 
1458 static int __init nvmet_init(void)
1459 {
1460 	int error;
1461 
1462 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1463 
1464 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1465 			WQ_MEM_RECLAIM, 0);
1466 	if (!buffered_io_wq) {
1467 		error = -ENOMEM;
1468 		goto out;
1469 	}
1470 
1471 	error = nvmet_init_discovery();
1472 	if (error)
1473 		goto out_free_work_queue;
1474 
1475 	error = nvmet_init_configfs();
1476 	if (error)
1477 		goto out_exit_discovery;
1478 	return 0;
1479 
1480 out_exit_discovery:
1481 	nvmet_exit_discovery();
1482 out_free_work_queue:
1483 	destroy_workqueue(buffered_io_wq);
1484 out:
1485 	return error;
1486 }
1487 
1488 static void __exit nvmet_exit(void)
1489 {
1490 	nvmet_exit_configfs();
1491 	nvmet_exit_discovery();
1492 	ida_destroy(&cntlid_ida);
1493 	destroy_workqueue(buffered_io_wq);
1494 
1495 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1496 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1497 }
1498 
1499 module_init(nvmet_init);
1500 module_exit(nvmet_exit);
1501 
1502 MODULE_LICENSE("GPL v2");
1503