1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #define CREATE_TRACE_POINTS 14 #include "trace.h" 15 16 #include "nvmet.h" 17 18 struct workqueue_struct *buffered_io_wq; 19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 20 static DEFINE_IDA(cntlid_ida); 21 22 /* 23 * This read/write semaphore is used to synchronize access to configuration 24 * information on a target system that will result in discovery log page 25 * information change for at least one host. 26 * The full list of resources to protected by this semaphore is: 27 * 28 * - subsystems list 29 * - per-subsystem allowed hosts list 30 * - allow_any_host subsystem attribute 31 * - nvmet_genctr 32 * - the nvmet_transports array 33 * 34 * When updating any of those lists/structures write lock should be obtained, 35 * while when reading (popolating discovery log page or checking host-subsystem 36 * link) read lock is obtained to allow concurrent reads. 37 */ 38 DECLARE_RWSEM(nvmet_config_sem); 39 40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 41 u64 nvmet_ana_chgcnt; 42 DECLARE_RWSEM(nvmet_ana_sem); 43 44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 45 { 46 u16 status; 47 48 switch (errno) { 49 case 0: 50 status = NVME_SC_SUCCESS; 51 break; 52 case -ENOSPC: 53 req->error_loc = offsetof(struct nvme_rw_command, length); 54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 55 break; 56 case -EREMOTEIO: 57 req->error_loc = offsetof(struct nvme_rw_command, slba); 58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 59 break; 60 case -EOPNOTSUPP: 61 req->error_loc = offsetof(struct nvme_common_command, opcode); 62 switch (req->cmd->common.opcode) { 63 case nvme_cmd_dsm: 64 case nvme_cmd_write_zeroes: 65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 66 break; 67 default: 68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 69 } 70 break; 71 case -ENODATA: 72 req->error_loc = offsetof(struct nvme_rw_command, nsid); 73 status = NVME_SC_ACCESS_DENIED; 74 break; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 status = NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 82 return status; 83 } 84 85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 86 const char *subsysnqn); 87 88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 89 size_t len) 90 { 91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 92 req->error_loc = offsetof(struct nvme_common_command, dptr); 93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 94 } 95 return 0; 96 } 97 98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 99 { 100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 101 req->error_loc = offsetof(struct nvme_common_command, dptr); 102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 103 } 104 return 0; 105 } 106 107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 108 { 109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 110 req->error_loc = offsetof(struct nvme_common_command, dptr); 111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 112 } 113 return 0; 114 } 115 116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys) 117 { 118 unsigned long nsid = 0; 119 struct nvmet_ns *cur; 120 unsigned long idx; 121 122 xa_for_each(&subsys->namespaces, idx, cur) 123 nsid = cur->nsid; 124 125 return nsid; 126 } 127 128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 129 { 130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 131 } 132 133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 134 { 135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR; 136 struct nvmet_req *req; 137 138 mutex_lock(&ctrl->lock); 139 while (ctrl->nr_async_event_cmds) { 140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 141 mutex_unlock(&ctrl->lock); 142 nvmet_req_complete(req, status); 143 mutex_lock(&ctrl->lock); 144 } 145 mutex_unlock(&ctrl->lock); 146 } 147 148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 149 { 150 struct nvmet_async_event *aen; 151 struct nvmet_req *req; 152 153 mutex_lock(&ctrl->lock); 154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 155 aen = list_first_entry(&ctrl->async_events, 156 struct nvmet_async_event, entry); 157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 158 nvmet_set_result(req, nvmet_async_event_result(aen)); 159 160 list_del(&aen->entry); 161 kfree(aen); 162 163 mutex_unlock(&ctrl->lock); 164 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 165 nvmet_req_complete(req, 0); 166 mutex_lock(&ctrl->lock); 167 } 168 mutex_unlock(&ctrl->lock); 169 } 170 171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 172 { 173 struct nvmet_async_event *aen, *tmp; 174 175 mutex_lock(&ctrl->lock); 176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 177 list_del(&aen->entry); 178 kfree(aen); 179 } 180 mutex_unlock(&ctrl->lock); 181 } 182 183 static void nvmet_async_event_work(struct work_struct *work) 184 { 185 struct nvmet_ctrl *ctrl = 186 container_of(work, struct nvmet_ctrl, async_event_work); 187 188 nvmet_async_events_process(ctrl); 189 } 190 191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 192 u8 event_info, u8 log_page) 193 { 194 struct nvmet_async_event *aen; 195 196 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 197 if (!aen) 198 return; 199 200 aen->event_type = event_type; 201 aen->event_info = event_info; 202 aen->log_page = log_page; 203 204 mutex_lock(&ctrl->lock); 205 list_add_tail(&aen->entry, &ctrl->async_events); 206 mutex_unlock(&ctrl->lock); 207 208 schedule_work(&ctrl->async_event_work); 209 } 210 211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 212 { 213 u32 i; 214 215 mutex_lock(&ctrl->lock); 216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 217 goto out_unlock; 218 219 for (i = 0; i < ctrl->nr_changed_ns; i++) { 220 if (ctrl->changed_ns_list[i] == nsid) 221 goto out_unlock; 222 } 223 224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 226 ctrl->nr_changed_ns = U32_MAX; 227 goto out_unlock; 228 } 229 230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 231 out_unlock: 232 mutex_unlock(&ctrl->lock); 233 } 234 235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 236 { 237 struct nvmet_ctrl *ctrl; 238 239 lockdep_assert_held(&subsys->lock); 240 241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 244 continue; 245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 246 NVME_AER_NOTICE_NS_CHANGED, 247 NVME_LOG_CHANGED_NS); 248 } 249 } 250 251 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 252 struct nvmet_port *port) 253 { 254 struct nvmet_ctrl *ctrl; 255 256 mutex_lock(&subsys->lock); 257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 258 if (port && ctrl->port != port) 259 continue; 260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 261 continue; 262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE, 263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 264 } 265 mutex_unlock(&subsys->lock); 266 } 267 268 void nvmet_port_send_ana_event(struct nvmet_port *port) 269 { 270 struct nvmet_subsys_link *p; 271 272 down_read(&nvmet_config_sem); 273 list_for_each_entry(p, &port->subsystems, entry) 274 nvmet_send_ana_event(p->subsys, port); 275 up_read(&nvmet_config_sem); 276 } 277 278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 279 { 280 int ret = 0; 281 282 down_write(&nvmet_config_sem); 283 if (nvmet_transports[ops->type]) 284 ret = -EINVAL; 285 else 286 nvmet_transports[ops->type] = ops; 287 up_write(&nvmet_config_sem); 288 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nvmet_register_transport); 292 293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 294 { 295 down_write(&nvmet_config_sem); 296 nvmet_transports[ops->type] = NULL; 297 up_write(&nvmet_config_sem); 298 } 299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 300 301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 302 { 303 struct nvmet_ctrl *ctrl; 304 305 mutex_lock(&subsys->lock); 306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 307 if (ctrl->port == port) 308 ctrl->ops->delete_ctrl(ctrl); 309 } 310 mutex_unlock(&subsys->lock); 311 } 312 313 int nvmet_enable_port(struct nvmet_port *port) 314 { 315 const struct nvmet_fabrics_ops *ops; 316 int ret; 317 318 lockdep_assert_held(&nvmet_config_sem); 319 320 ops = nvmet_transports[port->disc_addr.trtype]; 321 if (!ops) { 322 up_write(&nvmet_config_sem); 323 request_module("nvmet-transport-%d", port->disc_addr.trtype); 324 down_write(&nvmet_config_sem); 325 ops = nvmet_transports[port->disc_addr.trtype]; 326 if (!ops) { 327 pr_err("transport type %d not supported\n", 328 port->disc_addr.trtype); 329 return -EINVAL; 330 } 331 } 332 333 if (!try_module_get(ops->owner)) 334 return -EINVAL; 335 336 /* 337 * If the user requested PI support and the transport isn't pi capable, 338 * don't enable the port. 339 */ 340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 341 pr_err("T10-PI is not supported by transport type %d\n", 342 port->disc_addr.trtype); 343 ret = -EINVAL; 344 goto out_put; 345 } 346 347 ret = ops->add_port(port); 348 if (ret) 349 goto out_put; 350 351 /* If the transport didn't set inline_data_size, then disable it. */ 352 if (port->inline_data_size < 0) 353 port->inline_data_size = 0; 354 355 port->enabled = true; 356 port->tr_ops = ops; 357 return 0; 358 359 out_put: 360 module_put(ops->owner); 361 return ret; 362 } 363 364 void nvmet_disable_port(struct nvmet_port *port) 365 { 366 const struct nvmet_fabrics_ops *ops; 367 368 lockdep_assert_held(&nvmet_config_sem); 369 370 port->enabled = false; 371 port->tr_ops = NULL; 372 373 ops = nvmet_transports[port->disc_addr.trtype]; 374 ops->remove_port(port); 375 module_put(ops->owner); 376 } 377 378 static void nvmet_keep_alive_timer(struct work_struct *work) 379 { 380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 381 struct nvmet_ctrl, ka_work); 382 bool cmd_seen = ctrl->cmd_seen; 383 384 ctrl->cmd_seen = false; 385 if (cmd_seen) { 386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 387 ctrl->cntlid); 388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 389 return; 390 } 391 392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 393 ctrl->cntlid, ctrl->kato); 394 395 nvmet_ctrl_fatal_error(ctrl); 396 } 397 398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 399 { 400 if (unlikely(ctrl->kato == 0)) 401 return; 402 403 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 404 ctrl->cntlid, ctrl->kato); 405 406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 408 } 409 410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 411 { 412 if (unlikely(ctrl->kato == 0)) 413 return; 414 415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 416 417 cancel_delayed_work_sync(&ctrl->ka_work); 418 } 419 420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid) 421 { 422 struct nvmet_ns *ns; 423 424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid)); 425 if (ns) 426 percpu_ref_get(&ns->ref); 427 428 return ns; 429 } 430 431 static void nvmet_destroy_namespace(struct percpu_ref *ref) 432 { 433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 434 435 complete(&ns->disable_done); 436 } 437 438 void nvmet_put_namespace(struct nvmet_ns *ns) 439 { 440 percpu_ref_put(&ns->ref); 441 } 442 443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 444 { 445 nvmet_bdev_ns_disable(ns); 446 nvmet_file_ns_disable(ns); 447 } 448 449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 450 { 451 int ret; 452 struct pci_dev *p2p_dev; 453 454 if (!ns->use_p2pmem) 455 return 0; 456 457 if (!ns->bdev) { 458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 459 return -EINVAL; 460 } 461 462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 464 ns->device_path); 465 return -EINVAL; 466 } 467 468 if (ns->p2p_dev) { 469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 470 if (ret < 0) 471 return -EINVAL; 472 } else { 473 /* 474 * Right now we just check that there is p2pmem available so 475 * we can report an error to the user right away if there 476 * is not. We'll find the actual device to use once we 477 * setup the controller when the port's device is available. 478 */ 479 480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 481 if (!p2p_dev) { 482 pr_err("no peer-to-peer memory is available for %s\n", 483 ns->device_path); 484 return -EINVAL; 485 } 486 487 pci_dev_put(p2p_dev); 488 } 489 490 return 0; 491 } 492 493 /* 494 * Note: ctrl->subsys->lock should be held when calling this function 495 */ 496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 497 struct nvmet_ns *ns) 498 { 499 struct device *clients[2]; 500 struct pci_dev *p2p_dev; 501 int ret; 502 503 if (!ctrl->p2p_client || !ns->use_p2pmem) 504 return; 505 506 if (ns->p2p_dev) { 507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 508 if (ret < 0) 509 return; 510 511 p2p_dev = pci_dev_get(ns->p2p_dev); 512 } else { 513 clients[0] = ctrl->p2p_client; 514 clients[1] = nvmet_ns_dev(ns); 515 516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 517 if (!p2p_dev) { 518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 519 dev_name(ctrl->p2p_client), ns->device_path); 520 return; 521 } 522 } 523 524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 525 if (ret < 0) 526 pci_dev_put(p2p_dev); 527 528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 529 ns->nsid); 530 } 531 532 void nvmet_ns_revalidate(struct nvmet_ns *ns) 533 { 534 loff_t oldsize = ns->size; 535 536 if (ns->bdev) 537 nvmet_bdev_ns_revalidate(ns); 538 else 539 nvmet_file_ns_revalidate(ns); 540 541 if (oldsize != ns->size) 542 nvmet_ns_changed(ns->subsys, ns->nsid); 543 } 544 545 int nvmet_ns_enable(struct nvmet_ns *ns) 546 { 547 struct nvmet_subsys *subsys = ns->subsys; 548 struct nvmet_ctrl *ctrl; 549 int ret; 550 551 mutex_lock(&subsys->lock); 552 ret = 0; 553 554 if (nvmet_passthru_ctrl(subsys)) { 555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 556 goto out_unlock; 557 } 558 559 if (ns->enabled) 560 goto out_unlock; 561 562 ret = -EMFILE; 563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 564 goto out_unlock; 565 566 ret = nvmet_bdev_ns_enable(ns); 567 if (ret == -ENOTBLK) 568 ret = nvmet_file_ns_enable(ns); 569 if (ret) 570 goto out_unlock; 571 572 ret = nvmet_p2pmem_ns_enable(ns); 573 if (ret) 574 goto out_dev_disable; 575 576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 577 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 578 579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 580 0, GFP_KERNEL); 581 if (ret) 582 goto out_dev_put; 583 584 if (ns->nsid > subsys->max_nsid) 585 subsys->max_nsid = ns->nsid; 586 587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 588 if (ret) 589 goto out_restore_subsys_maxnsid; 590 591 subsys->nr_namespaces++; 592 593 nvmet_ns_changed(subsys, ns->nsid); 594 ns->enabled = true; 595 ret = 0; 596 out_unlock: 597 mutex_unlock(&subsys->lock); 598 return ret; 599 600 out_restore_subsys_maxnsid: 601 subsys->max_nsid = nvmet_max_nsid(subsys); 602 percpu_ref_exit(&ns->ref); 603 out_dev_put: 604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 606 out_dev_disable: 607 nvmet_ns_dev_disable(ns); 608 goto out_unlock; 609 } 610 611 void nvmet_ns_disable(struct nvmet_ns *ns) 612 { 613 struct nvmet_subsys *subsys = ns->subsys; 614 struct nvmet_ctrl *ctrl; 615 616 mutex_lock(&subsys->lock); 617 if (!ns->enabled) 618 goto out_unlock; 619 620 ns->enabled = false; 621 xa_erase(&ns->subsys->namespaces, ns->nsid); 622 if (ns->nsid == subsys->max_nsid) 623 subsys->max_nsid = nvmet_max_nsid(subsys); 624 625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 627 628 mutex_unlock(&subsys->lock); 629 630 /* 631 * Now that we removed the namespaces from the lookup list, we 632 * can kill the per_cpu ref and wait for any remaining references 633 * to be dropped, as well as a RCU grace period for anyone only 634 * using the namepace under rcu_read_lock(). Note that we can't 635 * use call_rcu here as we need to ensure the namespaces have 636 * been fully destroyed before unloading the module. 637 */ 638 percpu_ref_kill(&ns->ref); 639 synchronize_rcu(); 640 wait_for_completion(&ns->disable_done); 641 percpu_ref_exit(&ns->ref); 642 643 mutex_lock(&subsys->lock); 644 645 subsys->nr_namespaces--; 646 nvmet_ns_changed(subsys, ns->nsid); 647 nvmet_ns_dev_disable(ns); 648 out_unlock: 649 mutex_unlock(&subsys->lock); 650 } 651 652 void nvmet_ns_free(struct nvmet_ns *ns) 653 { 654 nvmet_ns_disable(ns); 655 656 down_write(&nvmet_ana_sem); 657 nvmet_ana_group_enabled[ns->anagrpid]--; 658 up_write(&nvmet_ana_sem); 659 660 kfree(ns->device_path); 661 kfree(ns); 662 } 663 664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 665 { 666 struct nvmet_ns *ns; 667 668 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 669 if (!ns) 670 return NULL; 671 672 init_completion(&ns->disable_done); 673 674 ns->nsid = nsid; 675 ns->subsys = subsys; 676 677 down_write(&nvmet_ana_sem); 678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 679 nvmet_ana_group_enabled[ns->anagrpid]++; 680 up_write(&nvmet_ana_sem); 681 682 uuid_gen(&ns->uuid); 683 ns->buffered_io = false; 684 685 return ns; 686 } 687 688 static void nvmet_update_sq_head(struct nvmet_req *req) 689 { 690 if (req->sq->size) { 691 u32 old_sqhd, new_sqhd; 692 693 do { 694 old_sqhd = req->sq->sqhd; 695 new_sqhd = (old_sqhd + 1) % req->sq->size; 696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) != 697 old_sqhd); 698 } 699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 700 } 701 702 static void nvmet_set_error(struct nvmet_req *req, u16 status) 703 { 704 struct nvmet_ctrl *ctrl = req->sq->ctrl; 705 struct nvme_error_slot *new_error_slot; 706 unsigned long flags; 707 708 req->cqe->status = cpu_to_le16(status << 1); 709 710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 711 return; 712 713 spin_lock_irqsave(&ctrl->error_lock, flags); 714 ctrl->err_counter++; 715 new_error_slot = 716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 717 718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 719 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 721 new_error_slot->status_field = cpu_to_le16(status << 1); 722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 723 new_error_slot->lba = cpu_to_le64(req->error_slba); 724 new_error_slot->nsid = req->cmd->common.nsid; 725 spin_unlock_irqrestore(&ctrl->error_lock, flags); 726 727 /* set the more bit for this request */ 728 req->cqe->status |= cpu_to_le16(1 << 14); 729 } 730 731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 732 { 733 if (!req->sq->sqhd_disabled) 734 nvmet_update_sq_head(req); 735 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 736 req->cqe->command_id = req->cmd->common.command_id; 737 738 if (unlikely(status)) 739 nvmet_set_error(req, status); 740 741 trace_nvmet_req_complete(req); 742 743 if (req->ns) 744 nvmet_put_namespace(req->ns); 745 req->ops->queue_response(req); 746 } 747 748 void nvmet_req_complete(struct nvmet_req *req, u16 status) 749 { 750 __nvmet_req_complete(req, status); 751 percpu_ref_put(&req->sq->ref); 752 } 753 EXPORT_SYMBOL_GPL(nvmet_req_complete); 754 755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 756 u16 qid, u16 size) 757 { 758 cq->qid = qid; 759 cq->size = size; 760 } 761 762 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 763 u16 qid, u16 size) 764 { 765 sq->sqhd = 0; 766 sq->qid = qid; 767 sq->size = size; 768 769 ctrl->sqs[qid] = sq; 770 } 771 772 static void nvmet_confirm_sq(struct percpu_ref *ref) 773 { 774 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 775 776 complete(&sq->confirm_done); 777 } 778 779 void nvmet_sq_destroy(struct nvmet_sq *sq) 780 { 781 struct nvmet_ctrl *ctrl = sq->ctrl; 782 783 /* 784 * If this is the admin queue, complete all AERs so that our 785 * queue doesn't have outstanding requests on it. 786 */ 787 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 788 nvmet_async_events_failall(ctrl); 789 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 790 wait_for_completion(&sq->confirm_done); 791 wait_for_completion(&sq->free_done); 792 percpu_ref_exit(&sq->ref); 793 794 if (ctrl) { 795 nvmet_ctrl_put(ctrl); 796 sq->ctrl = NULL; /* allows reusing the queue later */ 797 } 798 } 799 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 800 801 static void nvmet_sq_free(struct percpu_ref *ref) 802 { 803 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 804 805 complete(&sq->free_done); 806 } 807 808 int nvmet_sq_init(struct nvmet_sq *sq) 809 { 810 int ret; 811 812 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 813 if (ret) { 814 pr_err("percpu_ref init failed!\n"); 815 return ret; 816 } 817 init_completion(&sq->free_done); 818 init_completion(&sq->confirm_done); 819 820 return 0; 821 } 822 EXPORT_SYMBOL_GPL(nvmet_sq_init); 823 824 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 825 struct nvmet_ns *ns) 826 { 827 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 828 829 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 830 return NVME_SC_ANA_INACCESSIBLE; 831 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 832 return NVME_SC_ANA_PERSISTENT_LOSS; 833 if (unlikely(state == NVME_ANA_CHANGE)) 834 return NVME_SC_ANA_TRANSITION; 835 return 0; 836 } 837 838 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 839 { 840 if (unlikely(req->ns->readonly)) { 841 switch (req->cmd->common.opcode) { 842 case nvme_cmd_read: 843 case nvme_cmd_flush: 844 break; 845 default: 846 return NVME_SC_NS_WRITE_PROTECTED; 847 } 848 } 849 850 return 0; 851 } 852 853 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 854 { 855 struct nvme_command *cmd = req->cmd; 856 u16 ret; 857 858 ret = nvmet_check_ctrl_status(req, cmd); 859 if (unlikely(ret)) 860 return ret; 861 862 if (nvmet_req_passthru_ctrl(req)) 863 return nvmet_parse_passthru_io_cmd(req); 864 865 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid); 866 if (unlikely(!req->ns)) { 867 req->error_loc = offsetof(struct nvme_common_command, nsid); 868 return NVME_SC_INVALID_NS | NVME_SC_DNR; 869 } 870 ret = nvmet_check_ana_state(req->port, req->ns); 871 if (unlikely(ret)) { 872 req->error_loc = offsetof(struct nvme_common_command, nsid); 873 return ret; 874 } 875 ret = nvmet_io_cmd_check_access(req); 876 if (unlikely(ret)) { 877 req->error_loc = offsetof(struct nvme_common_command, nsid); 878 return ret; 879 } 880 881 if (req->ns->file) 882 return nvmet_file_parse_io_cmd(req); 883 else 884 return nvmet_bdev_parse_io_cmd(req); 885 } 886 887 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 888 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 889 { 890 u8 flags = req->cmd->common.flags; 891 u16 status; 892 893 req->cq = cq; 894 req->sq = sq; 895 req->ops = ops; 896 req->sg = NULL; 897 req->metadata_sg = NULL; 898 req->sg_cnt = 0; 899 req->metadata_sg_cnt = 0; 900 req->transfer_len = 0; 901 req->metadata_len = 0; 902 req->cqe->status = 0; 903 req->cqe->sq_head = 0; 904 req->ns = NULL; 905 req->error_loc = NVMET_NO_ERROR_LOC; 906 req->error_slba = 0; 907 908 /* no support for fused commands yet */ 909 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 910 req->error_loc = offsetof(struct nvme_common_command, flags); 911 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 912 goto fail; 913 } 914 915 /* 916 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 917 * contains an address of a single contiguous physical buffer that is 918 * byte aligned. 919 */ 920 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 921 req->error_loc = offsetof(struct nvme_common_command, flags); 922 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 923 goto fail; 924 } 925 926 if (unlikely(!req->sq->ctrl)) 927 /* will return an error for any non-connect command: */ 928 status = nvmet_parse_connect_cmd(req); 929 else if (likely(req->sq->qid != 0)) 930 status = nvmet_parse_io_cmd(req); 931 else 932 status = nvmet_parse_admin_cmd(req); 933 934 if (status) 935 goto fail; 936 937 trace_nvmet_req_init(req, req->cmd); 938 939 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 940 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 941 goto fail; 942 } 943 944 if (sq->ctrl) 945 sq->ctrl->cmd_seen = true; 946 947 return true; 948 949 fail: 950 __nvmet_req_complete(req, status); 951 return false; 952 } 953 EXPORT_SYMBOL_GPL(nvmet_req_init); 954 955 void nvmet_req_uninit(struct nvmet_req *req) 956 { 957 percpu_ref_put(&req->sq->ref); 958 if (req->ns) 959 nvmet_put_namespace(req->ns); 960 } 961 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 962 963 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 964 { 965 if (unlikely(len != req->transfer_len)) { 966 req->error_loc = offsetof(struct nvme_common_command, dptr); 967 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 968 return false; 969 } 970 971 return true; 972 } 973 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 974 975 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 976 { 977 if (unlikely(data_len > req->transfer_len)) { 978 req->error_loc = offsetof(struct nvme_common_command, dptr); 979 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 980 return false; 981 } 982 983 return true; 984 } 985 986 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 987 { 988 return req->transfer_len - req->metadata_len; 989 } 990 991 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req) 992 { 993 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt, 994 nvmet_data_transfer_len(req)); 995 if (!req->sg) 996 goto out_err; 997 998 if (req->metadata_len) { 999 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev, 1000 &req->metadata_sg_cnt, req->metadata_len); 1001 if (!req->metadata_sg) 1002 goto out_free_sg; 1003 } 1004 return 0; 1005 out_free_sg: 1006 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1007 out_err: 1008 return -ENOMEM; 1009 } 1010 1011 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req) 1012 { 1013 if (!IS_ENABLED(CONFIG_PCI_P2PDMA)) 1014 return false; 1015 1016 if (req->sq->ctrl && req->sq->qid && req->ns) { 1017 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, 1018 req->ns->nsid); 1019 if (req->p2p_dev) 1020 return true; 1021 } 1022 1023 req->p2p_dev = NULL; 1024 return false; 1025 } 1026 1027 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1028 { 1029 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req)) 1030 return 0; 1031 1032 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1033 &req->sg_cnt); 1034 if (unlikely(!req->sg)) 1035 goto out; 1036 1037 if (req->metadata_len) { 1038 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1039 &req->metadata_sg_cnt); 1040 if (unlikely(!req->metadata_sg)) 1041 goto out_free; 1042 } 1043 1044 return 0; 1045 out_free: 1046 sgl_free(req->sg); 1047 out: 1048 return -ENOMEM; 1049 } 1050 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1051 1052 void nvmet_req_free_sgls(struct nvmet_req *req) 1053 { 1054 if (req->p2p_dev) { 1055 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1056 if (req->metadata_sg) 1057 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1058 } else { 1059 sgl_free(req->sg); 1060 if (req->metadata_sg) 1061 sgl_free(req->metadata_sg); 1062 } 1063 1064 req->sg = NULL; 1065 req->metadata_sg = NULL; 1066 req->sg_cnt = 0; 1067 req->metadata_sg_cnt = 0; 1068 } 1069 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1070 1071 static inline bool nvmet_cc_en(u32 cc) 1072 { 1073 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1074 } 1075 1076 static inline u8 nvmet_cc_css(u32 cc) 1077 { 1078 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1079 } 1080 1081 static inline u8 nvmet_cc_mps(u32 cc) 1082 { 1083 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1084 } 1085 1086 static inline u8 nvmet_cc_ams(u32 cc) 1087 { 1088 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1089 } 1090 1091 static inline u8 nvmet_cc_shn(u32 cc) 1092 { 1093 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1094 } 1095 1096 static inline u8 nvmet_cc_iosqes(u32 cc) 1097 { 1098 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1099 } 1100 1101 static inline u8 nvmet_cc_iocqes(u32 cc) 1102 { 1103 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1104 } 1105 1106 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1107 { 1108 lockdep_assert_held(&ctrl->lock); 1109 1110 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1111 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES || 1112 nvmet_cc_mps(ctrl->cc) != 0 || 1113 nvmet_cc_ams(ctrl->cc) != 0 || 1114 nvmet_cc_css(ctrl->cc) != 0) { 1115 ctrl->csts = NVME_CSTS_CFS; 1116 return; 1117 } 1118 1119 ctrl->csts = NVME_CSTS_RDY; 1120 1121 /* 1122 * Controllers that are not yet enabled should not really enforce the 1123 * keep alive timeout, but we still want to track a timeout and cleanup 1124 * in case a host died before it enabled the controller. Hence, simply 1125 * reset the keep alive timer when the controller is enabled. 1126 */ 1127 if (ctrl->kato) 1128 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 1129 } 1130 1131 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1132 { 1133 lockdep_assert_held(&ctrl->lock); 1134 1135 /* XXX: tear down queues? */ 1136 ctrl->csts &= ~NVME_CSTS_RDY; 1137 ctrl->cc = 0; 1138 } 1139 1140 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1141 { 1142 u32 old; 1143 1144 mutex_lock(&ctrl->lock); 1145 old = ctrl->cc; 1146 ctrl->cc = new; 1147 1148 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1149 nvmet_start_ctrl(ctrl); 1150 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1151 nvmet_clear_ctrl(ctrl); 1152 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1153 nvmet_clear_ctrl(ctrl); 1154 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1155 } 1156 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1157 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1158 mutex_unlock(&ctrl->lock); 1159 } 1160 1161 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1162 { 1163 /* command sets supported: NVMe command set: */ 1164 ctrl->cap = (1ULL << 37); 1165 /* CC.EN timeout in 500msec units: */ 1166 ctrl->cap |= (15ULL << 24); 1167 /* maximum queue entries supported: */ 1168 ctrl->cap |= NVMET_QUEUE_SIZE - 1; 1169 } 1170 1171 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, 1172 struct nvmet_req *req, struct nvmet_ctrl **ret) 1173 { 1174 struct nvmet_subsys *subsys; 1175 struct nvmet_ctrl *ctrl; 1176 u16 status = 0; 1177 1178 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1179 if (!subsys) { 1180 pr_warn("connect request for invalid subsystem %s!\n", 1181 subsysnqn); 1182 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1183 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1184 } 1185 1186 mutex_lock(&subsys->lock); 1187 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1188 if (ctrl->cntlid == cntlid) { 1189 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1190 pr_warn("hostnqn mismatch.\n"); 1191 continue; 1192 } 1193 if (!kref_get_unless_zero(&ctrl->ref)) 1194 continue; 1195 1196 *ret = ctrl; 1197 goto out; 1198 } 1199 } 1200 1201 pr_warn("could not find controller %d for subsys %s / host %s\n", 1202 cntlid, subsysnqn, hostnqn); 1203 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1204 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1205 1206 out: 1207 mutex_unlock(&subsys->lock); 1208 nvmet_subsys_put(subsys); 1209 return status; 1210 } 1211 1212 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd) 1213 { 1214 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1215 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1216 cmd->common.opcode, req->sq->qid); 1217 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1218 } 1219 1220 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1221 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1222 cmd->common.opcode, req->sq->qid); 1223 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1224 } 1225 return 0; 1226 } 1227 1228 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1229 { 1230 struct nvmet_host_link *p; 1231 1232 lockdep_assert_held(&nvmet_config_sem); 1233 1234 if (subsys->allow_any_host) 1235 return true; 1236 1237 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */ 1238 return true; 1239 1240 list_for_each_entry(p, &subsys->hosts, entry) { 1241 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1242 return true; 1243 } 1244 1245 return false; 1246 } 1247 1248 /* 1249 * Note: ctrl->subsys->lock should be held when calling this function 1250 */ 1251 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1252 struct nvmet_req *req) 1253 { 1254 struct nvmet_ns *ns; 1255 unsigned long idx; 1256 1257 if (!req->p2p_client) 1258 return; 1259 1260 ctrl->p2p_client = get_device(req->p2p_client); 1261 1262 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1263 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1264 } 1265 1266 /* 1267 * Note: ctrl->subsys->lock should be held when calling this function 1268 */ 1269 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1270 { 1271 struct radix_tree_iter iter; 1272 void __rcu **slot; 1273 1274 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1275 pci_dev_put(radix_tree_deref_slot(slot)); 1276 1277 put_device(ctrl->p2p_client); 1278 } 1279 1280 static void nvmet_fatal_error_handler(struct work_struct *work) 1281 { 1282 struct nvmet_ctrl *ctrl = 1283 container_of(work, struct nvmet_ctrl, fatal_err_work); 1284 1285 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1286 ctrl->ops->delete_ctrl(ctrl); 1287 } 1288 1289 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1290 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1291 { 1292 struct nvmet_subsys *subsys; 1293 struct nvmet_ctrl *ctrl; 1294 int ret; 1295 u16 status; 1296 1297 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1298 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1299 if (!subsys) { 1300 pr_warn("connect request for invalid subsystem %s!\n", 1301 subsysnqn); 1302 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1303 goto out; 1304 } 1305 1306 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1307 down_read(&nvmet_config_sem); 1308 if (!nvmet_host_allowed(subsys, hostnqn)) { 1309 pr_info("connect by host %s for subsystem %s not allowed\n", 1310 hostnqn, subsysnqn); 1311 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1312 up_read(&nvmet_config_sem); 1313 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1314 goto out_put_subsystem; 1315 } 1316 up_read(&nvmet_config_sem); 1317 1318 status = NVME_SC_INTERNAL; 1319 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1320 if (!ctrl) 1321 goto out_put_subsystem; 1322 mutex_init(&ctrl->lock); 1323 1324 nvmet_init_cap(ctrl); 1325 1326 ctrl->port = req->port; 1327 1328 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1329 INIT_LIST_HEAD(&ctrl->async_events); 1330 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1331 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1332 1333 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1334 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1335 1336 kref_init(&ctrl->ref); 1337 ctrl->subsys = subsys; 1338 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1339 1340 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1341 sizeof(__le32), GFP_KERNEL); 1342 if (!ctrl->changed_ns_list) 1343 goto out_free_ctrl; 1344 1345 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1346 sizeof(struct nvmet_sq *), 1347 GFP_KERNEL); 1348 if (!ctrl->sqs) 1349 goto out_free_changed_ns_list; 1350 1351 if (subsys->cntlid_min > subsys->cntlid_max) 1352 goto out_free_changed_ns_list; 1353 1354 ret = ida_simple_get(&cntlid_ida, 1355 subsys->cntlid_min, subsys->cntlid_max, 1356 GFP_KERNEL); 1357 if (ret < 0) { 1358 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1359 goto out_free_sqs; 1360 } 1361 ctrl->cntlid = ret; 1362 1363 ctrl->ops = req->ops; 1364 1365 /* 1366 * Discovery controllers may use some arbitrary high value 1367 * in order to cleanup stale discovery sessions 1368 */ 1369 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato) 1370 kato = NVMET_DISC_KATO_MS; 1371 1372 /* keep-alive timeout in seconds */ 1373 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1374 1375 ctrl->err_counter = 0; 1376 spin_lock_init(&ctrl->error_lock); 1377 1378 nvmet_start_keep_alive_timer(ctrl); 1379 1380 mutex_lock(&subsys->lock); 1381 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1382 nvmet_setup_p2p_ns_map(ctrl, req); 1383 mutex_unlock(&subsys->lock); 1384 1385 *ctrlp = ctrl; 1386 return 0; 1387 1388 out_free_sqs: 1389 kfree(ctrl->sqs); 1390 out_free_changed_ns_list: 1391 kfree(ctrl->changed_ns_list); 1392 out_free_ctrl: 1393 kfree(ctrl); 1394 out_put_subsystem: 1395 nvmet_subsys_put(subsys); 1396 out: 1397 return status; 1398 } 1399 1400 static void nvmet_ctrl_free(struct kref *ref) 1401 { 1402 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1403 struct nvmet_subsys *subsys = ctrl->subsys; 1404 1405 mutex_lock(&subsys->lock); 1406 nvmet_release_p2p_ns_map(ctrl); 1407 list_del(&ctrl->subsys_entry); 1408 mutex_unlock(&subsys->lock); 1409 1410 nvmet_stop_keep_alive_timer(ctrl); 1411 1412 flush_work(&ctrl->async_event_work); 1413 cancel_work_sync(&ctrl->fatal_err_work); 1414 1415 ida_simple_remove(&cntlid_ida, ctrl->cntlid); 1416 1417 nvmet_async_events_free(ctrl); 1418 kfree(ctrl->sqs); 1419 kfree(ctrl->changed_ns_list); 1420 kfree(ctrl); 1421 1422 nvmet_subsys_put(subsys); 1423 } 1424 1425 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1426 { 1427 kref_put(&ctrl->ref, nvmet_ctrl_free); 1428 } 1429 1430 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1431 { 1432 mutex_lock(&ctrl->lock); 1433 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1434 ctrl->csts |= NVME_CSTS_CFS; 1435 schedule_work(&ctrl->fatal_err_work); 1436 } 1437 mutex_unlock(&ctrl->lock); 1438 } 1439 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1440 1441 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1442 const char *subsysnqn) 1443 { 1444 struct nvmet_subsys_link *p; 1445 1446 if (!port) 1447 return NULL; 1448 1449 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1450 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1451 return NULL; 1452 return nvmet_disc_subsys; 1453 } 1454 1455 down_read(&nvmet_config_sem); 1456 list_for_each_entry(p, &port->subsystems, entry) { 1457 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1458 NVMF_NQN_SIZE)) { 1459 if (!kref_get_unless_zero(&p->subsys->ref)) 1460 break; 1461 up_read(&nvmet_config_sem); 1462 return p->subsys; 1463 } 1464 } 1465 up_read(&nvmet_config_sem); 1466 return NULL; 1467 } 1468 1469 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1470 enum nvme_subsys_type type) 1471 { 1472 struct nvmet_subsys *subsys; 1473 1474 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1475 if (!subsys) 1476 return ERR_PTR(-ENOMEM); 1477 1478 subsys->ver = NVMET_DEFAULT_VS; 1479 /* generate a random serial number as our controllers are ephemeral: */ 1480 get_random_bytes(&subsys->serial, sizeof(subsys->serial)); 1481 1482 switch (type) { 1483 case NVME_NQN_NVME: 1484 subsys->max_qid = NVMET_NR_QUEUES; 1485 break; 1486 case NVME_NQN_DISC: 1487 subsys->max_qid = 0; 1488 break; 1489 default: 1490 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1491 kfree(subsys); 1492 return ERR_PTR(-EINVAL); 1493 } 1494 subsys->type = type; 1495 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1496 GFP_KERNEL); 1497 if (!subsys->subsysnqn) { 1498 kfree(subsys); 1499 return ERR_PTR(-ENOMEM); 1500 } 1501 subsys->cntlid_min = NVME_CNTLID_MIN; 1502 subsys->cntlid_max = NVME_CNTLID_MAX; 1503 kref_init(&subsys->ref); 1504 1505 mutex_init(&subsys->lock); 1506 xa_init(&subsys->namespaces); 1507 INIT_LIST_HEAD(&subsys->ctrls); 1508 INIT_LIST_HEAD(&subsys->hosts); 1509 1510 return subsys; 1511 } 1512 1513 static void nvmet_subsys_free(struct kref *ref) 1514 { 1515 struct nvmet_subsys *subsys = 1516 container_of(ref, struct nvmet_subsys, ref); 1517 1518 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1519 1520 xa_destroy(&subsys->namespaces); 1521 nvmet_passthru_subsys_free(subsys); 1522 1523 kfree(subsys->subsysnqn); 1524 kfree_rcu(subsys->model, rcuhead); 1525 kfree(subsys); 1526 } 1527 1528 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1529 { 1530 struct nvmet_ctrl *ctrl; 1531 1532 mutex_lock(&subsys->lock); 1533 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1534 ctrl->ops->delete_ctrl(ctrl); 1535 mutex_unlock(&subsys->lock); 1536 } 1537 1538 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1539 { 1540 kref_put(&subsys->ref, nvmet_subsys_free); 1541 } 1542 1543 static int __init nvmet_init(void) 1544 { 1545 int error; 1546 1547 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1548 1549 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1550 WQ_MEM_RECLAIM, 0); 1551 if (!buffered_io_wq) { 1552 error = -ENOMEM; 1553 goto out; 1554 } 1555 1556 error = nvmet_init_discovery(); 1557 if (error) 1558 goto out_free_work_queue; 1559 1560 error = nvmet_init_configfs(); 1561 if (error) 1562 goto out_exit_discovery; 1563 return 0; 1564 1565 out_exit_discovery: 1566 nvmet_exit_discovery(); 1567 out_free_work_queue: 1568 destroy_workqueue(buffered_io_wq); 1569 out: 1570 return error; 1571 } 1572 1573 static void __exit nvmet_exit(void) 1574 { 1575 nvmet_exit_configfs(); 1576 nvmet_exit_discovery(); 1577 ida_destroy(&cntlid_ida); 1578 destroy_workqueue(buffered_io_wq); 1579 1580 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1581 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1582 } 1583 1584 module_init(nvmet_init); 1585 module_exit(nvmet_exit); 1586 1587 MODULE_LICENSE("GPL v2"); 1588